
Abstract. Stochastic structure formation in random media is
considered using examples of elementary dynamical systems
related to the two-dimensional geophysical fluid dynamics
(Gaussian random fields) and to stochastically excited dynami-
cal systems described by partial differential equations (lognor-
mal random fields). In the latter case, spatial structures
(clusters) may form with a probability of one in almost every
system realization due to rare events happening with vanishing
probability. Problems involving stochastic parametric excita-
tion occur in fluid dynamics, magnetohydrodynamics, plasma
physics, astrophysics, and radiophysics. A more complicated
stochastic problem dealing with anomalous structures on the
sea surface (rogue waves) is also considered, where the random
Gaussian generation of sea surface roughness is accompanied
by parametric excitation.

Keywords: stochastic equations, intermittency, Lyapunov charac-
teristic parameter, typical realization curve, dynamical localization,
statistical topography, clustering

``The book of Nature is written
in the language of mathematics.''

Galileo Galilei

1. Introduction

Humanity exists in a certain realization of stochastic spatio±
temporal chaos. Yet physicists believe that the basic dynami-
cal equations of mechanics, fluid dynamics, magnetohydro-
dynamics, electrodynamics, acoustics, optics, radiophysics,
etc. describe the actual evolution of the world in space and
time.

In 2014, the scientific community celebrated a jubileeÐ
the 450th anniversary of the birth of the great scientist Galileo
[1], who contended that Nature formulates its laws in the
language of mathematics. And the equations of dynamics in
space and time indubitably embody one of the main
manifestations of mathematics in physics! If Galileo was
right, then a question arises as to how the laws of Nature
can `be rectified' from these equations without analyzing
possible physical mechanisms of concrete phenomena. This
question can only be answered with a rigorous statistical
analysis. Namely such an approach is demonstrated in this
work.

We begin by formulating the main task of a statistical
analysis of stochastic dynamical systems in the way we
understand it: to find out, based on a relevant statistical
analysis, such general properties of stochastic dynamical
systems that are manifested with a unit probability, i.e., for
almost all realizations of the systems being considered. This is
related to the fact that we commonly do not possess an
ensemble for averaging, and specialists in numerical model-
ing and experimentalists alike deal only with separate
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realizations of random processes and fields. Traditional
statistical averaging gives, as a rule, `the mean over a hospital
ward'. There are, of course, exceptions (see Section 1.1).

In stochastic dynamical systems described by equations in
partial derivatives, a stochastic structure formation in space
and timemay take place in some events with a unit probability
for individual realizations of the fields involved. Such
processes and phenomena, occurring with a unit probability,
wewill call coherent. This kind of `statistical coherence' can be
considered some organization of a complex dynamical
system, while singling out its statistically stable characteris-
tics is analogous to the introduction of the concept of
coherence, understood as self-organization in multicompo-
nent systems arising from chaotic interactions among their
elements (see, for example, book [2]).

This work deals with three types of the simplest dynamical
systems: systems related to Gaussian random fields, to
stochastic parametric excitation, and to stochastic para-
metric excitation fed by Gaussian pumping (the combined
event). They are all described by equations in partial
derivatives.

Note that even in Gaussian random fields onemay encounter
nontrivial situations, atypical for ordinary Gaussian noise.
Such phenomena occur, for example, in two-dimensional
problems of geophysical fluid dynamics in the rotating fluid
with random bottom topography (see, for example, papers [3,
4]) and in the problem of anomalous structures on the sea
surface (see Section 6.2).

1.1 Two-dimensional geophysical fluid dynamics
A simple manifestation of coherent phenomena corresponds
to a two-dimensional incompressible flow of an ideal fluid on
the plane R � �x; y�, described by a streamfunction c�R; t�
satisfying the equation

q
qt

Dc�R; t� � J
ÿ
Dc�R; t�;c�R; t�� ; c�R; 0� � c0�R� ; �1�

where D is the Laplacian, and J
ÿ
c�R; t�;j�R; t�� is the

Jacobian of two functions [5]:

J
ÿ
c�R; t�;j�R; t�� � qc�R; t�

qx
qj�R; t�

qy
ÿ qj�R; t�

qx
qc�R; t�

qy
:

Nonlinear interactions would drive hydrodynamic system
(1) to statistical equilibrium. Realizing that the process
whereby this equilibrium is established involves numerous
interactions between perturbations on different scales, one
may suppose that in the simplest case of a statistically
homogeneous and isotropic initial random field c0�R� such
an equilibrium distribution will be a Gaussian one, and the
task reduces to defining its parameters. The random stream-
function c�R; t� stays spatially homogeneous and isotropic in
the process of evolution. Since c�R; t� is defined up to the
additive constant, its statistical characteristics can be
described by the one-time structure function

Dc�Rÿ R 0; t� �
D�

c�R; t� ÿ c�R 0; t��2E
� 2
ÿ
Bc�0; t� ÿ Bc�Rÿ R 0; t�� ;

where Bc�Rÿ R 0; t� � hc�R; t�c�R 0; t�i is the spatial correla-
tion function of field c�R; t�.

If we assume that the field c�R; t� has the distribution of a
Gaussian statistically homogeneous and isotropic field

described by the steady-state structural function

Dc�R� � lim
t!1Dc�R; t� ;

then the following equation can be obtained for this function
[2]:

�Dq � l�DqDc�q� � 0 ; �2�

where the separation constant l has the dimension of an
inverse length squared, q � jRÿ R 0j, and Dq is the radial part
of the Laplace operator.

There are two possible solutions of equation (2) that
correspond to positive and negative values of the constant l:
l � k 2

0 > 0 and l � ÿk 2
0 < 0.

If l � k 2
0 > 0, equation (2) is reduced to

DqDc�q� � CJ0�k0q� ;

where C is a dimensional constant, and J0�z� is the Bessel
function of the first kind. In this case, the function Dc�q� is
determined by solving the Poisson equation, and the result for
the spectral density of the streamfunction is as follows:

E�k� � Ed�kÿ k0� ;

which corresponds to random structures with a certain fixed
spatial scale. In the case considered, these structures are
vortices, i.e., we are dealing with structure formation through
vortex genesis.

For l � ÿk 2
0 < 0, equation (2) reduces to a similar

equation

DqDc�q� � CK0�k0q� ;

but with a modified Bessel function of the second kind (the
Macdonald function) K0�z� on the right-hand side with
dimensional parameters k0 and C. The related spectral
density of the streamfunction now takes the form

E�k� � E0

k 2 � k 2
0

;

which corresponds to the Gibbs distribution with two
integrals of motionÐ those of energy and vorticity squared
(enstrophy) of a velocity field (see, for example, Refs [6, 7]).

Acting in a similar way, it is also possible to consider
equilibrium states for quasigeostrophic flows (in the presence
of rotation) with a random topography of underlying surface
for a one- and two-layer fluid flows (Fig. 1), where we
encounter a similar situation.

H0 r0
~h�x�

x

a

H0

H1

H2

r1

r2
~h�x�

x

b

Figure 1. Schematics of one- (a) and two-layer (b) models of hydrodynam-

ical flows. H0, H1, and H2 are the thicknesses of the fluid layers with

densities r0, r1, and r2, respectively; ~h�x� is the function describing the

topography of the bottom.
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For a one-layer model, the fluid motion in the two-
dimensional plane R � �x; y� is described by the streamfunc-
tion that satisfies the equation

q
qt

Dc�R; t� � b0
q
qx

c�R; t� � J
ÿ
Dc�R; t� � h�R�;c�R; t�� ;

where the parameter b0 is the meridional derivative of the
local Coriolis parameter f0, and h�R� � f0 ~h�R�=H0. Here,
~h�x� is the function describing the bottom topography ~h�R�,
and H0 is the mean thickness of a fluid layer. This equation
describes the barotropic motion of a fluid. In a more general
case, to explore baroclinic motions, a two-layer model of
quasigeostrophic flows is used, which is governed by the
system of equations

q
qt

�
Dc1 ÿ a1F�c1 ÿ c2�

�� b0
qc1

qx

� J
ÿ
Dc1 ÿ a1F�c1 ÿ c2�;c1

�
;

q
qt

�
Dc2 ÿ a2F�c2 ÿ c1�

�� b0
qc2

qx

� J
ÿ
Dc2 ÿ a2F�c2 ÿ c1� � f0a2h;c2

�
;

where the additional parameters a1 � 1=H1 and a2 � 1=H2

are the inverse layer thicknesses, and F � f 2
0 r=g�Dr�,

Dr=r � �r2 ÿ r1�=r0 > 0.
Thus, there are already two fixed scales in a two-layer

fluid.
It seems plausible to assume that such structures have

been observed in experimental studies in rotating fluids (see,
for example, Refs [8±10], review [11], and monographs [12,
13]), and also in numerical simulations (see, for example,
Ref. [14]). As illustrations, we present Figs 2±5 which, in our
opinion, correspond to the situation described. Figure 6
shows an example of structure formation in the field of
surface flows in the Baltic Sea [15, 16].

1.2 Parametrically excited dynamical systems
We turn now to the statistical analysis of stochastic dynamical
systems related to random parametric excitation in space and
time. Such systems, appearing in many branches of physics,
can be described by ordinary differential equations, as well as
by partial differential equations. Stochastic structure forma-
tion for such systems in random media in the form of
clustering is related to the parametric excitation of various

a

b

Figure 2. System of regular convecting vortices on a rotating platform: (a) top view, and (b) side view. (Taken from monograph [12].)

Figure 3. System of irregular convective vortices on a rotating platform for

a rotational velocity larger than in Fig. 2. (Taken from monograph [12].)

Figure 4. Streak pattern of velocities in a baroclinically unstable two-layer

stratified fluid on a rotating platform. (Taken from Ref. [11].)
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physical fields in these media. Clustering of a particular field
implies the appearance of compact regions with large field
values against the background of surrounding areas with
relatively low field values. Statistical averaging, expectedly,
destroys all the information on clusters. Such challenges
occur in fluid dynamics (a passive scalar tracer in a turbulent
flow), in magnetohydrodynamics (a passive vector tracerÐ
magnetic field in a turbulent flow), and in the propagation of
waves of various origins (acoustic and radio waves, light and
laser radiation) in random media. All these issues are
commonly considered in the kinematic approximation and
share the following two most important traits.

(1) At fixed points in space, the field realizations in time
are random processes which possess a specific character: they
have the shape of peaks that appear at random instants of
time. The intervals between them are characterized by low

intensity and long duration. Such a realization of a random
process in time for any location in space stems from the
lognormal one-time distribution of probabilities, which has a
slightly sloping `tail'. The large but rare outliers (fluctuations)
come from these tails. The main statistical characteristics of
the processes being considered are the one-time probability
density, one-time moment functions, typical realization curve
characterizing the key features in the behavior of realizations
of random processes, and Lyapunov exponent. In one-
dimensional tasks described by ordinary differential equa-
tions with initial or boundary conditions, only such physical
phenomena as dynamical localization can be observed in a
number of cases (see Section 2).

(2) The structure formation itself of a stochastic field
takes place in physical space and is described through a
related statistical analysis based on the ideas of statistical
topography of a stochastic field. In the simplest problem
formulation, under statistical homogeneity in space, all one-
point statistical characteristics of a random field are indepen-
dent of spatial locations. Accordingly, the equation for the
one-point probability density of a random field coincides in
form with the equation for the probability density of a
random process at each point in space, although the sense of
these equations is substantially different. Relatedly, the
statistical analysis of these equations should also be com-
pletely different.

A detailed discussion of these questions can be found in
monographs [17±20] and articles [21±24].

First of all, a question arises as to whether or not such
physical phenomena as localization and clustering occur in
individual realizations of the processes and fields being
considered, and if yes, then over which characteristic time
(or on which spatial scales).

The phenomenon of structure formation in stochastic,
parametrically excited dynamical systems on its own is well
known in physics. For example, solutions of one-dimensional
problems on parametric excitation, described by ordinary
differential equations, are random processes.

The simplest dynamical system of that kind defines a
lognormal random process y�t; a� described by a first-order
ordinary stochastic differential equation:

d

dt
y�t; a� � �ÿa� z�t�	 y�t; a�; y�0; a� � 1 ; �3�

where z�t� is a Gaussian random process of white noise with
the parameters


z�t�� � 0 ; Bz�tÿ t 0� � 
z�t�z�t 0�� � 2Dd�tÿ t 0� :

The solution to equation (3) takes the form

y�t; a� � exp

�
ÿat�

� t

0

dt z�t�
�
: �4�

It should be noted that the change in the sign of parameter a in
Eqn (4) is statistically equivalent to passing to the process
1=y�t� [25].

Figure 7 presents realizations of the lognormal random
process y�t; a� given by formula (4) for positive and negative
values of the parameter a and jaj=D � 1 (the dashed lines
correspond to the functions exp �ÿDt� for a > 0, and exp �Dt�
for a < 0). The presence of rare, but strong, spikes (fluctua-
tions) with respect to the dashed curves in the directions of
both large and small values can be seen in Fig. 7. This

�

�
� �

ÿ

ÿ ÿ ÿ
ÿ

t � 158

t � 193

t � 226

t � 248

t � 305

Figure 5. (Color online.) Formation of eddies on a sphere driven by an

unstable shear flow. (Taken from Ref. [14].)

Figure 6. Domain of the submesoscale surface vorticity field in the Baltic

Sea.
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property of random processes is called intermittency; it was
intensively studied in the 1980s (see, for example, Refs [26,
27]). A detailed discussion of this question is given, for
example, in monograph [19] and paper [28]. The curve with
respect to which we identify the outliers (fluctuations) will be
referred to as the typical realization curve.

The authors of practically every one of the numerous
articles exploring the properties of intermittency cite Zel'do-
vich et al. [27] when turning to the notion of `intermittency'.
The term intermittency on its own emerged in studies of the
velocity field and temperature spots in turbulent media [29,
30] (as, for instance, stated inRef. [27]). However, even at that
time it was already well known that one-point distributions of
velocity fields and temperature fluctuations are close to
Gaussian ones (see, for example, Ref. [31]). The term
intermittency is certainly a telling one, and it characterizes
the time variability of a random field at a fixed location in
space, i.e., the variability of a random process with respect to
its mean value.

At that time, certainly, it was also known that stochastic
instability (parametric excitation) could occur in dynamical
systems as a consequence of fluctuations in the internal
parameters of the system. However, for a long time, up to
the 1980s, nobody took interest in these questions. The
achievement of the authors of Ref. [27] is that they, in all
probability, were the first to draw attention to the possibility
of stochastic structure formation as a consequence of such
parametric excitation, which had been known at that time
from various kinds of observations.

The abstract to paper [27] states, ``The processes of
instability in random media are characterized by formation
of specific structures in which a growing quantity reaches
record-high values. Despite the rareness of such concentra-
tions namely they confine the main part of integral character-
istics of a growing quantity (the mean value, the mean
squared value, etc.). The appearance of such structures is
referred to as the phenomenon of intermittency.'' Thus, in
Ref. [27] strong rare outliers (fluctuations) are termed specific
structures, while the process proper whereby these structures
(outliers or fluctuations) form is called the phenomenon of
intermittency.

In our understanding, intermittency is a general property
of all random processes, independent of the amplitude of
possible fluctuations, while structure formation constitutes a
certain type of evolution of stochastic dynamical systems in
space and time.

Reference [27] treated these notions as identical. At
present, for example, some scientists call large rare outliers
(fluctuations) characteristic of both the stochastic linear and
nonlinear Leontovich equations (see below) rogue (freak)
waves (see, for example, the lectures by V E Zakharov [32]).
A rogue wave is undoubtedly a phenomenon of spatio±
temporal watermass clustering, and it should be considered
on the basis of appropriate statistical analysis of the evolution
of random fields.

It should be noted that the statistical theory of stationary
extremal statistical processes is an independent branch of
probability theory (see, for example, review [33]). However, in
our opinion, this area has nothing to do with stochastic
structure formation in space and time.

A fundamental feature of stochastic dynamical systems
described by partial differential equations is that their
solutions comprise random fields in space and time. The
difficulty in explaining processes of structure formation in
these systems is related to two factors. First, at any fixed point
in space the random field constitutes a random process in
time. Second, for any fixed instant of time, the random field
represents a random process over its spatial coordinates.
Intermittency (i.e., variability) occurs namely for random
processes (with respect to time or spatial coordinate); it is a
general property of any random process irrespective of the
nature of its origin.

In this study, the intermittency of a random process is
understood as a more or less uninterrupted alteration of
outliers (fluctuations) of this process toward larger as well as
lower values with respect to the deterministic curveÐ the
curve of typical realization, which is the median of the integral
probability distribution function (see Section 2.1). In this
case, a lognormal, parametrically excited random process can
exponentially decay with time in individual realizations
(certainly, with some fluctuations), which corresponds to the
phenomenon of dynamical localization. An exponential
growth of a random process with time is also possible, which
corresponds to the absence of dynamical localization. A
peculiarity of a lognormal random process is the presence of
rare anomalously high spikes (fluctuations) on the curves of
the process (see Fig. 7), related to the long sloped `tail' of the
probability density (see Section 2). All traditional statistical
characteristics, such as moment and correlation functions of
arbitrary order, result from these fluctuations.

By introducing the notion of the typical realization curve
for a random process, we return to the historical sense of the

4

y�t�

3

2

1

0 0.5 1.0 1.5 2.0 2.5
Dt

a4 0 y�t�
30

25

20

15

10

5

Dt
0 0.5 1.0 1.5 2.0 2.5

a5 0

Figure 7. Realizations of the lognormal process y�t� for a > 0, a < 0, and jaj=D � 1.
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concept of intermittency, which is general for all random
processes and has a strict probabilistic definition and a
transparent physical sense.

Examples of stochastic dynamical systems. One of the
simplest physical problems related to parametric excitation
is that of diffusion of a particle or an ensemble of particles in a
random velocity field u�r; t� with given statistical properties,
in the kinematic approximation (see, for example, mono-
graphs [17±20], which provide an extensive bibliography of
problems considered), diffusion described by the system of
ordinary differential equations

dr�t�
dt
� u
ÿ
r�t�; t� ; r�0� � r0 : �5�

Numerical simulations of this problem indicate that the
dynamics of the ensemble of particles can essentially differ,
depending on whether the random velocity field is divergent
or not. For a concrete realization of a nondivergent stationary
velocity field u�r�, particles (the two-dimensional case)
uniformly spread in a circle only mix in the domain bounded
by a deformed contour. The contour becomes only strongly
filamented with time, acquiring a fractal character. For a
potential velocity field u�r�, particles uniformly spread over a
square at the initial instant of time form cluster regions as the
system evolves with time. We stress that cluster formation in
this case is a purely kinematic effect. Obviously, on averaging
over an ensemble of realizations of a random velocity field
this feature of particle's dynamics will disappear.

The Anderson dynamical localization is also known for
eigenfunctions of the one-dimensional stationary SchroÈ din-
ger equation with a random potential [34, 35]. Accordingly,
the dynamic localization of wave intensity takes place in a
boundary-value problem related to waves in random layered
media in a spatial interval �L0;L� [36]. This case is described
by a stochastic Helmholtz equation

d2u�x�
dx 2

� k 2
ÿ
1� e�x��u�x� � 0 �6�

with the boundary conditions that the field and its derivative
be continuous at the layer boundary:

u�L� � i

k

du�x�
dx

����
x�L
� 2 ; u�L0� ÿ i

k

du�x�
dx

����
x�L0

� 0 :

As for random fields, we may introduce a generalization
of lognormal random process (4), extending it to a lognormal
random field according to the formula

f �r; t; a� � f0�r� exp
�
ÿat�

� t

0

dt z�r; t�
�
; �7�

where z�r; t� is the Gaussian random field delta-correlated in
time with a zero mean and the correlation function

Bz�rÿ r 0; tÿ t 0� � 
z�r; t�z�r 0; t 0�� � 2D�rÿ r 0�d�tÿ t 0� :
�8�

This field satisfies the first-order differential equation

d

dt
f �r; t; a� � ÿÿa� z�r; t�� f �r; t; a�; f �r; 0; a� � f0�r� ;

�9�

which parametrically depends on the position of point r in
space.

Notice that the studies [26, 27] on intermittency men-
tioned above considered the equation

d f �r; t�
dt

� z�r; t� f �r; t� � mf D f �r; t� �10�

as their model problem, where mf is the dynamic diffusion
coefficient for the field f �r; t�. This equation with random
breeding and diffusion is typical of problems in biology and
the kinetics of chemical and nuclear reactions (see, for
example, Ref. [37]).

If f0�r� � 1, all one-point statistical characteristics of this
filed are independent of r.

At the initial stage of diffusion, the solution to problem
(10) is given by function (7) with a � 0 and f0�r� � 1:

f �r; t� � exp

�� t

0

dt z�r; t�
�
; �11�

which is statistically equivalent to the random process y�t; 0�
(4) for one-point statistical characteristics. As will be shown
further, there is no structure formation in this case. But the
general feature of intermittency remains.

It should be noted that adding the `destruction' effect to
equation (10) with the help of the term ÿa f �r; t; a� for a > 0
leads to the equation

d

dt
f �r; t; a� � ÿÿa� z�r; t�� f �r; t; a� � mf D f �r; t; a� ; �12�

the solution of which at the initial stage is already described
by formula (7). In this case, as shown further, stochastic
structure formation in the form of clustering becomes
possible.

The inclusion of randomness into the medium parameters
spawns stochasticity in the physical fields themselves.
Individual realizations, for example, of lognormal scalar
two-dimensional field f �R; t� (11), where R � fx; yg, resem-
ble a complex mountain landscape with randomly distributed
peaks, troughs, ridges, and passes. Figure 8 illustrates
examples of two numerically simulated realizations of
random fields with different statistical structures.

Clustering in random physical fields arises first of all in
problems of turbulent transport in a random velocity field
u�r; t�. In particular, clustering may occur for both a passive
scalar tracer (the field of density) [17±20, 38] and a vector
tracer (magnetic field energy) in the framework of kinematic
approximation [17±20, 39]. The input stochastic equations in
these cases are the continuity equation for the tracer density
field r�r; t�, viz.�
q
qt
� q
qr

u�r; t�
�
r�r; t� � mrDr�r; t� ; r�r; 0� � r0�r� ; �13�

and the induction equation for the solenoidal magnetic field
H�r; t� [40]:�

q
qt
� q
qr

u�r; t�
�
H�r; t� �

�
H�r; t� q

qr

�
u�r; t� � mHDH�r; t� ;

H�r; 0� � H0�r� ; �14�

where mr and mH are the dynamic diffusion coefficients for the
density field and the magnetic field, respectively. Here, u�r; t�
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is the field of turbulent velocities with given statistical
properties, which is assumed to be homogeneous and
isotropic in space, and stationary in time.

We stress that in the analysis of these and similar
equations of mathematical physics, considered further in
this article, we will not be interested in their direct solutions
or physical mechanisms giving birth to one physical phenom-
enon or another. Our goal is to learn whether the input
equations on their own contain information on the possibi-
lity (or impossibility) of stochastic structure formation in
random media with a unit probability, i.e., for almost all
realizations of their solutions.

It should be noted that a scalar density field always
experiences clustering in a compressible fluid flow. Figure 9
displays the pattern of cluster structure of the Universe, taken
from the Internet, which in all probability is directly related to
the clustering of cosmic matter in random velocity fields. This
question is discussed in Section 4.1.

The formation of stochastic structures may also take the
form of a caustic structure of the wave field intensity in
problems involving waves propagating in randomly inhomo-
geneous media in the framework of the Leontovich complex-
valued stochastic parabolic equation (see, for example,
Refs [17, 18, 41]):

q
qx

u�x;R� � i

2k
DRu�x;R� � ik

2
e�x;R�u�x;R� ;

�15�
u�0;R� � u0�R� ;

where x is the coordinate in the direction of wave propaga-
tion,R is the coordinate in the transverse plane, and e�x;R� is
the deviation of dielectric constant from unity.

We mention that this same equation becomes a nonsta-
tionary SchroÈ dinger equation with the random potential
e�x;R� on the replacement of x with time t.

If we introduce the amplitude and phase of a wave field
according to the formula

u�x;R� � A�x;R� exp ÿiS�x;R�� ;

2
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Figure 8. Realizations of (a) a Gaussian field ln f �r; t�, and (b) a lognormal field f �r; t� (11) and their topographic level lines. The thick contours

correspond to zero isolines in panel (a), and to the unit field in panel (b).

Figure 9. Cluster structure of the Universe.
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the equation for the wave field intensity I�x;R� � ju�x;R�j2
takes the following form:

q
qx

I�x;R� � 1

k
HHR

�
HHRS�x;R�I�x;R�

	 � 0 ; I�0;R� � I0�R�:
�16�

Equation (16) coincides in form with the continuity equation
(13) for the tracer density field in a random potential flow in
the absence of dynamic diffusivity and, accordingly, the wave
field intensity should undergo clustering. This problem is
discussed in more detail in Section 3.2.1.

It should also be emphasized that a nonlinear general-
ization of equation (15) which corresponds to a monochro-
matic nonlinear problem on wave self-action in randomly
inhomogeneous media, is described by the Leontovich
complex-valued nonlinear parabolic equation (the nonlinear
SchroÈdinger equation)

q
qx

u�x;R� � i

2k
DRu�x;R� � ik

2
e
ÿ
x;R; I�x;R��u�x;R� ;

u�0;R� � u0�R� : �17�

For equation (17), the wave field intensity I�x;R� is also
described by equation (16) [but, clearly, with another phase
function S�x;R�], so that the intensity should experience
clustering, too.

In particular, since equation (16) does not depend on the
form of function e�x;R�, then even if e�x;R� � 0 for the initial
condition u�0;R� � u0�R� the caustic structure formation, as
is well known, takes place, which is regularly observed in
swimming pools or in shallow water. In this case, equations
(15) and (17) take the form

q
qx

u�x;R� � i

2k
DRu�x;R� ; u�0;R� � u0�R� :

The solution to the last equation is the function

u�x;R� � exp

�
ix

2k
DR

�
u0�R�

� k

2pix

�
dR 0 exp

�
ik

2x
�Rÿ R 0�2

�
u0�R 0� ; �18�

and for a plane incident wave the initial condition is
ju0�R�j � 1, i.e., the condition u0�R� � exp �iS0�R��, where
S0�R� is the field of the random initial phase. In this case,
spatial fluctuations in the initial distribution of the wave

phase transform into a caustic structure in the wave field
intensity. The case is known as the random phase screen.
Examples of such clustering are given in Fig. 10.

Dynamical systems (13)±(17) are conservative and pre-
serve integral characteristics such as the total tracer mass
M � � dr r�r; t�, the magnetic field flux

�
drH�r; t�, and wave

field power I � � dR I�x;R�.
For homogeneous initial conditionsr0�r��r0,H0�r�� H0,

and u0�R� � u0, and for random parameters that are
statistically homogeneous in space, the corollary of the
conservative character of dynamical systems (13)±(17) is the
equalities


r�r; t�� � r0 ;


H�r; t�� � H0 ;



I�x;R�� � I0 � ju0j2 :

A peculiarity of equations (13) and (14) is the parametric
excitation of both the density field r�r; t� (in a compressible
fluid flow) and themagnetic field energyE�r; t� � H2�r; t� (for
a turbulent flow of fluid) with time in each realization, which
has come to be known as the stochastic dynamo (see, for
example, Ref. [40]).

At the initial stages of dynamical system evolution such
parametric excitation is accompanied by an increase with time
of all traditional statistical characteristics of problem solu-
tions, such as the moment function of the density field
hr n �r; t�i and magnetic field energy hEn�r; t�i, as well as
their correlation functions of arbitrary order. As the distance
is increased, the moments of radiation power hI n�x;R�i grow
in random media as well.

The dynamic diffusion effects for the density and
magnetic field are insignificant through the early phases of
their evolution and, neglecting them, we arrive at the first-
order partial differential equations�

q
qt
� q
qr

u�r; t�
�
r�r; t� � 0 ; r�r; 0� � r0�r� ; �19��

q
qt
� q
qr

u�r; t�
�
H�r; t� �

�
H�r; t� q

qr

�
u�r; t� ; �20�

H�r; 0� � H0�r� :

However, namely at small times spatial structures may
develop in individual realizations of respective fields!

As an illustration of structure formation in a magnetic
field, we present Fig. 11 and an excerpt found on the web [42]:

``What does puzzle astrophysicists so strongly?
Contrary to hypotheses formed for fifty years, at the

boundary of a planetary system observers encountered a

a b

Figure 10. Caustics in a swimming pool (a), and in shallow water (b).
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boiling foam of locally magnetized areas each of hundreds of
millions kilometers in extent, which form a nonstationary
cellular structure in which magnetic field lines are perma-
nently breaking and recombining to form new areasÐ
magnetic bubbles.''

Questions touching stochastic structure formation for the
magnetic field energy are considered in Section 4.2.2.

1.3 Statistical characteristics
of a random velocity field u�r; t�
The random velocity field u�r; t� will be considered Gaussian,
statistically homogeneous and isotropic in space, and sta-
tionary in time, with the respective correlation and spectral
functions

Bi j�rÿ r 0; tÿ t 0� � 
ui�r; t�uj�r 0; t 0��
�
�
dkEi j�k; tÿ t 0� exp �ik�rÿ r 0�� ;

�21�
Ei j�k; t� � 1

�2p�3
�
drBi j�r; t� exp �ÿikr� :

In the general case of an arbitrary random velocity field
u�r; t�, the spectral function Ei j�k; t� has the form

Ei j�k; t� � E s�k; t�
�
di j ÿ kikj

k 2

�
� kikj

k 2
E p�k; t� ; �22�

where E s�k; t� and Ep�k; t� are, respectively, the solenoidal
and potential components of the velocity field spectral
function.

The variance of the velocity field in this case takes the
form

s 2
u � Bii�0; 0� �

�
dkEii�k; 0�

�
�
dk
��dÿ 1�E s�k; 0� � E p�k; 0�� ; �23�

where d is the space dimension, with implied summation
taken over twice repeating indices.

Let us introduce the function

Bi j�r� �
�1
0

dtBi j�r; t� �24�

important for the further statistical analysis, which defines all
the statistical characteristics of the problem solution in the

diffusion approximation (see, for example, monographs [17±
20]). Then, the following relations are valid:

Bii�0� � D0 �
�1
0

dtBii�0; t� �
�1
0

dt
�
dkEii�k; t�

� s 2
u t0 � s 2

s ts � s 2
p tp ; �25�

where s 2
u and t0 are the variance and the time correlation

radius of a random velocity field, s 2
s and s 2

p are, respec-
tively, the variances of the solenoidal and potential
components of the velocity field, and ts and tp are their
time correlation radii.

Later on, in a statistical analysis of the problem, we will
need the second spatial derivatives of the correlation function
of a random velocity field u�r; t� at the zero argument. By
virtue of the assumptions about the characteristics of random
field u�r; t�, the following tensor equality holds for these
derivatives (see, for example, monographs [17±20]):

ÿ q2Bi j�0�
qrkqrl

� D s

d�d� 2�
��d� 1�dkldi j ÿ dkidl j ÿ dk jdli

�
� D p

d�d� 2�
ÿ
dkldi j � dkidl j � dk jdli

�
; �26�

where in the three-dimensional case the parameters D s and
D p have the form

D s �
�
dk k 2E s�k� � 4p

�1
0

dk k 4E s�k�

� 1

2

�1
0

dt


x�r; t� t�x�r; t�� ;

�27�
D p �

�
dk k 2E p�k� � 4p

�1
0

dk k 4E p�k�

�
�1
0

dt
�
qu�r; t� t�

qr
qu�r; t�

qr

�
;

where x�r; t� � rot u�r; t� is the vorticity, qu�r; t�=qr is the
divergence of velocity field, and

E s�k� �
�1
0

dtE s�k; t� ; Ep�k� �
�1
0

dtE p�k; t� :

The coefficientsD s andD p, defined by relationships (27), can
be written out through the statistical characteristics of the

a b

Figure 11. (Color online.) Magnetic field configuration on the boundary of a heliosphere as it looks, in all probability, in reality. A conditional

interpretation (a), and a reconstruction of a magnetic bubble system (b).
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velocity field derivatives as

D s � 1

2
s 2
xtx ; D p � s 2

div utdiv u : �28�

We are interested in two examples of the random velocity
field:

(1) incompressible hydrodynamic turbulence;
(2) potential hydrodynamic fields.
A particular case of the potential random field is

exemplified by wave turbulence, where the correlation
function of the velocity field is given by the following
expression

Bi j�r; t� �
�
dk

ki kj
k 2

E p�k� exp �ÿlk 2t� cos ÿkrÿ o�k�t� ;
�29�

where o � o�k� > 0 defines the dispersion curve for wave
motions, and the parameter l describes wave damping.

The variance of the velocity field in this case takes the
form

s 2
u �



u2�r; t�� � � dkE p�k� ; �30�

and the quantity analogous to that in formula (24) is defined
as

Bi j�r� �
�1
0

dt Bi j�r; t�

�
�
dk

ki kj
k 2

�
E p
1 �k� cos �kr� � Ep

2 �k� sin �kr�
�
; �31�

where

E p
1 �k� � Ep�k� lk 2

l2k 4 � o2�k� ; �32�
E p
2 �k� � Ep�k� o�k�

l2k 4 � o2�k� :

The detection and description of the phenomenon of
spatial structure formation (clustering) in individual realiza-
tions of random fields prove to be possible only by analyzing
one-time and one-point probability densities of solutions to
equations given above if one resorts to the ideas of statistical
topography. We consider first the statistical description of
lognormal random processes.

2. Lognormal processes, intermittency,
and dynamical localization

The one-time probability density P�y; t; a� � hd�y�t; a� ÿ y�i
of lognormal process (4) obeys the Fokker±Planck equation

q
qt

P�y; t; a� �
�
a

q
qy

y�D
q
qy

y
q
qy

y

�
P�y; t; a� ;

�33�
P�y; 0; a� � d�yÿ 1� ;

the solution of which, naturally, depends on the parameter a:

P�y; t; a� � 1

2y
��������
pDt
p exp

�
ÿ ln2

�
y exp �at��
4Dt

�
: �34�

Probability distribution (34) implies a substantially
different behavior for a > 0 and a < 0. The common feature
in both cases is only the appearance of long, moderately
sloping `tails' at large t, indicating an increasing role of large
excursions of processes y�t; a� in the formation of one-time
statistics. The plots of logarithmically normal probability
densities (34) for a > 0 and a < 0 for the parameter jaj=D � 1
and dimensionless time t � Dt � 0:1 and 1 are given in
Fig. 12.

Accordingly, the integral probability distribution func-
tion is given by the expression

F�y; t; a� �
� y

ÿ1
dy 0 P�t; y 0� � Pÿy�t; a� < y

�
� Pr

�
1��������
2Dt
p ln

�
y exp �at��� ; �35�

where the function Pr �z� is the probability integral defined as

Pr �z� � 1������
2p
p

� z

ÿ1
dx exp

�
ÿ x 2

2

�
: �36�

Obviously Pr �1� � 1 andPr �0� � 1=2. The asymptotic form
of the probability integral for z! �1 can easily be found
from expression (36), namely

Pr �z�z!1 � 1ÿ 1

z
������
2p
p exp

�
ÿ z 2

2

�
;

�37�
Pr �z�z!ÿ1 �

1

jzj ������2p
p exp

�
ÿ z 2

2
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Figure 12. Lognormal probability distributions (34) for the parameter jaj=D � 1 and dimensionless time t � Dt � 0:1 and 1.
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From equation (33), we can also easily derive the equality

a � ÿ lim
t!1

q


ln y�t; a��

qt
: �38�

It follows then that the parameter a in equation (33) coincides
with the Lyapunov characteristic exponent (38) for the
lognormal random process y�t; a� (4) (see, for example,
reviews [43, 44]).

2.1 Typical realization curve of a random process
The statistical characteristics of the process z�t� at a fixed time
instant t are described by the probability density P�z; t� and
the integral probability distribution function F�Z; t� �� Z
ÿ1 dz 0 P�z 0; t�.

The typical realization curve for the randomprocess z�t� is
referred to as the deterministic curve z ��t�, which is the
median of the integral probability distribution function and is
defined through the solution of the algebraic equation

F
ÿ
z ��t�; t� � 1

2
: �39�

This implies, on the one hand, that for any time instant t
the probability Pfz�t� > z ��t�g � Pfz�t� < z ��t�g � 1=2.

On the other hand, the median has a specific property that
for any interval �t1; t2� the random process z�t� `winds round'
the curve z ��t� so that the mean time during which
z�t� > z ��t� coincides with that when the reverse inequality
z�t� < z ��t� is true (Fig. 13), i.e. one has

hTz�t�>z ��t�i � hTz�t�<z ��t�i � 1

2
�t2 ÿ t1� :

The curve z ��t�, needless to say, may differ essentially
from any individual realization of the process z�t� and does
not describe the amplitude of possible excursions. Thus, the
typical realization curve z ��t� of a random process z�t�,
obtained with the help of the one-time probability density, is
defined nevertheless over the entire time interval t 2 �0;1�,
and is namely that deterministic curve relative to which the
intermittency is enfolding.

The typical realization curve (39) for a Gaussian random
process z�t� coincides with the expectation of the process z�t�,
i.e., z ��t� � hz�t�i, while the typical realization curve for a
lognormal process f �t� � exp �z�t�� is defined by the equality

f ��t� � exp �hz�t�i� � exp �hln f �t�i� :

As a consequence, the typical realization curve of lognormal
process (4) is described by the formula

f ��t� � exp
ÿ

ln f �t��� � exp �ÿat� ;

which coincides with the Lyapunov exponential function.
For a > 0, the typical realization curve decays exponen-

tially with time and, in the opposite case, a < 0, grows
exponentially; namely these functions are plotted in Fig. 7
with dashed lines. At a � 0, the intermittency takes place with
respect to the line f ��t� � 1.

2.2 Dynamical localization
We note that for one-dimensional problems the positivity of the
Lyapunov characteristic index a corresponds well to the
physical phenomenon of dynamical localization (clustering).

For the problem involving diffusion of an ensemble of
particles (5) in a Gaussian random velocity field u�r; t�, the
typical realization curve for the distance between two
particles is given by the exponential function of time:

l ��t� � l0 exp

�
1

d�d� 2�
�
D sd�dÿ 1� ÿD p�4ÿ d ��t� ; �40�

where d is the space dimension, and the coefficients D s and
D p are described by formulas (27) (see, for example, Refs [17±
20]).

From the last formula, it follows that in the two-
dimensional case �d � 2� the expression

l ��t� � l0 exp

�
1

4
�D s ÿD p�t

�

substantially depends on the sign of the difference D s ÿDp.
In particular, for a nondivergent velocity field �D p � 0�, we
have an exponentially growing typical realization curve,
which corresponds to particles running away exponentially
fast at small distances between them. In the other limiting
caseÐ for a potential velocity field �D s � 0�Ðthe typical
realization curve will be an exponentially decaying one;
hence, the obvious tendency of particles to `coalesce'. Thus,
the condition for clustering in the two-dimensional case
reduces to holding the inequality D s < Dp.

In the three-dimensional case �d � 3�, from Eqn (40) it
follows that

l ��t� � l0 exp

�
1

15
�6D s ÿDp�t

�
;

and the typical realization curve will decay with time if the
condition D p > 6D s, which is more demanding than in the
two-dimensional case, is satisfied.

In the one-dimensional case, one finds l ��t� �
l0 exp �ÿD pt�, and the typical realization curve always
decays with time, for in this case the velocity field is always
potential.

For a boundary-value problem (6) dealing with a plane
wave incident on a half-space of a random layered medium,
the wave field intensity I�x� � ju�x�j2 is a lognormal random
process with the typical realization curve I ��x� �
2 exp �ÿD�Lÿ x��, where the parameter D � k 2s 2

e l0=2 (s 2
e is

the e�x� process variance, and l0 is its correlation radius) for
the model of Gaussian random process e�x� with the
correlation function he�x�e�x 0�i � 2Dd�xÿ x 0�. The coeffi-
cient of wave transmission through a sufficiently thick layer
of a random medium decays exponentially for the problem

t

z�t�
z��t�

t1

Dt1 Dt2 Dt3

t2

Figure 13. Regarding the definition of a typical realization curve for a

random process.
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considered, and the half-space of a randomly inhomogeneous
medium �L0 ! ÿ1� completely reflects the wave incident on
it. In this case, the wave field intensity I�x� is statistically
equivalent to the random process 2y�t; a� at a � D, and its
realization resembles the mirror reflection of Fig. 7 �a > 0�.
And yet, certainly, the moments of wave field intensity
exponentially grow with distance from the wave source into
the medium. We mention that in monograph [35] this effect
was established through the analysis of the Lyapunov
exponent for the problem at hand, which matches the typical
realization curve for the lognormal process.

We also mention that the quantity inverse to the diffusion
coefficient D of this problem, defining a natural length scale
related to medium random inhomogeneities, is commonly
termed the localization length, lloc � 1=D.

3. Lognormal fields, statistical topography,
and clustering

3.1 Lognormal random fields
Let us consider now a positive lognormal random field f �r; t�,
whose one-point probability density

P�r; t; f � � 
dÿ f �r; t� ÿ f
��

is governed by the equation

q
qt

P�r; t; f � �
�
D0

q2

qr 2
� a

q
qf

f�Df
q
qf

f
q
qf

f

�
P�r; t; f �

�41�

with the initial conditionP�r; 0; f � � d� fÿ f0�r��, whereD0 is
the diffusion coefficient in the r-space, and the coefficients a
andDf characterize diffusion in the f-space. The parameter a
can both differ from zero and be equal to it (the critical case).
The change in the sign of a for one-point characteristics
implies the transition from the field f �r; t� to the field
~f �r; t� � 1=f �r; t�.

The solution of equation (41) is written out as follows:

P�r; t; f � � 1

2 f
����������
pDft

p exp

�
D0t

q2

qr 2

�
� exp

�
ÿ ln2

�
f exp �at�=f0�r�

�
4Df t

�
: �42�

Note that for a positive conservative random field f �r; t�
satisfying the condition

�
dr f �r; t� � � dr f0�r�, the parameter

a � Df and equation (41) can be recast as

q
qt

P�r; t; f � �
�
D0

q2

qr 2
� a

q2

q f 2
f 2

�
P�r; t; f � : �43�

Needless to say, the property of intermittency is always
exhibited by any random field f �r; t�, as well. For any fixed
point in space r, the temporal evolution of f �r; t� is a random
process for which all the above holds.

For a spatially, statistically homogeneous problem which
corresponds to the initial field distribution f0�r� � f0, no one-
point statistical characteristics of the field f �r; t� depend on
the point r, and the positivity of the index

a � ÿ lim
t!1

q


ln f �r; t��

qt

for the lognormal field f �r; t� implies that, at any location in
space, the realizations of this field decay with time despite
large rare excursions, which occur for a lognormal process. In
this case, the characteristic time of field decay is t � 1=a.But if
the field decays almost everywhere, it must be concentrated
somewhere, i.e., clustering should take place. For a negative
parameter a, the field grows at every fixed point in space.

In the last case, probability density (42) does not depend
on r and is described by the equation

q
qt

P�t; f � �
�
a
q
qf

f�Df
q
qf

f
q
qf

f

�
P�t; f � ;

�44�
P�0; f� � d fÿ f0� �;

with the solution

P�t; f � � 1

2 f
����������
pDft

p exp

�
ÿ ln2

�
f exp �at�=f0

�
4Df t

�
: �45�

Thus, for a spatially homogeneous problem statement, the
one-point statistical characteristics of a random field f �r; t�
are statistically equivalent to those of the lognormal process
f �t; a� with the probability density (45). A specific feature of
this distribution is the appearance of a long gently sloping
`tail' for Df t4 1, which indicates the increased role of large
fluctuations of the process f �t; a� in forming one-time
statistics (see Fig. 12). For this distribution, all moment
functions exponentially grow with time and, in particular, at
n � 1 and for Df > a the expectation is given by


f �r; t�� � f0 exp
��Df ÿ a�t� ;

whereas the quantity a is the Lyapunov characteristic index.
Figure 14 plots schematically random realizations of the

field f �r; t� for the parameter a with different signs.
One can describe spatial clustering in almost any realiza-

tion of the random field f �r; t� by resorting to the ideas of
statistical topography.
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Figure 14. Schematics of the behavior of random realizations of the field

f �r; t� for a > 0 and a < 0.
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3.2 Statistical topography of random fields
The main subject of study in the statistical topography of
random fields, just as in the traditional topography of
massifs, is a system of contoursÐ isolines (in the two-
dimensional case) or isosurfaces (in three dimensions)
defined by the equality f �r; t� � f � const.

To analyze the system of contours (we limit ourselves to
the two-dimensional case r � R for simplicity), it is conve-
nient to introduce the Dirac delta-function constrained to
these contours:

j�R; t; f � � d
ÿ
f �R; t� ÿ f

�
; �46�

called the indicator function.
Such quantities as the total area bounded by the level lines

of the areas where the random field f �R; t� exceeds the given
level f, i.e., f �R; t� > f :

S�t; f � �
�
dR y

ÿ
f �R; t� ÿ f

� � � dR �1
f

df 0 j�R; t; f 0� ;

and the total `mass' of the field comprised in these regions,
namely

M�t; f � �
�
dR f �R; t�yÿ f �R; t� ÿ f

�
�
�
dR

�1
f

df 0 f 0j�R; t; f 0� ;

where y� f �R; t� ÿ f � is the Heaviside theta-function, may be
expressed in terms of function (46).

The mean value of the indicator function (46) over an
ensemble of realizations of the random field f �R; t� defines
the one-time and one-point in space probability density [17±
20]

P�R; t; f � � 
dÿ f �R; t� ÿ f
��
;

which directly sets the ensemble mean values of quantities
S�t; f � andM�t; f �:


S�t; f �� � � dR �1
f

df 0 P�R; t; f 0� ;



M�t; f �� � � dR �1

f

df 0 f 0P�R; t; f 0� :

Information on the detailed structure of field f �R; t� can
be obtained by additionally considering its spatial gradient
p�R; t� � HHf �R; t�. So, for example, the quantity

l �t; f � �
�
dl �

�
dR
��p�R; t���dÿ f �R; t� ÿ f

� �47�

describes the total length of contours. The integrand in
Eqn (47) is described by the extended indicator function

j�R; t; f; p� � d
ÿ
f �R; t� ÿ f

�
d
ÿ
p�R; t� ÿ p

�
; �48�

and themean value of l�t; f � [see formula (47)] is related to the
joint one-time probability density of field f �R; t� and its
gradient p�R; t�, which is obtained by averaging the indicator
function (48) over an ensemble of realizations, which gives the
function

P
ÿ
R; t; f; p� � 
dÿ f �R; t� ÿ f

�
d
ÿ
p�R; t� ÿ p

��
:

By additionally considering spatial derivatives of the
second order, the total number of contours f �R; t� � f �
const can be estimated with the help of approximate formula
(up to not-closing lines)

N�t; f � � Nin�t; f � ÿNout�t; f �
� 1

2p

�
dR k�t;R; f ���p�R; t���dÿ f �R; t� ÿ f

�
; �49�

where Nin�t; f � �Nout�t; f �� is the number of contours for
which the vector p is directed along the inner (outer) normal,
and k�t;R; f � is the curvature of the level line.

3.2.1 Conditions of cluster structure formation. We now
discuss the conditions of stochastic structure formation in
parametrically excited random fields. It is clear that for a
positive field f �R; t� in general the condition of cluster
formation with a unit probability, i.e., for almost all
realizations, is the simultaneous tendency of being fulfilled,
as t!1, for asymptotic equalities


S�t; f ��! 0 ;


M�t; f ��! �

dR


f �R; t�� :

The lack of structure formation corresponds to the
simultaneous tendency towards satisfying the asymptotic
equalities as t!1:


S�t; f ��!1 ;


M�t; f ��! �

dR


f �R; t�� :

For a spatially homogeneous field f �R; t�, the one-point
probability density P�R; t; f � does not depend on R; in this
case, statistical means of all the expressions (without integra-
tion over R) will describe specific (per unit area) values of the
respective quantities.

Thus, the specific mean area hshom�t; f �i, where the
random field f �R; t� exceeds a given level f , coincides with
the event probability at any point in space, f �R; t� > f :


shom�t; f �
� � 
yÿ f �R; t� ÿ f

�� � P� f �R; t� > f
	
;

so that the mean specific area offers a geometric interpreta-
tion of the probability of the event f �R; t� > f, which is,
clearly, independent of point R. As a consequence, the
conditions of clustering for the homogeneous case reduce to
the tendency of being valid, as t!1, for asymptotic
equalities

shom�t; f �

� � P� f �r; t� > f
	! 0 ;



mhom�t; f �

�! 

f �t�� ;

whereas the absence of clustering is linked to the tendency of
being valid, as t!1, for the asymptotic equalities

shom�t; f �

� � P� f �r; t� > f
	! 1 ;



mhom�t; f �

�! 

f �t�� :

Thus, clustering in a spatially homogeneous problem is a
phenomenon (occurring with a unit probability, i.e., for almost
all realizations of a random positive field) spawned by a rare
event occurring with vanishing probability.

In this case, the mere presence of rare events serves as a
trigger which initiates the structure formation process, while
the structure formation on its own is the intrinsic property of a
random medium, i.e., is in essence the law of Nature [21±24].

The characteristic time of cluster structure formation in
space is determined by the character of the asymptotic
expressions given above at large times. Now, this time is
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defined not only by the Lyapunov statistical characteristic
index a, but also by the diffusion coefficientDf in phase space
of a positive field f �r; t�. It is certainly larger than the
characteristic time of realization decay at any fixed point in
space.

For concrete physical dynamical systems, the description
of clustering in physical fields reduces, therefore, to computa-
tion of the stochastic Lyapunov index a and diffusion
coefficient Df, which is, generally speaking, a rather tedious
task for concrete partial differential equations.

In the presence of clustering, the field is simply absent over
a large portion of space! It should be clear that the conditions
above on the presence or absence of clustering in the field
f �R; t� have nothing to do with the parametric growth of
statistical characteristics like moment or correlation func-
tions of arbitrary order, as time progresses.

The above criterion of ideal clustering (in analogy with
ideal fluid dynamics) corresponds to the dynamics of cluster
formation in dynamical systems governed, generally speak-
ing, by partial differential equations of the first order (the
Eulerian representation). This ideal structure emerges as a
very narrow band (in the two-dimensional case) or very
narrow tubes (in the three-dimensional case).

Notice that the first-order partial differential equations can
be solved in general by the methods of characteristics. This
corresponds to the Lagrangian description of dynamical
systems. In this case, the characteristic curves described by
ordinary differential equations can, naturally, have different
peculiarities and even singularities. The conditions for the
appearance of such peculiarities in the Lagrangian description
do not have direct connections to the phenomenon of
clustering in space and time, i.e., in theEulerian representation.

However, in real physical systems, various additional
factors related to the generation of spatial derivatives of a
random field may become visible later; they distort but do not
eliminate this picture of clustering. In particular, a situation is
possible where the respective probability density approaches
steady-state regime P�R; f � as t!1. In this case, the
functionals of the form


S� f �� � � dR �1
f

df 0 P�R; f 0� ;


M� f �� � � dR �1

f

df 0 f 0P�R; f 0�

cease to describe further distortions of the cluster picture. We
need to study the temporal evolution of the functionals
related to the spatial derivatives of the field f �R; t�, such as
the total contour length and the number of contours.

As an example of `ideal' and `deformed' clustering in
Nature, we present here photos of the cluster structure of a
cloudy sky1 (Fig. 15) and a lava lake in volcano craters
(Fig. 16). We note that a statistical theory describing volcanic
lava dynamics, as far as we know, does not exist at all. A
similar pattern is demonstrated by structures (Figs 17, 18)
related to the parabolic Leontovich (SchroÈ dinger) equation
(15) (see, for example, monographs [17±20]).

To begin with, we note that if a plane wave propagates
in a random medium, then in the approximation that the
random field e�x;R� is delta-correlated in the longitudinal
direction and its correlation function Be�xÿ x 0;Rÿ R 0� �
he�x;R�e�x 0;R 0�i has the form

Be�x;R� � A�R�d�x�; A�R� �
�1
ÿ1

dxBe�x;R� ;

equation (15) for the mean field hu�x;R�i and the second-
order coherence function

G2�x; q � �
�
u

�
x;R� 1

2
q

�
u �
�
x;Rÿ 1

2
q

��

lead to the expressions

u�x;R�� � u0 exp

�
ÿ gx

2

�
;

G2�x; q � � ju0j2 exp
�
ÿ k 2xD�r�

4

�
;

which do not depend on the wave field diffraction; here,
g � �k 2=4�A�0� is the extinction coefficient, and the function
D�r� � A�0� ÿ A�r� is linked to the structure function of the
random field e�x;R�. Simultaneously, a statistical scale rcog
called the coherence radius of field u�x;R� and defined by the
condition �1=4�k 2xD�rcog� � 1 appears in the plane perpen-
dicular to the direction of wave propagation. The coherence
radius depends on the wavelength, the distance travelled by
the wave, and the medium statistical parameters.

a
b

Figure 15. Photos of the cluster structure in a cloudy sky: (a) cluster structure close to an `ideal' one, and (b) `deformed' clusters. The black stripes in the

bottom corners are parts of a ground-based antenna. Photos are taken on 15 June and 2August 2013 at 21:00 on the coast of the Sea of Azov. (Courtesy of

V A Dovzhenko.)

1 Yet there is no particle clustering in the Lagrangian description!
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Notice that a complete solution to the problem of
computation of the statistical characteristics of solutions to
equation (15) for x!1was found already in 1977 inRef. [45]
(see also Refs [17±20, 46]) by resorting to the continual integral
representation of solutions to equation (15).

Obviously, the probability distribution for the wave field
intensity has a lognormal character if the distance travelled by
the incident plane wave remains small, and in this case the
stochastic structure formation (clustering) ensues.

As the distance increases, the nonlinear character of the
equation for the complex-valued phase needs to be taken into
account. This region of fluctuations, referred to as the region
of strong focusing, is extremely difficult for analytical
analyses. For even larger distances of wave propagation, the
statistical characteristics of wave intensity reach a saturated
regime; the respective spatial domain is referred to as the
region of strong intensity fluctuations.

In this region, the statistical characteristics of wave field
intensity cease to depend on the distance and take the form
�u0 � 1�


I n�x;R�� � n! ; P�x; I � � exp �ÿI � :

Reference [45] computed the spatial correlation function
of wave field intensity I�x;R� � ju�x;R�j2 for x!1
�q � R 0 ÿ R 00�:

BI�x; q � �


I�x;R 0� I�x;R 00��ÿ 1 � ��G2�x; q �

��2
� exp

�
ÿ k 2x

2
D�r�

�
; �50�

which is also independent of the wave field diffraction. Now,
in this problem, in addition to the spatial scale rcog, a second
characteristic spatial scale appears, r0 � x=�krcog�. However,
numerous attempts by experimenterlists, continuing into the
present, to associate these scales with the patterns displayed in
Figs 17 and 18 have not led to success. And it is clear why!
Clustering of the wave field intensity is certainly affected by
diffraction, which is, however, in no way reflected in the form
of its correlation function (50).

From the standpoint of statistical topography, the mean
specific area of regions inside which I�x;R� > I and the mean
specific power confined there are constant and in the limit of
x!1 do not describe the behavior of wave field intensity in
individual realizations. Besides, no information is gained in
this case by transition to the statistically equivalent random
process. For this case, an explanation of the wave field
structure in individual realizations was proposed only
20 years later (in 1997) in Ref. [47] (see also Refs [17±20]), by
resorting to the analysis of such quantities as the specific
mean length of contours and specific mean number of
contours of wave field intensity, which are described by
functionals like (47) and (49) and are connected with spatial
derivatives of wave field intensity. These functions continue
to increase with distance also in the region of strong intensity
fluctuations, and, consequently, contour fragmentation takes
place, as observed in laboratory experiments and through
numerical modeling as well.

3.2.2 Statistical topography of lognormal random fields. In the
analysis of one-point statistical characteristics in the spatially

a b

Figure 17. Transverse section of a laser beam passing through a turbulent

medium (under laboratory conditions) in the region of strong focusing (a),

and in the region of strong (saturated) fluctuations (b).

a b

Figure 18.Results of numerical modeling with the help of a systemof phase

screens (18): (a) transverse section of a laser beam propagating through a

turbulent medium in the region of strong focusing (a), and in the region of

strong (saturated) fluctuations (b).

a

b

Figure 16. (a) A lake of boiling lava in the Nyiragongo Crater in the Great Lakes region of Africa (http://www.boston.com/bigpicture/2011/02/

nyiragongo_crater_journey_to_t.html). (b) Lava lake in Halema'uma'u Crater on Kilauea (Photo courtesy of Hawaiian Volcano Observatory, USGS).

These images can be found on the sites http://bigpicture.ru/?p-128340, http://pacificislandparks.com/2010/01/20/more-amazing-lava-lake-photos/.
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homogeneous case, it is generally rewarding to take into
account that the random field f �R; t� is statistically equiva-
lent to some random process f �t� with the same statistical
characteristics.

If a one-point probability density of the random field
f �r; t� (42) is known, one can also obtain general information
on the spatial structure of random field f �r; t�. In particular,
such functionals of the random field f �r; t� as the common
mean volume (in three dimensions) or area (in two dimen-
sions) of the region, where f �r; t� > f, and the common mean
`mass' of the field comprised there, are described as


V�t; f �� � � dr �1
f

df 0 P�r; t; f 0� ;



M�t; f �� � � dr �1

f

df 0 f 0P�r; t; f 0� :

The values of these functionals do not depend on diffusion in
the r-space (the coefficient D0), and for probability distribu-
tion (42) we find the expressions


V�t; f �� � � dr Pr� 1��������
2Dt
p ln

�
f0�r�
f

exp �ÿat�
��

;
�51�


M�t; f �� � exp
��Dÿ a�t�

�
�
dr f0�r�Pr

�
1��������
2Dt
p ln

�
f0�r�
f

exp
��2Dÿ a�t��� ;

where the probability integral Pr �z� is defined by
equality (36).

Taking now into account the asymptotics of function
Pr �z� (37), one can analyze how functionals (51) evolve with
time. Namely, for t!1, the asymptotics of the mean
volume decays with time, for a > 0, according to the law



V�t; f �� � 1

a

����������������
D

p f a=Dt

s
exp

�
ÿ a 2t

4D

��
dr

���������������
f
a=D
0 �r�

q
:

For a < 0, the mean volume occupies the entire space as
t!1.

For the common mean `mass', in the limit t!1 we get
the asymptotics (in the most interesting caseÐ if a < 2D)

M�t; f �� � exp

��Dÿ a�t� � dr f0�r�
�
(
1ÿ 1

2Dÿ a

���������������������������������������
D

pt

�
f

f0�r�
��2Dÿa�=Ds

exp

�
ÿ�2Dÿ a�2t

4

�)
:

As a consequence, for a > 0, clusters contain the overall mean
`mass' in the limit t!1.

For homogeneous initial conditions, the respective
expressions taken without integration over r describe the
specific values of the volume comprising large excursions
and their common `mass' per unit volume, i.e.


vhom�t; f �
� � 
yÿ f �r; t� ÿ f

�� � P� f �r; t� > f
	

� Pr

�
1��������
2Dt
p ln

�
f0
f
exp �ÿat�

��
;

�52�

mhom�t; f �

� � f0 exp
��Dÿ a�t�

� Pr

�
1��������
2Dt
p ln

�
f0
f
exp

��2Dÿ a�t��� :

If we select a section level f > f0, then at the initial instant
of time hvhom�0; f �i � 0 and hmhom�0; f �i � 0. Spatial per-
turbations of the random field f �r; t� evolve later, and in the
limit t!1we arrive at the asymptotic expressions �2D > a�

vhom�t; f �

� � P� f �r; t� > f
	

�
1

a

������������������������
D

pt

�
f0
f

�a=D
s

exp

�
ÿ a 2t

4D

�
; a > 0 ;

1ÿ 1

jaj

��������������������������
D

pt

�
f

f0

�jaj=Ds
exp

�
ÿ a 2t

4D

�
; a < 0 ;

8>>>>><>>>>>:
�53�



mhom�t; f �

� � f0 exp
��Dÿ a�t�

�
�
1ÿ 1

2Dÿ a

���������������������������������
D

pt

�
f

f0

��2Dÿa�=Ds
exp

�
ÿ�2Dÿ a�2t

4D

��
:

�54�

Thus, for a > 0, the specific common volume tends to
zero, while the specific common `mass' confined within it
tends to the mean `mass' in the entire space. This corresponds
to the criterion of structure formation with a unit probability
through `ideal clustering' of the field f �r; t� being considered.
In this case, the random field f �r; t� is practically absent in the
dominant part of the space. The field characteristic decay time
at any fixed point in space can be estimated as at � 1, and the
characteristic time of field cluster structure formation as
at � max f4x; 4x=�2xÿ 1�2g, where x � D=a.

If a < 0, clustering is lacking and only general amplifica-
tion of the random field f �r; t� takes place everywhere in
space. Thus, chaos remains chaos in that case! Only zeros of
field f �r; t� cluster.

Let us mention that the following theorem holds.
A conservative positive parametrically excited lognormal

field in a statistically homogeneous case always produces
clusters with a unit probability, i.e., for almost all its
realizations.

Indeed, in this case, f �r; t� � exp �ln f �r; t��; hence, one
has

f �r; t�� � 
exp ÿln f �r; t���� exp

�

ln f �r; t��� 1

2
s 2
ln f �r;t�

�
;

where s 2
ln f �r;t� is the variance of the random field ln f �r; t�.

Now taking into account the conservative character of this
field leads to


ln f �r; t��� 1

2
s 2
ln f �r;t� � ln f0 ;

and we find for the typical realization curve

f ��r; t� � exp
ÿ

ln f �r; t��� � f0 exp �ÿat� ;

where the Lyapunov characteristic parameter

a � lim
t!1

1

2t
s 2
ln f �r;t� > 0 ;

and the problem is that of computing it from the respective
dynamic equation. Since, as pointed out earlier, for the
conservative field f �r; t� the parameter a � D [see Eqn (43)],
the characteristic time of cluster structure formation is at � 4,
which is four times larger than the characteristic field decay
time at almost any point in space.
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For instance, for cluster formation in a density field, we
have dynamic equation (19).

With complex-valued parabolic equation (15), we have
the equation for the wave field intensityÐ the continuity
equation (16) and, consequently, introducing the amplitude
level as w�R; x� � lnA�R; x�, we find for a plane wave the
Lyapunov exponent in the form

I ��R; x� � I0 exp �ÿ2ax� ;

where the parameter

a � lim
x!1

1

x
s 2
w�R; x� ;

and s 2
w�R;x� is the variance of the amplitude level, computed in

the framework of the first approximation of the smooth
perturbation method proposed by S M Rytov (see, for
example, books [17±20]).

As an application of the theory elaborated here, we
consider concrete physical stochastic transport phenomena
in random media spawned through the parametric action of
the medium on the respective dynamical system.

4. Stochastic transport phenomena
in a random velocity field

4.1 Clustering of the density field
in a random velocity field
Stochastic structure formation in a spatially homogeneous
statistical problem on diffusion of the density field r�r; t� in a
random velocity field is described by equation (19). In this
case, the one-point probability density of field r�r; t� is
independent of spatial coordinate r and is described by the
following equation (see, for example, Refs [17±20])

q
qt
P�t; r� � Dr

q2

qr2
r2P�t; r� ; P�0; r� � d�rÿ r0� ; �55�

where the diffusion coefficient in the r-space, Dr � D p, is
given by equality (27). Equation (55) coincides with equation
(44) at the fulfillment of equalities

a � D � Dr � D p ;

where the quantityD p is determined by the potential spectral
component of the velocity field. Consequently, the one-point
probability density of the density field is lognormal, with the
probability density and respective integral distribution func-
tion:

P�t; r� � 1

2r
�����
pt
p exp

�
ÿ ln2

�
r exp �t�=r0

�
4t

�
;

�56�
F�t; r� � Pr

�
ln
�
r exp �t�=r0

�
2
���
t
p

�
;

where the parameter t � Drt.
For one-point characteristics of the density field r�r; t�, as

already pointed out, the problem is statistically equivalent to
the analysis of a random process, and in this case all the
moment functions at any fixed point in space grow exponen-
tially with time for n > 0, as well as for n < 0:


r�r; t�� � r0 ;


rn�r; t�� � rn0 exp

�
n�nÿ 1�t� ; �57�

and the typical realization curve for the density field, which
coincides with the Lyapunov exponent, exponentially decays
with time at any fixed point in space:

r ��t� � exp
ÿ

lnr�r; t��� � r0 exp �ÿt� ;

which indicates that the density field decays with a unit
probability (i.e., in almost all realizations of the density
field) in arbitrary divergent flows at any fixed point in
space. Then, the characteristic decay time for the density
field t � 1. Note that equation (55) for the probability
density corresponds to the Eulerian description of a density
field. It should be recalled that in the Lagrangian descrip-
tion of the density field the system of characteristic curves
(particles) (5) does not necessarily undergo clustering (see
Section 2.2).

The formation of density field statistics at any fixed point
in space (moment and correlation functions) occurs through
density field fluctuations around the typical realization curve.
Thus, in the case of a compressible flow (in a divergent
velocity field) the density field always undergoes clustering
with a unit probability. The specific mean area (volume) of
the region where r�r; t� > r is expressed as


shom�t; r�
� � �1

r
dr 0 P�t; r 0� � P�r�r; t� > r

	
� Pr

�
ln
�
r0 exp �ÿt�=r

������
2t
p

�
; �58�

and the specific mean `mass' of the tracer confined in this
region is described as


mhom�t; r�
�
hom

r0
� 1

r0

�1
r

r 0 dr 0 P�t; r 0�

� Pr

�
ln
�
r0 exp �t�=r

������
2t
p

�
: �59�

FromEqns (58) and (59) it follows that for t4 1 the mean
specific area (volume) decays according to the law


shom�t; r�
� � P�r�r; t� > r

	 � ���������
r0
prt

r
exp

�
ÿ t
4

�
; �60�

whereas almost all tracer `mass' is accumulated within it:

mhom�t; r�

�
r0

� 1ÿ
�����������
r

pr0t

r
exp

�
ÿ t
4

�
; �61�

which corresponds to the physical phenomenon of density
field clustering in a random velocity field. As follows from
formulas (60) and (61), the characteristic time of cluster
structure formation in the tracer field is four times that of
the characteristic decay time for the density field at any fixed
point in space �t � 4�.

Note that even in an incompressible fluid, the density field
will experience clustering in hydrodynamic flows if the tracer
is `buoyant', if the finite inertia of the density field is taken
into account, and formultiphase fluid flows, i.e., always when
a potential spectral component arises in the tracer velocity
field, which is different from the velocity field of the fluid
proper. This case corresponds, for example, to a cloudy sky
(see Fig. 15), where the nature of stochastic character of air
masses is completely irrelevantÐbe it developed convection
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or atmospheric turbulence. Judging by the time the photo was
taken (see Fig. 15), we have the second case. But there is no
particle clustering in the Lagrangian description!

Thus, for the continuity equation�
q
qt
� q
qr

V�r; t�
�
r�r; t� � 0 ; r�r; 0� � r0�r� ; �62�

describing the density field of a passive scalar tracer r�r; t�
moving in a random hydrodynamic flow with the velocity
V�r; t� and having a potential component, tracer clustering
always occurs with a unit probability independently of the
dynamic equation governing the velocity field V�r; t�.

For example, in the case of tracer r�r; t� with low inertia,
the velocity field V�r; t� can be described by the phenomen-
ological equation (see Ref. [48])�

q
qt
� V�r; t� q

qr

�
V�r; t� � ÿl�V�r; t� ÿ u�r; t�� ; �63�

where u�r; t� is the velocity field of the hydrodynamic flow
itself, and the parameter t � 1=l is the known Stokes time
depending on the size of tracer particles and molecular
viscosity. Equation (63) is that of a simple wave with linear
friction and a random force related to the hydrodynamic
flow.A peculiarity of this equation consists in the fact that it is
valid only in the asymptotic limit l!1. This implies that
the parameter lt0 4 1, where t0 is the temporal correlation
radius for the hydrodynamic velocity field u�r; t� and,
consequently, the approximation of temporally delta-corre-
lated field u�r; t� is inapplicable for the statistical problem
description, and the finiteness of the temporal correlation
radius t0 for the field u�r; t� needs to be taken into account.

Under the assumption that the variance of the random
velocity field s 2

u � hu2�r; t�i is sufficiently small for large
values of parameter l (low inertia of particles), equation (63)
can be linearized with respect to the function V�r; t� � u�r; t�,
and we then arrive at a simpler vector equation�

q
qt
� u�r; t� q

qr

�
V�r; t�

� ÿ
�
V�r; t� q

qr

�
u�r; t� ÿ l

�
V�r; t� ÿ u�r; t�� :

In this approximation, the probability density of the density
field is described by an equation like Eqn (43):

q
qt

P�r; t; r� �
�
D0

q2

qr 2
�Dr

q2

qr 2
r2
�
P�r; t; r� ;

�64�
P�r; 0; r� � d

ÿ
r0�r� ÿ r

�
;

where D0 and Dr are the diffusion coefficients:

D0 � 1

d

�1
0

dt


V�r; t� t�V�r; t�� � 1

d
tV


V 2�r; t�� ;

�65�

Dr �
�1
0

dt
�
qV�r; t� t�

qr
qV�r; t�

qr

�
� tdivV

��
qV�r; t�

qr

�2�
;

and tV and tdivV are the temporal correlation radii for the
random fields V�r; t� and qV�r; t�=qr.

For an incompressible fluid flow in the diffusion approx-
imation, diffusion coefficients (65) are described by the

expressions [48]

D0 � 1

d
tV


V 2�r; t�� � 1

d
t0Bii�0; 0� � dÿ 1

d
t0

�
dkE�k; 0� ;

Dr � tdivV

��
qV�r; t�

qr

�2�
� 4

l
d 2 ÿ 1

d�d� 2� D1D2�l� ;
�66�

where the coefficient

D1 � ÿ t0
dÿ 1



u�r; t�Du�r; t��

does not depend on the parameter l. The coefficient D2�l�, if
lt0 4 1, is defined by the expression

D2�l� � ÿ 1

l�dÿ 1�


u�r; t�Du�r; t�� :

Thus, we see that the coefficientDr � s 4
u in equation (64).

And the vortex component of field u�r; t� first generates the
vortex component of the field V�r; t� by a direct linear
mechanism without a contribution from advection, and only
then do the vortex component of the field V�r; t� generate a
divergent component of the field V�r; t� through the advec-
tion mechanism.

Note that for particles with low inertia in the presence of
buoyancy and gravity forces the tracer velocity field V�r; t� in
the hydrodynamic flow u�r; t� is described by the equations
(see, for example, Ref. [49])�
q
qt
� V�r; t� q

qr

�
V�r; t� � ÿl�V�r; t� ÿ u�r; t��� g

�
1ÿ r0

rp

�
;

�67�

where g is the gravitational acceleration, and rp and r0 are the
densities of tracer particles and the medium, respectively.

The velocity v of tracer sedimentation or floating up,
directed, as a rule, vertically, is determined by the balance
between the buoyancy and viscous friction forces for a
moving tracer and is described by the formula

g

l

�
1ÿ r0

rp

�
� v :

Writing now V�r; t� � v� v�r; t�, where v�r; t� are the
fluctuations of a tracer velocity field with respect to v, for
the system of equations (62) and (67) the one-point prob-
ability density P�r; t; r� is described by equation (64), where
the diffusion coefficient Dr�v�, depending on the sedimenta-
tion velocity v, is now given by the expression [50]

Dr�v� � 4�d� 1�
d�d� 2��dÿ 1�l2

q2B �u�aa �0; 0�
qr 2

�1
0

dt
q2B �u�bb �vt; t�

qr 2
:

�68�

Consequently, the presence of tracer sedimentation leads
to a reduction in the diffusion coefficient Dr�v�, i.e., to a
larger clustering time. In reality, the clustering of sedimenting
weakly inertial particles explains numerous phenomena in
Nature, for example, the spot structure of radioactive
precipitation after the Chernobyl catastrophe (see, for
example, Ref. [51]). The spotty structure of sand precipita-
tion over the Indian Ocean after sand storms in African
deserts is also well known.

We note that in review [52], dealing with the large-scale
structure of the Universe, the vector equation of a simple
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wave (63), with no right-hand side but under the assumption
that the velocity field V�r; t� is potential, is `glued' to the
continuity equation (62). The randomness in this case is
attributed to fluctuations in the initial conditions. Clearly, in
this case the tracer field undergoes clustering with a prob-
ability of unity in almost every its realization. However, the
compliance of this fact with the observed distribution of
galaxies can in no way be treated as confirmation of the
relevance of the velocity field model used, based on the simple
wave equation.

We stress that the clustering of a tracer field with a unit
probability is realized for any model of a velocity field (linear
or nonlinear) in the presence of a potential component in the
velocity field.

4.2 Probabilistic description of a magnetic field
and its energy in a random velocity field
4.2.1 Probabilistic description of a magnetic field. Let us
consider now a probabilistic description of a magnetic field
based on dynamic equation (20) in a statistically homoge-
neous case. Just as for the density field, we will assume that
the random component of a velocity field u�r; t� is a divergent
�div u�r; t� 6� 0� random Gaussian field, homogeneous and
isotropic in space and stationary delta-correlated in time.

In this case, the one-point probability density of vector
magnetic field P�t;H�, which does not depend on the spatial
variable r, is described by the equation [17±20, 25, 39]

q
qt

P�t;H� �
�
D1

q2

qHk qHl
HlHk �D2

q2

qHl qHl
H 2

k

�
P�t;H� ;
�69�

where D1 and D2 are the diffusion coefficients in the fHg-
space:

D1 � �d
2 ÿ 2�D p ÿ 2D s

d�d� 2� ; D2 � �d� 1�D s �D p

d�d� 2� :

Equation (69) governs the dynamics of mean energy
hE�r; t�i � hH 2�r; t�i with time and yields the expression for
the covariance of the magnetic field components hWi j�r; t�i �
� hHi�r; t�Hj�r; t�i:


E�r; t�� � E0 exp

�
2
dÿ 1

d
�D s �D p�t

�
;


Wij�r; t�
�


E�r; t�� � 1

d
di j �

�
Wij�0�
E0

ÿ 1

d
di j

�

� exp

�
ÿ2 �d� 1�D s �Dp

d� 2
t

�
:

Thus, the meanmagnetic field energy grows exponentially
with time, and the isotropization of the magnetic field also
develops exponentially. Note that the spectral components of
the velocity field enter these exponents in an additive way.
Obviously, this feature is preserved for all other correlations
of the magnetic field and its energy.

4.2.2 Probabilistic description of magnetic field energy. The
probability density of magnetic field energy P�t;E� in a
spatially homogeneous case is defined by the equality

P�t;E� �
D
d
ÿ
E�r; t� ÿ E

�E
u
�
D
d
ÿ
H 2�r; t� ÿ E

�E
H
:

As a result, we get an equation which coincides with
equation (44) [17±20, 25, 39], taken with the parameters

a � 2
dÿ 1

d� 2
�D p ÿD s� ; D � 4�dÿ 1� �d� 1�D p �D s

d�d� 2� :

The parameter a can differ from zero (being positive or
negative) or be equal to it (the critical case).

The probability density is described by formula (34) for an
initial spatially homogeneous energy distribution.

Thus, in this case, the one-point statistical characteristics
of energy E�r; t�=E0 are statistically equivalent to the
characteristics of a random process E�t� with probability
density (34).

The characteristic feature of distribution (34) lies in the
appearance of a long sloping tail for Dt4 1, implying an
increased role of large outliers of the process E�t� in forming
its one-time statistics. For this distribution, all the moments
of magnetic field energy, namely


En�t�� � En
0 exp

�
ÿ2n dÿ 1

d� 2
�Dp ÿD s�t

� 4n 2�dÿ 1� �d� 1�D p �D s

d�d� 2� t

�
;

grow exponentially with time for n > 0, as well as for n < 0; in
particular, at n � 1, the mean specific energy is written as


E�t�� � E0 exp

�
2�dÿ 1�

d
�D p �D s�t

�
; �70�

or in a more suitable representation as�
ln

E�t�
E0

�
� ÿat � ÿ2 dÿ 1

d� 2
�D p ÿD s�t :

The parameter a is, hence, the Lyapunov characteristic index.
In this regard, the typical realization curve for the random
process E�t�, determining the behavior of magnetic field
energy in concrete realizations, is exponential at any fixed
spatial location:

E ��t� � E0 exp �ÿat� � E0 exp

�
ÿ2 dÿ 1

d� 2
�D p ÿD s�t

�
;

and either grows or decays with time. So, for a > 0 �D p > D s�
the typical realization curve decays exponentially at all spatial
locations, which points to the cluster structure of a magnetic
field in its individual realizations of a magnetic field energy;
the growth of moments in this case is brought about by rare,
yet strong, ejections of energy with respect to the typical
realization curve.

For a < 0 �D p < D s�, the typical realization curve grows
exponentially with time, which points to a general increase in
the magnetic field energy at each point in space. Clustering in
the magnetic field energy does not happen in this case. Note
that namely this case is realized for an incompressible
magnetohydrodynamic flow �D p � 0�; hence, there is no
structure formation in the incompressible case.

The respective asymptotic expressions for the specific
values of the volume of large ejections and their total
energy, for homogeneous initial conditions, have the form of
expressions (53) and (54) with the change f! E.
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This implies that for a > 0 �D p > D s� the specific total
volume tends to zero, while the specific total energy inside it
coincides with the mean energy in the entire space. The latter
points to clustering of magnetic field energy with a prob-
ability one, i.e., in almost all magnetic field realizations.
Consequently, the magnetic field is simply absent over a
larger portion of the space.

When a < 0 �D p < D s�, clustering does not happen, and
there is only a general increase in the magnetic field energy
everywhere in space. Note that, in this case, the inverse
quantity, 1=E, undergoes clustering, i.e., clusters of compact
regions appear from where the magnetic field is expelled
(magnetic zeros).

We mentioned earlier that the parameters Dp and D s

characterizing statistics of the random velocity field enter all
statistical moment and correlation functions of the magnetic
field energy in an additive way. This is, certainly, the
consequence of equations (14) and (20) being linear. How-
ever, this fact implies that all the main (functional) relation-
ships in such a statistical description do not distinguish
between the influence of solenoidal and potential components
of the random velocity field. This means that all the relation-
ships derived for the mentioned statistical quantities have the
same structure for both incompressible �D p � 0� and purely
potential �D s � 0� flows. Nevertheless, since clustering is
absent for an incompressible flow and, conversely, is present
for a potential one, it is absolutely clear that the statistical
characteristics mentioned above do not contain any informa-
tion on the stochastic structure formation in individual
realizations of magnetic field energy, namely, on clustering.

Furthermore, the input induction equation (14) is valid
within the applicability limits of the kinematic approxima-
tion. In the presence of clustering, when the magnetic field is
absent over a larger portion of space, its back reaction on the
velocity field is not essential. In contrast, in the absence of
clustering, when the magnetic field is generated everywhere in
space, the kinematic approximation can be valid only over a
small time interval, and discussing the role of the dynamic
diffusion coefficient in forming the statistics of magnetic field
energy in this interval is, in our opinion, simply not serious.

4.2.3 The critical case of a � 0 (D p � D s). This case can be
considered as pseudoequilibrium, in analogy with the case of
equilibrium thermal noise [53, 54]. At a � 0, the one-point
probability density takes the form

P�t;E� � 1

2E
��������
pDt
p exp

�
ÿ ln2 �E=E0�

4Dt

�
:

The random processes E�t� and 1=E�t� are statistically
equivalent. The specific mean volume tends to half of the
total volume as t!1, and the specific mean energy tends to
the total mean energy.

Thus, clustering does not happen at a � 0 �D p � D s� in
the framework of equation (44). It is worth mentioning that
this result does not seem satisfactory, for equation (44) is itself
approximate, obtained under the assumption that the ran-
dom velocity field is delta-correlated in time.

Accounting for the finiteness of the time correlation
radius allows unequivocally judging the presence or lack of
the physical phenomenon of clustering. The results of
dedicated computations have shown that accounting for the
finite time correlation radius of a velocity field clustering
occurs with a probability one [54].

An analogous situation also takes place for random
acoustic waves if they are not damped.

Thus, a random Gaussian acoustic field u�r; t�, statisti-
cally homogeneous and isotropic in space and stationary in
time, is described by the correlation and spectral tensors
�t � tÿ t 0�:

ui�r; t�uj�r 0; t 0�

� � s 2
uBi j�rÿ r 0; t� � s 2

u

�
dkEi j�k� f �k; r; t� ;

where s 2
u � hu2�r; t�i is the variance of the velocity field, and

the function

f �k; r; t� � exp
ÿÿl�k�t� cos ÿkrÿ o�k�t� ;

whereo�k� � ck is the dispersion law for acoustic waves, and
c is the speed of sound.

The exponentially decaying term is related to dissipative
factors in equations of fluid dynamics and magnetohydrody-
namics, and l�k� � lpk 2.

Here, the velocity field spectral tensor contains only the
potential component Ei j�k� � E�k�ki kj=k2. And, since the
time integral for lp 5 cl0 (where l0 is the spatial correlation
radius of the velocity field) has the asymptotics�1

0

dt f �k; t� � lp
c 2

;

clustering of the magnetic field energy occurs with a
probability one (i.e., in almost all its realizations) in the
presence of small absorption.

In the absence of dissipation, the diffusion coefficient in
equation (44) becomes zero, and we do not have any
information on the presence or absence of clustering. In
general, however, the following equality is valid in the
absence of dissipation:�1

0

dt cos
ÿ
o�k�t� � pd

ÿ
o�k�� ;

owing to which resonances emerge between various harmo-
nics of the acoustic wave field in higher approximations. This
allows establishing in the second order of the functional
perturbation method (after cumbersome manipulations)
that clustering of magnetic field energy occurs with a unit
probability (i.e., in almost all its realizations), and computing
the characteristic time it takes for clustering to set up,
t � 1=a2, where the Lyapunov characteristic parameter [54]
is given by

a2 � s 2
u

c 2

�
dk k 2E�k�

�
4

5
lp � 76p2

s 2
u

c
k 2E�k�

�
:

Notice that there is no clustering of magnetic field energy
in an equilibrium thermal velocity field.

We also mention that analogous computations for the
density field of the passive tracer in random wave fields
have indicated the presence of clustering with a probability
one [55].

5. Model of a stochastic velocity field allowing
analytical solutions to transport problems

Let us now consider a simple model velocity field of the form

u�r; t� � v�t� f �kr� ;
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where v�t� is a Gaussian vector random white noise process,
and f �kr� is a periodic function. Selecting the x-axis in the
direction of vector k, we see that in the framework of this
model the velocity field depends on a single spatial coordi-
nate, i.e., f �kr� � f �kx�. Notice that the velocity field model
of the form

u�r; t� � v�t� sin �2kr� ; �71�

proposed for the fist time in review [56], made possible the
derivation of an analytical solution for continuity equation
(19) for the scalar density field r�r; t�, as well as a solution of
equation (20) for the vector magnetic field and, consequently,
gave the possibility of tracing the onset and evolution of
cluster formation in these fields in individual realizations of
the random velocity field. We note that this form of function
f �kr�, corresponding to the first term of its expansion in
harmonics, is routinely used in numerical simulations related
to the problem.

In numerical modeling of various phenomena, a model of
Gaussian vector random process v�t�, delta-correlated in
time, has been used, with the parameters


v�t�� � 0 ;


vi�t�vj�t 0�

� � 2s 2di jt0d�tÿ t 0� ; �72�

where s 2 is the variance for each velocity component, and t0
its temporal correlation radius. We will adopt dimensionless

variables

t! k 2s 2t0t ; x! kx ;


vi�t�vj�t 0�

�! 2di jd�tÿ t 0� : �73�

5.1 Model of passive tracer diffusion
The solution of equation (19) for the density field in the case
considered has the form [56]

r�x; t�
r0

� 1

exp
ÿ
T�t�� cos2 �kx� � exp

ÿÿT�t�� sin2 �kx� ; �74�
where T�t� � 2k

� t
0 dt vx�t� is the Wiener random process.

From expression (74), it can be seen that the density field is
small everywhere except for the vicinities of points kx � np=2,
where r�x; t�=r0 � exp

ÿ�T�t��, i.e., the field is rather strong
close to these points, granted the sign of the random factor
T�t�.

Thus, in the problem considered, the cluster structure of
the density field in the Euler description forms in the vicinity
of points

kx � n
p
2
; n � 0;�1;�2; . . . :

The results of simulations of space±time evolution
experienced by a realization of the Euler density field
1�r�x; t�=r0 (unity is added to eliminate difficulties in
logarithmic representation for densities approaching zero)
are presented in Fig. 19 in dimensionless variables (73). This
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Figure 19. Spatio±temporal evolution of the Eulerian density field, described by formula (74).
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figure explicitly illustrates a gradual flow of the density field
to the vicinities of points x � 0 and x � p=2, i.e., the
formation of clusters at locations where the relative value of
the density is large, whereas it is close to zero in the remaining
space. Notice that at time instants t, such that T�t� � 0, the
realization of the density field passes through the initial
homogeneous state.

5.2 Turbulent dynamo model
For induction equation (20) and model (71) considered here,
the x-component of the magnetic field is preserved, i.e.,
Hx�r; t� � Hx0, and the transverse magnetic field component
H?�x; t� satisfies the equation�

q
qt
� vx�t� qqx f �x�

�
H?�x; t� � v?�t� qf �x�qx

Hx0 �75�

with the initial condition H?�x; 0� � H?0; its solution can be
written in a statistically equivalent form (atH?0 � 0) as

H?�x; t� � 2kHx0

�
� t

0

dt
exp

ÿ
T�t�� cos2 �kx� ÿ exp

ÿÿT�t�� sin2 �kx��
exp

ÿ
T�t�� cos2 �kx�� exp

ÿÿT�t�� sin2 �kx��2 vx�t�v?�t� :
�76�

The expression on the right-hand side of formula (76)
describes the generation of magnetic field H?�x; t� in the
transverse plane �y; z� because of the presence of the initial
fieldHx0. And atH?0 � 0, fieldH?�x; t�, proportional to the
square of the random velocity field, defines the situation. The
structure of field H?�x; t�, similarly to that of density field,
also experiences clustering, which is confirmed by the results
of numerical simulations (see Refs [39, 57] and the mono-
graphs [17±20]), presented in dimensionless variables (73) in
Fig. 20a, which plots the cluster share of the generated
magnetic field energy with respect to the total energy in the
layer at a given time instant, and in Fig. 20b, where we see the
dynamics of how perturbations in magnetic energy flow from
one domain boundary to the other one.

Let us point out a specific feature of equation (75). In
this case, the parametric excitation of the magnetic field is
accompanied by the Gaussian generation of the field itself.
We now turn to the statistical analysis of this simple
problem.

6. Parametrically excited dynamical systems
with Gaussian pumping

6.1 Statistical analysis of simple turbulent dynamo
problem with Gaussian pumping
The equation for the one-point in space and one-time
probability density of magnetic field energy, written for
dimensionless time (see Refs [39, 57] and monograph [17±
20]), which corresponds to linear equation (75), is written as

q
qt

P�t;E� �
�

q
qE

E� 2
q
qE

E
q
qE

E� 2
q
qE

E
q
qE

�
P�t;E� ;
�77�

with the initial condition P�0;E� � d�Eÿ b�.
For the last equation, the large-time asymptotics for the

moments of magnetic field energy were obtained in the form

En�t�� � An exp

�
n�2nÿ 1�t� ;

which corresponds to the lognormal law for the probability
density with a correction that accounts for the Gaussian field
generation. Also, the expression for the Lyapunov exponent

exp
ÿ

lnE�t��� � b exp �ÿt�

was derived, which indicates that the magnetic field energy
decays at any point in space, i.e., that the clustering proceeds.

The last term in equation (77) is responsible for the
generation of a Gaussian magnetic field, which dominates
the magnetic field energy generation at small times. We
present below the related equation and solutions for these
times, bounded to the case of two dimensions which is of
interest to us [58].

The equation for the probability density of the two-
dimensional Gaussian vector field H?�R; t� for the spatially
homogeneous case takes the form

q
qt

P�t;H?� � 1

2

q2

qH 2
?
P�t;H?� ;

and its solution is written as

P�t;H?� � 1
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Figure 20.Dynamics of cluster disappearance at the point 0 and cluster emergence at the point p=2. The circle stands for the time instant t � 10:4, triangle
for t � 10:8, and square for t � 11:8.
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Respectively, on this short time interval, the probability
density for the transverse energy E�H 2

?�R; t�, defined as

P�t;E� � 1

2t
exp

�
ÿ E

2t

�
; �78�

is described by the equation

q
qt

P�t;E� � 2
q
qE

E
q
qE

P�t;E� :

As a consequence, the integral probability distribution
function is governed by the equation

q
qt

F�t;E� � 2E
q2

qE 2
F�t;E� ;

the solution of which is written out as

F�t;E� � 1ÿ exp

�
ÿ E

2t

�
: �79�

This relationship leads directly to the following expression for
the typical realization curve:

E ��t� � �2 ln 2�t :

Clearly, for clustering to occur, the typical realization
curve of a respective process must decay, in contrast to linear
growth for a Gaussian process. From Fig. 21, which displays
the results of a numerical solution of equation (77), it can be
seen that at the initial stage the probability density of the
magnetic field energy decays approximately as the Gaussian
distribution, and the decay rate decreases with time, i.e., the
process of Gaussian field generation prevails. At times of
about t � 1:7, the situation changes: at larger times, cluster-
ing begins to play an important role, i.e., the rate of decrease
in probability density begins to increase with time as the
energy increases, just like its value at zero.

Consider now the integral probability function for the
magnetic field energy. From equation (77), we obtain in a
regular way the equation for its evolution:

q
qt

F�t;E� �
�
E� 2E

q
qE
�E� 1�

�
q
qE

F�t;E� : �80�

A numerical solution to the last equation is given in Fig. 22a;
it indicates that at relatively small times, approximately until
t � 1:7, the rate of increase in the integral function decreases
with time, which is characteristic of theGaussian distribution.
At larger times, the rate of increasing begins to increase,
which is characteristic of the lognormal distribution.

This observation is illustrated more transparently by the
typical realization curve. We see in Fig. 22b that for t5 3:0
the typical realization curve decays for the process described
by equation (77), indicating the presence of clustering. It is
noteworthy that the process of clustering manifests itself even
earlier, but it prevails over the generation from approximately
this time instant.

Figure 23a plots the time dependence of the specific area
of the regions where the magnetic field energy exceeds the
maximum level of the typical realization curve, i.e., E > 2. In
the case of Gaussian distribution, this area tends to unity,
which testifies to a lack of clustering; however, in the
presence of a magnetic field, the area begins to decrease,
which points to the beginning of clustering at times t � 1:7.
Figure 23b shows the time dynamics of the specific energy
(normalized to the total energy at the respective time instant)
confined in these regions, thus confirming the phenomenon
of clustering.

6.2 Anomalous sea surface structures
Recent decades have seen an increased interest in such
phenomena as anomalously large waves, also called rogue or
freak waves (see, for example, Refs [59, 60]). There are many
ideas on the mechanisms and methods to describe this
phenomenon [59±62]. We presume that different mechan-
isms may exist, and not all of them deserve to be called
anomalously high waves. For example, the development of
such waves against the background of sufficiently high sea
waves is apparently related to nonlinear effects (see, for
example, Refs [63±66] and references cited therein). Different
dynamic models are being studied based on numerical
modeling, as well as on analytical results related to the
nonlinear SchroÈ dinger equation. The statistical properties of
observed anomalous waves are also intensely being discussed
(see, for example, the review [61]).

We propose a possible mechanism for the emergence of
anomalous structures on the water surface, which may
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Figure 21. Probability density (77) for the time (a) t � 0:3 (curve 1) and t � 1:7 (curve 2). The thin lines correspond to the Gaussian distribution (78) for

t � 0:3 (curve 1 0) and t � 1:7 (curve 2 0). (b) The same as in panel a, but for the time t � 1:7 (curve 2), t � 5:0 (curve 3), and t � 8:3 (curve 4).
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correspond to the appearance of such structures against the
background of very weak waviness. Figure 24 presents three
photos of an unusually narrow and elongated structure 4±5m
in height observed on 11 June 2006 in the vicinity of the
Kamchatka Pacific coast, 1±1.5 km offshore [20, 67]. The

photographer, M M Sokolovsky, describes the phenomenon
documented by him in the following way: ``It was, surely, a
strange wave, for it was repeated several times, each time
disappearing. There were no waves around, a completely still
surface.''
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Figure 23. (a) Specific area of regions for distribution (77), where the level of magnetic field energy E > 2. (b) Specific energy confined in regions whose

evolution is shown in panel a.
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Figure 24. View on the water structure from the side (a). The front view: the beginning (b), and the middle (c) of the structure.
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Figure 25 also demonstrates the structure of the sea
surface observed close to the coast of Ile de ReÂ (France) [68].2

From these examples, it is clear that if we construct a
topographic map of the magnitude of the sea surface
elevation gradient for them, we obtain a typical cluster
structure for which a positive field is concentrated within a
small area, being simply absent elsewhere.

It should be emphasized once again that the structures
discussed above are notably different from the anomalous
waves commonly considered. First, such structures can be
both standing and moving, and second, they substantially
exceed the background; here, we are not dealing with outliers
that exceed the background just twofold [61]. In the examples
above, one may rather speculate about the presence of high
structures against a practically vanishing background. From
these examples, it is also seen that the clustering of the positive
field in this case is equivalent to such physical phenomena as
the focusing of a wave field on passing through a random
medium [61, 69] or of the intensity of laser radiation
traversing a random medium (see Section 3.2.1).

6.2.1 Problem statement. The statement of the statistical
problem on the emergence of anomalous structures on the
sea surface in the kinematic approximation is presented in
Ref. [69] and monograph [20].

We denote the three-dimensional spatial coordinate as
r � frig, where i � 1; 2; 3, labeling the vertical coordinate as
z � r3, and use Ra �a � 1; 2� to mark the coordinates in the
horizontal plane perpendicular to the z-axis. In this notation,
r � fR; zg. Accordingly, we represent the three-dimensional
hydrodynamic velocity field u�r; t� through its horizontal
and vertical components, i.e., in the form ui�r; t� �
fua�R; z; t�;w�R; z; t�g, where i � 1; 2; 3 and the subscript
a � 1; 2.

The sea surface elevation (displacement) z � x�R; t� is
described through the kinematic boundary condition
(Fig. 26), which is expressed as

d

dt
x�R; t� � wz�R; z; t�

����
z�x�R;t�

: �81�

Here, dx�R; t�=dt is the full derivative of a sea surface
elevation.

Boundary condition (81) can be considered a closed
stochastic quasilinear equation in the framework of the
kinematic approximation, i.e., for the given statistical
characteristics of the velocity fields u�R; z; t� and w�R; z; t�:
qx�R; t�

qt
� ua

ÿ
R; x�R; t�; t� qx�R; t�

qRa
� wz

ÿ
R; x�R; t�; t� ; �82�

with the initial condition x�R; 0� � x0�R�. Equation (82)
describes the generation of waves on the sea surface excited
by aGaussian vertical component of a hydrodynamic velocity
field.

Differentiating equation (82) over R, we arrive at the
equation for the gradient of sea surface elevation pb�R; t� �
qx�R; t�=qRb, characterizing the slope of the sea surface:

qpb�R; t�
qt

�
�
qua�R; z; t�

qRb
� qua�R; z; t�

qz
pb�R; t�

�
z�x�R;t�

pa�R; t�

� ua
ÿ
R; x�R; t�; t� qpa�R; t�

qRb

�
�
qw�R; z; t�

qRb
� qw�R; z; t�

qz
pb�R; t�

�
z�x�R;t�

pa�R; t� ; �83�

with the boundary condition p�R; 0� � p0�R� � qx0�R�=qR.
Notice that one more boundary condition, related to the

inhomogeneities in bottom topography (see Fig. 26), exists
for the problem considered. In the framework of the
kinematic approximation, this boundary condition is mani-
fested in a functional form, namely, for variational deriva-
tives of problem solutions x�R; t� and p�R; t�, the following
relationships are valid:

dx�R; t�
du�R 0; z 0; t 0� � y

ÿ
z 0 �H0 ÿH�R��y�tÿ t 0� ;

�84�
dp�R; t�

du�R 0; z 0; t 0� � y
ÿ
z 0 �H0 ÿH�R��y�tÿ t 0� ;

where y�z� is the Heaviside theta-function. Condition (84)
corresponds to an impermeable sea bottom.

Thus, equations (82) and (83) together with boundary
condition (84) represent a closed system in the kinematic
approximation. The solution of this system of equations
should provide an answer to the question of whether or not
its equations contain information on the presence of anom-
alous structures on the sea surface with a probability one, i.e.,

Figure 25. Example of a water structure on the sea surface.

z
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u�r; t�

x�R; t�

H0�R�

ÿH
R

Figure 26. Perturbation of the sea surface.

2 Impressive photos of other anomalous structures on the sea surface can

be found at the site http://imgur.com/a/4Y2Oo.
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for almost any realization of the randomvelocity field. But we
put aside here the physical mechanisms underlying this
structure formation.

6.2.2 Statistical analysis of the problem. A statistical analysis
of the problem given by equations (82)±(84) was carried out in
Refs [58, 70]. An equation for the joint probability density of
the sea surface elevation x�R; t� and its spatial gradient p�R; t�
has been obtained. The result proved to be rather curious: for
an infinitely deep sea and a spatially statistically homoge-
neous problem that corresponds to initial conditions x0�R�,
p�R; 0� � 0, the situation looks as follows.

(1) The sea surface elevation x�R; t� does not correlate
with its gradient and obeys the Gaussian distribution

P�t; x� � 1��������������������������
4pBww�0; 0�t

p exp

�
ÿ x 2

4Bww�0; 0�t
�
; �85�

which does not depend on the nonlinearity of the input
equation (82). The variance of the sea surface elevation is
given by

s 2
x �t� �



x 2�R; t��x � �1ÿ1 x 2P�t; x� dx � 2Bww�0; 0�t :

Here, the subscript x labels averaging over an ensemble of
realizations of field x�R; t�. The diffusion coefficientBww�0; 0�
in expression (85) is linked to the correlation function of the
vertical velocity w�R; z; t� by the relationship

Bww�0; 0� �
�1
0

dtBww�0; 0; t� ;

where Bww�R; z; t� is the correlation function of field
w�R; z; t�. The coefficient Bww�0; 0�, in turn, is linked with
the variance of random three-dimensional velocity field
u�r; t� (23):

Bww�0; 0� � 1

3

�
dk
�
2E s�k� � Ep�k�� � 1

3
s 2
u t0 ; �86�

where t0 is the characteristic temporal correlation radius of a
random velocity field u�r; t� [see equality (25)].

As a consequence, the complex structure of the velocity
field in the lower subspace cannot be the direct reason for
stochastic structure formation for the sea surface elevation.

Note that expressions for conditional means follow from
formula (85):



x�R; t�jx > 0

�
x �

�1
0

dx xP�t; x� �
��������������������������
1

p
Bww�0; 0�t

r
; �87�



x�R; t�jx < 0

�
x �

� 0

ÿ1
dx xP�t; x� � ÿ

��������������������������
1

p
Bww�0; 0�t

r
: �88�

Here, certainly, hx�R; t�ix � 0.
(2) The probability density P�t; I � for the modulus

squared of the sea surface elevation gradient, I�R; t� �
p 2�R; t�, is described by an equation of universal form:

q
qt

P�t; I � � q
qI

I�1� I �P�t; I � � 2
q
qI

I
q
qI
�1� I �2P�t; I � ;

�89�

where the dimensionless time was introduced:

t � 2

15
�4D s �D p�t ; �90�

and the quantities D s and D p are described by equalities (27)
with d � 3.

We note, first, that for any fixed point in space ~R, the
function I �t; ~R� is a random process with respect to time, with
the one-time probability density, independent of ~R and
described by the equation obtained.

Alongside this, in physical space fRg, the process of
structure formation in the field I�t;R�� jp�t;R�j2, consid-
ered as a physical object, may take place in the form of closed
regions with an augmented gradient concentrationÐcluster-
ing, which is also described by equation (89).

A qualitative analysis and estimates presented in Refs [58,
70] have shown the following. Equation (89) is rather complex
and comprises two effects. For one thing, field I�t;R� is
generated by the random Gaussian velocity field. But, on
the other hand, by virtue of the dynamics of the input
stochastic equations, it is parametrically excited. The ran-
dom field I�t;R� decays with a probability one (i.e., in almost
all its realizations) at a sufficiently large time at any point in
space and, hence, should undergo clustering in small spatial
regions.

The integral probability density distribution function
P�t; I �, defined as

F�t; I � �
� I

0

dI 0 P�t; I 0� � 
yÿIÿ I�t;R���
u
;

is the probability of event P �I�t;R� < I �. The function
F�t; I � satisfies the equation
q
qt

F�t; I � � I�1� I� q
qI

F�t; I � � 2I
q
qI
�1� I �2 q

qI
F�t; I � ;
�91�

which follows from equation (89). Relatedly, the function

~F�t; I � �
�1
I

dI 0 P�t; I 0� � 
yÿI�t;R� ÿ I
��

u
� 1ÿ F�t; I �

is the probability of event P �I�t;R� > I �. Because of
parametric excitation, function F�t; I � rapidly approaches
unity with time, while function ~F�t; I � tends to zero [58, 70].

In general, the area over which the random field I�t;R�
exceeds the fixed level �I is described by the integral

S�t; �I � �
�
dR y

ÿ
I�t;R� ÿ �I

�
; �92�

and the total `mass' of field I�t;R� > �I confined within this
area, is given by

I�t; I > �I � �
�
dR I�t;R� yÿI�t;R� ÿ �I

�
: �93�

Averaging expressions (92) and (93) over an ensemble of
realizations of random field I�t;R�, we obtain for the mean
quantities:


S�t; �I ��
I
�
�
dR


y
ÿ
I�t;R� ÿ �I

��
I
;

�94�

I�t; I > �I ��

I
�
�
dR


I�t;R� yÿI�t;R� ÿ �I

��
I
:
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For a spatially homogeneous and isotropic problem, all
one-point statistical means are independent of spatial
coordinate R, so that the first equality in Eqn (94) should be
written for the specific quantity

shom�t; �I � �


y
ÿ
I�t;R� ÿ �I

��
I
; �95�

which is the probability of eventP �I�t;R� > �I �. According to
the ideas of statistical topography of random fields, the
function shom�t; �I � for a statistically homogeneous field has
a geometric sense of the specific quantity (i.e., related to a unit
area), over which field I�t;R� exceeds any given value �I (see,
for example, Refs [17±20]). However, for a field decaying at
almost all points in space, this probability tends to zero,
which says that the basic statistical characteristics, such as
moment functions, are concentrated on this small area. The
specific gradient modulus squared i, concentrated in this
region, is described by the equality


i �t; I > �I ��
I
�
�1

�I

dI IP�t; I �

� 
I�t��
I

�
1ÿ 1


I�t��
I

��I

0

dI IP�t; I �
�
: �96�

Hence, it follows that, as time progresses, the expression in
Eqn (96) to the right of the second equality sign tends to
hI�t�iI. Accordingly, in this small fraction of space, a strong
gradient should in all probability simply `extrude' the free
surface upward (i.e., to form tall narrow structures), as well
as downward (i.e., to create deep narrow troughsÐ
maelstroms of free surface) on a decrease in area where it
is confined. And this should correspond to rare large
fluctuations of the Gaussian field of sea surface elevation
x�R; t�.

6.2.3 Statistical topography of the sea surface elevation field.
Consider now how the process of stochastic structure
formation can be described for the sea surface x�R; t� itself.
We know that the values of the random field of gradient
modulus squared I�t;R� exceeding a fixed magnitude �I , i.e.
I�t;R� > �I, are confined within small spatial regions (92) in
individual realizations. Namely within this small fraction of
space, the process of structure formation of the sea surface
elevation x�R; t� should take place. Consequently, for the
field x�R; t�, we should study the probability density in the
region of space (92), i.e., the conditional probability density
for x > 0, I�t;R� > �I. In this case, the fields x�R; t� and I�R; t�
are statistically independent.

Thus, the integral quantity of interest to us, viz.�
dR x�R; t� yÿx�R; t�� yÿI �t;R� ÿ �I

�
;

averaged over ensembles of realizations of fields x�R; t� and
I�t;R�, will define the conditional mean which, for a spatially
homogeneous and isotropic problem, according to formulas
(87) and (95), takes the form



x�t�jx > 0

�
shom�t; �I � �

��������������������������
1

p
Bww�0; 0�t

r
shom�t; �I � : �97�

Taking into account formula (90), we can express time t in
terms of dimensionless time t and, considering equalities (25),

recast conditional mean (97) as

x�R; t� yÿx�R; t�� yÿI�t;R� ÿ �I

��
x; I

�
������������������������������

5s 2
u t0

2p�4D s �D p�

s
F �t; �I � ; �98�

where the dimensionless function

F �t; �I � � ���
t
p

shom�t; �I � ; �99�

and the coefficients D s and D p in relationships (27) are
expressed through statistical parameters of velocity fields by
formulas (28).

We note that in incompressible hydrodynamic turbulence
�D p � 0�, formula (98) is substantially simplified and, with
account for equalities (28), acquires the universal form



x�R; t� yÿx�R; t�� yÿI�t;R� ÿ �I

��
x; I �

������
5

4p

r
lxF �t; �I � ;

�100�

where lx � su=sx is the spatial correlation radius of the
velocity/vorticity field.

For small times, this conditional mean grows with time,
but then decays because of a rapid decrease in function
shom�t; �I �, passing through the maximum which charac-
terizes the mean maximum amplitude of anomalous struc-
ture formation on the sea surface.

In a similar way, one may compute other conditional
moment functions like

hx n�R; t�jx > 0; I�t;R� > �I i :

It is also possible to consider the integral quantity�
dR x�R; t�y�ÿx�R; t��y�I�t;R� ÿ �I � ;

which, on averaging over ensembles of realizations of fields
x�R; t� and I�t;R�, defines the conditional mean for the
spatially homogeneous and isotropic case:

x�t�jx < 0

�
shom�t; �I � � ÿ

��������������������������
1

p
Bww�0; 0�t

r
shom�t; �I � : �101�

For small times, conditional mean (101) decays with time,
but will increase further because of a rapid decrease in
positive function shom�t; �I �, passing through a minimum
value which characterizes the mean minimum amplitude of
anomalous negative structure formation on the sea surface
(i.e., deep trough).

Thus, based on the equations obtained inRefs [58, 70], it is
shown that in the process of structure formation of the
gradient modulus, the field of sea surface elevation increases
in small regions which comprise the entire gradient, reaching
a maximum and then beginning to decrease. Thus, the
structures studied may reach a substantial amplitude on the
fluid surface, but are limited both in magnitude and lifetime.

Let us make a remark concerning the interpretation of
statistical means from the standpoint of statistical topogra-
phy. Formulas (97) and (101) show that sea surface elevations
differing from zero are confined in the regions where the
modulus of the gradient undergoes clustering, i.e., in such
regions where this modulus is larger than any value of �I,
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however small. Note that at �I � 0, formulas (97) and (101)
lose their meaning since they cease to describe the distribution
of the elevation in space and become, therefore, expressions
for ordinary means, the interpretation of which from the
standpoint of behavior in individual realizations does not
convey useful information (see, for example, books [17±20]).

We also note that the estimates obtained in Refs [58, 70]
and general features of the sea surface elevation amplitude
only point to the existence of an effect. More detailed
characteristics and additional verification can be furnished
by numerically solving equations (89) and (91), and also by
numerical simulations of the input equation (82).

7. Conclusion

We have considered the processes of stochastic structure
formation in two-dimensional geophysical fluid dynamics
based on statistical analysis of Gaussian random fields, as
well as stochastic structure formation in dynamical systems
with parametric excitation of positive random fields f �r; t�
described by partial differential equations. We also consid-
ered two examples of stochastic structure formation in
dynamical systems with parametric excitation in the presence
of Gaussian pumping. Such structure formation in dynamical
systems with parametric excitation in space and time either
happens or not! However, if it occurs in space, then this
almost always happens in individual realizations, i.e., with a
unit probability (exponentially fast), and for the spatially
homogeneous statistical case consists in the following:

(1) the field decays at almost all points in space with time
(clearly with fluctuations superimposed);

(2) the regions of small volume where this field is
concentrated (clustered) develop in space, and stochastic
structure formation is caused by diffusion of random field
f �r; t� in its phase space f f g.

In the case considered, clustering of the field f �r; t� of any
nature is a general feature of dynamical fields, and one may
claim that structure formation for such arbitrary random
fields is the law of nature.

In this study, we clarified conditions under which such
structure formation takes place. It is worth noting that these
conditions have a transparent physical±mathematical sense
and are described at a sufficiently elementary mathematical
level by resorting to the ideas of statistical topography.
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