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Abstract. This paper reviews glass transition kinetics models
that are developed to describe the formation of structural (for
example, covalent and metallic) glasses, as well as to account
for the transition of a polymer to a solid glassy state. As the two
approaches most frequently used over the last decade to model
the glass transition, the Tool-Narayanaswamy—Moynihan
model and the Adam-Gibbs theory of glass transition are
described together with examples of their applications. Also
discussed are entropy-based approaches that rely on irreversi-
ble thermodynamics methods originated in the work of De
Donder, Mandelstam, and Leontovich. The actual problems
that arise in applying these methods and the prospects of their
development are discussed. A brief overview of statistical glass
transition models is given, including the mode-coupling and
energy-landscape theories.
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1. Introduction

The glass transition, the dynamical transition of a system
from a thermodynamically equilibrium liquid state to a
frozen-in thermodynamically nonequilibrium (glassy) state,
can be regarded as one of the earliest technologies humans
tapped to fabricate materials [1-4]. With new materials being
invoked and increasingly higher variation rates of tempera-
ture and other external parameters becoming available, new
glass fabrication methods are now emerging and their range
of application continuously expands. One finds numerous
examples of how solid amorphous materials produced in the
glass transition are used in every sphere of human activity and
industry. One such example is polymers, namely materials
which have a wide range of applications and show enormous
promise for the future.

The fact that the final state of a material is strongly
dependent on its cooling rate and thermal prehistory imparts
great applied importance to the problem of the theoretical
description of the glass transition process. Considerable
optimization can be achieved for glass-based production
processes and for the performance of glass-based products
with a theory capable to quantitatively account for glass
transition in various materials. However, neither the glass
structure itself nor the glass formation kinetics have yet been
given a sufficient explanation at the microscopic level and
thus they represent an intriguing problem for condensed
matter physics.

Although low-molecular materials, polymers, metallic
glasses, and other glass-forming systems differ considerably
in their molecular structure whether in a liquid or a solid
amorphous state, there is much observational evidence that,
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when changed to glass, their macroscopic characteristics are
essentially similar. For example, the specific volume, thermal
expansion coefficient, enthalpy, elastic modulus, and other
material properties change in a qualitatively identical manner
in completely different materials, irrespective of their mole-
cular structure, suggesting that a general theory should exist
that is at least capable of predicting how their macroscopic
properties evolve.

The challenge of creating such a general theory is well
illustrated by the fact of existing various and diverse
phenomenological approaches to and theories for describing
the glass transition process that in some cases differ
fundamentally in some aspects and which are too numerous
to describe in detail within a single review. This diversity itself
implies, however, that the theory of glass transition currently
represents one of the most significant unsolved topics in
theoretical physics. The important point here is that, in
addition to the well-known problems of describing real
equilibrium systems by statistical physics methods, one faces
problems related to the change in and the rate of change of the
external parameters involved. Thus, opinions still vary as to
whether glass transition is a purely dynamic process which
‘freezes’ relaxation phenomena characteristic of liquids or
whether, at least under some conditions, it results from the
existence of a special thermodynamic phase, for example, so-
called ideal glass. A further point to note is that, as tools for
describing experimental data, theoretical methods formu-
lated over fifty years ago still remain popular. However, the
last few decades have seen active attempts to develop new
microscopic approaches closely relying on the laws of
statistical physics and, hence, on the employment of compu-
ter simulations capable of implementing various (including ab
initio) calculation methods.

This review systematically summarizes the approaches
that are currently most widely applied for describing the
glass transition kinetics. Because, as mentioned, the glass
transition process is similar for completely different materi-
als, the theoretical methods are usually described here
without regard for the structural features or properties of a
specific material. The examples chosen and references cited
mainly reflect the author’s research interests, which in recent
years have concerned the description of experimental data on
polymers. This approach does not lead to a limitation of the
range of application of the methods to be described; they are
quite successful in describing the glass transition in any
material. Furthermore, the methods to be discussed are also
of interest for describing glasslike states that arise at phase
transitions, such as structural transitions [5, 6] and super-
conducting transitions occurring in high-temperature super-
conductor glasses [7-9]. Mention should also be made of
similar states observed in disordered crystals [1].

On the other hand, the methods developed in the theory
of phase transitions (for example, in the theory of spin
glasses) are also utilized in the general theories of glass
transition, and similar ideas appear in related fields such as
the study of metallic [10], dipole [11], and polymer [12]
glasses.

The particular emphasis of this review is on the applica-
tion of established phenomenological models to the theore-
tical methods under discussion because, despite their high
promise, current microscopic theories cannot yet quantita-
tively describe the glass transition kinetics of complex
systems. Moreover, such phenomenological approaches
provide a general picture which, as is the case in classical

thermodynamics, can be developed further through the
employment of microscopic methods.

The review outline is as follows. Section 2 briefly presents
what is typically observed experimentally in glass transitions.
Section 3 supplies step by step a chronological account of the
theoretical methods that have been developed for describing
glass transition kinetics, starting from Tool’s concept of
fictive temperature and ending with the mosaic and mode-
coupling theories. Section 4 presents the generalized kinetic
glass transition criterion and discusses the general implica-
tions of the criterion and its application to the study of the
effect of cooling/heating rate on the glass transition tempera-
ture and the width of transition interval. Section 5 briefly
discusses recent advances in the theoretical description of the
physical relaxation of polymers. Section 6 presents the results
of modeling of the glass transition of polymers in a wide range
of cooling/heating rates and discusses the challenges that exist
in this field. The concluding section discusses the results of
some studies, examines topical problems in glass formation
kinetics, and explores prospects of theoretical approaches to
solving these problems.

2. Experimental observations

The way in which a diversity of properties of a system (the
specific volume, enthalpy, etc.) evolve in time as a glass
transition proceeds can give a clue to the basic features of
the process. This is clearly exemplified by the behavior of a
certain property p for two temperature ‘histories’ which
qualitatively correspond to most experimental situations:
(1) a sudden switch of temperature, when it abruptly changes
by AT throughout the system, and (2) a temperature decrease
at a certain (usually constant) rate ¢ = d7/dz. For a stepwise
isobaric change in temperature, the glass transition region
reveals two contributions to the change in p: one of them
instantaneous (isostructural), and the other relaxational
(structural) (Fig. 1a). The former type of response (which
remains relevant for a glassy state as well) reflects how the
thermal vibrations of the material’s particles (phonon
contribution) change their nature as a result of the change in
the external conditions, whereas the latter response mechan-
ism is due to a change in the structural characteristics of the
system and remains inoperative in the ‘frozen-in state’ of the
material.

An important feature distinguishing glass transition
relaxation from relaxation processes in many other systems
is that, for structural relaxation, the chosen parameter p
varies nonexponentially with time ¢. Whereas relaxation in a
liquid at sufficiently high temperatures follows the law
p(t) ~exp(—t/t) (where 7 is the characteristic relaxation
time), in the glass transition region we observe a strong
deviation from this law, with different properties of the
system possibly demonstrating different behaviors [13, 14].
The response function in this case is most commonly — and
quite reasonably —approximated by the so-called Kohl-
rausch law, p(7) ~ exp [—(t/r)ﬁ] [15, 16], where f3 is a positive
factor less than unity, usually 0.35 < f < 0.75[2]. The case of
p equal to unity corresponds to Maxwell’s exponential
relaxation behavior, whereas § < 1 results in what is known
as stretched exponential relaxation. Another feature of this
relaxation is its nonlinear nature, which manifests itself in the
relaxation time t depending on both the conventional
thermodynamic parameters (temperature, pressure, glass
composition) and additional structural parameters of the
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Figure 1. (Color online.) A characteristic response of a glass-forming
system expressed in terms of the dependence of p on temperature or time
(a) for a jump in temperature, and (b) for a liquid-to-glassy state
transition at a constant cooling rate (blue lines) and a subsequent
heating (red lines). Here, peq, peoq, and pe'q are the equilibrium values of
the property p for different temperatures; ¢. is the heating/cooling rate,
which assumes three values; Tgl, Tg27 and T are the glass transition
temperatures for the respective values of the rate gc, and p;, p7, and p]
are the corresponding values of the property p which are ‘frozen-in’
during the glass transition.

glass that appear in a thermodynamic description due to the
departure of the glassy state from equilibrium [1-3].

Figure 1b illustrates how a system’s property p being
studied (say, enthalpy, specific volume, etc.) evolves as the
system is uniformly cooled at different constant rates from a
liquid state [17, 18]. As the temperature decreases, the
relaxation time of the system increases, resulting in the
deviation of the observed values of p from the equilibrium
value p. in a certain range of temperature 7, so that p assumes
a certain ‘frozen-in’ value p, on the time interval of
experimental observations. Note that the higher the cooling
rate ¢, the larger the ‘frozen-in’ value p,. If upon completion
of cooling the temperature is steadily increased (a glass-to-
liquid transition), then the behavior of p in the glass transition
region will differ from its behavior during cooling, giving rise
to hysteresis. There is a wealth of experimental evidence that
supports this result and which also shows that the glass
transition temperature depends on the heating/cooling rate.
Other material properties, such as the isobaric heat capacity
C,, vary with temperature in a different way (as the derivative

with respect to 7T of the dependences depicted in Fig. 1b),
showing a monotonic change in the glass transition region
from a linear behavior for a liquid to a different linear
behavior for a glassy state. At the reverse transition, a
nonmotonic curve with one or two heat capacity peaks is
observed if the heating proceeds sufficiently fast (faster than
the cooling rate).

One of the key conclusions to draw from the curves
plotted in Fig. 1 is that the glass transition is essentially a
kinetic process. The evolution of the properties of a system
depends on both the rate of change of the external parameters
(here, temperature) and the time needed for the system to
relax to the corresponding equilibrium state. To describe the
kinetic transition to a glassy state, various combinations of
these parameters have been proposed, starting from the
works by Bartenev, Jones, Ritland, Volkenstein, and Ptit-
syn, which have led to the development of a number of criteria
(see Refs [14, 19] for a review). As a generalization of the
earlier proposed criteria, Refs [14, 19] also formulated a glass
transition criterion based entirely on a general thermo-
dynamic analysis of the glass transition, without relying on
any specific models of a glass-forming system. This general-
ized criterion requires that the relaxation time g of the
structural parameter of the system be equal to the character-
istic time for the variation of the glass transition-inducing
external factor. If the transition of the system to a glassy state
is due to a change in temperature, then the characteristic time
for the variation of temperature 77 can be written as

TT:(I dT)l. 0

T|dr
Then, the condition for the transition from an equilibrium
liquid state (in which g < t7) to a ‘frozen-in’ glassy state
(tr > t7) is as follow: tr ~ 77 [14, 19], from which the glass
transition temperature 7T, can be estimated as

1 |dT
T | dt R

References [14, 19] show that the earlier developed glass
transition criteria are limiting cases, or approximations, of
general criterion (2). Notice also that if a transition to a glassy
state is caused by changes in other external parameters
determining the state of the system (for example, pressure),
then the generalized criterion remains unchanged in form
requiring merely that 77 is replaced by the characteristic time
for the variation of the corresponding parameter (see Section
4.1 for more detail).

Using the glass transition criterion (2) and employing the
appropriate expressions for the relaxation time of a specific
system, it is possible to obtain analytical expressions for the
glass transition temperature as a function of the cooling/
heating rate. This was first done by Bartenev [20], who
approximated criterion (2) as ¢|tr| & const, where |¢| is the
heating (or cooling) rate of the system. Assuming the
temperature dependence of the relaxation time to be defined
by tr = troexp [—A4/(ksT)], Bartenev obtained the expres-
sion, now known as the Bartenev—Ritland equation [20-22],
for the dependence of the glass transition temperature on the
rate ¢:

1

= C -G
Tg C1 C2 ng, (3)

~ 1. (2)

T=T,
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where the material parameters C| and C; are determined from
the relaxation behavior parameters. Using general criterion
(2), it can be shown that C; is not a constant, but rather a
function weakly dependent on 7, [which does not usually
greatly affect dependence (3)].

There is abundant experimental evidence that the depen-
dence of the glass transition temperature 7, on the heating/
cooling rate is usually described well by formula (3) over a
wide rate range. The reason is that, for this quite wide but still
limited temperature range, the relaxation time is well
described by Maxwell’s expression Bartenev used. However,
for a wider range of the temperature variation rate, the glass
transition temperature 7, varies over a wider range, making it
necessary to derive a more accurate expression for the
relaxation time [hence, deviations from equation (3)].

The dependence of the structural relaxation time on
temperature is reflected in the temperature dependence of
the viscosity of a supercooled liquid. It is a long-known fact
that the properties of glass-forming systems have qualita-
tively different temperature dependences. Indeed, glasses are
known to be technologically divided into ‘short” and ‘long’
types depending on how fast the viscosity in the region of
the glass transition changes with temperature (see, for
example, Ref. [1]). To describe these differences in the
behavior of glass-forming melts by dependences of the
form n(T') or ©(T), Angell [23] rather recently proposed a
new parameter, the fragility index, with which to quantify
the deviation from the Arrhenius behavior. Materials that
exhibit a typical Arrhenius behavior of 5(T') are classified as
strong, and those deviating mostly from it as fragile. For the
latter, the viscosity increases sharply in the glass transition
region.

Notice, however, that Angell’s classification and its
consequences only make sense when the glass transition
temperature is defined for all liquids in the same way, from
the viscosity value of 10'> Pa s independent of the heating or
cooling conditions (rates), in accord with Tammann’s [24]
suggestion about the definition of T} (see Ref. [25] for details).
However, as can be seen already from the Bartenev—Ritland
equation (3), temperature—and hence viscosity —can,
depending on the cooling or heating rate, assume very
different values at the glass transition. Therefore, any
criterion specifying the value of viscosity at T, is of limited
value as a tool for stimulating the understanding of glasses
and glass transitions.

Whatever theoretical arguments and discussions there
are on the value of the fragility index for describing the
glass transition, experimental studies show that the tem-
perature dependence of the viscosity of supercooled glass-
forming liquids generally tends to be well described by the
phenomenological Vogel-Fulcher—Tammann (VFT) equa-
tion [26-28]

1) =noewp (727 @

where #,, B, and T, are material-specific constants. There-
fore, the glass transition is appropriately described by
applying Eqn (4) as an expression for the characteristic
relaxation times with a corresponding factor for the passage
from n(T) to t(T). It can be shown [1, 17, 18] that over a wide
range of ¢ rates, the Bartenev—Ritland law is satisfied for
strong glass-forming systems, and takes a different form for
fragile ones (see Section 4).

Equation (4) adequately describes the behavior of the so-
called equilibrium viscosity of a liquid, which leads to a
similar behavior for the equilibrium relaxation time. As
mentioned above in connection with Fig. 1, one more
important feature of glass transition is the so-called memory
of the material. In this effect, both the thermodynamic and
kinetic characteristics of the system, including the way it
relaxes to equilibrium, depend not only on the current values
of properties of the system (such as pressure, temperature,
and the molar fractions of the components) but also on its
previous thermal history. The memory effect was observed in
early experiments for the example of the refraction index of
glasses hardened in different ways; for other experiments
revealing these effects, see Refs [29-33].

Hence, not only do the usual thermodynamic parameters
such as temperature, pressure, and molar fractions have to be
taken into account in describing the evolution of the
material’s properties in the glass transition process, but so
does the thermal history of the material. The inclusion of the
memory effect is of interest from a theoretical point of view
because it turns out to be not sufficient to consider a first-
order differential equation for a single order parameter for a
proper description of the glass transition. In order to develop
an appropriate theoretical description, different approaches
to the problem may be applied: one can either to consider
relaxation of several structural parameters by setting up a
system of coupled first-order differential equations, or, on the
contrary, to develop a theory with a single structural order
parameter introducing, in doing so, ‘memory’ integrals over
the thermal history of the process.

There is a wide range of methods for experimental
investigations of glass transitions and glass properties. One
of the most effective current methods of experimentally
exploring the glass transition in various materials is differ-
ential scanning calorimetry (DSC). With the development of
new experimental techniques, the previously accessible DSC
cooling rates of at most a few kelvins per second increased by
many orders of magnitude up to 10° K s~!' [34-37], thus
reaching the lowest limits accessible to computer simulation.
Having regard to the way they are used and given the
extremely long duration of the experiment (for example,
cooling to 100 K takes about three years at 107 K s !,
and three months at 107> K s~!), the unique possibility
arises of investigating the glass transition over the cooling
rate range of more than ten orders of magnitude. An
alternative (or supplementary) approach constitutes tem-
perature-modulated calorimetry (TMC) [38—41] for the
study of the phenomenon of dynamic glass transition (or
TMDSC if different device realizations are employed). An
experimental study in this case consists of exposing a system
to small-amplitude temperature oscillations at a given
frequency (87(f) ~ exp (iwt)) and then analyzing the sys-
tem’s response. The experimentally accessible frequency
range extends from a few pHz to a few hundred kHz for
laser alternating current (AC) calorimetry. It should be noted
that measurements in this range of @ and ¢ require the
employment of several experimental techniques (and, hence,
of various devices), as well as the use of samples widely
differing in volume (mass) (see, for example, Refs [42, 43]).

Temperature oscillations in the present-day devices are
usually accompanied by the cooling or heating of the sample
at a preassigned constant rate. In some cases, two glass
transition temperatures may be recognized, one of which
corresponds to the transition described above, and the other,
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Figure 2. Temperature dependence of the specific heat capacity of
polystyrene as measured by TMDSC [44].

the dynamic one, to the retardation in the relaxation to
equilibrium of some ‘internal’ system’s modes with respect
to fast temperature oscillations [44, 45]. The former glass
transition temperature depends on the cooling rate, Ty(g),
and the second on the temperature oscillation frequency,
T, (). Figure 2 presents the results of such measurements on
polystyrene. References [46—48] obtained expressions relating
¢ and o for the observed transitions, and Refs [42, 49, 50]
showed good agreement with experimental data over a wide
frequency range for different samples. The reader is referred
to handbook [51] for a review including a description of the
basics of TMDSC technique and its application to polymer
studies.

The schematic model of the dynamic glass transition is
similar to Herzfeld’s and Rice’s model of sound absorption in
polyatomic gases [52], which introduces a relaxation time
accounting for energy transfer from the system’s internal to
external degrees of freedom. In this case, one can introduce a
complex-valued dielectric constant, with its real and imagin-
ary parts determined experimentally. Similarly, for a model
with a constant energy transfer relaxation time, the frequency
dependence of C, is found to be given by [53-55]

C, . Cot .
1 + w?t? 1+ w?t?

Ci(w)=Cy—iC) = Cp oo+

(5)
From Eqn (5) it is seen that at a certain value of temperature
oscillation frequency w the imaginary part of C,(w) reaches a
maximum, and just this value is associated with the dynamic
glass transition. Situations that occur in real systems are more
complex and require including a distribution of relaxation
times and considering how this distribution varies with
temperature.

Much of the experimental and theoretical work has been
focused on the structural relaxation (‘aging’) of a material
held at temperatures T, < T, [56-60], where T, is located
within the glass transition range. This holding is followed by
further cooling to a preassigned temperature beyond the glass
transition range. For a number of polymers, such as
polystyrene, polymethacrylate (PMA), and polymethyl
methacrylate (PMMA), measured data are available for
both short-time relaxation (from 0.01 s) and annealing for
one year and longer [58, 61-65]. The results are presented in
the form of the time dependence of the enthalpy regained by
the system during its annealing (as opposed to that for a
sample cooled without annealing).
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Figure 3. DSC observations of two-stage relaxation in polystyrene [65].
AH(1) is the restored enthalpy at instant of time 7, and AH,o(?) is the total
enthalpy which the system can restore. Annealing temperatures are shown.

Over the last decade, a discussion in the literature has been
aroused as to whether a system, if given enough time, reaches
a state with an enthalpy extrapolated from the data for the
liquid, i.e., extrapolated to the equilibrium value, or whether,
as some theorists have hypothesized, a new metastable limit
exists for 7' < T, [66]. One fundamentally important recent
finding in this area— specifically, in the study of structural
relaxation in polystyrene and polycarbonate—is an observa-
tion of two-stage relaxation mechanism [63, 65]. From the
experimental data shown in Fig. 3, it is seen that the initial
relaxation at sufficiently low temperatures 7, is followed by a
time plateau, which can be of various durations and which is,
in turn, followed by a renewed structural relaxation ulti-
mately bringing the system to equilibrium. These results
continue to be discussed, and new experimental data are
expected to come very soon.

From the perspective of investigating the behavior of the
properties of various systems in the glassy state, it is also of
interest to study variations in these properties and the glass
transition kinetics under conditions of confining system’s
dimensions [10, 67]. Such studies are primarily concerned
with the glass transition in pores or film-shaped materials [34,
68—71]. There is considerable recent interest in polymer thin
films due to the fact that their thickness can be varied virtually
continuously from a few micrometers to a few nanometers
[68]. One aspect of this interest is the current miniaturization
trend in industry (in particular, in microelectronics).

There is a variety of techniques for determining the glass
transition temperature of a film, including ellipsometry,
dilatometry, X-ray diffractometry, dielectric spectroscopy,
and DSC. For substrate-supported polymer thin films, it has
been shown by various moethods that, as the film thickness is
decreased to below 300 A, the glass transition temperature
decreases to within 25 K of the initial, ‘bulk’ value T, [72]. A
similar effect has been observed in thin films of other
polymers [73, 74]. Studies of PMMA revealed the influence
of the substrate type (and, hence, of the polymer—substrate
interaction) on the dependence of T, on the film thickness d
[75, 76]. It is found that the effect depends on the chain length
(molar mass) of the polymer: linearly for heavy and non-
linearly for light polymers (in the latter case, the dependence is
identical to that for a substrate-supported film [77]).
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Over the last decade, it has become clear from simulta-
neous measurements of the molecular dynamics and glass
transition temperature of thin polymer films that the reduc-
tion in 7, with decreasing d has no direct relation to the
change in the relaxation time of the polymer [71, 78-80]. It is
conjectured that just the geometry on the nanoscale (for
example, the film thickness) markedly influences the relaxa-
tion time of the sample studied (which affects the obtained
values of Tg), whereas the relaxation time determined by
molecular dynamics again corresponds to the bulk values [69].

The standard properties and kinetic parameters of glass-
forming materials are currently measured routinely both for
polymers and other materials. As a result, the totality of
accumulated data is so vast that already years ago many
electronic databases, some structured by system types and
some by property types, were developed [8§1-83]. Mention
should also be made of a number of excellent reviews
concerned with the glass transition [23, 84-95], in which the
observed behavior patterns and theoretical approaches are
discussed.

Overall, the experimental observations described in this
section adequately reflect the nature of the kinetics of the
glass transition considered as a kinetic phenomenon, which
makes it possible to proceed to discussing the theoretical
foundations of the process.

3. Theoretical methods

The phenomenological description of the kinetics of the glass
transition has a history of over 80 years [1-4, 96]. A simplified
view of the glass transition as a transition from an equilibrium
liquid to a ‘frozen-in’ state of glass proceeding at a discrete
value of temperature T, was proposed by Simon [97, 98]. In
such a treatment, it is conjectured that for 7> T, the system
can achieve equilibrium at a rate greatly exceeding the rate of
changing the external parameters, whereas for 7' < T, the
system finds itself in a frozen-in nonequilibrium glassy state
and, according to experimental observations, is unable to
reach the equilibrium state. There exists, however, conclusive
experimental evidence that glass transitions actually occur in
a certain temperature range 7, <7, < Tg+. These experi-
mental data are consistent with Tammann’s [24] description
of the glass transition expressed nearly at the same time as
Simon developed his ideas. As shown below, the width of the
glass transition region increases with increasing the rate of
changing temperature. Sections 3.1-3.9 present and discuss
the basic features of currently employed methods of descrip-
tion of the glass transition kinetics.

3.1 Fictive temperature concept

The concept of structural (or, alternatively, fictive) tempera-
ture Tr was introduced by Tool as an additional characteriza-
tion parameter for the purpose of describing the supercooled
liquid—glass transition of a system [99-101]. It is, by
definition, the temperature at which “a given system will be
in the equilibrium state if heated at a sufficient rate’ [100].
Thus, it is assumed that in this state the system has the same
structure as the glass under study, but at a temperature T¢itis
in equilibrium. The rate of the system relaxation to equili-
brium in this case is determined by the difference between the
system’s current temperature 7 and its fictive temperature TF,
and also by the kinetic factor which is inversely proportional
to viscosity. In Ref. [100], a qualitative (but not quantitative)
correspondence is reported to exist between the experimental

and model curves for the evolution of some properties of the
system, utilizing these concepts.

The concept of fictive temperature is still actively used
even today in the analysis of experimental data in some model
frameworks. Thus, from DSC data it is possible to determine
the limiting fictive temperature 7| (corresponding to the
‘frozen-in’ value of T}) as an integral characteristic of the C,
curve [102]:

T/
(C, - ChdT, (6)

T+

N
|- egyar=|

T*

where 7* is a certain temperature beyond the glass transition
region at which the heat capacity is equal to its equilibrium
value C]iiq(T); T’ is a temperature well below the glass
transition region, 7' < Ty, and Cpgl(T) is the extrapolated
linear dependence of the glassy state heat capacity. Currently,
this definition of 7{ tends to be viewed as referring to the glass
transition temperature 7, as measured by DSC [88, 103].
According to models that rely on the relaxation of enthalpy,
the evolution of the fictive temperature is directly related to
the heat capacity by

dT;
red _ OLf
Cp - dT’ (7)

where CprEd is the reduced isobaric heat capacity given by

Cy(T) = CJ(T)

red _
G — oy

(8)

It is seen that, with this definition, the heat capacity equals
unity for T'> Ty, and zero for T' < T,. It should be noted that
totally different definitions of the structure parameters are
possible (see, for example, the earlier work [104] or discussion
in Ref. [105], and criticism of the Tt approach in Ref. [106]),
but the fictive temperature concept has proved to be a suitable
framework for the quantitative description of the glass
transition. While the simplified model initially advanced by
Tool is no longer utilized to describe experimental data, some
of the more sophisticated models still in use and considered in
Sections 3.2-3.9 employ it as their basis.

3.2 Vol’kenshtein—Ptitsyn relaxation theory

The theory of the glass transition developed by Vol’kenshtein
and Ptitsyn [107, 108] based on the analysis of transitions in
the framework of a two-state model provides a means to
qualitatively describe both the kinetics of the glass transition
process and the general dependence of its features on the
heating and cooling rates of the system.

This theory considers the transitions of the kinetic
elements of the system between states 1 and 2 with
probabilities of wj; and wy;; the molar fractions of these
elements in these states satisfy the equality v; + v, = 1. Then,
for v, we have the following equation

dv 1 e
o= e, 9)

where v5? is the equilibrium value of v, for which dv, /dz = 0,
and 7 is the relaxation time of the system. Both these values
are determined by the transition probabilities which, in turn,
depend on the temperature and pressure of the system:

1 12
T=— l=s—.
w12 + Wy

(10)

- )
w12 + Wy
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In their examination of the general form of the solution to
equation (9) for heating and cooling processes occurring at a
constant pressure and for 7-dependence of v, assumed to be
weaker compared to the relaxation time, the authors of
Ref. [100] conducted a detailed analysis of how the quantities
linear in v, and the derivatives dv,/d¢ corresponding to the
heat capacity vary with temperature. The variations obtained
are in qualitative agreement with experimental data in terms
of the heat capacity peak and v, hysteresis for various
heating-to-cooling rate ratios.

Vol’kenshtein and Ptitsyn also arrived at an estimate for
the dependence of the glass transition (softening) temperature
on the cooling (heating) rate [107]:

de ~ L ) (11)
dr T, q(Ty)

Expression (11) provided a correct description (at least
qualitatively) of the then available experimental data on the
glass transitions in liquids and polymers (see, for example,
Refs [20, 21, 109]). Meanwhile, such a model, with t
considered as a function of temperature (pressure) alone,
fails to account for some fundamental properties of the glass
transition process, one example being the memory effect.
Despite their simplicity, the key aspects of Vol’kenshtein’s
and Ptitsyn’s theory are used, variously modified, even in its
simplest version in current approaches to the description of
glass transition. A few years later, Cooper’s and Gupta’s
numerical calculations [110] independently led them to a
formulation of a criterion analogous to Eqn (11). As shown
in Refs [14, 19], expression (11) can be derived as a direct
consequence of general criterion (1) by taking the derivative
with respect to temperature. If, in addition, 7 is considered a
function not only of pressure and temperature but also of the
corresponding structural order parameters of the system [14,
19], then the memory effect may also be introduced into the
model. Note, however, that in our opinion it is expression (1)
which is the primary glass transition criterion, and expres-
sions like (11) are merely some of its particular consequences.

3.3 Free-volume models
Underlying the phenomenological free-volume models are
the basic hypotheses advanced in Refs [111-114] (see Ref. [3]
for the details and description of the early work in this area).
The models assume, as is natural, that a certain additional
space, a ‘free’ volume, is always required for the molecular
structure to be rearranged. Because the volume occupied by a
fluid decreases with cooling, the volume accessible to the
molecules decreases, reducing the occurrence probability of
the rearrangement necessary for the transition to an equili-
brium structure.

Denoting the free volume per molecule by vg, the model
predicts that the relaxation time can be described via [112]

()
T=T10exXp| — |,
v

where the constant C is material-specific.

The key question in this case is how to define what the free
volume accessible to a single molecule in the fluid is. The
definitions vary depending on the approaches used. Initially
[111], the free volume was defined as the difference between
the current volume and the volume the system will occupy
after a hypothetical extrapolation to zero temperature; hence,

(12)

v — 0 as T — 0. In another definition, vy is that part of the
volume of the fluid which can be rearranged without energy
loss. According to Refs[112, 115], vy — Oisrealized already at
a finite temperature, and the relaxation time is given by an
expression similar to Eqn (4).

Treating viscosity as simultaneously dependent on the free
volume and (directly) on the temperature is discussed in
Refs [61, 116-118]. For example, Ref. [116] modifies the
initial expression (12) to take into account the activation
nature of particle hopping from accessible pockets:

ex A +C ex A + B (13)
T=r1 — 4+ — ) =1 —
VXA RT T OXP\RTTT—T. )

where R is the molar gas constant, while 4 and B are material
parameters.

Currently, the free-volume model is rarely applied for
modeling purposes because it is now a well-established fact
that the relaxation time is not a function of the fluid density
alone. Of present-day relevance, though, is the application of
its elements to describe the existing data on the structural
relaxation of polymers. Thus, Ref. [119] considers modifica-
tions of the Adam—Gibbs theory, which are based on the free
volume approach, and suggests two expressions for the
relaxation time t, which are used in describing experimental
DSC data on polystyrene: the glass transition upon cooling at
a rate of 0.1-100 K s~!, and structural relaxation upon
holding at 363 K for no longer than 20 h. Compared to the
VFT expression, a more accurate fit to the experimental data
is achieved.

3.4 Tool-Narayanaswamy—Moynihan method
The Tool-Narayanaswamy—Moynihan (TNM) method
based on Tool’s concept of fictive temperature and Naraya-
naswamy’s seminal 1971 paper [120] is widely applied even
today to analyzing experimental data. Following the publica-
tion of Narayanaswamy’s paper, Moynihan and colleagues
proposed algorithms for calculating the properties of glass
under the conditions of isothermal relaxation and tempera-
ture being varied at a fixed rate [121, 122] (hence, TNM).

In Ref. [120], the response function of the property p to an
instantaneous isobaric temperature change is expressed in the
form

P — P2, :Tfp_T2
P20 = P20 Tn—T

M,(1,AT) = , (14)

where the subscripts 0 and oo denote, respectively, the
instantaneous and infinite-time values of p; the response
function is unity at initial time and zero at infinite time. The
nonlinearity of relaxation is reflected in the dependence of M,
on AT. The quantity Ty, in Eqn (14) is the so-called fictive
temperature corresponding to the property p (i.e., different
fictive temperatures can be introduced for various proper-
ties). The equilibrium response function is defined by the limit
of AT — 0, subject to the departure from equilibrium.

In Ref. [123], Narayanaswamy makes the following three
assumptions in his mathematical glass transition kinetics
model which necessarily accounts for nonlinearity, nonexpo-
nentiality, and memory effects featuring a given process.
First, structural relaxation is considered as a single, non-
exponential, constant-activation-energy mechanism. Second,
the form of the equilibrium response function does not
depend on the current value of the system’s temperature or
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on its fictive temperature (an assumption extending the
principle of thermorheological simplicity). And third, the
driving force and response are related linearly, leaving the
dependence of the relaxation time (or viscosity, according to
Narayanaswamy) on the structural parameter of the system
as the only source of the nonlinearity of the glass transition.

From these three assumptions, one can deduce a linear
response function to a finite temperature (7°) or structure
temperature change. This can be achieved by introducing a
reduced time scale ¢&:

z:j o(T, Tyy) dt’, (15)
0

where the function ¢ describes the time shift of relaxation (or
viscosity) according to the empirical formula

n Hy (1 1\ H (1 1
§ TTe)=In —="8|_—_—— _ 16
no(T. Tip) Ys T R <TB 7) "R\ T) (16)

where Tp is a certain reference temperature for the definition
of viscosity g, while H, and H; are constants equivalent to
the activation energies of instantaneous and structural
changes, respectively. Using Eqns (15) and (16) and applying
the superposition principle (as allowed by the linearity of the
response function), the time evolution of the property p being
considered is given by

p(1) = p(0)

= p(O)aalT ~ T0) = PO | (- &) 37

d¢’, (17)
where oy, is the change rate of the property p, o, ~ (dp/dT),,
and o). is the contribution to «, owing to the structural
relaxation of the system.

In equation (17), the change in p is presented as the
difference between its value after complete relaxation and
that part of the relaxation which is not achieved over the
time passed. The author of Ref. [120] took M, to be the sum
of two or more empirically parameterized exponentials to
describe the relaxation of the refractive index in some
glasses. The evolution of the heat capacity of the material
at the glass transition is described by taking the parameter p
to be the enthalpy of the system and usually by assuming
that its relaxation time is given by an expression identical to
that for the temperature dependence of the viscosity.
Currently, the relaxation time is usually written in the
modified form [121]

Ah* Ah*

X+

(T, Tt) = exp 1nr0+RT RT,

1-», 8

where the parameter x is responsible for the nonlinearity of
the glass transition, and A/Z* is the material parameter
corresponding to the activation enthalpy of the relaxation
process.

Narayanaswamy’s model [120] was used both by its
author [123-127] and by other workers [121, 122]. Moyni-
han in Refs [122, 128] suggested using Kohlrausch’s law as a
response function and presented formulas for numerically
calculating the evolution of the fictive temperature, irre-
spective of the temperature history of the system, 7(¢). For
this purpose, the function 77(¢) is represented as a succession
of sufficiently small temperature jumps AT;, which are

followed by a pause of duration Af;. Then, the fictive
temperature at each calculation step is determined by the
following formula:

n n At p
T, =Ty + AT; {1 —ex {f( J > ] , 19
f, 0 ; { p Z o ( )

J=i

where TINM, j = TTNM(TI'7 Tf"j).

A series of TNM studies by Hodge and colleagues [57, 58,
129] reported results on the application of the model to DSC
experiments on (primarily) polymers, with the thermal history
presented either as the aging (quenching) of the sample at a
fixed temperature for different time intervals or as uniform
cooling at various rates. This work clearly demonstrated the
weakness of the model in that a single set of parameters fails
to provide a sufficient fit to a set of experimental heat capacity
curves. Also, a detailed study of correlations between the
model parameters (in particular, x and f) was made, and it
was shown, among other things, that in choosing a minimiza-
tion procedure with respect to a set of parameters, the
interrelations between some of the parameters (for example,
Ah and x) should be taken into account. Reference [58] also
shows correlations between all parameters of the model for
five different polymers and two inorganic glasses, which is
interpreted as supporting the cooperative nature of the glass
transition.

The TNM method described in Ref. [128] can be regarded
as a modern formulation of the approach being discussed.
The relaxation time 7 in expression (19) may be in any form
best suitable for the system under study. The proposed
method was tested on systems with different sets of proper-
ties and for various materials [102, 120, 129] immediately
following its proposal.

The TNM method was also applied to model the dynamic
glass transition in various systems. References [130-133]
considered temperature-modulated calorimetry model experi-
ments on glycerin, polystyrene, polyvinyl acetate, and some
mixed systems using the temperature history of the form
T(t) = Ty + Acos (wt) (in early TMC work) or T(t) =
To — qt + Asin (wt) (present day TMDSC), respectively, for
temperature oscillations around a fixed value T} or for linear
heating accompanied by temperature oscillations. At suffi-
ciently high temperatures 7, the fictive temperature Tt has the
same profile, but as the average temperature of the system is
lowered, the oscillations show a delay in phase and become
smaller in amplitude. As a result, the system ceases to respond
to ambient temperature oscillations. Characteristically, at
sufficiently high frequencies w this occurs at temperatures
Ty exceeding the glass transition temperature for a given
cooling rate. The TNM simulation of these phenomena yields
a sufficiently accurate description of some experimental
results [130, 131] and makes it possible to consider the
analytical frequency dependences of the oscillation ampli-
tude and the deviations in the oscillation phase of polymer
characterization parameters [132].

TNM method remains even today one of the most widely
used tools for processing experimental data. It should be
noted that a similar glass property calculation method was
simultaneously developed at the I V Grebenshchikov Insti-
tute of Silicate Chemistry of the Russian Academy of Sciences
[85, 134, 135]. The reader is referred to the excellent book by
O V Mazurin [2] for obtaining further insight into the features
of this method and for descriptions of Narayanaswamy’s
method and the similar Kovacs method [117, 136].



50 T V Tropin, J W P Schmelzer, V L Aksenov

Physics— Uspekhi 59 (1)

3.5 Kovacs method

The method developed in Refs [136, 137] by Kovacs, Aklonis,
Hutchinson, and Ramos and known by the abbreviation
KAHR can be regarded as an alternative to TNM. Unlike
Narayanaswamy’s theory, which considers relaxation of only
one structural parameter, the fictive temperature Ty, the
KAHR model is multiparameteric. As its authors argue, this
approach is most adequate for describing the glass transition-
related memory effect. It should be noted that the four
authors also considered simple single-structural-parameter
models [117] before they came up with the KAHR model.

There are three basic principles which lie at the heart of the
theoretical KAHR method. First, the thermodynamic
description of the state of a system is based on the use of
order parameters, so different relaxation mechanisms are
considered, which operate to bring the system to equilibrium
and which are described by a distribution of relaxation times
7;. This spectrum is assumed to be invariant, meaning that
temperature and structural changes do nothing more than
shift it along the logarithmic time scale without changing its
shape (i.e., similarly to the TNM method, a thermorheologi-
cally simple system is considered) [136]. Second, 7; is allowed
to depend both on the temperature and on the instantaneous
state (structure) of the glass, yielding the response nonlinear
and asymmetric with respect to the degree and sign of
departure from equilibrium. And third, the response func-
tion is linearized by modifying the time scale in a certain way,
i.e., by introducing a new system’s time scale determined by
the intensity of spontaneous fluctuations in the correspond-
ing equilibrium state.

Thus, the state of a system is determined by a set of
parameters (7T, P,{;), 1 <i< N (here, P is pressure), with
{ = {,(T, P) in the equilibrium state. The system’s extensive
property v (volume, enthalpy) has a total differential of the
form

dv dv
dv=— dT+—| dP
! dT P,Chm,lj_ dap 7,0, LN
dv dv
+— diy +—1| dlw. (20)
dél T,P, (5, iy dCN T, P, (el

In a similar way, we consider the differential for a given
property of the system in equilibrium, v, subtract the
expressions, and introduce a relative departure from equili-
brium 0 = (v — v )/Vs0. The quantity 0 can, as conjectured in
Ref. [136], be decomposed into separate contributions
corresponding to the structural parameters of the system:

N N .
doi=6, ) déi=ds, (@> :(@) .
i=1 i=1 e T,{ ac; T,

As a result, the initial equation breaks down after some
additional transforms into a system of N Kkinetic equations
for separate departures ;. For example, the enthalpy of the
system can be written as
do 0;

A & 5
dz Cp‘]([)"_fl_v

_H- A (1)
Hy

where AC, is the heat capacity difference between the glass
and the fluid, ¢(¢) is the time dependence of the heating/
cooling rate of the system, H and H,, are, respectively, the
system’s current and equilibrium enthalpies, and 7; is the

relaxation time spectrum of the system. In Ref. [136],
analogous to the TNM method, the response to a jumpwise
or linear or arbitrary change in temperature was studied, and
the realization of the memory effect in the framework of the
method was demonstrated. The behavior of the model C,(T')
curves as functions of experimental parameters and the
nonlinearity parameter was given a detailed analysis in
Ref. [138].

The initial formulation of the KAHR method [136]
assumed that each parameter 1; depends not on the indivi-
dual deviations 9; (or a set {0;}) but only on the integrated
deviation ¢:

T = ’L'l'(T'7 5) . (22)

Considering the differences between uniform and non-
uniform models of the structural relaxation of glasses, the
authors of Refs [139-141] discuss, in particular, the applic-
ability of formula (22) to describing relaxation in systems at
high degrees of departure from equilibrium. It is shown that,
in the framework of assumption (22), the KAHR model is
fully equivalent to TNM in terms of the results produced and
predictions [141]. The strongly nonlinear kinetics of enthalpy
relaxation should expectedly be described by generalizing the
dependence in formula (22), i.e., by replacing there the
integrated deviation J by a set of individual deviations {0;}.
An example of applying the Kovacs method to the glass
transition in thin films is given in Ref. [142].

References [143] and [144] carried out KAHR simulations
of the dynamic glass transition for, respectively, a system with
a single relaxation time and a distribution of 7;’s; demon-
strated the efficiency of the method for describing TMDSC
data, and examined the dependence of the components of the
complex dielectric constant on the cooling/heating rate, the
amplitude and period of temperature oscillations, and on the
parameters of nonexponentiality () and nonlinearity (x).

3.6 Adam—Gibbs theory

An expression relating the relaxation time to the entropy of
the system was obtained in theoretical work by Adam, Gibbs,
and DiMarzio [145, 146]. The authors of Ref. [146] presented
a statistical theory for the amorphous state of linear
molecular chains and, based on their proposed expression
for the partition function of a model chain, obtained formulas
for the thermodynamic properties of a model polymer. It was
shown that, as the temperature is decreased to a certain value
T>, the model predicts a second-order phase transition to a
state characterized by the uniquely accessible chain config-
uration. While this state is not accessible experimentally,
other states (for 7> T,, with a larger set of accessible
configurations) correspond to glass. Under these assump-
tions, expressions for the glass transition temperature and for
its dependence on the molecular weight, composition, and
other properties of the polymer were obtained. Reference
[146] later came under criticism: it was noted that the model
concept of a chain of molecules relies on some poorly
grounded admissions [147], and that there are doubts as to
whether the glass transition, a phenomenon common both to
polymers and low-molecular fluids, can be explained in terms
of the properties of linear chains. Reference [145] subse-
quently considered extending these ideas (irrespective of
polymer structural features) and derived an expression for
the relaxation time of the system, which later made it one of
the most cited papers in the field.
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A transition to an ‘ideal’ glass state is characterized, as
implied by Ref. [146], by the vanishing of the configurational
entropy at temperature 7. It can, therefore, be assumed that
the retarded relaxation of the system in the glass transition
region is due to a decrease in the system’s configurational
entropy (i.e., in the number of accessible polymer configura-
tions) as the transition temperature is approached. The theory
is based on the idea of cooperatively rearranging regions of
the material, which implies that the system is divided into
subsystems weakly interacting with the macroscopic environ-
ment. But then it can be considered that over a sufficiently
long period of time the system behaves as an ensemble of N
independent equivalent subsystems, each consisting of z
molecules. These subsystems are divided into two classes
depending on whether cooperative rearrangement is allowed
or not. The probability of rearrangement scales as
~ exp [—zAu/(kgT)], where Ap is the energy barrier to the
rearrangement process (for a single molecule). Clearly, the
parameter z equals unity at sufficiently high temperatures,
and should approach the entire size of the system as the
transition temperature 75 is approached. The relaxation time
7 of the system is inversely proportional to the mean
probability of the subsystem rearrangement:

AuS;
T = Tg eXp raTs. )

where S is the configurational entropy of the smallest
rearrangible ensemble of particles, and the configurational
entropy of the system, Sc, can be estimated experimentally
as

(23)

TAG(T)

Se(T) :JTZT dT, (24)

where AC,(T) = Clﬁiq(T) — C;%‘(T). The shape of the tem-
perature dependence of AC, determines the expression for the
relaxation time; it can be shown, for example, that the
hyperbolic behavior of AC,(T') results in formula (3).
Scherer [148] proposed including the nonlinearity of the
glass transition in the sense that the configurational entropy
should be dependent on the structure of the system as
determined by the fictive temperature at the current instant
of time ¢ (rather than by T'):
TAC,(T)

———=dT.

Su(T1) = Lz ! (25)

Expressions that follow from the Adam-Gibbs (AG)
model can be applied in the TNM framework, i.e., the
evolution of the fictive temperature can be traced by
substituting various expressions for 7 into formula (19).
Some authors [148] note that the theoretically grounded AG
expression for 7 is advantageous over Narayanaswamy’s
phenomenological expression. Example applications of the
method to enthalpy relaxation in polymers are given in Refs
[148-152]. Expressions (23) and (24) can also be used with the
Kovacs method [117]. Also of note is the fact that the AG
model serves as the basis for a number of modern theories, as
exemplified by the often-used hypothesis of cooperatively
rearranging regions [152—155].

Some alternative to the AG theory consists in developing
approaches that use the configurational enthalpy as the
structural parameter of the system. By now, a number of

phenomenologically augmented models have been proposed
based on these approaches, which are outlined in Section 3.7.

3.7 Configurational entropy approach to glass transition
3.7.1 General remarks. The question of whether or not
Planck’s formulation of the third law of thermodynamics
holds for glass was one of the most discussed topics in the
science of the glass transition in the 1920s—1930s (as reviewed,
for example, in the books [1, 3, 4]). This discussion and the
theoretical analysis of the subsequent experimental work led
to the main conclusion that at the glass transition the
configurational entropy of the system becomes ‘frozen-in’ at
a certain level and then remains unchanged as the tempera-
ture of the body tends to absolute zero. The value of Ty —
and, hence, the configurational entropy which remained as it
was at this T, —depends on the cooling rate.

Once again under active discussion in recent decades,
these well-established results have been, to some extent,
thrown into doubt, which renewed intensive discussions on
the subject, as exemplified by the International Workshop on
Glass and Entropy, Trencin, Slovak Republic (for the
proceedings, see the Journal of Non-Crystalline Solids, 355
(2008)). No full consensus exists on the traditional view about
the existence of finite entropy at low temperatures. The
alternative arguments that attempt to justify a vanishing
configurational entropy at the glass transition involve the
concept of the continuous violation of the system’ ergodicity.
As is known, however, the ergodic theory does not supply us
with a foundation of the basic assumptions of statistical
physics even for equilibrium systems, so its applicability to
nonequilibrium systems is even more doubtful. Besides, as is
shown in this review (see, for example, the model described in
Section 3.8) and elsewhere, the validity of the thermodynamic
approach when combined with appropriate statistical models
is supported by abundant experimental evidence for the
nonzero value of the configurational entropy of glass.

3.7.2 Model involving the limiting configurational entropy Scli“‘.
The glass transition process and the thermodynamic proper-
ties of glass require constructing the model of a glass-forming
melt for their theoretical description. A simple example of
such a model is considered in Refs [1, 3, 4], which also review
more complex approaches to constructing such models. In
current section, such models are presented and discussed.

The glass transition model developed in Refs [59, 66, 156—
161] hypothesizes the existence of a limiting ‘plateau’ in the
relaxation of the system for 7' < T, an assumption based on
the DSC studies of relaxation in various materials at fixed
temperatures [162, 163]. The existence of the plateau and the
possible two-stage relaxation have been the topics of active
discussion over the past twenty years [63—65]. In the AG
theory, it is assumed that a certain intermediate metastable
state exists in which the system has only a small number of
accessible configurations and from which the system cannot
move to a lower-energy state within the observationally
accessible time scale. The evolution of the configurational
entropy in this case is given by

Se(r) = SI™(T(1)) = > (SE™(Ty) = SE™(Tia)) M(E = &),
= (26)
where M is the Kohlrausch response function, ¢ is the reduced

time, the relaxation time is given by the Adam-Gibbs formula
(23), and S!m(T) is the maximum accessible value of the
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Figure 4. (a) Schematic of the temperature dependence of the configura-
tional entropy for the liquid state (dashed line), experimental depen-
dence for cooling (solid line), and the hypothetic dependence of the
limiting state (dashed—dotted line). (b) Plot of heat capacity C,(T') in a
similar notation [59].

configurational entropy. To make a comparison with experi-
mental data, it is necessary to find the temperature depen-
dence of the measured heat capacity, for which purpose the
assumption of the equivalent entropy and enthalpy relaxa-
tions is imposed on the system. An expression for the
evolution of the configurational enthalpy is obtained, from
which it is an easy matter to derive an expression for C,,.

In the above-described model, an additional phenomen-
ological parameter J, the deviation of the metastable state
from the extrapolated equilibrium state, necessarily arises
(Fig. 4). More specifically, § determines the deviation of the
heat capacity from its equilibrium value C, (for a supercooled
liquid). Further still, the proposal was also made in paper
[164] that the temperature Tyq at which the metastable state
departs from equilibrium be considered as an empirical
parameter. While calculations using this model give
improved agreement with experimental data, no full agree-
ment has yet been achieved for the entire range of ¢.

3.7.3 Hypothesis of the nonlinear configurational entropy. An
alternative approach, which also relies on the configurational
entropy, was developed in Ref. [165], which discusses a
method (proposed in Ref. [148]) of introducing nonlinearity
into the AG model and proposes an alternative version which
takes into account the fact that the configurational entropy is
partially frozen-in when a certain fictive temperature is
reached. The expression for the total configurational entropy

then takes the form

Se(T, T{) = x,Se(T) + (1 — x4) Se(T7) . (27)
The authors of Ref. [165] argue that, unlike the TNM-model
parameter x, which is often thermal-history-dependent, their
proposed parameter x; stands for a material property. The
relations between x, x,, Tt, and T, have been obtained. An
efficiency comparison [166] of this and the previous model
suggests the far-reaching generality of the approach using the
method of the limiting configurational entropy.

3.8 Glass transition in terms

of nonequilibrium thermodynamics

Instead of employing the methods outlined in Section 3.7 to
describe the kinetics of glass transition, an alternative
approach based on nonequilibrium thermodynamics can be
applied (De Donder, van Rysselberghe [167], Prigogine and
Defay [168]), which, apart from using state characterization
parameters for a system in classical equilibrium thermody-
namics, also introduces additional structural (or internal)
order parameters for describing nonequilibrium states of the
system. Glass transition treatments within this framework [1—
3, 168-171] have been developed based on the ideas
formulated by Bragg and Williams [172] in 1934 and by
Mandelstam and Leontovich [173]. Our exposition in this
review follows the thermodynamics views of Prigogine and
Defay, as presented in Refs [168, 169, 174, 175].

By combining the generality of thermodynamics with the
ability to use statistical physics models in determining the fine
details of the processes and systems studied, the approach we
present below provides, in our view, the most suitable tool for
general description glass transition Kkinetics in various
materials. The methods under discussion possess the prop-
erty of flexibility, often absent or not obvious in phenomen-
ological methods, and avoid problems currently encountered
in the microscopic description of glass.

Describing glass transition (or, conversely, glass softening)
along the lines of de Donder’s approach requires introducing
at least one additional internal parameter ¢ intended to
describe the transition of the system to a nonequilibrium
state. Generally, ¢ is different from the structural parameter
&eq in the equilibrium state. The dependence of &, on the
thermodynamic parameters of the system is determined by
considering the assumed model of the system. For example,
following Refs[148, 169, 175, 176], one arrives at the simplified
expression for &qq in the form

g()(TfT())7 T =T> T()7

éeq: (28)
0, To=T>0,

where Ty, is the melting temperature. This model was
developed within the framework of the hole theory of liquids
[114], and the structural order parameter & here corresponds
to the number of holes per mole of liquid. A more accurate
and more practical expression for ¢ follows by considering
an additional model expression for the thermodynamic
potential and entropy [174], and leads to a temperature
dependence of ¢4 in the form of a transcendent equation
given by

1 - éeq _
Inéeq

with y being a material parameter.

1 T

A Tw’

(29)
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As the glass transition proceeds, the parameter & is
‘frozen-in’ at values that correspond to Ty, and which then
remain unchanged as the temperature is further decreased.
The glass softens as it is heated, and the parameter & should
resume its initial value &oq(p, T).

By analogy with introducing the TNM model assumption
of the response being linear in the force, the thermodynamics
ofirreversible processes consider a linear differential equation
for the derivative d£/d¢. The range of variability for ¢ in some
cases is conveniently written as 0 < ¢ < 1, where zero
corresponds to the ordered state (crystal), and unity to a
fully disordered state. The bottom line is the typical general-
form equation for &:

dé 1

Ezf‘f(p’T’é)(ﬁ*éeq)v

(30)
where the system’s relaxation time (p, T, ¢) depends (due to
the nonlinear nature of the glass transition) not only on the
pressure and temperature but also on & [175]. Equation (30) is
equivalent to equation (9) in Vol’kenshtein—Ptitsyn’s theory
but differs from it in including the dependence of 7 on &. The
applicability of such equations to the phenomenological
description of relaxation process was demonstrated in the
most general way by Mandelstam and Leontovich [173].

Having at one’s disposal an appropriate expression for
1(p, T, &), the evolution of all the thermodynamic functions of
the system undergoing the glass transition can be investigated
by solving equation (30). For example, the configurational
heat capacity is defined by the expression

_dam(To) de

AC,(T) ac a7’

(1)

where the first factor can be considered a constant or can be
calculated by using other approximations in combinations
with the assumed model of the system. In order to describe
cooling or heating of the system, the independent variable in
equation (30) is changed from time ¢ to temperature using the
heating/cooling rate expression ¢ = d7/d¢. Then, the solu-
tion of equation (30) yields the temperature dependence of the
structural order parameter in the form given in Fig. 1b.
Knowing this dependence allows all required thermody-
namic quantities to be calculated using appropriately chosen
models. For example, by choosing an adequate model for the
dependence of the configurational entropy on the structural
parameter, a dependence similar to that shown in Fig. 5a can
be obtained [17] for the ‘frozen-in’ configurational entropy
(which remains unchanged as the system is cooled to T — 0).
Evidently, this simple model is consistent with the conclusion
derived from a huge amount of experimental data showing
that the configurational entropy is frozen-in at T, and that its
value for T < Ty is thus determined by the cooling rate.

Shown in Fig. 5b, ¢ are the dependence of the configura-
tional entropy S. on the structural parameter ¢ and the
temperature dependence of the equilibrium value S$9, both
calculated within the hole model of the glass-forming liquid.
It is seen that for the appropriately chosen model of the
system, no Kauzmann paradox [84] arises and that the
configurational entropy of the metastable system tends to
zero only when 7' — 0. In terms of this model, the paradox
will occur only if an approximation inadequate for tempera-
tures 7' < T is chosen, such as the linear approximation
adopted in Eqn (28) (see also Ref. [2]).
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Figure 5. (a) Cooling rate dependence of the ‘frozen-in’ configurational
entropy of a model system. The dependences of the configurational part of
the entropy on the structural parameter ¢ (b) and on the reduced
temperature (c) calculated from the model expressions for S and & [17].

Another interesting results consist in the estimate of the
entropy produced in the system during its irreversible
relaxation. The entropy production over the glass transition
region is nonzero, similar to the case with the imaginary part
of the response function at the dynamic glass transition (see
Eqn (5) and Fig. 2). The results shown in Fig. 6 [17, 174] are
obtained using the equation

dS  GY

dT ~ ¢qTt

’G
(E—¢y)’y GP=— :
cq q 652 i:éeq

(32)
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Figure 6. Entropy production in a system undergoing the glass transition
and softening. 0 = T/T,, is the reduced temperature. Lines / and 2 are
for cooling and heating of the system, respectively [17].

where G is the Gibbs energy of the system. The square of the
difference & — £ in Eqn (32) ensures that the entropy of the
system increases irrespective of how the irreversible process
proceeds. The plot in Fig. 6 of the temperature dependence of
the entropy production d;S in the course of the heating and
cooling processes clearly shows the width of the glass
transition region in thermodynamic terms. Thus, it is shown
in Ref. [177] that this width is determined by the amount of
entropy produced at temperature 7, during cooling. See
below for more on this.

The results presented above rely on the VFT relaxation
time expression (4). Fitting the simulation results to the
experimental data may require various modifications of the
expression for 7 in equation (30). In particular, it was shown
in paper [175] that an equation of the form

dé _ é - éeq l: b2

= exp

di Teq(T)

(33)

is equivalent to the TNM model with the function of form (16)
proposed by Narayanaswamy. A nonexponential form for
the relaxation of the system in the Kohlrausch form is
obtained by simply writing equation (30) as follows:

% — _Teq(p;T) go(l)(é - geq):

(34)
where (1) = A;/t17F, with 4j being a constant [175].

The approach we have presented can be extended to cases
where several structural parameters are needed to describe the
state of a glass-forming system. The evolution of the system
can then be described (in the linear approximation) by the
system of kinetic equations in the form

%_ S 1

TRy )

which, by introducing the effective relaxation time of the jth
structural parameter ¢;, can be written out as

d¢; 1

B N
dr a T_,'Cff(pv T>{iz}) (él éj )’

(35)

(36)

where
eq

1 I ST+
T_jeff<pa T> {61}) B Z Tij(p7 T) é] - é;q '

(37)

i=1

The new parameter t7"(p, T, {¢;}) should then be substituted
into the corresponding expressions, for example, the one for
determining the glass transition temperature [14].
Experimentally, the glass transition process can be
measured and investigated by a jumpwise change in the
thermodynamic coefficients of the system, such as the heat
capacity, heat expansion coefficient, and compressibility at
T,. By combining them, the well-known Prigogine-Defay
ratio (an analog of the Ehrenfest relations) at the glass
transition can be obtained in the following form [1, 3, 4]
1 ACPAKT

) = 57 e | (3%)

where AC, is the difference between the isobaric heat
capacities of the glass-forming liquid and that of glass, while
Axr and A, are the respective differences in the isothermal
compressibilities and thermal expansion coefficients. For
measurements on glasses, typically, IT > 1, which differs
from the Ehrenfest relations for second-order phase transi-
tions in which the analogous parameter equals unity. The
problems of how, in principle, to derive this parameter from
Eqn (38) and how to obtain its values for different models are
the subject of much theoretical discussion [104, 174, 178, 179].
A simplistic view of the glass transition (Simon’s model)
suggests that the Prigogine—Defay ratio is always unity,
provided the description of the transition utilizes only one
structural order parameter and the glass transition itself is
considered to be instantaneous at 7= T,. However, as
shown, for example, in Refs [4, 179], if one takes into
consideration that the glass transition occurs over a range of
temperatures, then the expression for ratio (38) can differ
from unity even if the system is modelled by a single structural
parameter . An exact expression for IT was derived in paper
[18], which can be well-approximated by a relation first
formulated in Ref. [174] and having the form

hy T
I(T,) ~—2"
( é) A_’_hp‘T T:Tg’

(39)
where A is the affinity corresponding to the parameter &, and
hy, 7 is the corresponding derivative of the enthalpy,
hy, v = (0H/¢), 7. The value of 4 in Eqn (39) should be
calculated for cooling conditions, resulting in 4 < 0 and
IT > 1. Values of I > 1 can also be obtained by directly
considering the thermodynamic properties of equilibrium
liquid and glass. See paper [14] for various approaches to
this problem. What makes these results fundamentally
important is that a single structural parameter is sufficient
for describing glass-forming liquids. This does not mean, of
course, that this is always so, but it can be concluded that
single-parameter models are quite acceptable for describing
glass-forming systems.

3.9 Some current microscopic approaches

to glass transition description

The development of microscopic theoretical approaches to
describing the glass transition is highly topical and an actively
growing area in modern glass science. Describing in statistical
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physics terms the transition of a liquid into an amorphous
vitreous state is a problem of ever-increasing interest, it being
hoped that future theories will be advantageous in a number
of respects—in particular, that in many cases no empirical
parameters will be needed to make predictions. Applying the
apparatus of statistical physics allows a detailed comparison
to be made both with scattering experiments and with
computer simulations. The reverse is also possible: experi-
mental data (on the structural factor, for example) or the
results of detailed computer simulations can be used as the
basis for a subsequent, sufficiently complete simulation of
various properties of a system undergoing the glass transition.

At the same time, it should be noted that the statistical
theory of supercooled liquids and that of glass formation
process are not yet complete, which is manifested by the fact
that a correct quantitative description is not available and
phenomenological corrections should be introduced into the
models. Another point is that classifying the theories we
present below as modern is rather vague: by modern, we
mean here those which, as believed, are amenable to a great
future development. The approaches described in Sections
3.1-3.8 are worked out to their full extent and cannot be
improved other than by considering corrections or phenom-
enological expressions for some of the system’s properties.
Notice also that the ‘microscopic’ methods presented below
can only be ambiguously termed so because of the mean field
approximation they often use.

Sections 3.9.1-3.9.3 briefly summarize some basic ideas
behind current microscopic theories of the glass transition.
Detailed information can be found in specialized reviews cited
in the text, where needed. Also reviewed are a number of
studies which, among other direct results, simulate the heat
capacity curves of a system undergoing the glass transition.

3.9.1 Energy landscape model. The employment of the
system’s energy landscape as a basis for simulating the glass
transition and glass properties was pioneered by Goldstein
[180], who was the first to indicate the importance of the
energy surface topography for the dynamics of glass-forming
material at low temperatures (note that the discussion of
phase space structure during the glass transition dates back to
Kauzmann [84]). Simulation in this case evolves on the base of
qualitative—in time, hopefully, quantitative— description
of the multiparticle function ®(R), the potential energy of a
system with a configuration as specified by the full set of
position vectors {R} of its constituent particles. The behavior
of a system as, for example, it is cooled down from the melting
point resembles, in dynamics terms, the motion of a particle
over the hypersurface @. Correspondingly, this expression is
determined by the topography of the hypersurface @(R)
which, in turn, is determined by the properties of the system
(for example, by the chemical nature of its constituents).
Topography can be thought of as a set of such elements as
local and global minima and saddle points of various orders
[181, 182]. The key concept here is the so-called ‘basin’ [90,
181, 182], a region in configuration space which surrounds
one of the potential minima and brings the system to the state
corresponding to this minimum. Clearly, a global minimum
on this surface corresponds to the crystalline state; moreover,
there are a large number of minima that are ‘close’ to it and
which correspond to crystals with defects and dislocations or
to polycrystals.

In addition to the minima mentioned there are, however,
many other states— and these will be discussed below — that

correspond to a system structure with no long-range order,
i.e., a system in an amorphous state (glass). The number of
these minima increases exponentially with the number of
particles N in the system. If the liquid is supercooled, then,
as some of the minima become inaccessible, the function
Sc=kpIn N,(T') decreases (N, is the number of accessible
basins). Further, the state of the system is determined by the
statistical depth distribution of the minima, so that the
temperature of the system determines the probability of
finding the system in the basin of a given depth. In this
framework, the differences between ‘fragile’ and ‘strong’
glass-forming materials can be expressed in terms of the
differences in the topography of the surface ®(R) [90]. It can
also be shown [183] that increasing the cooling rate results in
the system being ‘locked’ in the higher-energy basin, followed
by its subsequent transition to lower-energy states, i.e.,
minima of the surface ®(R) (structural relaxation). In this
case, the dynamics of the transition are also determined by the
topography of @(R).

One approach [153, 184] to simulating the glass transition
of the system consists in modeling the landscape of the free
energy (T, V, N,{R;}). The probability of finding the system
in a certain configuration {R;} is then given by

exp [~ (T, V, N, {R3})]

P({R}) = Z(T,V,N) ’

(40)

where Z is the partition function of the system. The
expectation value of a certain physical quantity A4 is, by
definition, the integral of the product 4P over all configura-
tions {R;}. Hence, the derivative of A4 with respect to
temperature is partly determined by the topography of the
surface @. For example, Ref. [184] examines the entropy and
heat capacity of the system:

o <T as(gi})> N kBsz <AE({R,—})2> ’

where AE({R;}) = E({R;}) — (E), and FE is the energy of the
system in the configuration {R;}, and uses a simple model as
an example to demonstrate the significance of the second term
in Eqn (41) in the description of experiments. The study of the
dynamic properties of the system requires introducing an
additional probability function to take into account the initial
and final configurations of the system. The dynamics of @ for
a simple model is considered in Ref. [185], whereas another
approach is studied in Refs [186—-189]. Calculations of the
evolution of heat capacity curves were performed for model
systems in Refs [190-194]. Reference [194], in particular,
reported the dependence of the glass transition temperature
on the cooling rate. References [62, 195] calculate the
evolution of the heat capacity of polystyrene and polymethyl
methacrylate (PMMA) with a model corrected by introdu-
cing a temperature-dependent @. Reference [196] discusses
the general aspects of the temperature dependence of the
relaxation time by applying the energy landscape models to
polymers.

A series of studies [197-199] present a model allowing one
to calculate the enthalpy hypersurface for describing the glass
transition in selenium. At high temperatures, the system is
easy to move between various basins of the hypersurface H,
but upon cooling such transitions between different struc-
tures (basins) become rarer until finally the system in the
glassy state turns out to be ‘locked’ in a phase subspace. The

(41)
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probability for the system to assume a given configuration (to
occupy a given basin) is determined by an expression
analogous to formula (40). The dynamics of the enthalpy
landscape is described by a set of differential equations
(whose number is equal to the number of basins in H ), their
coefficients being determined by the thermal history and the
theory of transition states. In Refs [197-199], an exact
calculation of the function H for a system of a small number
of particles was performed using ab initio-calculated intera-
tomic potentials for selenium, providing the description of the
evolution of the molar volume, thermal expansion coefficient,
and viscosity of a system under cooling.

3.9.2 Mode-coupling theory. One of the popular theories that
have been developed in recent decades to describe the
dynamics of supercooled liquids is the mode-coupling theory
(MCT), first proposed independently in Refs [200] and [201].
At the basis of MCT lies the equation of motion for the
dynamic structure factor F(k, t) of a one-component liquid:

d’F(k,1) k2kgT
dr? mS(k)

F(k,t) + JordrM(kJ) % Flk,t—1)=0.
(42)

The exact description of the dynamics of the system requires
the specification in equation (42) of the quantities M (k, 7), the
memory kernel for particles of a given mass at a given
temperature, and S(k) = F(k,0), the static structure factor.
The fundamental assumption of MCT is the closure in the
expression for M(k,t) to the autocorrelation density func-
tions F(k, t) written in a quadratic form [201]. Thus, knowing
the specific dependence S(k) for the liquid under considera-
tion, numerical methods can be applied to solve equation
(42). An important prediction of MCT is the value of the
critical temperature 7. at which the self-diffusion coefficient
becomes zero or, in other words, an infinite increase is
observed in the a-relaxation time of the correlation functions:

D (T T, (43)
where the exponent y > 3/2. This prediction has been tested
repeatedly in many experiments and computer simulations,
and it has been shown that in some systems D and 7 follow
different power laws. It is also shown in paper [202] that D
cannot become zero (this dependence is an artifact of the
idealized MCT).

Of interest is the character of the time dependence of the
reduced correlation function &(¢) = F(ko,)/S(ko) (see
Fig. 7). There are three regimes which can be recognized

(1)
0.8

0.6 -
T = Tvct

04

02

0 | |

1072 10° 102 10 , 106
Figure 7. Time evolution of the correlation functions @(¢) according to
MCT for different temperatures [204, 206].

for different temperatures: the initial fast relaxation to a
plateau which is determined by the value of kj; the slow
relaxation near the plateau, and the f-relaxation and
structural o-relaxation.

The explanation for this behavior of ®(¢) is that over a
short period of time the particle moves ballistically, but
then the particle turns out to be ‘locked’ in a ‘cage’ of its
nearest neighbors. It is not until some time later, when the
p-relaxation is completed, that the particle leaves the cage.
Yet another prediction of MCT is the superposition principle
for a-relaxation:

i.e., correlations for different temperatures can be reduced to
a single curve by plotting them on the /7 scale. Also of
interest is the fact that the MCT prediction for ¥ in Eqn (44)
corresponds to the Kohlrausch formula.

A characteristic feature of the so-called idealized MCT
model, the low temperature behavior of correlation functions
plotted in Fig. 7, does not fit the reality. An extended version
of MCT considers the possibility of activation processes
accompanied by a particle hopping between the ‘cages’.
Thus, Ref. [203] shows that such an approach restores the
ergodicity of the system at and below T.. Some details of
MCT are reviewed in Refs [87, 204-207].

Overall, despite some limitations and disadvantages,
MCT is an effective analyzing tool for glass-forming materi-
als, providing general insights based on microscopic interac-
tion potentials between the atoms and molecules of the system
under study [208].

(44)

3.9.3 RFOT theory. The work of Kirkpatrick, Thirumalai,
Wolynes, and others over the last few decades has resulted in a
new microscopic approach, which its authors called the
Random First-Order Transition (RFOT) theory [209-211]
and which is, in fact, the application of a similar previously
developed theory of transitions in model spin systems [11,
212] to the glass transition [213, 214]. In the development of
their approach, the authors also heavily relied on the Adam—
Gibbs theory, MCT, and the energy landscape model.

The term ‘random first-order transition’ is meant to refer
to the freezing of a liquid and its conversion to a number of
aperiodic structures (quasicrystals), a point which sets this
transition fundamentally apart from first- and second-order
phase transitions. The authors of Refs [209-211] note the
existence of two temperatures which determine the glass
transition behavior of the system. For a temperature T
below the dynamic transition temperature 7T, it can be
shown in the mean field approximation that part of the
phase space of the system is a set of a large number of
potential ‘wells’ corresponding to the statistically equivalent
amorphous states (similar to Goldstein’s theory, the number
of such states increases exponentially, ~ exp («/N), where N is
the number of particles in the given region of the system).

For T' < Ta, the displacements of molecules in a liquid are
primarily determined by activation processes, leading to the
‘stratification’ of the system and to its transformation into a
mosaic-like system of ‘drops’ in various amorphous states (as
in the AG theory, the size of these regions is characterized by
the correlation length &). The authors of the RFOT theory
followed the analogy with the classical theory of nucleation
[215-217] in taking into account the difference in the
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Figure 8. (Color online.) RFOT/MCT simulation of temperature curves C ]fed [see Eqn (8) in the text] for glycerin for different cooling rates ¢ marked in

panels [223].

rearrangement due to the phase interface in the system (which
is where this theory differs from the AG theory). However,
whereas in the nucleation process (which leads to a first-order
phase transition) the formation of a sufficiently large number
of particles in the new phase causes a fast growth of clusters at
a given temperature, the tessellation model of a cooled liquid
allows the formation of a new ‘drop’ of the amorphous phase
within the already existing larger ‘drop’. This leads to the
formation of a system of clusters that are in the process of
continuous rearrangement and whose size increases only with
decreasing temperature according to the law

1

o (T—Tx)*

(45)

The temperature Tk in formula (45) is the temperature of
a random first-order phase transition (to the state of ‘ideal’
glass), a temperature at which the configurational entropy
determining the transition between amorphous states
becomes zero. The divergence in formula (45) is stronger
than in the Adam—Gibbs theory, a fact which in some systems
should result in the amorphous clusters becoming nanometer
sized. The RFOT theory formulated in this way, as well as the
AG model, is currently associated in a certain sense with the
discovery in glass-forming systems of nontrivial spatio-
temporal fluctuations of a comparable size, called dynamic
heterogeneities [206, 218, 219]. Over the last twenty years,
much experimental, theoretical, and computer simulation
work has been done to study these heterogeneities [206, 218,
220]. Some studies, though, have cast doubt on the existence
of this effect in molecular liquids [221, 222].

An example of the application of the RFOT theory (in
combination with MCT) to glass formation kinetics is given
in Ref. [223], which yields the expression for the mobility field

u(x, 1) of a typical form employed in the system of equations
for the fictive temperature:

oT;

& = I =T).

Reference [223] simulates the heat capacity curves for glycerin
and three other glass-forming materials for different heating
and cooling rates (Fig. 8). This work also shows that the
theory under review produces a bimodal distribution of
relaxation times for a polymer (polystyrene) at structural
relaxation at temperatures well below 7.

Overall, we note that, although the RFOT theory, which
is a conglomerate of various theories, is advantageous in
making many analytical predictions, it remains disadvanta-
geous in some respects and also leads to new problems, such
as the description of the transition from the dynamical
slowing-down in the MCT regime to the state involving the
proceeding of activation processes.

4. Kinetic criteria of glass transitions

4.1 General kinetic criterion of glass transition

and examples of its application

Establishing the dependence of glass properties on the heating
or cooling rate is important for practical applications.
Furthermore, the very fact of the existence of this depen-
dence is fundamentally important for the correct description
of the glassy state and the glass formation process. The
Bartenev—Ritland law, Eqn (3), is the first result in this area
[20, 22]. In a subsequent paper [176], a similar analysis by
Moynihan confirmed the experimental validity of this law for
three different glasses and also stated that the law applies in
general to glass-forming systems. A similar statement was
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recently made by Mazurin [224]. A detailed analysis of the
problem was carried out in monograph [1], and Refs [17, 18,
225] present numerical simulations for a wide range of cooling
and heating rates.

In paper [19], a general kinetic criterion of glass transition
is formulated for the case of a temperature variation, as well
as of other external control parameters generalizing, in
particular, earlier work in this direction. The glass transi-
tion, i.e., the kinetic transition of a system from equilibrium
state to nonequilibrium, can be described in a general way in
the framework of the thermodynamics of nonequilibrium
processes by adding a set of state parameters {&;} to the usual
properties of the system. When the system requires no more
than one structural parameter ¢ to describe its nonequili-
brium state, the kinetics of the change in this parameter under
isothermal conditions is described in a general way by an
equation of the form (30). If the system is heated or cooled ata
fixed rate ¢, then one can write the following equation

dé 1 dT

ﬁ:*m@*ieq)’ q="q

(46)

By introducing the characteristic time for variation in

temperature 77, the change in the temperature of the system

can be written in a form similar to Eqn (30):
dar 1 T

T = —

ar_ v, T 47
de r lq| @7

We can use the relation between times T and 77 to consider the
stages a liquid goes through in the process of glass transition
under cooling (or in the reverse process). Clearly, the system
can remain in a state of thermodynamic equilibriumift < 77,
whereas, in the opposite extreme, t > 77, the state of the
system is ‘frozen-in’, meaning that the glass transition is
completed. Hence, the glass transition interval is determined
by the relation 1 ~ 77, i.e., the characteristic times for the
relaxation of the system and for temperature change are of the
same order of magnitude. Thus, we have arrived at a general
formulation of the kinetic glass transition criterion. With this
criterion, the expression for the glass transition temperature
can be written as [14, 19]

(= [&h)
TR TT, T

T|dt
The selected value of C in Eqn (48) should remain unchanged
when determining T, for various cooling or heating rates. The
expression T ~ t7 can be applied in the general form to the
glass transition when other properties of the system, for
example, pressure, are varied, or it can be used to determine
the temperature of the dynamic glass transition.

Clearly, expression (48) can be approximated by
(Igltr)|7—7, = const (according to Bartenev’s proposal [20,
21]) or by using Maxwell type relaxation processes in the form
of the Bartenev—Ritland law (3). It is also possible, however,
to obtain a generalized Bartenev—Ritland law, for example,
the relationship

~C,
T=T,

C~1. (48)

(49)

if VFT relaxation is assumed. Equation (49) uses the reduced
values of the temperature and cooling rates [19, 177].
Expression (49), whose right-hand side is seen to directly
depend on T}, suggests that for certain values of the cooling

rate ¢ the behavior of T, deviates from that given by the
original expression of the Bartenev—Ritland law in the form of
Eqn (2) (see Section 4.2 for details).

From Eqn (48) also follows an expression for the change
in the glass transition temperature 7, as a function of other
system parameters, for example, pressure [14, 19]:

(dr/dp)y + (07/0¢)(6¢/0p)
(de/dT), —</T

a7, _
dp

T:Tgv P=Dg, é:é(Tgng)

(50)

Hence, determining the derivative d7,/dp requires knowing
the dependences t(p, T, &) and &(p, T'). Formula (50) is readily
extended to the case of several structural parameters {&;} [14].
In the simplest case, various expressions can be obtained for
dT,/dp by neglecting the pressure dependence of the
structural order parameters and using different models for
1(p, T). Like Ehrenfest’s theory of second-order phase
transitions, here we do not have two equations that are
always applicable for d7'/dp, but only one general equation,
Eqn (50). Hence, the pressure dependence of the glass
transition temperature does not allow us to conclude that
the Prigogine—Defay ratio is equal to unity [14, 19].

Assuming linearity between the relaxation time and the
viscosity of the liquid (which is true for many glass-forming
materials), we can derive an expression for determining # at
the glass transition temperature [14, 17, 18]:

logn(T,) ~ B —loglq|, (51)
where the parameter B is weakly dependent on T,. It follows
that Tammann’s [24] popular and widely used glass transition
criterion assigning a definite value of viscosity to T, does not
apply to a wide range of heating (cooling) rates used in the
process. Given the rate, the value of viscosity at the glass
transition can be calculated by Eqn (51), where the tempera-
ture T is determined from the general criterion (48).

As an example of the application of criterion (48) to the
dynamic glass transition, let us consider the relaxation of a
system under the condition where the external parameter
(temperature) oscillates with frequency w. The equilibrium
value of the structural parameter in Eqn (46) varies as
Eeq ~ exp (iwr). But then, by considering the characteristic
time 7p =1 /o for the change in the equilibrium value &, we
can obtain a typical criterion (denoted frequently as Frenkel—
Kobeko relation [3, 4]) of the form wt ~ C, where C ~ 1[19,
20]. In order to arrive at the same value of T, at thermal and
dynamic glass transitions (determined via the Frenkel-
Kobeko relation) the condition ¢/(Tw) = C~ 1 must be
fulfilled [114, 226].

Knowing the evolution of the structural parameter & and
taking into account the evolution of p and T makes it possible
to calculate the evolution of any other property of the system.
Assuming that one of the system parameters, ¢,,, is nonlinear
in¢, ¢, o (£ —&q)", and using the Kohlrausch form for the
relaxation of &, namely

(1) — &eq (’)ﬁ

— "~ —eX — - s <1 s 52

20 =&, Pz B (52)
the relaxation of ¢,, is readily expressed as [14]

1 1 ! / (m) T

n(pm(t) = 1’1([),.,,(0)— ‘L'(_m) ’ T :ml//f : (53)
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Hence, it can be concluded that different thermodynamic
properties of a system may have different relaxation times,
i.e., the calculated values of the glass transition temperature
T, depend not only on the material under study or the rate of
change of the external parameter but also on the specific
property which is being determined in the experiment.
Further, assuming that the relaxation time of the parameter
¢ is described by the VFT law (4) and using criterion (48), we
can obtain the modified Bartenev law

B T,

= 54
- (54)

Similarly, for the property ¢,,, making the replacement
79 — T9/m, we have

B T(m)
) = log =
" — T,

+logm — log|q| . (55)

Equations (54) and (55) express the behavior of the glass
transition temperatures obtained by various methods for
different cooling rates of the system. It is seen that the value
of m determines the difference between 7, and Tg('"> for equal
values of ¢.

4.2 Width of a glass transition range

The approach described in Section 4.1 can be applied to the
general analysis of the glass transition width as a function of
the heating or cooling rate of the system [177]. For the
temperatures characterizing the boundaries of the glass
transition interval, we can write

1 T
Tg’: <?‘((11—r) ~oat <1,
L ey (56)
1|dT
T : [ ~oa >1.
: <T‘dr") *

T=T;

The glass transition width depends on the choice of the
parameters o, which fully corresponds to the methodological
features of any its experimental or theoretical definition [110].
Using relations (56), one can obtain analytical expressions for
the glass transition width for systems whose relaxation is
expressed by two widely employed laws, the Arrhenius law
and VFT phenomenological equation.
Let us write the Arrhenius law in the form
A h

Uy
T=T0CXP —=T0CXp —, T():ﬁ.
B

RT T (57)

Then, by substituting the expression for (7") into Eqns (48)
and (56) and introducing the dimensionless variables for the
temperature and temperature change rate, viz.

h
kpA?

d_T
dt

, (58)

=T 4=
_A’ q_

the relation for the glass transition temperature T, . can be
written as

1 -
—=InT?>—Ing. 59

7 . q (59)
Noting that the logarithm of the square of the reduced glass

transition temperature varies much more slowly than the

TIOS E - Tg Arrhenius
g104 Eooa. Tg Arrhenius
E v fg‘ Arrhenius
10° & —==T, VFT
F ——T; VFT
2 R
10 3 —v—Tg VFT
10"
10° | :
B—o—4—4—0—4 wi1E
E ‘ gV
-1 L 4:0:§:F
10 PE‘E.:Q.Q ‘
102 [0 | | | | | | | | | |
10°10-% 107% 10~* 102 10° 10> 10* 10° 10% 10'

q
Figure 9. (Color online.) Comparison of characteristic reduced tempera-
tures of the glass transition interval as a function of the cooling/heating
rate for the Arrhenius (dark lines) and VFT (blue lines) relaxation times
[177].

logarithm of ¢, expression (59) is an analog of Bartenev’s glass
transition law.
For the glass transition boundaries, we similarly find

1 n[(T)%*] —Ing
Tg+ 71 [(Tg ) o ] 1 Qa (60)
1 - _
7 =In [(Tg’)zoc’] —1Ing.

g

Using Eqns (59) and (60) with the specified values of «*, it is
possible to investigate analytically 7, and the glass transition
interval width as a function of the cooling rate ¢ over its entire
range. The curves of the glass transition temperature and
glass transition interval boundaries are shown in Fig. 9 for a
wide range of ¢.

Introducing similar reduced quantities

dar
dt

- T h
. To==2 q

T= —
B’ 17 kpB?

LIS

; (61)

for the Vogel-Fulcher-Tammann relaxation law (4), the
dimensionless glass transition temperature and the upper
and lower boundaries of the glass transition interval can be
expressed as [177]

1 ~
= — =In7?—Ing,
T, — Ty & 1
1 -
———— =In[(T})«*] —Ing, 62
77, ~ U] - ng (62)
! =In [(T_)zoc_] —Ing
Tf—T() g

The first expression in Eqn (62) is (with the above reserva-
tions) the modified Bartenev—Ritland equation for the VFT
relaxation law. How the relaxation law affects the glass
transition temperature can be assessed by comparing the
dependences obtained from Eqns (59), (60), and (62) (see
Fig. 9). Itis seen that differences already appear at sufficiently
low cooling/heating rates, i.e, when the glass transition occurs
at temperatures sufficiently close to Tj. A comparison of
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analytical calculations and numerical simulations using
Eqn (46) [177] shows that, for the dependences to be
identical, it is necessary to select such values of o™ and o~
that are probably determined by the parameters of the
relaxation law and by other properties of the simulated
system.

The glass transition width can also be estimated in an
alternative way to that described above by employing only the
general thermodynamic expressions for the properties of a
system undergoing a glass transition. We can take the
dependence of the entropy production in the system as the
basis for this: it is seen from Fig. 6 that outside of the glass
transition interval it is zero, allowing this quantity to be used
for deriving expressions for AT,. The position of the
maximum of d;S under cooling can then be considered as
the thermodynamic definition of the glass transition tempera-
ture, and the width of the interval is determined by Taylor
expanding d;S/dT[177]. As a result, describing the relaxation
by equation (46), the following estimates may be obtained:

[d L E-E)'!

(63)
-1/2
1 & 1 (&— &)
e ) A LT (€ Ceg)
Tg Tg 2{ 2dT? {ln qr Ceq } T=T, ’

which can be used to directly calculate the glass transition
temperature and the glass transition interval width for
systems with a single structural parameter (assuming the
temperature dependences of ¢, {q, and t are known).

5. Physical relaxation of polymers

The structural relaxation of glass-forming liquids and
polymers represents a kinetic process which is currently of
topical interest from both a fundamental perspective
(description of the glass transition process) and for a variety
of applications. The fact that materials dynamically change
their properties (for example, viscosity) when stored or used
at a given temperature is important for high technology
applications of polymers or, for example, in the food
industry. The relaxation effect itself has been known since
the work of Kohlrausch around 1876, then with renewed
interest in 1930s [97] and came under research scrutiny about
50 years ago [32]. Presently, experimental methods for
observing the physical relaxation of polymers are sufficiently
large in number, and most efforts in this field are directed to
studying changes in volume or enthalpy [227, 228]. The
subject matter of this section includes the simulation of
experimental data and research prospects in this field.

Early work on relaxation was focused on the temperature
range T > T,, because the relaxation time of the system at
these temperatures is sufficiently short (on the order of
seconds). The temperature dependence of the relaxation
time is determined either by the Arrhenius law or by the
VFT equation, depending on the system. The experimental
data demonstrate well the nonlinear and nonexponential
nature of glass transition relaxation. Naturally, we need
methods ensuring corresponding properties to be able to
conduct simulation studies.

A number of simple but adequate semiempirical expres-
sions for the dependence of the integral characteristic curves
C, (for example, for the enthalpy) on relaxation temperature
and time can be found in Refs [162, 229, 230]. These references
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Figure 10. (Color online.) Example of heat capacity measurements
in polystyrene during heating following relaxation at different time
intervals [65].

C, Jg ' K-

allow the conclusion that the structure of a polymer affects
the relaxation process. At the same time, the full description
of the curves C,(T) requires a different approach. The
application in this case of TNM or similar methods suggests
that the experimental relaxation (‘aging’) interval of the
polymer is divided into intervals, whose number is taken to
be large enough to secure the required simulation precision.
The simulation is carried out for heat capacity curves under
heating, which are subsequently compared with their experi-
mental counterparts (Fig. 10). These curves are then either
considered directly as modeling the experimental data or used
to obtain integral characteristics whose dependence on the
relaxation temperature and time is being investigated.

Overall, there are three stages in the simulation of
experiment: (1) initially, the liquid is cooled to a specified
temperature 7, at a specified rate; (2) the liquid relaxes for a
specified period of time #,, and (3) the liquid is heated at a
fixed rate ¢. The measurement and simulation of the
relaxation kinetics in various polymers are detailed in a series
of references [57, 58, 129, 231, 232] (see also review [61]). Some
of the model parameters (for example, Ah*) were determined
from the characteristic behavior of measured quantities, and
others by a least-mean-square fit of the model results to the
experimental data. It is shown that the TNM and AG models
reproduce rather well the heat capacity curves of polymers
heated following relaxation; on the other hand, the para-
meters of the method are found to be manifestly dependent on
the thermal history of the experiment—in particular, the
parameters x and f§ should be varied when T, is changed by
10 K or more or when ¢, is changed by an order of magnitude
or more.

Detailed studies of the relaxation of polyetherimide were
performed in Refs [233, 234]. In Refs [59, 159], data on
polystyrene and three of its derivatives are described within
the model of limiting configurational entropy. That the data
turn out to be fitted better than by TNM is expected due to the
added parameter. Importantly, even varying 7, by 20 K and
t, between 300 and 1000 min did not produce full agreement
with experimental data. A subsequent study [158] on poly-
styrene-based mixtures estimated the size of inhomogeneities
as a function of the mixture composition. Reference [235]
compared the relaxation kinetics of the volume and entropy
of polystyrene at temperatures close to T,. In the neighbor-
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hood of the glass transition temperature, their behavior is the
same, but extrapolation to the region T, — 20 K should lead
to differences according to the authors. At the same time,
similar experiments in Ref. [236] show that the relaxation of
volume and enthalpy are of the same nature and have the
same parameters.

Over the last five years, most discussion in this area has
been concerned with the relaxation mechanism we described
in the Introduction, a two-stage mechanism, so called due to
the intermediate state (‘plateau’) present between the glassy
and liquid states (see Fig. 3). In some early studies [59, 230],
similar hypotheses were suggested based both on experimen-
tal data and simulation results, but it is only in 2011 that such
observations were made directly in an experiment [63]. In
subsequent work, some groups refuted [64], whereas others
[65] improved—and hence confirmed —these results. It
should be noted that these results were obtained by only one
group of researchers [63, 65, 227] and have not yet been
confirmed independently. Because a single experiment in this
field takes over a year to complete, it is expected that in the
next one or two years new data will be obtained which will
enable a more definitive conclusion to be drawn. Anyway,
this research holds great promise for the development of the
theory of the glass transition, as does the simulation of the
two-stage relaxation process from the fundamental stand-
point.

6. Glass transition kinetics
in a wide range of cooling rates

Along with the study of physical relaxation, the kinetics of the
polymer glass transition under linear variation of tempera-
ture over a given range are being investigated, and a rather
large amount of literature has accumulated. Zhurkov and
Levin [109] were the first to observe a peak in the temperature
dependence of the heat capacity of polyvinyl acetate and
polymethyl methacrylate at two different heating rates. The
dependence of the glass transition temperature as described
by Bartenev [21] is also well manifested in polymers [21, 109,
113]. Subsequent decades have witnessed the gradual exten-
sion of the range of accessible cooling rates and an increase in
measurement precision. As new theories of glass transition
kinetics appear, their potential in relation to experimental
data is continuously examined [57, 147, 151, 232, 237-243].

Recent years have seen a renewal of activity in this field
due, in particular, to the ability of modern DCS instruments
to vary the cooling rate over a very wide range. As a result, the
existing glass transition models have been verified and
alternative approaches proposed. Measurements of the
dependence of the glass transition temperature of polystyr-
ene on the cooling rate are presented in Refs[244, 245].
Reference [246] investigated the glass transition of polystyr-
ene over the widest cooling rate range ever reported
(5x107°=2K s,

Figure 11 demonstrates the characteristic experimental
curves and simulation results in the form of the values of the
heat capacity C;°™ equal to the difference of two reduced
heat capacities, one of which is measured under heating at a
rate of 0.5 K s~! following cooling at an indicated rate taken
from the given interval, and the other at heating at 0.5 K 5!
following cooling at 0.5 K s~! (this measurement scenario is
needed to improve the quality of the resulting curves at
sufficiently slow cooling). Modeling the full set of curves
first using the TNM and AG models and then in the
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Figure 11. (Color online.) Temperature dependence of the heat capacity of
polystyrene for different cooling rates as measured under heating at a rate
of 0.5 K s~! and the model data [246]. Thick lines— experiment, and thin
lines— Adam—Gibbs simulation.

framework of nonequilibrium thermodynamics (see papers
[174, 177]) with the same parameter set yields qualitatively
similar results (see Fig. 11).

To perform the TNM simulation, expression (18) is
modified by noting that polystyrene belongs to the class of
hard glass-forming systems, so one has

Ah* Ah*

RT—Ty) T RTi=T0)

(T, Tr) = exp |Into + (1 —x)

(64)

The Adam—Gibbs theoretical approach implies the specifica-
tion of the dependence AC,(T') for the system under study.
Review [61] suggests a number of expressions (a constant, and
linear and hyperbolic dependences), each of which was used
to calculate the model curves in Ref. [246]. The best
agreement with experiment was achieved with the linear
dependence AC,(T) = Cy + C;T, which, when substituted
into Eqns (23) and (25), yields

A } . (65)

RT[In(Ti/T>) + C(Tr — T»)]

taG(T, Tr) = 19 exp {

Finally, while a number of expressions for 7 were tested for
the purpose of a description in the framework of non-
equilibrium thermodynamics (see Section 3.8), the best
agreement with experiment was obtained with a new expres-
sion, which combines the VFT law and formula (23) from the
AG theory:

7(0, &) = 1o exp {R

B B A }
(0—00) RO[In(1—-&)+<¢ne/(1-9)])"
(66)

where 6 is the reduced temperature, the first term in the
exponential is the VFT law, and the second term is
determined, according to the AG theory, by the configura-
tional part of the entropy of the system.

It can be concluded that, given such a wide range of
heating/cooling rates ¢, none of the methods can provide a
sufficient accuracy in describing experimental data. A point
to note in Fig. 11 is that discrepancies occur not only in the



62 T V Tropin, J W P Schmelzer, V L Aksenov

Physics— Uspekhi 59 (1)

Cooling rate, K s~!
—0.00017
6 L — 000033
= (.00050
—0.00100
s L 0.00150
—0.00200

o
T
e
5
S
S
S

400 T,K

Figure 12. (Color online.) TNM simulation of isobaric heat capacity
curves by varying the A/ and f parameters for each measurement (heating
or cooling) [246]. Thick lines — experiment, and thin lines— Narayanas-
wamy’s simulation.

high C, peaks corresponding to slow cooling and, hence, to
the parallel existence of structural relaxation, but also at
relatively large rates, for which lower-than-measured heat
capacity peaks are predicted.

Reference [246] argues, consistent with previous under-
standing, that the exact simulation of the curves can be
achieved only by varying a certain two of the method’s
parameters (for example, Al and f5) at a variable rate ¢. That
is, if for each curve C,(T)—and, notably, for heating and
cooling separately, because the absolute values of the rates are
different — one automatically chooses two parameters and
leaves the others fixed, then a qualitative agreement between
the theoretical and experimental curves can be achieved for
most of the methods discussed in Section 2. Results of such
calculations, conducted by twenty experimental curves
(nineteen for cooling and one for heating) are presented in
Fig. 12. The small shape differences between the model curves
(especially near the minimum of C,) are constant for different
values of the cooling rate ¢ and, hence, can be viewed as a
drawback of the simulation method or as a specific feature of
the glass transition in polystyrene.

There are two factors qualitatively supplementing the
analysis of the fit between the model and measured curves,
namely, the descriptive behavior characteristics of the curve
parameters such as, first, the position and value of the C,
maximum and, second, their integral characteristics, the
limiting fictive temperature 7|/ proportional to the integral
of the enthalpy H:

AH

Tf’:TfO——AC :
P

(67)
where T is the reference value of the fictive temperature
determined by Eqn (6) from an individual measurement of C,
under heating and cooling at the same rate of 0.5 K s~! [246].
It is shown that the TNM model yields better agreement with
the experiment for the positions of the heat capacity peaks,
whereas the AG method performs better for the values of C,
peaks.

Figure 13 compares the dependence of the limiting
fictive temperature on the cooling rate ¢ for different
simulation methods. It is seen that when using a single set
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Figure 13. Comparison of the experimental (squares) and calculated values
of the limiting fictive temperature. TNM for constant parameters —
diamonds; AG for constant parameters—dots; TNM for varying para-
meters — triangles.

of simulation parameters, the slope of the curve T{(q) is
substantially different from what is measured, whereas
varying two parameters gives a sufficiently good fit. Also
note that the model curves intersect the experimental one in
the vicinity of ¢ =0.5 K s~!, which corresponds to an
experiment with equal heating and cooling rates. The
implication of this is that the quality of the glass transition
kinetics simulation is determined by the heating-to-cooling
rate ratio and worsens when this ratio is significantly
different from unity [242].

Reference [246] also examined whether the linear extra-
polation of the given dependences (A4 and f on ¢) can be used
to predict experimental results. It is shown that the para-
meters that describe C, curves best do not correspond to the
qualitative description of the dependence of the integral
characteristics and the fictive temperature on g.

Presently, similar experimental data are available model
simulations are being carried out for polystyrene at large
cooling rates (the cooling rate range is 0.1—10* K s~!, the
corresponding heating rate is 5000 K s~!), the modeling of the
results is taking place. It is shown that the results of Ref. [246]
are clearly manifested for the simultaneous simulation of two
sets of data; theoretical methods with a constant set of
parameters are unable to describe the observed patterns. It
should be noted that other approaches—for example, the
configurational entropy hypothesis—run into the same
difficulties. For example, in the work carried out in
Refs [119, 164] on the polymer glass transition in the range
of rates ¢ up to three orders, only the introduction of new
phenomenological laws into the dependences of the para-
meters on the cooling rate was able to improve the agreement
between the theoretical and experimental results.

7. Conclusions

Research on and the use of the glass transition long ago
entered the sphere of human activity. Studying and optimiz-
ing methods for fabricating and processing glass were the
preoccupations of people as far back as about five millennia
ago. Evidence of interest in glass in ancient civilizations has
survived until the present day.
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Currently, glass transition kinetics and related processes
are one of the central problems in modern condensed matter
physics, with original and review papers on the subject
numbering in the tens annually. The glass transition process,
as noted in the Introduction, is very general in character,
similar processes occurring in systems totally different in
terms of their properties and the interactions involved.
Thus, of extreme interest are spin, structural (covalent,
metallic, polymer), dipole, and superconducting glasses. A
relatively new class of materials are polymer-based nanocom-
posite materials [227, 247-249] with various nanoparticle
inclusions, among them new promising allotropic carbon
forms such as fullerenes and carbon nanotubes [250-254].
The systems listed either are already used in everyday life or
hold vast promise for high-technology applications. In this
connection, controling the glass transition process and
material properties and predicting the dynamics of property
changes under working and extreme temperatures are
problems of great importance for practical applications.

Over a few decades, there has been an evolution in
describing the glass transition, from simple phenomenologi-
cal first-order differential equations to modern methods of
nonequilibrium thermodynamics and statistical physics.
Increasingly, the computer simulation of systems with
simple interactions is gaining importance [255-259], which
enables the current microscopic theories of the glass
transition to be tested. At the same time, as can also be
seen from the present review, we are still far from having a
complete theory of the glass transition capable of describing
the evolution of the full set of properties of a system at
temperatures from 7y, to 7, (and lower) for an arbitrary
experimental thermal history and to fit the wide range of
currently available experimental data.

Microscopic approaches and computer simulation deal
well with describing certain patterns in the temperature range
from the melting point to the glass transition temperature and
in some cases are capable of making qualitative predictions.
However, close to and within the glass transition range
certain corrections should be introduced to such methods as
the mode-coupling theory or the random first-order transi-
tion theory. Computer simulation does not yet have sufficient
computational power to investigate the behavior of systems
close to actual ones (at actual cooling rates) in the region of
the glass transition, where relaxation lasts for tens or
hundreds of seconds. In our view, what the glass transition
kinetics of various materials require for its description are
approaches based on the thermodynamics of irreversible
processes and combined with accurately selected statistical
models grounded as far as possible on microscopic considera-
tions. As the glass transition theory develops further, this
approach should allow a sufficiently accurate description of
experimental data over a wide range of temperatures and of
the rates of change of external parameters.

This review presents the state of the art in the study of
theoretical approaches to describing glass transition kinetics
and physical relaxation. It considers classical theories and a
number of present-day methods, analyzes the published
studies, and generalizes their results with emphasis on the
investigation of the temperature evolution of the heat
capacity of polymers in the glass transition interval. This
choice, as can be seen, does not narrow the range of
applicability of the methods described —indeed, they are
adequate for virtually any problem related to the description
of the glass transition. Moreover, part of the presented

theories have their origin in other research fields such as
spin systems.

The analysis of a wide range of methods and studies which
is presented here suggests that at present most calorimetry
experiments are described only in the framework of phenom-
enological approaches such as the Narayanaswamy method
or the Adam—Gibbs theory. Furthermore, a detailed descrip-
tion of experiments requires varying model parameters,
taking into account their estimates from experiments.

As a promising avenue in the development of theoretical
methods in future work, we note the development of
microscopic theories of the process and the transition from
the description and computer simulation of simple classical
experiments to the computer simulation of more complex
experiments. Modern theories offer the possibility of the
nonempirical description of the general features of the glass
transition; in particular, success was achieved in describing
the Vogel-Fulcher-Tammann and Kohlrausch laws. The
advantages of the modern theories also include the possibi-
lity of obtaining predictions by initially specifying the exact
expressions for the interaction between the system’s particles.
Modern computer centers have enough power to perform
some calculations in the glass transition temperature range
for molecular systems [260] and polymers [261].

With modern experimental techniques, the external
parameters and the thermal history characteristics can be
varied by more than ten orders of magnitude. For example, in
the experiments of Ref. [246], the cooling rate varied by six
orders, and adding data from fast calorimetry will extend the
range of the parameter ¢ by up to 10 orders. Similarly, studies
of the phenomenon of dynamic glass transition [42] allow the
frequency of the external influence to be varied over a wide
range of 1075 —10° Hz.

However, none of the theoretical approaches listed in this
review is yet capable of coping with the problem of the
detailed description of experimental data. Another problem
that also remains to be solved is the study of the physical
relaxation of supercooled systems [65]; at issue here is whether
the observed relaxation mechanism is evidence for the
bimodal distribution of relaxation times [223] or whether it
provides a direct indication of the existence of an ‘inter-
mediate plateau’ in the relaxation process [59]. Solving this
and other complex problems requires the development of
existing glass transition theories. The possible next step on
this path is the development of new physically reasonable
expressions for the relaxation time or allowing switching
between relaxation mechanisms in a certain temperature
range in the glass transition interval or above. It would be a
breakthrough if an unequivocal, logically grounded experi-
ment was designed to answer the question of whether the glass
transition is a purely kinetic phenomenon or a consequence of
the phase transition to the ‘ideal glass’ state.

As regards nonphenomenological theories, such as the
mode-coupling theory, these should be developed to describe
a great variety of accumulated experimental data. It should
be noted that most theoretical studies in this field usually
discuss only those experimental data that support the theory
or else examine simulation with a simple interaction. Heat
capacity curves, for example, do not belong to this category
of data, so a necessary step in the development of the theory
of the glass transition would be to propose semiempirical
expressions capable of describing the C,(T") dependences at
a level not inferior to the existing phenomenological
approaches.
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Thus, describing the glass transition phenomenon
remains a problem of great importance for virtually all
fundamental and application fields, and investigations in
this area are of extreme interest.
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