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Abstract. We review E M Lifshitz’s work on gravity and
cosmology and discuss later work by others who drew on his
ideas. The major topics covered include the stochastic cosmol-
ogy of an anisotropic universe and of an isotropic scalar field
universe, the quasi-isotropic (gradient) expansion in cosmology,
and Horava—Lifshitz gravity and cosmology.

Keywords: gravitation, cosmology, chaos, perturbation theo-
ry

1. Introduction

The name Evgenii Mikhailovich Lifshitz is known to
physicists all over the world and even to a wider public in
connection with the famous course of theoretical physics
written by him in collaboration with his friend and teacher
Lev Davidovich Landau. In this review, dedicated to the
100th anniversary of the birth of Lifshitz, we dwell on some
areas of theoretical physics, in the fields of gravity and
cosmology, developed by him and other members of the
Landau school. In addition, we speak about some unex-
pected trends in modern physics connected with his name.
First of all, we discuss stochastic or chaotic cosmology. As
is well known, the study of chaos has become very popular in
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modern physics, and chaotic phenomena have been found in
different fields and sometimes in rather simple systems (see,
e.g., [1-4]). It is amusing that one of the first examples of
stochastic or chaotic behavior was discovered in the realm of
cosmology. Initially, the study of chaos in cosmology was
connected with the investigation of the so-called initial
singularity problem. Later, it became clear that the stochas-
tic properties of cosmological models are not necessarily
related to the singularity and can arise in such simple systems
as Friedmann universes.

We recall that Penrose and Hawking [5-7] proved the
impossibility of an indefinite continuation of geodesics under
certain conditions. This was interpreted as pointing to the
existence of a singularity in the general solution of the
Einstein equations. These theorems, however, did not allow
finding the particular analytic structure of the singularity.
The analytic behavior of the general solutions of the Einstein
equations in the neighborhood of a singularity was investi-
gated in papers by Lifshitz and Khalatnikov [8—11] and
Belinsky, Lifshitz, and Khalatnikov [12-14]. These papers
revealed the enigmatic phenomenon of an oscillatory
approach to the singularity, which has also become known
as the Mixmaster Universe [15]. The model of a closed
homogeneous but anisotropic universe with three degrees of
freedom (Bianchi IX cosmological model) was used to
demonstrate that the universe approaches the singularity in
such a way that its contraction along two axes is accompanied
by expansion with respect to the third axis, and the axes
change their roles according to a rather complicated law,
which reveals chaotic behavior [13, 14, 16, 17].

The study of the dynamics of the universe in the vicinity of
the cosmological singularity has become a rapidly developing
field of modern theoretical and mathematical physics. First of
all, we mention the generalization of the study of the
oscillatory approach to the cosmological singularity to the
case of multidimensional cosmological models. It was pointed
out in [18-20] that the approach to the cosmological
singularity in multidimensional (Kaluza—Klein) cosmologi-
cal models has a chaotic character in spacetimes whose
dimension is not higher than ten, while in the spacetimes of
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higher dimensions, a universe, after undergoing a finite
number of oscillations, enters a monotonic Kasner-type
contracting regime of oscillations [21].

The development of cosmological studies based on super-
string models has revealed some new aspects of the dynamics
in the vicinity of a singularity [22-24]. First, in these models,
the mechanisms for changing Kasner epochs were shown to
exist that are provoked not by gravitational interactions but
by the influence of other fields present in these theories.
Second, it was proved that cosmological models based on
the six main superstring models plus the D = 11 supergravity
model exhibit the chaotic oscillatory approach toward the
singularity. Third, a connection between cosmological mod-
els manifesting the oscillatory approach toward the singular-
ity and a special subclass of infinite-dimensional Lie algebras
[25]—the so-called hyperbolic Kac-Moody algebras— has
been discovered.

In the early 1980s, cosmology underwent a new revolution
connected with the birth of so-called inflationary cosmology
[26-28]. The theory of a hot universe that began its evolution
from the singularity called the Big Bang [29] corresponded
well with the observational data, especially after the discovery
of cosmic microwave background radiation in the 1960s by
Penzias and Wilson, but it suffered from some fundamental
problems, like those of flatness, homogeneity, horizon, and
some others. The theory of cosmological inflation, developed
to resolve these problems, was based on the assumption that
at the beginning of cosmological evolution, the universe
underwent a period of quasi-exponential expansion. Such an
expansion can be made possible by the presence of an effective
cosmological constant. However, to exit the inflationary
stage of cosmological evolution, which should be rather
short, it is necessary to ensure the slow evolution of this
effective constant, which is not constant. Thus, the models of
Friedmann’s homogeneous and isotropic universe filled with
a scalar field, usually called the inflaton, became popular.

The dynamics of such models were studied in detail
in [30, 31] by using the methods of the qualitative theory of
differential equations. It was clear that a closed contracting
Friedmann universe filled with a massive scalar field can
sometimes escape falling into the singularity and undergoes a
bounce. In [32], Page analyzed the suggestion that the
infinitely bouncing trajectories in a closed Friedmann
universe filled with a scalar field constitute a fractal set. In
such a way, the stochastic behavior was investigated in the
framework of very simple cosmological models. Page’s
hypothesis was further studied in [33, 34] and further
arguments in favor of the stochasticity of the dynamics of
Friedmann models were found.

There was also another question, discussed in the context
of studying the stochastic behavior in cosmology: the search
for some invariant characteristics of chaoticity. As is well
known, general relativity is a reparameterization-invariant
theory and it is important to have quantities that are
independent of the chosen system of coordinates when
studying gravitational phenomena. One of the invariant
tools useful in studying chaoticity in cosmology is so-called
topological entropy. In [35], this tool was applied to the study
of the simplest model of a closed Friedmann universe filled
with a scalar field whose potential includes only the massive
term. In [36], topological entropy and some other character-
istics were applied to the study of the Mixmaster Universe,
while in [37], the topological entropy was calculated for a
family of more complicated Friedmann models.

If one is unwilling to consider cosmology as a purely
mathematical application of general relativity and has the
intention to compare its predictions with observational data,
one cannot limit oneself to studying the Friedmann or
Bianchi universes. Treating the cosmological solutions of
the Einstein equations requires developing some perturba-
tive methods. It is remarkable that the first paper devoted to
the development of the theory of linear cosmological
perturbations on Friedmann backgrounds was written by
Lifshitz as early as 1946 [38]. This theory was then further
developed in [8, 9]. Later, a huge amount of work was done in
this field. In particular, a gauge-invariant theory of cosmolo-
gical perturbations should be noted [39—41].

While the theory of linear cosmological perturbations is
basically applied to Friedmann backgrounds, another asymp-
totic tool developed by Lifshitz and Khalatnikov in [42]: the
so-called quasi-isotropic expansion for solutions of the
Einstein equations near a singularity, which can take a larger
class of backgrounds as a zeroth approximation. This
expansion has also been extensively studied, sometimes
under the name “gradient expansion” [43-45]. In some
sense, this expansion can also be generalized for the entire
universe, without limitation to the vicinity of the singularity.

Recently, a new phenomenon of cosmic acceleration was
discovered [46, 47]. This discovery has stimulated the search
for so-called dark energy, which can explain this phenomenon
[48, 49]. An alternative or complementary way of explaining
cosmic acceleration is the construction of some modified
theory of gravity. Besides, the quantum theory of gravity is
nonrenormalizable, and this represents another stimulus for
the modification of gravity. Among the different theories of
modified gravity, there is a rather unexpected apparition: the
Horava-Lifshitz theory of gravity [50], which is inspired by a
couple of old papers by Lifshitz devoted to phase transition
theory [51, 52]. The main idea consists in the hypothesis that
the graviton propagator can be Lorentz-noninvariant at large
values of the momentum and its spatial part behaves
differently than the temporal part. In such a way, we can
obtain the renormalizability of the theory without encounter-
ing unpleasant objects such as tachyons or ghosts. Although
breaking the Lorentz invariance is too radical a step for many
researchers, it is amusing how the old papers by Lifshitz
devoted to an object that stayed far away from gravitational
thematics have given rise to the creation of a new trend in such
a modern field as quantum gravity.

The structure of this paper is as follows: in Section 2, we
recall the main features of the oscillatory approach to the
singularity in relativistic cosmology and dwell on its stochas-
tic nature; Section 3 is devoted to the study of stochasticity in
the Friedmann cosmology; in Section 4, we present some new
developments in the study of quasi-isotropic expansions; in
Section 5, we give a brief review of the Hotava—Lifshitz
gravity, and the last section is devoted to the conclusions.

2. Oscillatory approach to the singularity
and stochastic cosmology

One of the first exact solutions found in the framework
of general relativity was the Kasner solution [21] for the
Bianchi-I cosmological model representing a gravitational
field in an empty space with a Euclidean metric depending on
time according to the formula

ds? = dr? — 1 dx? — 12 dyz—t2”3 dz?, (1)
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where the exponents pi, p», and p; satisfy the relations
pi+pr+ps=pi+ps+pi=1. (2)
Choosing the ordering of the exponents as

p1<p2 <p3, (3)

we can parameterize them as [3]

u 1+u

u(l +u
T PeT o )
l+u+u l+u+u

TTtutur’
4)

Pr= P3

As the parameter u varies in the range u > 1, py, p», and p;
take all their permissible values:

2
3 b
The values u < 1 lead to the same range of values of p1, p2, p3
because

n(y)=n. n(y)=mw. n(})=rnw. ©

The parameter u, introduced in the early 1960s, has turned out
to be very useful, and its properties are attracting the
attention of researchers in various fields of study. For
example, in recent paper [53], a connection was established
between the Lifshitz—Khalatnikov parameter u and the
invariants arising in the context of Petrov’s classification of
Einstein spaces [54].

In the case of Bianchi-VIII or Bianchi-IX cosmological
models, Kasner regime (1), (2) is no longer an exact solution
of the FEinstein equations; however, generalized Kasner
solutions can be constructed [10-14]. It is possible to
construct some kind of perturbation theory where exact
Kasner solution (1), (2) plays the role of the zeroth-order
approximation, while the terms in the Einstein equations that
depend on spatial curvature tensors play the role of perturba-
tions (apparently, such terms are absent in the Bianchi-I
cosmology). This perturbation theory is effective in the
vicinity of a singularity or, in other words, as t — 0. A
remarkable feature of these perturbations is that they imply
the transition from the Kasner regime with one set of
parameters to the Kasner regime with another one.

The metric of the generalized Kasner solution in a
synchronous reference system can be written in the form

[OSTIN S

1
—3sn<0, 0sp;< <ps< 1. (5)

ds? = di? — (a®Llg + b*mymg + c*nyng) dx*dxP , (7)

where

a= l‘!’/7 b= t!’m7 c =t (8)

The three-dimensional vectors 1, m, n define the directions
along which the spatial distances vary with time according to
power laws (8). For p; = p1, pn = p2, pn = p3, We have

art’ b~ tP) e P 9)

i.e., the universe is contracting in directions given by the
vectors m and n and is expanding along 1. It was shown that
the perturbations caused by spatial curvature terms make the
variables a, b, and ¢ undergo a transition to another Kasner

regime characterized by the formulas

anm i’ bt ¢~ ths) (10)
where
D1 2|p1| — p2 3 —2|p1]
p= il gy Alem po 2l
1 —2|pi] 1=2|pi] 1=2|py]
(11)

Thus, the effect of the perturbation is to replace one “Kasner
epoch” by another such that the negative power of ¢ is shifted
from the 1 to the m direction. During the transition, the
function a(¢) reaches a maximum and b(7) a minimum.
Hence, the previously decreasing quantity b now increases, a
decreases, and ¢(f) remains a decreasing function. The
previously increasing perturbation that caused the transi-
tion from regime (9) to (10) is damped and eventually
vanishes. Then another perturbation begins to grow, which
leads to a new replacement of one Kasner epoch by another,
and so on.

We emphasize that precisely the fact that a perturbation
implies such a change in the dynamics that suppresses the
perturbation allows us to use the perturbation theory so
successfully. We note that the effect of changing the Kasner
regime already exists in simpler cosmological models than
those of Bianchi IX and Bianchi VIII types. As a matter of
fact, in a Bianchi II universe, there is only one type of
perturbation connected with spatial curvature, and this
perturbation makes one change in the Kasner regime (one
bounce). This fact was known to Lifshitz and Khalatnikov in
the early 1960s, and they discussed this topic with Landau
(just before the tragic accident), who greatly appreciated it.
The results describing the dynamics of the Bianchi IX model
were reported by Khalatnikov in his talk given in January
1968 at the Henri Poincaré Seminar in Paris. John A Wheeler,
who was present there, pointed out that the dynamics of the
Bianchi IX universe represent a nontrivial example of a
chaotic dynamical system. Later, Kip Thorn distributed a
preprint with the text of this talk.

Returning to the rules governing the bouncing of the
negative power of time from one direction to another, it can
be shown that they can be conveniently expressed by means of
parameterization (4):

pr=pi(u), pm=pa(u), p.=ps3u), (12)

and then
pi=pu—1), pr=pi(u—1), py=piu—1). (13)

The greater of the two positive powers remains positive.
Successive changes (13), accompanied by a bouncing of
the negative power between the directions 1 and m, continue as
long as the integral part of u is not exhausted, i.e., until u
becomes less than unity. Then, according to Eqn (6), the value
u < 1 transforms into u > 1; at this moment, either the
exponent p; or p,, is negative, and p, becomes the smaller of
the two positive numbers (p, = p»). The next sequence of
changes bounces the negative power between the directions n
and l or nand m. We emphasize that the Lifshitz—Khalatnikov
parameter u is useful because it allows encoding the rather
complicated laws of transitions between different Kasner
regimes (11) in the simple rulesu — v — l and u — 1/u.
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Consequently, the evolution of our model toward a
singular point consists of successive periods (called eras) in
which expansions and contractions of scale factors along two
axes oscillate while the scale factor along the third axis
decreases monotonically, and the volume decreases accord-
ing to a law thatis nearly ~ ¢. In the transition from one era to
another, the axes along which the distances decrease mono-
tonically are interchanged. The order in which the pairs of
axes are interchanged and the order in which the eras of
different lengths follow each other acquire a stochastic
character.

A decreasing sequence of values of the parameter u
corresponds to every (sth) era. This sequence has the form

ulﬁfﬁx,urﬁﬁx -1, u) | where unfm < 1. We introduce the

; © 0 Ymin?
notation
ut(r;?n = x<S)7 ulggx = k<‘) + x(-") ) (14)
ie., kO = [ul)] (the square brackets denote the greatest

integer < uéfax). The number k) defines the era length. For
the next era, we obtain

\, L 1
e =i KO = [m)} '

(15)

The ordering with respect to the length of k) of the
successive eras (measured by the number of Kasner epochs
contained in them) acquires a stochastic character asympto-
tically. The random nature of this process arises because of
rules (14) and (15), which define transitions from one era to
another in the infinite sequence of values of u. If all these
infinite sequences begin with some initial value uéf?x =
k© + x© then the lengths of the sequence k@, k(M) ... are
numbers involved in the expansion of a continuous fraction:

1
1

k@ 4+ ...

KO L0 g0 4
kM +

(16)

We can describe this sequence of eras statistically if
instead of a given initial value oy = k@ + x© we consider
a distribution of x(?) over the interval [0, 1] governed by some
probability law. Then we also obtain some distributions of the
values of x ) that terminate every sth series of numbers. It can
be shown that with increasing s, these distributions tend to a
stationary (independent of s) probability distribution w(x) in
which the initial value x® is completely “forgotten”:

1

()2’ "

w(x) =

It follows from Eqn (17) that the probability distribution of
the lengths of sequences k is given by

1 (k+1)

W) = "k

(18)

Moreover, it is possible to exactly calculate the prob-
ability distributions for other parameters describing succes-
sive eras, such as the parameter ¢ giving the relation between
the amplitudes of logarithms of the functions a, b, ¢ and the
logarithmic time [17]. We also briefly describe this further
development of the description of cosmological stochasticity
presented in [17].

First, it was noted that from a formal standpoint, we here
have a deterministic dynamical model governed by a system
of three ordinary differential equations (the space—space
components of the Einstein equations) plus an additional
condition (the time-time component of the Einstein equa-
tions): thus, the phase space of this system is actually not six-
but five-dimensional. Therefore, apart from the actual
profound cosmological significance of this system, we have
encountered a specific model of spontaneous stochastization
of a deterministic system.

It was then underlined that the transition from one
Kasner era to another can be described by mapping the
interval [0, 1] into itself by the formula

1 1
TX:{—}, xS+1:{_}7
X X

where curly brackets are for the fractional part of a number.
This transformation belongs to the so-called expanding
transformations of the interval [0, 1], i.e., transformations
x ~ f(x) with |f'(x)| > 1. Such transformations have the
property of exponential instability: if we initially take two
close points, their mutual distance increases exponentially
under iterations of the transformation. It is well known that
the exponential instability leads to the appearance of strong
stochastic properties.

To study the stochastic properties of the transitions
between the Kasner eras quantitatively, it is convenient to
introduce some new notation. The logarithmic time is

(19)

Q=—In¢. (20)
The parameters o, , and y are the logarithms of the scale
factors:

ao=Ina, f=Inb, y=Inc. (21)
In what follows, we discuss the statistical properties of the
sequence of eras. The index s numbers eras beginning from an
arbitrarily chosen initial one (s = 0). The symbol Q, denotes
the initial instant of the sth era (defined as the instant when
the scale function, which monotonically decreases during the
preceding era, begins to increase). The initial amplitudes of
the pair from among the functions a, 8,7, that experiences
oscillations in a given era, is denoted as d,€,; the quantities d;
(which lake values between 0 and 1) measure these amplitudes
in units of the corresponding ;. The recurrence formulas,
which determine the rules of transition from one era to the

next one, are

Q

s 1
7? =1+ (s‘vk,\‘ <k\ + x5 + ;S) = &Xp és’ ’ (22)
(ks/xs+ 1) 0
Osr1 =1— . 23
“ 1+ 0yks (kg + x5 + 1/x3) (23)
Iterating this formula gives
QY S5
— =ex g, . 24
oy = P ; » (24)

The quantities d; have a stable stationary statistical
distribution P(0) and a stable mean (with small relative
fluctuations). This distribution P(d) can be found exactly by
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an analytic method. Because we are interested in statistical
properties in the stationary limit, it is reasonable to
introduce the so-called natural extension of transformation
(19) by continuing it without bound to negative indices. In
other words, we pass from a one-sided infinite sequence of
numbers (xg, X1, Xp,...) connected by equalities (19) to a
“doubly infinite” sequence X = (...,x;, X, Xx1,X2,...) of
numbers that are connected by the same equalities for all
—o0 < § < o0

A sequence X is equivalent to the sequence of integers
K=(...,ki,ko,...) constructed by the rule k; = [1/x;_1].
Conversely, every number of X is determined by the integers
of K as an infinite continuous fraction

1

X5 = i =x', (25)
ksp1 + 77—
s+1 ks+2 T
The definition of x,;* can be written as
x5 = kg ko, ] (26)

We also introduce quantities defined by a continuous fraction
with a retrograde sequence of denominators (in the direction
of decreasing indices):

X, = [ks,l,ks,g, .. ] .

s

(27)

We now transform recurrence relation (23) by introducing the
notation 1, = (1 — d;)/d;. Then (23) can be rewritten as

1
Xy = ——— . 28
’7.\+1 s X1 T kx ( )
By iteration, we arrive at an infinite continuous fraction,
Hep1Xs = (kg kg1, ] = X7 . (29)
Hence, n, = x; /x;", and finally
X+
Oy = —>—. 30
xSt X (30)

This expression for d; contains only two (instead of three)
random quantities, x;* and x;, each of which takes values in
the interval [0, 1].

It follows from definition (27) that 1/x, = x; +k, =
x; 4+ [1/x;"]. Hence, the shift of the entire sequence by one
step to the right means a joint transformation of the x;" and

X, in accordance with

1

1 _
{_}Hf

(31)
xg s

This is a one-to-one map of the unit square. Thus, we now
have a one-to-one transformation of two quantities instead of
transformation (85) of one quantity that is not one-to-one.
The quantities x;” and x,~ have a joint stationary distribution
P(x™,x7). Because (31) is a one-to-one transformation, the
condition for the distribution to be stationary is expressed by
the equation

P(xx7) = Plx[p,x00)

s TS

(32)

where J is the Jacobian of the transformation. The normal-
ized solution of this equation is

1

Pxt,x)=— |
( ) (14 x+x-)*In2

(33)

and its integration over x* or x~ yields the function w(x)
in (17).

By (30), d, is expressed in terms of the random quantities
x;m and x_, and therefore knowledge of their joint distribu-
tion allows calculating the statistical distribution P(J) by
integrating P(x*,x~) over one of three variables at a
constant value of 6.

Due to the symmetry of function (33) with respect to the
variables x* and x~, we have P(J) = P(1 —9), i.e., the
function P(J) is symmetric with respect to the point § = 1/2.
We have

! ) ox~
POYds=ds | P(xt, 22 ) () dxt. (34
w15 )(G5) o
Calculating this integral, we finally obtain
1
PO)=———. 35
©) (11 -26/+1)In2 (35)

The mean value (5) = 1/2 is a result of the symmetry of
the function P(J). Thus, in every era, the mean value of the
initial amplitude of oscillations of the functions o, f,y
increases as Q/2.

We thus see from the results of a statistical analysis of
evolution in the neighborhood of a singularity [16, 17] that the
stochasticity and probability distributions of parameters
already arise in classical general relativity.

At the end of this section, a historical remark is in order.
Continuous fraction (16) was shown in 1968 to I M Lifshitz
(Landau had already passed away), and he immediately
noticed that the formula for a stationary distribution of x,
Eqn (17), can be derived. It later became known that this
formula was derived in the nineteenth century by Gauss, who
had not published it but had described it in a letter to one of
his colleagues.

3. Stochastic Friedmann cosmology

In the preceding section, we discussed stochasticity in the
Mixmaster Universe. However, simple isotropic closed
Friedmann—Robertson—Walker models manifest some ele-
ments of chaotic behavior that should be taken into account
to correctly construct quantum cosmological theories [35].

The study of the classical dynamics of a closed isotropic
cosmological model has a long history. First, it was noticed
that in such a model with a minimally coupled massive scalar
field, there is the possibility of escaping a singularity in
contraction [55, 56]. Then, the periodic trajectories escaping
the singularity were studied [57]. In [32], it was argued that the
set of infinitely bouncing aperiodical trajectories has a fractal
nature. Later, this result was reproduced in other terms in our
papers [33, 34, 58, 59].

Here, we briefly describe the approach presented in [33].
The main idea amounts to the fact that in the closed isotropic
model with a minimally coupled massive scalar field, all the
trajectories have a point of maximum expansion. The
localization of the points of maximum expansion on the
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configuration plane (a, ¢), where a is a cosmological radius
and ¢ is a scalar field, can be found analytically. The
trajectories can then be classified according to the localiza-
tion of their points of maximum expansion. The domain of
the points of maximum expansion is located inside the so-
called Euclidean or “classically forbidden” region. Numerical
investigations show that this area has a quasi-periodic
structure, with zones corresponding to the fall into the
singularity intermingled with zones containing points of
maximum expansion of trajectories having the so-called
“bounce” or points of minimum contraction. Studying the
substructure of these zones from the standpoint of the
possibility of having two bounces, we can see that on the
qualitative level, this substructure repeats the structure of the
whole region of possible points of maximum expansion.
Continuing this procedure ad infinitum, we can see that, as a
result, we have a fractal set of infinitely bouncing trajectories.

The same scheme allows us to see that there is also a set of
periodic trajectories. All these periodic trajectories contain
bounces intermingled with series of oscillations of the scalar
field ¢. It is important that there are no restrictions on the
lengths of series of oscillations in this case. In [35], the
topological entropy was calculated in this case and was
shown to be positive. In [35], the calculations in Ref. [37]
were reproduced, and it was shown how they can be general-
ized to more complicated cases. Here, we briefly review the
results in [37].

We first write the action for the simplest cosmological
model with a scalar field:

2
— 4. /= mp _ l w _l 242
s=|d x\/—g{ " (R 24) + 380,90 3 m 97
(36)
where mp is the Planck mass and A is the cosmological

constant. The equations of motion for a closed isotropic
universe are

2 22 32 242 2

my (. a 1 ap- mpa mp

P P fg =0, (37
167 (a+2a+2a)+ 8 s gn A¢=0. 07
. 3pa

¢+—f +m?p=0 (38)

A first integral of motion of our system is given by

—imz(a2+l)+a—2 d>2+m2¢2+m—§A =0. (39)
8n T 2 8n '

When the cosmological constant is equal to zero, the form
of the boundary of the Euclidean region is given by an
equation that can be easily obtained from Eqn (39):

3

m2a’p? = in mg .

In this model, investigated in many papers [32, 33, 35, 57],
there are periodic trajectories with an arbitrary number of
oscillations of the scalar field.

The inclusion of a positive cosmological constant,
investigated in [34], gives rise to two possibilites: if A is small
compared with the mass of the scalar field m, the qualitative
behavior is the same as in the model without the cosmological
constant; if the cosmological constant is of the order of m?,
the chaotic dynamics disappears in a jump-like manner [34].

(40)

If we include hydrodynamic matter with the equation of
state

p =€, (41)
where p is the pressure, ¢ is the energy density, and y is a
constant (y = 0 corresponds to dust matter, y = 1/3 corre-
sponds to radiation, and y = 1 describes a massless scalar
field), the form of the boundary of the Euclidean region is
given by the equation

22,0 3 5 D
m-a“¢ =M (42)
where D is a constant characterizing the quantity of the given
type of matter in the universe and ¢ = 3(y + 1) — 2. Numer-
ical calculations show that in this case, again, only a restricted
number of oscillations is possible. Moreover, the structure of
periodic trajectories is much more complicated. Indeed, the
law is as follows: a long series of oscillations can occur after a
bounce followed by a short series of oscillations, while the
behavior of a trajectory after a short series of oscillations is
less restricted. The concrete laws governing the structure of
trajectories depend on the parameters of the model under
consideration. However, in this case, it is also possible to
calculate the topological entropy, which we demonstrate
below.

We calculate the topological entropy for the considered
cases. Topological entropy measures the increase in the
number of periodic orbits as their period increases. We define
N(k) as the number of periodic orbits of length k. The
topological entropy is defined as

Hr = lim % In N(Kk) . (43)

k—o0
If Ht > 0, it can be concluded that the dynamics are chaotic.

We can quantify the length of an orbit by the number of
symbols. We first reproduce the calculations in Ref. [35] in
some detail. It was suggested that the discrete coding of orbits
in terms of two symbols be used:

A for a bounce of the trajectory,

B for a crossing of the line ¢ = 0.

For the simplest model with the scalar field, there is a
single exclusion rule: two letters A cannot stay together,
which means that it is impossible to have two bounces, one
after another, without oscillations between them.

We let Q(k) denote the number of “words” (trajectories)
of length k satisfying this rule that begin with A and end with
A and let P(k) denote the number of words that begin with A
and end with B. We can then easily write the recurrence
relations

Ok +1) = P(k);

P(k+1)=Q(k)+ P(k). (44)

From Eqns (44), it is easy to deduce the following relation for
P(k):

Plk+1)=Pk)+Plk—-1). (45)
It can easily be calculated that
P2)=1, P3)=1, (46)

and that Eqn (45) defines the series of Fibonacci numbers. We
recall how to find the formula for the general term of the
Fibonacci series. We seek P(k) as a linear combination of
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terms A¥, where / is the solution of equation

/«Lk+1 _ )vk+),k71

or, equivalently, because we are interested in only the nonzero
roots,

—i—-1=0, (47)
Thus, we seek P(k) in the form
P(k) = c1if + i3 (48)

where A, and A, are the roots of Eqn (47) and, solving
conditions (46), we obtain

= () e (52 )

Substituting (49) in the definition of topological entropy (43),
gives

HTIIH(

Lt ﬁ) >0, (50)
2

where (1 4+ 1/5)/2 is the famous golden ratio. It is clear that

only the largest root of Eqn (47) is essential for the calculation

of the topological entropy.

Now, we can pass to the more involved case of the
cosmological model with the scalar field and a positive
cosmological constant. As was described above, the periodic
trajectories in this model can have only a restricted number of
oscillations of the scalar field ¢. This rule can be encoded in
forbidding more than n letters B to stay together, where the
number n depends on the parameters of the model.

The recurrence relations now become

O(k + 1) = P(K),
P(k+1)=0Q(k)+ P(k) — Q(k —n)0(k —n), (51)

where the 0 function is defined in the usual manner. We are
interested in the limit & — oo and can substitute the number
0(k — n) instead of 1. We can now write the recurrence
relation

P(k+1)=Pk)+Plk—1)—Plk—n—1), (52)

which in turn implies the following equation for the
topological entropy:

;Ln+2 _ )Ln+l _ /In + 1= O7 (53)
with the topological entropy being equal to the logarithm of
the largest root:

Hr=1n/. (54)

For small values of n, the largest root of Eqn (53) can be found
analytically:

— For n =1, we have A = 1, the topological entropy is
equal to zero, and chaotic behavior is absent, which is clear
from the physical standpoint;

— Forn = 2, we obtain

1727 369\ (1/2(9+v69))"

2 32/3
(55)

— Forn =3,

_1 12 3veR
373

1/29 3v03\'2
§(7+T> ~ 1.47.

3 2 2
(56)

For higher values of n, we can find 4 numerically, for example,
forn =4, ~1.53.

For large values of n, we can find an asymptotic value for
the largest root A:

1+V5 1
2 V3{(1+V35)2}"

As has already been mentioned, in the model with a scalar
field and matter or in the model with a complex scalar field
and nonzero classical charge [60—-64], the rules governing the
structure are rather complicated. Nevertheless, in this case it
is also possible to calculate the topological entropy. Here, we
consider one particular example, but the algorithm that we
present can be used for different sets of rules as well.

We formulate the rules for our model:

1. It is impossible to have more than 19 letters B.

2. After a series with 19 letters B (and the letter A), we can
have the next series only with one letter B.

3. After a series with 18 letters B, we can have the next
series with one or two letters B.

4. After a series with 17 letters B, we can have the next
series with one, two, or three letters B.

"
L=

(57)

5. After a series with 1 letter B, we can have a series with n
letters B, where 0 < n < 19.

We note that the system of rules has a remarkable
symmetry with respect to the number nc = 10, which
simplifies the calculations. These symmetric rules give us a
good approximation for the description of the real physical
situation. The value nc is apparently a function of the
parameters of the model under investigation. A more
detailed numerical investigation implies a more complicated
system of rules; however, it can also be formalized in a system
of recurrence relations. Below, we see that the symmetric
system of rules gives a rather cumbersome equation for the
topological entropy.

We now introduce the following notation:

Q(k) is the number of words that begin with the letter A
and end with the letter A,

Q1 (k) is the number of words that begin with the letter A
and end with a series of one letter B,

0> (k) is the number of words that begin with the letter A
and end with a series of two letters B,

Q19(k) is the number of words that begin with the letter A
and end with a series of 19 letters B.
The system of recurrence relations for these quantities is

O(k+1) = Q1(k) + Qa(k) + - + Quo(k) ,
O1(k) = Q(k - 1),

O19(k) = Q1 (k —20),

Qulk) =04-1(k—=1) = 02—gylk—d—1), 2<d< 10,

Qu(k) = Qas1(k 4+ 1) + O gk —d—1), 11 <d<18.
(58)
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Solving this system for Q(k), we obtain the recurrence
relation:

Ok +1)=0(k = )+Q(k —2) + O(k — 3) + Q(k — 4)
+0(k—5)+0(k —6)+ Q(k —7) + O(k — 8)
+Q(k—9) + Q(k — 10) + O(k —13) + 20(k — 14)
+30(k—15) + 40(k—16) + 50(k—17) + 6Q(k—18)

+70Q(k—19) + 8Q(k—20) + 90 (k—21)—9Q (k—24)
— 160(k — 25) — 210(k — 26) — 24Q(k — 27)
—250(k — 28) — 240 (k — 29) — 210 (k — 30)

) —
—16Q(k —31) — 90(k — 32) — 8Q(k — 36)
—210(k — 37) — 36Q(k — 38) — 50Q(k — 39)
— 600(k —40) — 63Q(k — 41) — 56Q(k — 42)
—36Q(k — 43) + 36Q(k — 47) + 84Q(k — 48)
+1260(k — 49) + 150Q(k — 50) + 150Q(k — 51)
+ 1260Q(k — 52) + 84Q(k — 53) + 36Q(k — 54)
+280(k —59) + 840Q(k — 60) + 1500Q(k — 61)
+2000(k — 62) +2100(k — 63) + 1680 (k — 64)
+ 84Q0(k — 65) — 84Q(k — 70) — 224Q(k — 71)
—3500(k — 72) — 400Q(k — 73) — 350Q(k — 74)
—224Q(k — 75) — 84Q(k — 76) — 56Q(k — 82)
—1750(k — 83) — 300Q(k — 84) — 350Q(k — 85)
—2800(k — 86) — 126Q(k — 87) + 126Q(k — 93)
+3500(k — 94) + 5250(k — 95) + 525Q(k — 96)
+3500(k — 97) + 126Q(k — 98) + 70Q(k — 105)
+210Q(k — 106) + 315Q(k — 107) + 280Q(k — 108)
+126Q(k — 109) — 126Q(k — 116) — 336Q(k — 117)
—4410(k — 118) — 336Q(k — 119) — 126Q(k — 120)
—560(k —128) — 147Q(k — 129) — 168Q(k — 130)
— 840(k — 131) + 84Q(k — 139) + 196Q(k — 140)
+196Q(k — 141) + 840Q(k — 142) + 28Q(k — 151)
+560(k — 152) + 36Q(k — 153) — 36Q(k — 162)
— 640(k — 163) — 36Q(k — 164) — 8Q(k — 174)
—90(k — 175) +9Q(k — 185) + 90 (k — 186)
+ Q(k —197) — O(k — 208) ,
which, in turn, give the following equation for the topological
entropy:

(59)

200 1207 1206 1205 _ (.204 _ (203 _ (202 _ (201
200 199 198 _ 195 5 194 _ 3,193
4y 192 5y 191 gy 190 _ 7, 189 _ g 188 187

=+ 9x184 4 16X183 4 21)6182 +24x181 —|—25X180

=+ 24xl79 + 21xl78 4 16X177 4 9x176 + 8xl72

=+ 21xl71 + 36x170 4 50X169 4 60)6168 + 63x167

+ 56x %0 4+ 36x 165 — 36x 101 — 84x 190 — 126x 1%

— 150x "8 — 150x 157 — 126x 156 — 84x 155 — 36x 13
—28x 1% — 84x " — 150x 17 — 200x %6 — 210x !4
— 168x ' — 84x ! 4 84x 142 4 204x 17

+ 350x 136 + 400x 135 4 350x 13 4 224x 133

+ 84x13% 4 56x 126 4+ 175x % + 300x %4 4 350x 123
+280x "2 + 126x 121 — 126x !5 — 350x 14

— 525x 113 — 5255112 350 1T — 126x 110
—70x'9% — 210x 192 — 315x 101 — 280x % — 126x%°
+126x%% + 336x%" + 441x%° + 336x% + 12628
+56x80 + 147x7 + 168x 78 + 84x77 — 84x®

— 196X — 196x57 — 84x% — 28x57

— 56x% — 36x3% 4 36x% + 64x% + 36xH

+8x M 4 oxI3 —oxB —oxZ x4 1=0. (60)
Solving Eqn (60) numerically, we can find the largest root,
which is equal to 4 ~ 1.61771.

Accordingly, the topological entropy is given by the
logarithm of the largest root.

The scheme described above can be applied to many
different physical models, obeying different sets of exclusion
rules governing the structure of periodic trajectories.

4. Quasi-isotropic expansion in cosmology

The quasi-isotropic solution of the Einstein equations near a
cosmological singularity was found by Lifshitz and Khalatni-
kov [42] for a universe filled with radiation with the equation
of state p = ¢/3 in the early 1960s. In [43], a generalization
was presented of the quasi-isotropic solution of the Einstein
equations near a cosmological singularity to the case of an
arbitrary one-fluid cosmological model. This solution was
then generalized further to the case of a universe filled with
two ideal barotropic fluids [44, 45].

To explain the physical meaning of the quasi-isotropic
solution, we recall that it represents the most generic spatially
inhomogeneous generalization of the Friedmann spacetime:
the spacetime is locally Friedmann-like near the cosmological
singularity ¢ = 0 (in particular, its Weyl tensor is much less
than its Riemann tensor). On the other hand, generically it is
very inhomogeneous globally and may have a very compli-
cated spatial topology. As was shown in [42, 43] (see also [65,
66]), such a solution contains three arbitrary functions of
spatial coordinates. From the Friedmann—Robertson—
Walker (FRW) standpoint, these three degrees of freedom
represent the increasing (nondecreasing in terms of metric
perturbations) mode of adiabatic perturbations and the
nondecreasing mode of gravitational waves (with two
polarizations) when deviations of the spacetime metric from
the FRW one are not small. Hence, the quasi-isotropic
solution is not a general solution of the Einstein equations
with a barotropic fluid. Therefore, we should not expect this
solution to arise in the course of generic gravitational collapse
(in particular, inside a black-hole event horizon). The generic
solution near a space-like curvature singularity (for p < ¢) has
a completely different structure consisting of an infinite
sequence of anisotropic vacuum Kasner-like eras with
space-dependent Kasner exponents (see Section 2).

For this reason, the quasi-isotropic solution did not
attract much interest for about twenty years. Its new life
began after the development of successful inflationary models
(i.e., with the ‘graceful exit’ from inflation) and the theory of
the generation of perturbations during inflation, because it
immediately became clear that generically (without a fine
tuning of the initial conditions), the scalar metric perturba-
tions after the end of inflation remained small in a finite
region of space that was much less than the whole causally
connected spatial volume produced by inflation. It appears
that the quasi-isotropic solution can be used for a global
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description of a part of spacetime after inflation, which
belongs to “one post-inflationary universe.”” This is defined
as a connected part of spacetime, where the hypersurface
t = t¢(r) describing the instant when inflation ends is space-
like and can therefore be made the surface of constant (zero)
synchronous time by a coordinate transformation. This
directly follows from the derivation of perturbations gener-
ated during inflation given in [67] [see Eqn (177) in that
paper], which is also valid in the case of large perturbations.
When used in this context, the quasi-isotropic solution
represents an intermediate asymptotic regime during the
expansion of the universe after inflation. The synchronous
time ¢ appearing in it is the proper time since the end of
inflation, and the region of validity of the solution is from
t =0 up to an instant in the future when spatial gradients
become important. For sufficiently large scales, this instant
may be rather late, even around or more than the present age
of the Universe. We also note an analogue of the quasi-
isotropic solution before the end of inflation, the generic
quasi-de Sitter solution found in [68]. Both solutions can be
smoothly matched across the hypersurface of the end of
inflation.

A slightly different version of quasi-isotropic expansion
has been developed in recent decades, which is known under
the names of long-wave expansion or gradient expansion
[69-74].

Originally, quasi-isotropic expansion was developed as a
technique to generate some kind of perturbative expansion in
the vicinity of the cosmological singularity, where the cosmic
time parameter served as a perturbative one. However, a
more general treatment of the quasi-isotropic expansion is
possible if we note that the next order of the quasi-isotropic
expansion contains higher orders of the spatial derivatives of
the metric coefficients. Thus, it is possible to construct a
natural generalization of the quasi-isotropic solution of the
Einstein equations that would be valid not only in the vicinity
of the cosmological singularity but also in the full time range.
In this case, the simple algebraic equations that have to be
solved for higher orders of the quasi-isotropic approximation
in the vicinity of the singularity are substituted by differential
equations, where the time dependence of the metric can be
rather complicated, in contrast to the power-law behavior of
the coefficients of the original quasi-isotropic expansion.

We now show how this works for a universe filled with one
barotropic fluid [45]. We consider a universe with a fluid with
the equation of state p = we. The spatial metric is now

Vap = dapt” + Cop (61)
where
4
=— . 62
" 3(1+w) (62)
The inverse metric is
y“ﬂ =gy By (63)

We then have the following formulas for the extrinsic
curvature:

Kop = auphit ™' + Cop (64)

K =6Pk+cfrr — ePrr (65)

3
K:7ﬁ+ et ™" — ekt (66)
K . :
aa_[ = —i—’; + &t =20kt " fer(k+ 1) (67)
3K2 .
KIK} = =+ 20kt " = 2eR% N2 (68)
Using formulas (67) and (68), we have
36(2—K) TN et cRt T2
R =" — 69
0T Tap > T2 2 (69)

Now, using the Einstein equation in the lowest order of the
approximation, we obtain the energy density of the fluid
under consideration in the form

L0 __ 4
—
3(1+w)7¢?

Using the zeroth component of the energy—-momentum
conservation law, we can find a relation between the first
correction to the energy density ¢ 1) and the trace of the first
correction to the metric ¢:

(70)

—K—=2
(1) _ _¢Kl 71
g 3 . (71)

Now, using the standard expression for the scalar curvature R
and the 00 component of the Einstein equation in the form
R) —(1/2)R=T{, in the first quasi-isotropic order, we
obtain the equation

P o1 1 .
il kogm L (kiga® = ;0

2 4 8 (72)

Combining (72) and (71), we obtain a differential equation
for ¢,

c(k—=1) Pt

=, 73
¢ ; - (73)
Integrating (73) gives
P12 9(1 2012
c= =— (L+w) (74)
k(k —3) 4(5+9w)

Now, to find the traceless part of the first correction to the
metric ¢,p, we use the traceless part of the spatial-spatial
component of the Einstein equations, which in the case of one
fluid and in the first-order approximation has a particularly
simple form:

(75)

(We note that the traceless part of the extrinsic curvature I%,f
does not have zeroth-order terms). Equation (75) can be
rewritten as

Zi Kk
=t Kl = 2Pl (76)
Integrating (76), we obtain
KD =~ Pyl (77)

K+2
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Using the relation

b =rn ka de, (78)
we arrive at
4 = 91 +w)? =
&b = Pl =— (L+w) Pl (79)

Bw+ 1)(3w+5)

We can see that results (74) and (79), valid in the full range
of time, coincide with those valid in the vicinity of the initial
cosmological singularity (z = 0) [43] obtained by the algebraic
method [42]. The general expression for the first correction to
the metric for the one-fluid case is given in formula (37) in
[43]. The metric b,z in [43] corresponds to c,g in this paper,
while for the equation of state parameter, the symbol k is used
instead of w. Formula (37) contains a misprint: in front of the
second term in the brackets in the right-hand side of this
equation, the factor 1/4 should stay. At first glance, the first
correction to metric (37) contains a pole at 3k+1=0;
however, calculating the trace of this metric, it can be seen
that this pole is canceled and is present only in its anisotropic
part.

Thus, for a universe filled with string gas, w = —1/3, the
quasi-isotropic expansion does not work because the expres-
sion for ¢,3 becomes singular.

To conclude, we consider a special case where the metric
a,p has a conformally flat form:

ayp = exp [ p(x)] dup - (80)
In this case, the spatial Ricci tensor is

= 1 1 u u

Py = 1 (py“pﬁ — Zpyw) 2 5&[&(0, Pt 20,,1) (81)
or

58 1 3 B 1 Bl i Iz

P:z :Z(papY _2pa)_15cx(p P, +2p7:"l) (82)
Hence,

b g Lo (83)

=20l =5

and the traceless part of the Ricci tensor is

=B 1 1

Py = (pap! =2p0) + 150020l = p,0!). (84)
If

p = Apxx’, (85)
then

pP= —4A4) =24, Ax X", (86)

1ﬂ 1 Y i

Py =3 XX (34, A] — 5[4, A1), (87)

Thus, it is easy to see that if the metric in the lowest order
of the quasi-isotropic expansion has the Gaussian form
determined by Eqns (80) and (85), then its first correction
cqp determined by the curvature tensors (86) and (87) has a
non-Gaussian form due to the presence of the terms quadratic
in x* in front of the Gaussian exponential.

5. Quantum field theory
and quantum gravity at a Lifshitz point

It is generally recognized that the complete theory of
elementary particles and fundamental interactions should
include quantum gravity. However, the quantum gravity
theory is nonrenormalizable (see, e.g., [75]). The main
obstacle in trying to achieve perturbative renormalizability
of general relativity in 3 + 1 dimensions is the fact that the
gravitational coupling constant (the Newton constant) is
dimensional, with the negative dimension [Gn] = —2 in mass
units. The graviton propagator, like all propagators in
quantum field theory, scales with the four-momentum
ky = (w,k) as

1

ﬁ )

where k= Vw? —k?. When we calculate the Feynman
diagrams with an increasing number of loops, it is necessary
to introduce more and more counterterms of an increasing
degree in curvature.

An improved ultraviolet behavior of the theory can be
obtained if some terms of higher orders in curvature are
added to the Lagrangian. The terms quadratic in curvature
not only yield new interactions (with a dimensionless
coupling) but also modify the propagator. Omitting the
tensor structure of this propagator, we can write it as

(83)

11 S . 1 o 1
1
=— 89
k2 — Gk (89)

It is easy to see that at high energies, the propagator is
dominated by the 1/k* term. This solves the problem of
ultraviolet divergences. However, a new problem arises: the
resummed propagator (89) has two poles:

1 1 1
k2 —GnkY k2 kP—-1/Gn (90)
One of these poles describes massless gravitons, while the
other corresponds to ghost excitations and implies violations
of unitarity.

Some years ago, Horava introduced a new class of gravity
models [50], which he called “Quantum gravity at a Lifshitz
point”. The creation of this approach was inspired by the
papers by Lifshitz [51, 52] devoted to the theory of second-
order phase transitions and of critical phenomena, published
in 1941. The Horava—Lifshitz gravity models exhibit scaling
properties that are anisotropic between space and time. The
degree of anisotropy between space and time is measured by
the dynamical critical exponent z such that

X — bx, t—b°t. (91)
Such an anisotropic scaling is common in condensed matter
systems. The prototype of the class of the condensed matter
models of this family is the theory of a Lifshitz scalarin D + 1
dimensions, whose action is

S J drdPx{(9)* — (A0)*), (92)
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where A is the spatial Laplacian. Here, the critical exponent is
z = 2. To the action, we can add the term

—CZJ dldeai@ai¢, (93)

where we explicitly introduce the speed of light ¢. Under the
influence of this deformation, the theory flows to the infrared
region z = 1, with the Lorentz invariance emerging at long
distances.

In the approach to quantum gravity suggested in [50],
actions were considered such that scaling at short distances
exhibited a strong anisotropy between space and time, with
z > 1. This improves the short-distance behavior of the
theory. Indeed, the propagator for such gravitons is propor-
tional to

1
w?—c2%k? - Gk

(94)

At high energies, the propagator is dominated by the
anisotropic term 1/(w? — G(k?)?). For a suitably chosen z,
this modification improves the short-distance behavior and
the theory becomes power-counting renormalizable. The
¢2k? term becomes important at low energies, where the
theory naturally flows to z = 1.

Unlike in relativistic higher-derivative theories mentioned
above, higher-order time derivatives are not generated, and
the problem with ghost excitations and nonunitarity is
resolved. In 3 + 1 gravity, renormalizability is achieved by
the choice z = 3.

We now consider the form of the Lagrangian of the
gravitational theory for symmetry (91). As usual, we intro-
duce the D + 1 split of the manifold under consideration with
the spatial metric tensor g;; and the lapse functions N and shift
functions N; [76]. We wish to construct the kinetic term of the
Lagrangian that is quadratic in time derivatives g;; and is
invariant under the foliation-preserving diffeomorphisms,
i.e., diffeomorphisms that respect the D + 1 foliation. This
kinetic term depends on the second fundamental form
(extrinsic curvature):

I .
Kij =5+ (&ij — ViN; = V;N;) ,

W (95)

where V; is the covariant derivative involving the spatial
metric. Then the kinetic part of the action is

Sk = % J drd”x/g N(K;;K"7 — JK?). (96)

In general relativity, the requirement of invariance under all
spacetime diffeomorphisms implies that A = 1.

The potential term of the action should include only the
spatial metric and its spatial derivatives, and it has the form

Sy = J drd®x\/g NV [g;)] . (97)

Considering the high-energy regime of the theory, we
concentrate on the terms that have the dimension of the
kinetic term. In the case D = 3 and z = 3, there are many
terms of this type, some of which are quadratic in curvature,

ViR;VERY ViR;V'R* RAR, RVAR;, (98)

and they modify the propagator. Other terms, such as

R, R/R/R}, RR;R", (99)
are cubic in curvature and represent pure interacting terms.
The list of independent operators is very large, implying a
proliferation of coupling constants. In order to reduce the
number of independent coupling constants, it is necessary to
impose an additional symmetry on the theory. The way in
which this restriction is implemented is very similar to that is
used in the theory of critical phenomena.
We require the potential term to be of the special form

2
sv=" J ddPx /g NEVG,EX, (100)
where the tensor E7 itself follows from a variation,
. OW
\/gEU: [gk/] ; (101)
agij

of some action W, while the tensor G, is the inverse of the
generalized DeWitt supermetric
gkt _ L iy i ki

G =5 (¢"g" +8"¢") —7g"g". (102)

The theories whose potential is of form (100) for some W
are said to satisfy the “detailed balance condition”. Systems
that satisfy the detailed balance condition have a simpler
quantum behavior than general systems. Their renormaliza-
tion can be reduced to the simpler renormalization of the
associated theory described by W.

We are interested in constructing a theory that satisfies the
detailed balance condition and exhibits short-distance scaling
with z = 3, leading to power-counting renormalizability in
3 + 1 dimensions. Therefore, E*/ must be of third order in
spatial derivatives. It turns out that there is a unique tensor
with the necessary properties, the Cotton tensor:

» ) 1 ;
Cl = ¢kly, (R; -2 Ré»/) , (103)
which is a variation of the action
2
w= | @t (rpor, +3 rirjr). (104)

We can now write the full action for z = 3 gravity theory
in 3 + 1 dimensions:

2 i K2 y
S:J dl‘d?’X\/EN{p (K,'A/‘K] — ;»KZ) —m C,‘J'C‘]}

o2
2w

2 .
= J dld3x\/§N{P (K”K S — AKZ) —
. o 1 .
X (ViRjkV’R’k ~ ViR V/R* — g V,RV’R> } . (105)

This action depends on three constants (x,w, and 1), and
some relevant terms providing the correct infrared limit of the
theory can be added to it. It has been shown that at the special
values 4 = 1/3 or 4 = 1, the metric field has two degrees of
freedom, just like the graviton in general relativity.
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The relevant terms can respect the detailed balance
condition. To the action W, we can add the term

qu3x\/§(R—2/1W). (106)
Then the action becomes

s=[araivven] 2 (kv k) -5 v

=|dtd'xyg p(ij -2 )_W ij

2 2,2
+ % ¢FRyViR! — % RiRYI
2 (14
+8(’f_“3)h)< 2 R2+AWR—2A5V)}. (107)

At long distances, the potential is dominated by the last two
terms in (107): the spatial curvature scalar and the constant
term. As a result, the theory flows in the infrared region to
z=1.

To summarize, we can say that having been inspired by
Lifshitz’s old papers [51, 52], Hofava invented a new quantum
gravity theory, where the Lorentz invariance arises only at
relatively long distances but is absent in the ultraviolet limit.
This theory is renormalizable and does not suffer from the
presence of ghosts.

The idea to break the Lorentz invariance at very small
distances to provide ultraviolet renormalizability of theories
with higher-derivative terms was also used outside the gravity
context. In [77], renormalizable field theories including the
scalar fields and Yang-Mills fields with higher-derivative
terms in the action were considered. The presence of higher-
derivative terms changes the corresponding dispersion rela-
tions, and the effective speed of light can grow to infinity in
the ultraviolet limit of the theory. This has permitted the
authors of [77] to explain observable time delays in gamma-
ray bursts.

A rather large amount of work was connected with
applications of Hotava-Lifshitz gravity to cosmology (for a
review, see [78]). There are a number of interesting cosmolo-
gical implications of Horava-Lifshitz gravity. We discuss
some of them.

First, we note that the action of Hofava—Lifshitz gravity is
invariant under space—time-dependent spatial diffeomorph-
isms and under only time-dependent time reparametrizations.
This means that instead of four local first-class constraints,
which we have in general relativity (corresponding to
variation with respect to lapse and shift functions), we have
three local constraints, corresponding to three components of
the shift function and a global constraint corresponding to the
lapse function. The absence of the local constraint means that
the analog of the 00 component of the Einstein equations is
not valid [78]. If we consider a Friedmann universe, that
means that we cannot use the first Friedmann equation, and
we should use the second Friedmann equation, including the
time derivative of the Hubble parameter H = d/a. This
equation has a first integral, which gives us the first
Friedmann equation, but with an additional constant
included. The appearance of this constant is equivalent to
the appearance of a substance which gravitationally behaves
just like dust matter. Thus, we have some kind of dark matter
without dark matter. This effect is already present in the flat
Friedmann model.

Now, following [78], we write the general action for z = 3
Horava—Lifshitz gravity, without thinking of the detailed
balance condition and including the lower-derivative terms.
This action has the form

I= Ikin + 12:3 + 12:2 + ]z:l + IZ:O + Im s

R 1 3 . 2
Ikmf—wnGJNdz\/gd (KUK, — iK?),

3= Jth\/§d3x(c1ViR,kViR-fk + c,V,RV'R
+3RIRFR] + c4RRIR + ¢sR?)
I, = Jth\/§d3x(c(,R-i’Rj + c7R?),

L =cg Jth\/gd%cR,

Lo =co Jth\/§d3x, (108)
where [, is the matter action. For the Friedmann universe
with an arbitrary curvature k, the second Friedmann
equation for such a theory with action (108) is

32-1 Ot3k3 Otzkz k

af 4 +E_A’
(109)

(2H + 3H?) = 8nGP —
a

where

o3 =1921G(c3 + 3c4 + 9¢s), 02 =32nG(c6 + 3¢7), (110)

where P is the matter pressure. A first integral of this equation
is given by

— 3 2
3(3/1 1) H2:8TEG(,0+£)70(3]€ 73012/( 7%4»/1
a a
(111)

where p is the energy density of matter and C is the effective
dark matter integration constant, mentioned above.

Now, it is convenient to rewrite Eqn (111) as the energy
conservation equation

a2 2
Sty V@) =0, (112)
where
wk® owk? kA , 4nG , C
V(a) = L ik “Y)
@ =Tzt g% — 5 Pty
(113)

The shape of the potential V(a) completely determines the
behavior of the system. When 4 > 1/3, the universe can have
only such values of a that the potential V(a) < 0. At those
points where V(a) = 0, the universe has turning points, i.e.,
points of minimal contraction (bounce) or points of max-
imum expansion.

Thus, properly choosing the coefficients at the higher-
order spatial curvature terms, we can have different cosmo-
logical regimes. We give some interesting examples.

1. If there is only one value of the cosmological radius
a = ap, where the potential V(a) is equal to zero, and if
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V(a) > 0ata < apand V(a) < 0 at a > ao, then the universe
has a bounce solution. Namely, at the beginning of evolution,
the universe contracts and after the bounce it expands.

2. If there are two values a; and @, such that V(a;) =
V(az) =0, and V(a) <0 at ay <a<a, and V(a) >0 at
a>ap or a< ap, then the universe has both a point of
minimum contraction and a point of maximum expansion,
and its evolution is periodic.

3. If V(ap) = 0 and at this point the function V(a) has a
local maximum, we have a nonstable static universe.

4. If the function V(a) has a local minimum and is equal to
zero at the point ag, we have a stable static universe.

The Horava-Lifshitz cosmology has another interesting
feature. In its framework, it is possible to predict scale-
invariant cosmological perturbations without requiring the
existence of an inflationary stage of its expansion [78]. We
recall that the dispersion relation for the standard linear
cosmological perturbations is

2

w?=c2-5, (114)

Q‘o?\“
[0

where ¢ is the speed of sound and k. is the comoving wave
number.

If the mode under consideration satisfies w2 > H?2, where
H = a/a is the Hubble parameter, then the evolution of this
model does not feel the expansion of the universe and the
mode simply oscillates. When w? < H?, the expansion of the
universe is so rapid that the Hubble friction freezes the mode,
which remains almost constant. Generation of cosmological
perturbations from quantum fluctuations is the oscillation
followed by a freeze-out. Therefore, the condition for the
generation of cosmological perturbations is

d [ H?
a(ﬁ)m

If the standard dispersion relation (114) is valid, Eqn (115)
implies that ¢ > 0 for an expanding universe. Therefore, the
generation of cosmological perturbations from quantum
fluctuations requires accelerated expansion of the universe,
i.e., inflation.

In Horava-Lifshitz gravity with the critical index z, the
dispersion relation for the perturbations in the ultraviolet
region is

k2 \°
2 ag2 .
w- =M (M;a2> ,

where M is some energy scale. Substituting Eqn (116) in
condition (115), we obtain

(115)

(116)

d%a®
dr?

>0 (117)

for an expanding universe. Obviously, for large values of z,
for example, z =3, condition (117) does not require an
accelerating universe. Indeed, power-law expansion a ~ t?,
where p > 1/z does the job. Thus, in the Hofava-Lifshitz
cosmology, we can generate the spectrum of cosmological
perturbations without inflation.

Concluding this section, we add that practically all
traditional aspects of cosmology have also been studied in
the context of Horava—Lifshitz gravity. The theory of linear

perturbations, dating back to the pioneering work of 1946 by
Lifshitz [389], was studied, for example, in [79]. The quasi-
isotropic (gradient) expansion for the Horava—Lifshitz
cosmology in the presence of a scalar field was considered in
[80]. There was also some activity concerning the oscillatory
approach to the singularity and the stochasticity phenomena
in the Horava—Lifshitz cosmology [81-83]. It seems that the
question about the presence or absence of such stochasticity
has not yet been resolved and requires further studies.

6. Conclusions

In this review, we have considered some new avenues of
development of theoretical physics connected with gravita-
tion and cosmology, which in one way or another stem from
some old work by E M Lifshitz. Specifically, we have
discussed the topics such as the oscillatory approach to the
singularity and stochasticity in anisotropic and isotropic
cosmologies, quasi-isotropic expansion, and so-called
Horava-Lifshitz gravity and cosmology.

Sometimes, these developments appear to be rather
unexpected and amusing. Indeed, the study of the oscillatory
approach to the cosmological singularity and stochasticity
phenomena, being extended to cosmological models based on
superstring theories, revealed connections between cosmolo-
gical billiard dynamics and the properties of infinite-dimen-
sional Kac—-Moody algebras.

The ideas of some anisotropy between space and time,
useful for describing second-order phase transitions and
critical phenomena, as contained in the paper by Lifshitz
written in 1941, inspired the creation of Horava—Lifshitz
gravity, which looks to be renormalizable at the quantum
level and which, when applied to cosmology, shows many
interesting effects and properties.

Now, coming to the end of our paper, we briefly mention
one more paper by Lifshitz, which is connected with quantum
field theory, gravity, and condensed matter physics simulta-
neously. We mean the theory of macroscopic Van der Waals
forces between solids [84]. It is well known that in quantum
field theory, one always has a vacuum energy, which diverges.
Considering standard scattering processes, one can forget
about this energy, subtracting it by means of the operation of
normal ordering. In 1948, Casimir understood that if the
electromagnetic field satisfies some special boundary condi-
tions, then its vacuum energy is different from that in the
Minkowski spacetime and the difference between the corre-
sponding energy densities can be finite [85]. He considered
two infinite conducting planes and showed that this difference
was negative and that it implied the presence of an attracting
force. This effect, called the Casimir effect, was also observed
experimentally. Later, the role of Casimir energy in cosmol-
ogy was studied by different authors (see, e.g., [86]).

In his paper published in 1956 [84], Lifshitz studied
another aspect of the Casimir effect. Casimir had considered
an ideal conductor ensuring absolute screening of the
electromagnetic field. Hence, the tangential component of
the electric field disappears on the conducting planes. Instead,
Lifshitz noticed that ideal conductors do not exist and that the
dielectric permittivity (which is infinite for the ideal con-
ductor) actually depends on the frequency of the electro-
magnetic field, and for higher frequencies, this characteristic
tends to unity, and the material becomes transparent for
electromagnetic fields. The formulas taking this effect and the
thermic fluctuations, together with quantum ones into
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account formed the basis for a new discipline in physics,
which is sometimes called the theory of macroscopic
Van der Waals forces [87]. This approach to the Casimir
effect is also very popular now, and the corresponding forces
that take their origin from quantum and thermic fluctuations
are called Casimir—Lifshitz forces [88-90].

This work was supported in part by the RFBR grant 14-

02-00894.
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