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Abstract. Parametric X-ray (Cherenkov) radiation (PXR) is
considered to result from the crystal diffraction of virtual
photons associated with a relativistic charged particle moving
through the crystal. Formulas for PXR Fresnel coefficients are
obtained in a kinematic approach, whose applicability is dis-
cussed. The derivation of the version of kinematic PXR theory
using the Fresnel coefficients is described. By also using these
coefficients, analytical expressions for the frequency, spectral
peak width, differential yield by angles, and polarization of
PXR are obtained and shown to compare well with the kine-
matic PXR theory of Ter-Mikaelian and with experimental
PXR reflection studies.

Keywords: parametric X-ray radiation, Fresnel coefficients, virtual
photons, crystal diffraction

1. Introduction

The Fresnel coefficients are usually considered and applied in
real photon optics (see, for example, monograph [1]). More-
over, according to the Weizsacker—Williams method of
equivalent photons [2], they can be used to describe the
transformations of virtual photons associated with a moving
charged particle into real photons. For example, in papers [3—
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5], Fresnel coefficients are derived for the transition radiation
which is produced by a fast charged particle crossing the
boundary between media with different dielectric constants.

Parametric X-ray radiation (PXR) occurs when a relati-
vistic charged particle crosses a family of crystallographic
planes in a crystal. M L Ter-Mikaelian devised a kinematic
theory to describe PXR in a classical approximation (see
equations (28.157)—(28.160) in book [6] and also review [7]).
Ter-Mikaelian called this radiation ‘resonant radiation’ [6],
but in the later literature the term ‘parametric X-ray
radiation” is used by an analogy to optical parametric
Cherenkov radiation [8] which occurs when a charged
particle crosses a medium consisting of periodically ordered
layers with different dielectric constants. In the present paper,
we will apply the term PXR, which is generally accepted in the
modern literature.

The results of classical calculations [6] are confirmed by
quantum calculations performed by H Nitta [9]. The fact that
the kinematic theory can describe the basic properties of PXR
emitted at large angles to the particle trajectory is also
confirmed by many experiments (see, for example, reviews
[10, 11] of such experiments). Let us note that, unlike
conventional Vavilov—Cherenkov radiation, PXR is emitted
if the particle speed is less than the phase velocity of the
radiation propagation in the crystal.

Fresnel coefficients describing the diffraction of real
photons in crystals were also discussed as a tool to describe
PXR in Refs [11-13]. In this case, however, expressions for
the Fresnel coefficients taking into account the properties of
charged particles have not been derived yet. In the present
paper, the analytical expressions for the Fresnel coefficients in
the case of PXR are obtained. Moreover, we derive the
expressions for the frequency and width of the spectral peak,
differential yield (with respect to the angle) of PXR, and its
polarization by using the Fresnel coefficients and compare
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these expressions with the predictions of the PXR kinematic
theory and experimental results. We also discuss the condi-
tions of the applicability of the kinematic approximation.

2. X-ray reflection
from a single crystallographic plane

We assume that electromagnetic waves experience Thompson
scattering on the electrons of the medium. Various methods
for the derivation of absolute reflectance (Fresnel amplitude
coefficient) for the X-rays reflecting from a single crystal-
lographic plane are described, for example, in books [14, 15].
Fresnel amplitude coefficient (further, the Fresnel coefficient)
gy for the first-order reflection is described by the expression
(see formulas (6.1) in Ref. [14] and (IV.3) in Ref. [15])

. AdAr
i C 1Sy, (1)
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where / is the X-ray radiation wavelength, d is the distance
between crystallographic planes, ry=e?/(mec?) =
2.82 x 10713 c¢m is the classical electron radius, m. is the
electron mass, v, is the volume of the crystal cell, ¢ is the angle
between the propagation direction of the incident radiation
and the crystallographic plane, 0 < ¢ < m/2, S, is the
structure amplitude of the crystallographic plane family
which is described by the reciprocal lattice vector g,
g =gl = 2n/d, and Ary is the scattering length [15]. The
value of the factor 4 depends on the linear polarization
direction of the incident radiation:

ALZI, A”:—COS(2¢)7 (2)
where 4, and A\ are, respectively, factors for the radiation
polarized perpendicularly and parallel to the diffraction
plane. The diffraction plane goes through the propagation
direction of the incident radiation and the vector g.

Using the expressions (see, for example, equations (2.35)
and (3.102) in book [16])
TV,

Sy = —
s o

1(0)] 3)
and 4 = 2nc/(w+/¢ ), we obtain the Fresnel coefficients (1) for
the perpendicular and parallel polarizations as functions of
the radiation angular frequency w and the Fourier compo-
nent of the crystal dielectric susceptibility y,(w):
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where c¢ is the speed of light, and ¢ the dielectric constant. Let
us note that the factors described by expressions (2) should be
equal for axisymmetric backward diffraction, when 2¢ = m.
This confirms that the sign of 4 in formula (2) was chosen
correctly.

3. Angular and spectral distributions
of virtual photons associated with a relativistic
charged particle traveling through a medium

Let us examine some properties of virtual photons that are
associated with a charged particle which travels through a
medium with constant velocity V and Lorentz factor y > 1,

where

I
y=————, V=|V|.

1= (V/e)

The angular distribution J, of normalized spectral density of
virtual photons associated with a charged particle moving in
a medium can be described by the formula (1.24) in book
[12]. In the approximation of small angular deviations from
the direction of the particle velocity V and in the conditions
of y> 1, hiw < ymc?, where m is the particle mass, the
formula for angular distribution J, has the form (see
formula (4) in paper [17])

dn, oz? 0 + 53“

- dQdo/o 2 (vt + (3\,2l + 53H)2 '

Iy (5)

where dV, is the number of virtual photons in the solid angle
dQ, o = e?/(fic) ~ 1/137 is the fine-structure constant, z is
the particle charge in units of the electron charge —e, 7 is the
Planck constant, dy,,d, < 1 are small angles between the
direction of the radiation propagation and the direction of the
particle velocity V in arbitrarily chosen perpendicular
directions, (82, + 5\%“)1/2 is the angle between the vector V
and the direction of the radiation propagation, y, =
(y=2+ |xo)"1/? is the effective relativistic factor [18] with
due regard for Ter-Mikaelian longitudinal density effect [6, 7]
(further, the density effect), y, is the dielectric susceptibility
for the radiation frequency w higher than the frequencies of
the atomic transitions and off the resonance frequencies,
liol =1—¢e= (a)p/w)2, where ¢ is the mean dielectric con-
stant, and o, is the plasma frequency of the medium. Let us
also note that the phase velocity of the X-ray propagation in
the medium is usually higher than the speed of light,
¢/+/e > ¢, because ¢ < 1.

One can see from expression (5) that the virtual photons
are symmetrically distributed around the velocity vector of
the particle V. The maximum of the distribution is resided at
the angle y to the particle’s velocity vector V, and there is a
dip in the center of the distribution, so if dy1, 0 = 0, the
number of virtual photons is zero. In order to obtain the
distribution of virtual photons for a particle traveling in a
vacuum, one should replace y. in expression (5) with y. The
angular distribution of virtual photons broadens as the
particle goes from the vacuum to the medium and narrows
as it leaves the medium, because y;! > 7 ~!. The restructuring
of the particle field is accompanied by the emergence of
transition radiation [3-5], and formula (5) describes the
distribution in a stationary state.

The spectral distribution of virtual photons does not have
any peculiarities. One can see from formula (5) that the
number of virtual photons propagating in any direction per
unit frequency interval monotonically decreases as the
frequency increases: dN,/(dQdw) ~ 1/w.

4. Emission of parametric X-ray radiation
from a crystal

We will consider the diffraction of virtual photons — that is,
the emission of real PXR quanta when a charged particle
with the relativistic factor y > 1 passes through a family of
crystallographic planes, which is characterized by the
reciprocal lattice vector g. The number dNpxr of PXR
quanta emitted into the solid angle dQ as the particle
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passes through M crystallographic planes can be expressed in
the kinematic approximation using the interference function
I = sin® (Mx)/ sin® x [1, 15], where the variable x is described
by expressions (8), (9) from Section 5 in the following form:

Ypxr = dﬁg“‘ = qugi(w)l2 1(x) Jys
+ g1 (@) 1(x) Jvu} %O- (6)

Here, J,1 and J, are the distributions of virtual photons
with, respectively, perpendicular and parallel polarizations in
the small-angle approximation:

) B az? 5\1
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where 6y1,0, < 1 are the small angles with respect to the
charged particle velocity V in planes perpendicular and
parallel to the diffraction plane, respectively. In the case of
PXR, by the diffraction plane is meant the plane in which the
reciprocal lattice vector and the particle velocity vector lie.
The full number of virtual photons is expressed by the sum
Jy = Jy1 + Jy [see formula (5)].

If we apply the kinematic approximation, we only
consider the radiation emitted by the particle, and reflections
of the radiation on the crystallographic planes are not taken
into account.

5. Spectral peak frequency
of parametric X-ray radiation

The interference function in formula (6) describes the spectral
properties of PXR. The quantity x is half the phase difference
between the radiation emitted from adjacent crystallographic
planes [1, 15]: x = 2n(a/1)/2. For PXR, this quantity can be
found from Fig. 1 by utilizing the path difference between two
wavefronts:

afi L—cos(9
Csing \ Ve ’

where ¢ is the angle between the particle velocity vector and
the crystallographic plane.
Taking into account the relation A = 2mnc/(w+/e), we

obtain
Tw Vi/e
X = Vsng <1 - cosH) . (8)

The first-order peak of the interference function corresponds
to x = m. Therefore, we can write out the expression
nw

©)

X =

WPXR
and find, using formulas (8) and (9), the frequency wpxr of
the PXR first-order spectral peak:

gVsing

WPXR =T (Vy/e/c)cosO (10)
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Figure 1. Particle with a constant velocity V crosses a family of crystal-
lographic planes at the angle ¢ and emits radiation with the wave vector k
at the angle 0 with respect to the vector V. Crystallographic planes with
spacing d are characterized by the reciprocal lattice vector g. The region of
the spherical wavefront of the radiation emitted from the point A (shown
as an arc on the k vector at the moment when the particle reaches the point
B) is ahead of the wavefront emitted from the point B. The distance
between them is a = (¢/+/e)At — dcos 0/ sin ¢, where At = d/(V'sin ¢) is
the time which the particle takes to pass the distance between adjacent
crystallographic planes —that is, from point A to point B.

Expression (10) was first derived in monograph [6] [see
Eqns (28.6) and (28.158)] from the energy and momentum
conservation laws. Moreover, frequency (10) can be obtained
from the Huygens scheme for PXR, proposed in book [10]
(see also book [20]).

One of the remarkable properties of PXR lies with the
ability to gradually tune the frequency of the PXR spectral
peak by simply rotating the crystal target placed in a beam of
accelerated particles, i.e. correspondingly changing the angle
¢ in formula (10). Gradual tuning of the PXR spectral peak
frequency has been observed in various experiments in the
energy range of PXR quanta from several keV [18, 19] up to
400 keV [21]. The cited articles experimentally confirm the
validity of expression (10).

6. Spectral peak width
of parametric X-ray radiation

Using formula (9), we can express the interference function in
the form

o SiIl2 (MTCCO/(UPXR)

11

Sil’l2 (TECU/(UPXR) ( )

The maximum value of function (11) at the peak, when

® = wpxgr, equals M?>. In order to define the full width at

half maximum (FWHM) of the PXR spectral peak, two

solutions, w| and w,, of the transcendent equation
M2

1
2

(12)
and their difference Aw = w, — w; must be found. As a result,
we obtain the normalized FWHM of the PXR spectral peak:

Aw

WPXR

=089M". (13)

Let us note that in paper [6] the radiation emission from
an infinite crystal was considered and, instead of the
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interference function, the delta function was used. Therefore,
the width of the PXR spectral peak in Ref. [6] equals zero.

Formula (13) with a coefficient equal to unity is present in
Ref. [12]. The result (13) was also obtained in Ref. [22], where
PXR emitted from a finite transparent crystal was simply
considered as a constant amplitude wave train. The number
of oscillations in the train was equal to the number of
crystallographic planes M which the particle crossed.

Note that the expression for the normalized FWHM of
the PXR spectral peak (13) was obtained for ideal conditions,
without taking into account the effects of particle multiple
scattering in the crystal, the radiation attenuation in the
crystal itself, or the experimental angular resolution. There-
fore, expression (13) holds true only in the case of relatively
thin transparent crystals and ideal angular resolution.
Changing these conditions can lead to the broadening of the
PXR spectral peak.

The influence of the real experimental angular resolution,
the experiment geometry, and the radiation attenuation on
the width of the PXR spectral peak was studied in Refs [19,
23], and the influence of particle multiple scattering was
looked at in paper [24]. A typical value for the normalized
FWHM of the PXR spectral peak in the experiment with a
thin crystal is on the order of 1072 [19], and a minimal
normalized width of up to ~ 107 can be obtained by
generating focused PXR from a particle moving in a
channeling regime through a long bent crystal [25] (see also
Ref. [26]). In this case, the length of the PXR wave train can
reach several centimeters [25]. This means that the answer to
the question, stated in the title of paper [23] “How narrow is
the linewidth of parametric X-ray radiation?”’ can be found in
Ref. [25].

7. Fresnel coefficients
for parametric X-ray radiation

In order to find the PXR yield, we will remove the functions
which vary slowly in the vicinity of the frequency o = wpxr
from under the integral in formula (6):

dNpxr

Ypxr = 40 (}qgj_ WPXR } Jui + |gg) (wpxr)| Jvu)

Jsin2 (Mno/wpxr) do (14)

sin® (tw/wpxr) ©OPXR '

The integral on the right-hand side of formula (14), taken
over the frequency region around the spectral peak at
o = wpxRr, equals the number of crystallographic planes M
[15]. Therefore, we can write out the expression

dNpxr
dQ

Ypxr = = |FL["Je + \Fu|zjv\| ) (15)

where F| and F) are the Fresnel coefficients for PXR with
perpendicular and parallel polarizations, respectively:

c/(V\/—) —cos0’
Mn|;{g COPXR)}COS (2¢)

c/(V/e) —cosf

Fi = VMgg, (wpxr) =
(16)

F| =V Mgy (wpxr) =1

Fresnel coefficients (16) depend not only on the geometry and
properties of the crystal, but also on the velocity of motion of

the charged particle. Note that these coefficients are related to
the PXR spectral peak integrated over the frequency.

8. Differential yield
of parametric X-ray radiation
By substituting formulas (7) and (16) into expression (15), we

obtain the relationship for the differential (with respect to the
angles) yield of PXR:

dNpxr o:zzM|)(g(wPXR)|2 5i 4 5”2 cos2 2¢)
ae [‘7/([/\/5)—0056]2 (V<§f2+5i+5”2)2
(17)

Ypxr =

where the radiation frequency wpxg is described by expres-
sion (10), and d,, 6| < 1 are the small angles that define the
direction of the radiation propagation with respect to the
direction of the PRX reflection center. The angles ., § are
measured in the directions perpendicular and parallel to the
PXR diffraction plane, respectively. The PXR diffraction
plane goes through the vectors V and g. The angle between
the velocity of the particles V and the PXR reflection center
equals 2¢ in the diffraction plane, 0 = 2¢ — 6, and M is the
number of crystallographic planes which contribute to the
formation of PXR reflection. In a crystal which is transpar-
ent at frequencies wpxr, M is simply the number of
crystallographic planes crossed by the moving particle. In
the case of an absorbing crystal, M decreases due to the
attenuation of the radiation in the crystal. The effective
number of crystallographic planes which contribute to the
formation of PXR reflection in this case can be found using
the following expression (see, for example, formulas (13),
(14) in paper [27]):

o[ oo (i)

where t is the unit vector perpendicular to the plate surface,
Q is the unit vector in the direction of radiation propagation,
v=V/V is the unit vector in the direction of the particle
motion, T is the thickness of the crystal plate, T is the path
length at which radiation with the frequency wpxr attenuates
by a factor of e: T, = 1/u, where p is the attenuation
coefficient for the radiation in the crystal.

As follows from formula (17) the maximum PXR 2yleld is
expected at the angle =y, where n = (52 + 5\\ 1/ is the
angle of deflection from the reflection center in an arbitrary
direction. The region of the angular distribution with i ~ 7 4/
is called the PXR reflection, and the angle y{ is the angular
size of the PXR reflection. In the center of the PXR reflection
one can observe a dip where the radiation yield decreases to
zero at 6, ) = 0. The shape of the angular distribution for
the number of real photons in the PXR reflection (17) is
similar to that for the number of virtual photons of the
particle (5), but the coefficients in formula (17) are different
for different directions of radiation polarization. It can be
said that the PXR reflection is reflection of the distribution
for virtual photons (5) at frequency wpxr with the radiation
polarization taken into account. A typical schematic for the
generation of the PXR reflection is shown in Fig. 2.

Expression (17) coincides with the expression which was
obtained in the framework of the Ter-Mikaelian theory in the
small-angle approximation (see formulas (15), (22)

_I:

=5 (18)
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Figure 2. Typical schematic of PXR reflection generation, shown in the
diffraction plane. Angular coordinates dy, 0, , which are measured in the
directions perpendicular to this plane, are marked by circles with dots. A
charged particle moves with the constant velocity V in vacuum and crosses
the crystal plate. One of the crystallographic planes of the crystal with a
nonzero structure factor, shown by the dashed line, is characterized by the
reciprocal lattice vector g. Angular distributions for the number of virtual
photons of the particle in a stationary state are depicted by diagrams at
different sections of the particle trajectory: distribution in the crystal (5)
with a maximal number of virtual photons at angles dy, , oy = +y4i, and
distribution in the vacuum (5), before the particle enters and after it leaves
the crystal, with the quantity y ~! instead of y and a maximal number of
virtual photons at angles éy.,d, = +7 ~1; ¢ is the angle between the
crystallographic planes and the vector V. The PXR reflection is emitted at
the angle 2¢ to the vector V. Angular distribution for the yield of the real
photons in PXR reflection (17) is shown by the diagram; the maximal yield
in the PXR reflection is found in the direction at the angles § ., §) = +ygt
to the direction of the reflection center, shown by the dashed line. The
angular region 2¢ (31) is also indicated as the one where strong effects
associated with the PXR dynamical diffraction are possible.

Ref. [17]) up to a factor

oY @) e

In the case of X-ray radiation and for y > 1, this factor is
almost equal to unity. For example, ¢7/2 ~ 1—3.3 x 10 ina
single-crystalline Si at Ao =10 keV and (V/¢)* =
1 —1.0 x 107* for electrons with an energy of 50 MeV.
Moreover, expression (17) is similar to the expressions
obtained in the framework of other versions of PXR
kinematic theory, which are discussed in paper [28].

The kinematic theory with the aid of expression (17)
rather well describes the experimentally observed PXR yield
in the regions of reflection maxima and at angular distances
from its center of up to ten PXR reflection angular sizes (see,
for example, Refs [18, 29, 30]). At the same time, a
comparison of PXR theory predictions with experimental
results in the vicinity of the reflection center is difficult,
because there are other types of radiation as well. For
example, one can find in the vicinity of the reflection center
diffraction maxima of the bremsstrahlung emitted by a
particle in the crystal and of the transition radiation which is
generated as the particle enters the crystal. The intensity of
these types of radiation can be much higher than the PXR
intensity near the reflection center. For example, the radiation
yield in the reflection center observed in experiments [18, 29]
was only about half of that in the reflection maxima, in
contrast to the dip close to the zero value predicted by the
PXR kinematic theory [see formula (17)]. This means that the
PXR yield is masked by other types of radiation in the region
of the reflection center.

One of the features of the Ter-Mikaelian theory consists
in the prediction of asymmetry of the radiation yield in the

PXR reflection with respect to its center for an arbitrarily
large energy of the incident particles. Recently, this
prediction was verified in paper [27]. The theory was
compared with the experimental data obtained with a high
angular resolution under the condition of 772 < |z,| [29],
when the PXR yield is suppressed due to the density effect
[for incident electrons with high energy (255 MeV)] and
under the condition of y =2 > |y,| [18], when the influence of
the density effect is negligible (for moderate energies of the
incident electrons, 15.7 and 25.7 MeV). The comparison
showed good agreement of the experimentally observed
asymmetry in the PXR reflection emitted in the front
hemisphere with the one calculated using expressions (15),
(22) from paper [17], which almost coincide with expression
(17) obtained in this paper. The asymmetry in formula (17)
can be clearly seen with the relation § = 2¢ — J; taken into
account.

The absolute differential yield in the maxima of the PXR
reflection observed in experiments with a thin silicon crystal,
is, for example, on the order of 2 x 10~* quanta per electron
per sr at an electron energy of 25.7 MeV [18], and on the order
of 5 x 1073 quanta per electron per sr at an electron energy of
855 MeV [28]. Crystals consisting of light elements are the
most suitable for the generation of PXR reflections [31]. A
two-dimensional image of the angular distribution for the
yield of the quanta in PXR reflection was first observed in
Ref. [32], and it was measured with a high angular resolution
in Ref. [29]. The calculated results for the structure of the
differential yield in PXR reflections emitted under different
angles in the front and rear hemispheres are presented in
diagrams in papers [26, 33].

Above, we only discussed the first-order PXR spectral
peaks at the frequency wpxr (10). PXR can also be generated
at multiple frequencies but not for any multiplicity. PXR
reflection exists if the structure factor of the crystallographic
plane is nonzero. For example, PXR can be generated at
single frequency on crystallographic (111) planes, and at
triple frequency on (333) planes of a crystal with a diamond
structure, but PXR cannot be generated at the double
frequency on (222) planes due to the zero value of the
structure factor for the (222) plane. This condition can be
considered an analog to the condition that the real X-ray
radiation can be reflected from the crystal.

In the case of several PXR reflections, the total radiation
yield Y is calculated with the expression

Y:Z Ypxr ,
g

(19)

where the summation is performed over planes with nonzero
structure factors.

One can see from expression (17) that for moderate
energies of the incident particles, given by y2 < 1/|y,l, the
radiation yield in the PXR reflection maxima increases as the
square of the particle energy, whereas the angular size of the
reflection is inversely proportional to the particle energy. The
influence of the density effect leads to the fact that distribu-
tion (17) ceases to depend on the energy of the incident
particles altogether, once their energy is high enough for the
condition 2> 1/|y,| to be fulfilled. The change in the
behavior of differential yield (17) takes place in the region of
the particle energies corresponding to the critical energy
described by the condition y. = l/m [10, 18]. For
example, if PXR with an energy of Awpxr = 12.9 keV is




824 AV Shchagin

Physics— Uspekhi 58 (8)

emitted by electrons in a silicon crystal, the critical energy of
the electrons is 212 MeV. The physical reason for the density
effect is connected with the similar behavior of distribution
(5) for the virtual photons in the medium, which are the
source of the PXR.

9. Linear polarization
of radiation in the PXR reflection

It is well known that virtual photons are linearly polarized in
radial directions with respect to the particle’s velocity. PXR
reflection is formed as a result of the diffraction of polarized
virtual photons. Therefore, the differential (with respect to
the angles) yield in the PXR reflection should be linearly
polarized as well.

Following the methods of paper [34], we will describe the
linear polarization direction in the PXR reflection by the
angle p between the radiation polarization plane (the plane
going through the wave vector and the electric field vector)
and the diffraction plane. The tangent of the angle p is equal
to the ratio between the perpendicular (£, ) and parallel (E))
components of the electric field. Taking into account the
Fresnel coefficients (16) and the small-angle approximation,
we obtain

tan p :E:FL\/K: R . (20)
E Fi /Iy 9jcos(2¢)

Expression (20) can be considered a differential equation for

the curves 6, = . (J)), which are tangent to the direction of

the electric field vector (to the direction of the linear radiation

polarization) at every point:

do, = _ _ O ) (21)
oy 9jcos(2¢)

After solving equation (21), we obtain a set of curves with an
arbitrary constant B:

51_ _ B‘5H|—l/cos(2(/)) 7 (22)
which describe the polarization structure of the PXR
reflection.

Note that the sign of the phase of the Fresnel coefficient
F (16) for PXR with a perpendicular polarization does not
depend on the angle ¢p. At the same time, the sign of the phase
of the Fresnel coefficient £ (16) for PXR with a parallel
polarization and the sign of the exponent in expression (22)
change in the vicinity of the reflection emission angle
2¢ =m/2. This leads to a significant difference in the
structures of the linear polarization (22) in the PXR
reflections emitted in the front and rear hemispheres. In the
case of PXR reflection emitted in the front hemisphere for
2¢ < m/2, curves (22), which are tangent to the directions of
the linear polarization, have a hyperbolic form, while in the
case of emission in the rear hemisphere, 2¢ > nt/2, these
curves are parabolic.

The calculated results for the structure of the linear
polarization in PXR reflections emitted at various angles in
the front and rear hemispheres are present in Fig. 2 in paper
[34], as well as in figures plotted in papers [26, 33]. The
calculated results are in good agreement with the results of the
lab measurements of the PXR polarization performed by
Morokhovskii et al. [35].

10. Applicability of the kinematic
approximation for describing the parametric
X-ray radiation reflection

PXR is emitted by a particle traveling through a crystal, while
the frequency and propagation direction of the radiation in
the PXR reflection are close to the conditions for the
diffraction of the radiation in the crystal. Soon after the
kinematic theory was published [6], the dynamical theory of
PXR was put forward in papers [36, 37], where the dynamic
diffraction of the PXR in the crystal was taken into account.
According to the dynamic theory, the radiation from the PXR
reflection undergoes diffraction in the same family of crystal-
lographic planes which it was generated from, and the
diffracted radiation can be emitted in the forward direction,
near the particle velocity vector V.

Later on, experiments at accelerators showed that the
radiation registered in the PXR reflection had properties
which were well described by the kinematic theory (see, for
example, Refs [10, 11, 28-30]), but no radiation diffracted in
the forward direction was observed. At the same time,
discussions on the nature and possibility of the existence and
observation of PXR generated in the forward direction
continued (see, for example, Refs [7, 38-40] and a brief
review of these discussions in paper [41]). At last, narrow
spectral peaks of the diffracted PXR were experimentally
observed in a narrow angular region around the particle
velocity vector V [41, 42]. Further, we will discuss the
conditions under which the PXR diffraction becomes sig-
nificant, and the conditions under which the kinematic
approximation is valid.

The frequency (10) of the PXR spectral peak slightly
differs from the Bragg frequency wp in the crystal:

2

cg
- & 23
N @)

WBR

where Q is the unit vector in the direction of PXR
propagation. The explicit expression for the normalized
difference between the Bragg (23) and PXR (10) frequencies
in the small-angle approximation of 6, J; < 1 near the PXR
reflection center was obtained in paper [43]:

CUB_CUPXR%V72+ X0 +ﬂ2:Ve¥f2+”2
4sin® ¢ 4sin’ ¢

24
WPXR ( )

where n = (6i + 5“2)]/2 is the angle of deflection from the
reflection center in an arbitrary direction. One can see from
the last formula that the PXR frequency is always lower than
the Bragg frequency, and the frequency difference is minimal
in the region of the reflection center, at y = 0, where the PXR
yield is close to zero according to formula (17). In the region
of the PXR reflection, where the radiation yield is maximal
and n = 74/, the frequency difference (24) can be expressed as
var/(2sin” ¢). The frequency difference (24) rapidly increases
with a further increase in the angle of deflection # from the
PXR reflection center.

It is well known that dynamic diffraction effects can be
significant in the crystal when the monochromatic ray of
Rontgen radiation is deflected from the exact Bragg propaga-
tion direction by not more than for the angle

C gl
sin (2¢) ’

(25)
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where the factor C = 1 for the perpendicular polarization of
the radiation (o-polarization), and C = |cos (2¢))| for the
parallel one (m-polarization). Beyond these limits, the effects
associated with the dynamic diffraction rapidly weaken [16].
In our case of radiation with a fixed propagation direction,
the corresponding deviation limits of the radiation frequency
from the Bragg frequency can easily be found by differentiat-
ing the Bragg law. The limits are expressed as

_ ., Clxl
wB 2sin’ ¢

A(DB _

(26)

By comparing formulas (24) and (26), we can estimate the
conditions under which the dynamic diffraction effects
become significant for PXR. Obviously, it is possible when
the PXR frequency deviation (24) lies within the limits (26) —
that is, when

((DB - wPXR)/CUPXR
|AwB /wB |

<l. (27)

By substituting expressions (24) and (26) into (27), we obtain
an estimate for the angular size op of the region around the
PXR reflection center, where the effects associated with PXR
dynamic diffraction can be strongly pronounced:

_1 [2C 1%l
n<op =gt ——1.
Veff

The condition that this angle really exists corresponds to the
positive sign of the radicand in formula (28):

(28)

2C 7] > vert - (29)
It is interesting to note that the condition (29) for the PXR
diffraction to exist and the angular size (28) of the region
near the PXR reflection center, where the diffraction is
possible, do not depend on the emission direction for the
PXR reflection.

Now let us consider the most favorable case of the
sufficiently high energy of the incident particles for the
dynamical effects to be pronounced, when the value of y >
can be neglected, since it is small in comparison with |y, |, and
so the density effect is strongly pronounced:

7 < ol - (30)
In this case, the angular size 75 = /]| of the PXR
reflection ceases to depend on the incident particle energy
any more and an estimate of the angular size ¢ (28) of the
central region becomes dependent only on the crystal proper-
ties and PXR polarization:

n<a=/|xl

2C1y,
%0

|71, (31)

and condition (29) takes the form

2C gl > 170 - (32)
Note that the inequality ¢ > op always holds true. The
position of the reflection central region with the angular size
o is shown in Fig. 2. The angular size (31) of the region can be
expressed in (normalized to) units of the angular size of the

PXR reflection:

4 2C [y,

oN = = — .
vV |/0| |/O|

Inequalities (29) and (32) can be considered as criteria for the
choice of the crystallographic planes on which the dynamic
diffraction is possible, while expressions (28), (31), and (33)
can be utilized to estimate the angular sizes of the region
around the PXR reflection center, where the dynamic
diffraction can be pronounced. Additionally, less pro-
nounced effects of dynamic diffraction and enhanced
attenuation of the radiation could be observed near the
boundaries (28), (31), (33) of the region, and the side peaks
of the pendulum type solution can appear near this region in
the case of thin crystals.

Further, we will discuss the case of perpendicular
polarization, when C = 1, in more detail. In this case, as was
mentioned above, the condition (32) for the PXR diffraction
to exist and the angular size (33) of the central region depend
only on the crystal properties:

(33)

2|Xg| > |XO‘7 (34)
2
on=— = [ (35)
Vol Zo

The most popular crystal for PXR experiments is the
single-crystal silicon; therefore, we will make estimations
regarding this crystal. The calculations show that at PXR
frequencies higher than the atomic transition frequencies and
off the resonance frequencies condition (34) is fulfilled only
for three crystallographic planes with a nonzero structure
factor: (111), (220), and (400), and the angular size o (35) of
the region is 0.275, 0.45, and 0.077 times the angular size of
the PXR reflection, respectively. This means that only a small
central angular part of the PXR reflections, where the
radiation yield is minimal, can effectively undergo diffrac-
tion. Condition (34) is not fulfilled for other silicon crystal-
lographic planes.

A similar situation takes place in the case of a germanium
crystal, where the angular size oy (35) of the region is 0.47,
0.67, 0.45, and 0.18 for crystallographic planes for which the
structure factor is nonzero and condition (34) is fulfilled;
these are planes (111), (220), (400), and (422), respectively.
The dynamic PXR diffraction should be most pronounced for
the crystallographic plane (220) in both crystals. The cases of
other crystals need additional analysis.

Experiments on the observation of the two-dimensional
angular distribution for the PXR reflection yield were
performed in the case of a silicon crystal and the crystal-
lographic plane (220) in papers [29, 32]. In these experiments,
the basic properties of the reflection were well described by
the kinematic theory of PXR and there was no need to
consider the dynamic diffraction. However, this does not
exclude the possibility of some part of the radiation from the
PXR reflection central region being diffracted in the forward
direction.

Radiation from PXR reflection, diffracted on the (111)
crystallographic plane of a single-crystal silicon, was
observed in Ref. [41]. The radiation was observed in the
forward direction in the angular region, where the deviation
angle from the particle’s velocity vector direction was not
more than approximately i0.36\/m (see Fig. 3 in paper
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[41]). These angles are close to the estimate £0.275,/|y,| we
have obtained above for the boundaries of the angular region
for this crystallographic plane.

It is obvious that the kinematic theory is not able to
describe the properties of PXR diffracted in the forward
direction, which was observed in Refs [41, 42]. Effects
associated with dynamic diffraction can be poorly pro-
nounced in the central region of the PXR reflection, due to
low PXR intensity in this region and the masking influence of
other types of diffracted radiation, as discussed in Section 8.
Therefore, the dynamic diffraction of the PXR is poorly
pronounced in experimental observations of the PXR
reflections, and the properties of the reflection are well
described by the kinematic theory.

Let us note that, although the frequency of the PXR in
the reflection and the frequency of other types of diffracted
radiation are close to each other, they are nonetheless
different [see formula (24)], which allows the contribu-
tions of different types of radiation to be spectrally distin-
guished [43].

11. Results and discussion

The absolute values squared of the Fresnel coefficients for
PXR (16), namely

M| 14 (wpxR) |2
[c/ (V) —cos 0]
M| g (wpxR) !2 cos® (2¢)
[/ (V&) — cos ]

2
[FL|* = M|ge. (wpxr)|” =
(36)

2 2
|F||” = Mlqg) (wpxr)|” =

coincide with expressions (12) obtained in paper [27] up to the
factor of 67/2(V/¢)* ~ 1 that has been discussed in Section 8.
The expressions in the cited article correspond to the
coefficients for the transformation of virtual photons into
real ones, and they are in good agreement with the experi-
mental data on the PXR reflection yield.

The values of the transformation coefficients (36) for
typical experimental cases, presented in paper [27], have the
order of 10~* for low-index crystallographic planes of a
silicon single-crystal. It may seem that the transformation
coefficients (36) can be enhanced by increasing the number M
of crystallographic planes—that is, the thickness of the
crystal. Unfortunately, the effective number M is limited by
the attenuation of the radiation in the crystal [see formula
(18)]. Obviously, the phases of the Fresnel coefficients could
not be obtained from the experimental data on the PXR yield
in paper [27] due to the well-known ‘phase problem’ of the
structure analysis [15]. Meanwhile, if the phases of the Fresnel
coefficients are known, it allows, for example, easily deter-
mining the polarization structure of the PXR reflection
discussed above.

In the present paper, the expressions for the angular
distributions of the radiation yield and polarization in the
PXR reflection were obtained in the first-order approxima-
tion in the angle of deflection from the reflection center. The
higher-order considerations, performed in Refs [34, 44], show
that the expressions for the angular distributions of the yield
and the linear polarization directions in the PXR reflection,
which is emitted perpendicularly to the particle beam at the
angle 2¢p = /2, are slightly different from expressions (17),
(22) and have new singularities. However, as far as we know,

there have not yet been any experimental investigations of the
properties such a reflection that would be accurate enough for
a comparison of the results of both calculations to be
performed.

The estimates presented above show that the conditions
for PXR dynamic diffraction to be pronounced can be
fulfilled in the crystals considered only for some low-index
crystallographic planes in the central angular region of the
PXR reflection, where the PXR yield is weak and can be
masked by other types of radiation produced by the particle.
Therefore, the influence of this phenomenon on the experi-
mentally observed radiation yield in the PXR reflection is not
high, and the basic properties of the radiation in the PXR
reflection are well described by the kinematic theory. This
does not exclude the possibility for some part of the radiation
from the PXR reflection central region being diffracted in the
forward direction, which is confirmed by the observations in
papers [41, 42].

In the present paper, we have discussed the properties of
the PXR generated from a straight (not bent) crystal.
However, these properties can change dramatically in the
case of PXR generation in a bent crystal. For example, one
can focus the PXR emitted by a particle, which moves in a
channeling regime through the bent crystal [25]. Moreover,
the radiation in the PXR reflection maximum, after propagat-
ing along some path in the crystal, can be found in the
conditions favorable for the dynamic diffraction due to the
crystal curvature (see the example presented in Ref. [26]).
However, PXR generated from a bent crystal has been poorly
studied.

PXR occurs due to the interaction of the incident particle
field with the electronic subsystem of the crystal. At the same
time, coherent bremsstrahlung radiation is generated in the
crystal due to the interaction of the particle with the nuclear
subsystem of the crystal [6]. The periodicities of the electronic
and nuclear subsystems in the crystal are, naturally, the same.
Therefore, the frequencies of the spectral peaks of the
coherent bremsstrahlung under the condition of #iw < ymc?
are described by the same formula (10) as the PXR frequency.
The intensity maximum of the coherent bremsstrahlung is
located in the angular region ~ y~! around the particle’s
velocity vector V, while the PXR reflection is usually emitted
at a larger angle to the vector V, and these two types of
radiation do not influence each other. However, when the
PXR reflection is emitted near the vector V, their intensities
can be of the same order and interference may occur. The
interference of the PXR and the coherent bremsstrahlung was
studied in papers [45—47].

All properties of PXR discussed above are independent of
the charge sign of the incident particle. However, the phases
of the radiation emitted by positively and negatively charged
particles are opposite, and this may be important when PXR
from electron—positron pairs is considered. The PXR yield
(17) depends quadratically on the particle charge. This feature
can be used for the experimental determination of the charge
state of relativistic ions traveling through the crystal. Let us
note that PXR is used to obtain both shadow and phase-
contrast images (see, for example, paper [48]).

12. Conclusion

In the present paper, we have obtained analytical expressions
of the Fresnel coefficients for PXR. We have also constructed
the kinematic theory by using the Fresnel coefficients and
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have shown that this theory can be applied to calculate basic
properties of radiation in the PXR reflection.

It was shown that the calculated results for the basic
observable properties of the PXR reflection, such as the
frequency and width of the PXR spectral peak, as well as the
fine structure of the PXR differential yield and the polariza-
tion, are in good agreement with the results of the kinematic
theory [6], and with the experimental data on the PXR
reflection found in the available literature.
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