
Abstract. A closed-form equation is derived for the critical
nucleus charge Z � Zcr at which a discrete level with the
Dirac quantum number touches the lower continuum of the
Dirac equation solutions. For the Coulomb potential cut off
rectangularly at the short distance r0 � R�h=mc, R5 1, the
critical nucleus charge values are obtained for several values
of j and R. It is shown that the partial scattering matrix of
elastic positron±nucleus scattering, Sj � exp �2idj�ep��, is also
unitary for Z > Zcr. For this range, the scattering phase
dj�ep� is calculated as a function of the positron energy
Ep � epmc 2, as are the positions and widths of quasidiscrete
levels corresponding to the scattering matrix poles. The im-
plication is that the single-particle approximation for the
Dirac equation is valid not only for Z < Zcr but also for
Z > Zcr and that there is no spontaneous creation of e�eÿ

pairs from the vacuum.

Keywords: Coulomb problem, point-like nucleus, boundary condi-
tions, critical charge, scattering phase, Breit±Wigner resonance

1. Introduction

The following formula for the discrete level energies ed in
the relativistic Coulomb problem was obtained by Sommer-
feld [1] using Bohr's theory of the atom long before Dirac
derived his famous equation for the electron; it was then
rederived by applying the Dirac equation to the field of a

point-like charge Z (in electron charge units) [2±5] (see also
the monographs [6, 7]):

enr�k;Z� �
"
1� �Za�2� �����������������������

k 2 ÿ �Za�2
q

� nr

�2
#ÿ1=2

;
�1�

nr � 0; 1; 2; . . . ; k < 0 ;
1; 2; . . . ; k > 0 :

�
Here, the Dirac quantum number k � �� j� 1=2� is an
eigenvalue of the operator K � b�1� RL� [8, 9], j is the
conserved total angular momentum of the electron, and nr is
the analog of the radial quantum number in the SchroÈ dinger
theory. The system of units most commonly used is one in
which �h � c � m � 1, with the fine structure constant
a � e 2=��hc� ' 1=137:04 (where m and ÿe are the electron
mass and charge).

For the ground state (1s1=2: k � ÿ1, nr � 0), energy (1)
vanishes at Z � 137, whereas for Z > 137 it becomes
complex-valued, making the Sommerfeld formula mean-
ingless. However, as noted by Pomeranchuk and Smoro-
dinsky [10], this is true only for a point-like charge. For finite
radius nuclei, the energy of the lowest discrete level increases
with Z until it reaches the boundary of the lower continuum
of the Dirac equation solutions at a certain `critical' charge
Z � Zcr. CalculatingZcr for a rectangularly cut-off Coulomb
potential (surface charge distribution) for the nuclear radius
r0 � 12 F (which corresponds to R � 0:031 in units of
�h=�mc� � 3:86� 10ÿ11 cm) yielded the overestimated value
Zcr � 200 in [10]. An exact bare-nucleus calculation with the
same model yields Zcr � 177 [11, 12].

If Z becomes larger than Zcr, the first discrete level
disappears from the spectrum. There is an analogy between
this ground level behavior in the Coulomb problem and the
way the levels in a rectangular potential well move as the well
depth increases. It was shown by Schiff, Snyder, and
Weinberg [13] that for a certain depth V0, the lowest-energy
level goes down toÿmc 2. As the well is deepened further, this
level disappears, moving into the (lower) continuum spec-
trum. In [10], this is explained based on the interpretation by
Schiff, Snyder, andWeinberg by suggesting that if we place an
electron in the field of a supercritical nucleus, the electron
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disappears and the vacuum charge decreases by one electron
charge, which means that the electron collapses onto the
nucleus.

According to later work (see papers [11, 12, 14±23] and
monographs [8, 24, 25]), a bare Z > Zcr nucleus allows e

�eÿ

pair production from the vacuum, with the positrons escaping
to infinity and the electrons remaining to screen the nucleus
charge, which decreases by two units and forms a supercritical
atom [23]. We show in what follows that this interpretation of
what occurs at Z > Zcr is invalid: once a discrete level has
reached the boundary of the lower continuum, it disappears
by colliding with a virtual level to combine with it into a pair
of complex-energy Breit±Wigner levels on the second,
nonphysical sheet. The level that is closer to the physical
region and has the energy e ���BW � ÿe0 � ig=2 with e0 > 1 and
g > 0 corresponds to the resonance in the scattering of
positrons with the energy ep � ÿe5 1 by the nucleus, the
complex energies of the quasistationary state being eqs �
ÿe ���BW � e0 ÿ ig=2, where e0 and g are respectively the
position and width of the quasidiscrete level.1

In recent years, the subject under discussion has proved to
be of topical interest to the physics of nonrelativistic two-
dimensional structures, a field apparently remote from
nuclear physics. The reason is that, depending on the
substrate, the properties of graphene are described by an
effective gapless or gapped two-dimensional Dirac equation
(see, e.g., Refs [26±28]). In the presence of a Coulomb
impurity, the energy spectrum of a two-dimensional Cou-
lomb problem is determined (due to the axial symmetry) by a
system of equations that, except for a difference in notation, is
precisely the three-dimensional radial Dirac system consid-
ered in this paper. We note that the effective fine structure
constant then turns out to be larger than 1=137 and thatZcr is
close to unity [29]. This offers the unique possibility of
experimentally testing the theory of supercritically charged
atoms.

In Section 2, we discuss the boundary conditions that
ensure that the radial Dirac Hamiltonian is self-adjoint. In
Section 3, we briefly consider the short-range Coulomb
problem in which the self-adjointness property is ensured by
modifying the potential at short distances. In Section 4, we
obtain the wave functions of the discrete levels and calculate
both their energies and the corresponding critical charges. In
Section 5, we consider the wave functions of the lower
continuum and discuss the scattering matrix and its poles at
complex energies corresponding to the positions and widths
of quasistationary states for Z > Zcr. Concluding remarks
are in Section 6. The calculation of the critical charge Zcr is
briefly discussed in the Appendix.

2. Boundary conditions

The radial functions of the Dirac equation with the Coulomb
potential VC�r� � ÿZa=r satisfy the system of equations [8]

HDCe; k�r� � eCe; k�r� ; �2�

HD �
1ÿ Za

r

d

dr
ÿ k

r

ÿ d

dr
ÿ k

r
ÿ1ÿ Za

r

0B@
1CA ; Ce; k � F�r�

G�r�
� �

;

where e is the dimensionless energy, and the Dirac quantum
number k takes the values k � �1;�2; . . . : It is known that
because the Coulomb potential VC�r� `dies out' at long
distances, the parts of the spectrum that correspond to the
ranges e5 1, ÿ1 < ed < 1, and e4 ÿ 1 are respectively the
upper continuum of the Dirac equation solutions, the discrete
spectrum, and the lower continuum [8].2

For the differential operatorHD to become an operatorH
acting in the Hilbert space H � L2�R�� of square integrable
functions on the real axis R� � �0;1� with the Hermitian
scalar product and norm defined by

�C2;C1� �
�1
0

C�2 �r�C1�r� dr �3�

and

�C;C� � jCj2 �
�1
0

���F�r���2 � ��G�r���2� dr ; �4�

it is necessary that HD satisfy certain boundary conditions.
BecauseH is unbounded, the minimal necessary requirement
on it is that it satisfy the conditions [30]

HC � HDC ; D�H� � �C 2 L2�R��;HDC 2 L2�R��
	
;

�5�

where D�H� is the domain of H. As a result, in accordance
with (4), not only F�r� and G�r� but also their derivatives are
square integrable. This can be seen by noting that the second
condition in (5) gives

�HDC;HDC� �
�1
0

�
jF� G j2 �

���� ddr F
����2 � ���� ddr G

����2� dr <1 ;

where the first term in the right-hand side is clearly
convergent due to the triangle inequality jF� G j2 4
jF j2 � jG j2 and the first condition in (5). We finally have�1

0

jF j2 dr <1 ;

�1
0

���� dFdr
����2 dr <1 ;�1

0

jG j2 dr <1 ;

�1
0

���� dGdr
����2 dr <1 ;

and hence (see, e.g., Ref. [30]),

F�1� � G�1� � 0 : �6�

Integrating here by parts, we obtain�1
0

C�2 �HDC1� drÿ
�1
0

�HDC2��C1 dr

� lim
r!0

ÿ
F1�r�G �1 �r� ÿ F �2 �r�G2�r�

�
: �7�

Thus, to ensure the self-adjointness property of the
Hamiltonian, i.e., to reduce the boundary term to zero, it is
essential to consider how the solutions of system (2) behave at
short distances. This asymptotic behavior is determined by

1 In [11, 12, 14±25], the width g of the Breit±Wigner level is interpreted as

the probability of spontaneous e�eÿ pair production from the vacuum.

2 For Z � Zcr, the ed � ÿ1 state belongs to the discrete spectrum, and the

e < ÿ1 states form the lower continuum.
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the value of a single parameter, s � �����������������������
k 2 ÿ �Za�2p

, 3

Ce;k�r! 0� � Cs Zsr
s

1

Za
sÿ k

0@ 1A� Zÿsr
ÿs

1

Za
ÿsÿ k

0@ 1A8<:
9=; ;

s 6� 1

2
; 0 :

�8�

If s5 1=2, then the square integrability of solutions in
Eqn. (8) is achieved by setting Zÿs � 0. Therefore, the
inequality Za <

�������������������
k 2 ÿ 1=4

p
enables satisfying the so-called

built-in boundary condition [30], and the Sommerfeld
formula is valid for the energy levels. In particular, for the
ground state with k � ÿ1, this leads to the inequality
Z <

���
3
p

=2a � 119.
For 0 < s < 1=2, in accordance with von Neumann's

theory of unbounded operators [31] (see also [32]), we require
the boundary term in Eqn (7) to vanish due to the functions
C1 andC2 that enter this equation on equal footing, and thus
arrive at the condition

Zs
Zÿs
�
�

Zs
Zÿs

��
� tan ys�k� ;

�9�
ÿ p

2
4ys�k�4 p

2
; s �

�����������������������
k 2 ÿ �Za�2

q
> 0 :

Condition (9) defines a one-parameter family of self-
adjoint operatorsH�ys � Hys . We note that for the parameter
values ys � �p=2, the Sommerfeld formula remains valid for
Z up to Z � jkj=a, i.e., up to Z < 137 for the ground state.

If Za > jkj, then, instead of Eqn (9), we obtain

Zt
Zÿt
�
�
Zÿt
Zt

��
� exp

ÿ
2iyt�k�

�
;

�10�
Im yt�k� � 0 ; t �

�����������������������
�Za�2 ÿ k 2

q
> 0 :

Boundary conditions (9) and (10) determine one-parameter
families of self-adjoint radial operators Hys and Hyt . For an
alternative derivation of these one-parameter families, we
refer the reader to Ref. [9].

3. Short-range Coulomb problem

To fix the parameters ys�k� and yt�k�, additional physical
considerations are needed. According to Pomeranchuk and
Smorodinsky, we should consider a Coulomb potential
modified at short distances. For a rectangular cutoff [10]

VR�r� � ÿZa
R

; r < R ;
�11�

VR�r� � ÿZa
r
; r > R ; R5 1 ;

system (2) with the replacement VC�r� ! VR�r� can be solved
at r < R analytically in terms of the Bessel function. For
r < R, i.e., at short distances,

Ck�r� � Ck

�����������
Za

r

R

r �J��1=2�k�
�
Za

r

R

�
J��1=2ÿk�

�
Za

r

R

�
0BB@

1CCA ; r4R5 1 ;

�12�

with the upper (lower) signs corresponding to k < 0
�k > 0�.

Requiring the continuity of wave functions (12), noting
the asymptotic form (8) at r � R for Za < jkj, and using
Eqn (9), we obtain

tan ys�k;R�

� �sÿ k��ZaJ��1=2�k��Za� � �s� k�J��1=2ÿk��Za�
�
Rÿs

�s� k��ZaJ��1=2�k��Za� � �sÿ k�J��1=2ÿk��Za�
�
R s

;

s �
�����������������������
k 2 ÿ �Za�2

q
> 0 ;

�13�

where, as in Eqn (12), the upper (lower) signs correspond to
negative (positive) values of k.

If Za > jkj, then, according to Eqn (10), we have the
equality

exp
ÿ
2iyt�k;R�

�
� �itÿ k��ZaJ��1=2�k��Za� � �it� k�J��1=2ÿk��Za�

�
Rÿit

�it� k��ZaJ��1=2�k��Za� � �itÿ k�J��1=2ÿk��Za�
�
R it

;

t �
�����������������������
�Za�2 ÿ k 2

q
> 0 :

�14�

Boundary conditions (9) and (13), together with Eqns (10)
and (14), determine thewave functions of both the continuous
and discrete spectra of system (2) in model (11) for any Dirac
quantum number k and the nuclear charge Z (including
Z > Zcr).

4. Discrete spectrum

For s � �����������������������
k 2 ÿ �Za�2p

> 0, setting r � 2lr and l ��������������
1ÿ e 2
p

5 0 and following Ref. [6], we obtain the solutions
of Eqn (2) decaying at infinity in the form

F
G

� �
� C

�����������
1� e
p

exp

�
ÿ r
2

�
rs

�
�
C�a; c; r� �

�
k� Za

l

�
C�a� 1; c; r�

�
; �15�

where C is the normalization factor, C�a; c; r� is the two-
parameter Tricomi function (a � sÿ Zae=l and c � 1� 2s)
[33], and the upper (lower) sign refers to the function F �G�.

With Eqn (9), we then obtain the equation

�2l�s�Za �����������
1ÿ e
p � �kÿ s� �����������1� e

p �
G�1� sÿ Zae=l�G�ÿ2s�

�2l�ÿs�Za �����������
1ÿ e
p � �k� s� �����������1� e

p �
G�1ÿ sÿ Zae=l�G�2s�

� tan ys�k�; ÿ p
2
4ys�k�4 p

2
; �16�

which, together with equality (13), determines the discrete
spectrum for Za < jkj in model (11).

If Za > jkj, then, with t � ��Za�2 ÿ k 2�1=2 > 0, we have
the equation

�2l�it�Za ����������
1ÿ e
p � �kÿ it� ����������1� e

p �
G�1� itÿZae=l�G�ÿ2it�

�2l�ÿit�Za ����������
1ÿ e
p � �k� it� ����������1� e

p �
G�1ÿ itÿZae=l�G�2it�

� exp
ÿ
2iyt�k�

�
; Im yt�k� � 0 ; �17�

3 For s � 1=2; 0, logarithmic �ln r� terms arise in asymptotic form (8).
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which, together with equality (14), determines the energy
spectrum for Za > jkj in the same model.

Setting e � ÿ1 in Eqn (17) and noting the large-
argument asymptotic behavior of the gamma function
G�1� itÿ Zae=l� yields the following equation for the
critical charge Z

�n�
cr �k� at which the nth level with a given

quantum number k reaches the boundary of the lower
continuum:

argG
�
2i

�����������������������������ÿ
Z
�n�
cr a
�2 ÿ k 2

q �
�

�����������������������������ÿ
Z
�n�
cr a
�2 ÿ k 2

q
ln
ÿ
2Z �n�cr a

�ÿ yt�k� � pn ; �18�

where n � 0; 1; 2; . . . . Equation (18) combined with equality
(14) determines the critical charge Z

�n�
cr �k;R� as a function

of the quantum numbers k and n and the cutoff radius R.
Figure 1 shows the energies of the ground state and excited
levels for k � ÿ1 and k � 1 as functions of the charge in the
range 0 < Z4Zcr for R � 0:031. The accuracy of approx-
imate Eqn (18) as a function of the cutoff radius is shown in
Table 1.

5. Lower continuum wave functions

Noting the second linearly independent solution of the
degenerate hypergeometric equation and setting
k �

�������������
e 2 ÿ 1
p

, we obtain the wave functions of the lower
continuum solutions of system (2) in the form

F
iG

� �
� exp

�
�i p

2

� ��������������
ÿe� 1

p
�ÿ2ikr�it

�
A exp �ikr�

�
�
C�gÿ; h;ÿ2ikr� �

�
k� i

Za
k

�
C�gÿ � 1; h;ÿ2ikr�

�
� B exp �ÿikr�

�
�
C�g�; h; 2ikr� �

�
kÿ i

Za
k

�
C�g�� 1; h; 2ikr�

��
: �19�

Here g� � it� iZae=k, h � 1� 2it, t � ��Za�2 ÿ k 2�1=2,
Z > Zcr, and the upper (lower) sign refers to the function
F �iG�.

Comparing these expressions with asymptotic form (8)
with s � it yields

ut � G�ÿ2it��2k�it�Aaÿ Bb� ; �20�
uÿt � G�2it��2k�ÿit�A exp �ÿpt�b � ÿ B exp �pt�a �� ;

where

a � Za
��������������ÿe� 1
p ÿ �ik� t� ��������������ÿeÿ 1

p

G
ÿ
1ÿ itÿ i�e=k�Za� ;

�21�
b � Za

��������������ÿe� 1
p � �ik� t� ��������������ÿeÿ 1

p

G
ÿ
1ÿ it� i�e=k�Za� :

Hence, with boundary condition (10), it follows that

exp �ÿpt� B
A
� exp

ÿ
2idk�k;Z�� � f �k �k;Z�

fk�k;Z� ; �22�
A � exp �idk����������������

2p�ÿe�p exp

�
pZa�ÿe�

2k

�
;

where dk�k;Z� is the scattering phase,

fk�k;Z� � ÿi
�
exp

�
pt
2
ÿ ijt

�
aÿ exp

�ÿpt
2
� ijt

�
b �
�
�23�

is the Jost function, the constant factor A is determined from
the normalization of the wave function to d�kÿ k 0�, and we
have introduced the notation

exp �ijt� �
�2k�ÿitG�2it�
�2k�itG�ÿ2it� exp

ÿ
2iyt�k�

�
: �24�

The scattering phase dk�k;Z� for k � ÿ1 as a function of
Z � 232 > Zcr is shown in Fig. 2, which should be compared
with Fig. 13.3(a) in Ref. [34] for nonrelativistic resonance
scattering, in which the background phase shift is zero, the
phase d jumps from 0 to p, and the cross section for d � p=2
reaches the unitary limit. The dashed-dotted line shows the
asymptotic form of the phase at small positron momenta,

dk�k;Z� � Za
k

ln

�
Za
ek

�
� p

4
: �25�

The Gamow wave functions of quasistationary states
follow from functions (19) by setting B � 0. This condi-
tion leads to the following equation for the complex
energy spectrum of the quasidiscrete levels corresponding

1

1

0

0 2
ÿ1

Za

e

Figure 1. Energies of the ground state and the first excited state,

e�Za; k;R�, versus the charge Za for the Coulomb potential cutoff radius

R � 0:031 (nucleus radius r0 � 12 F) for k � ÿ1 (solid lines) and k � 1

(dashed lines).

Table 1. Critical charge Z
�n�
cr �k;R� in the rectangular cutoff model for the

nucleus radius r0 � R�h=�mc� (1) calculated numerically inRef. [11] (see the
Appendix) and (2) calculated from approximate equation (18) using
equality (14).

r0, F 1s1=2 2p1=2 2s1=2 Method

8
171 185 236 1

172 187 236 2

10
174 189 244 1

175 192 243 2

12
177 193 251 1

178 196 249 2
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to poles of the partial scattering matrix Sk�k;Z� �
exp �2idk�k;Z��:
�ÿ2ik�it�Za ��������������ÿe� 1

p ÿ �t� ik� �������������ÿeÿ1p �
G�1� itÿ iZae=k�G�ÿ2it�

�ÿ2ik�ÿit�Za ��������������ÿe� 1
p � �tÿ ik� ��������������ÿeÿ 1

p �
G�1ÿ itÿ iZae=k�G�2it�

� exp
ÿ
2iyt�k�

�
: �26�

The solution of Eqn (26) determines both the position e0
and the width g of a quasidiscrete level,

e � ÿe0 � i

2
g ; e0 > 0 ; g > 0 ; �27�

and we note that for g5 e0,

k0 � k 00 ÿ ik 000 ; k 00 �
�������������
e 20 ÿ 1

q
; k 000 � g

e0
2k 00

> 0 : �28�

We note that the unusual sign4 in front of the quasista-
tionary state width g ensures that a discrete level for Z > Zcr

moves to the nonphysical sheet, thereby ensuring the
consistency of the one-particle approximation [35, 36] for
the Dirac equation applied to the current problem, whereas
the Klein±Fock±Gordon equation leads to contradictions.

The trajectories traced out, asZ increases, by the S-matrix
poles in the plane of the complex variable k ��������������
e 2 ÿ 1
p

� k 00 ÿ ik 000 near the lower continuum boundary5

(Fig. 3) can be compared with the trajectories (see
Fig. 13.6(a) in Ref. [34]) of the poles of the nonrelativistic
elastic scattering amplitude of slow particles with a nonzero
orbital momentum, when a centrifugal rather than a
Coulomb barrier determines the presence of a resonance.

For Z < Zcr�k�, the energy of a discrete level is in the
range ÿ1 < ed < 1, and hence kd � ild, ld > 0, and the

corresponding scattering matrix pole resides on the imagin-
ary axis of the upper k-half-plane, i.e., on the fist physical
sheet. As the charge increases, this level approaches the lower
continuum boundary e � ÿ1; in the lower half-plane of
complex k, moving opposite to it, also along the imaginary
axis, there is a virtual level kv that resides on the second,
unphysical sheet. AtZ � Zcr�k�, these levels collide, and asZ
increases further, they become a pair of Breit±Wigner poles
on the unphysical sheet. We note that in the supercritical
region, the pole k

���
BW that is closest to the positive real half-axis

andwhich corresponds to quasistationary state (27)manifests
itself as a resonance of the width g in positron scattering by a
supercritical charge.

Figure 4 shows how the position e0�Z;R� of the `ground'
(for k � ÿ1) quasidiscrete level and its width g�Z;R� for the
cutoff radius R � 0:031 vary. The position of the S-matrix
pole corresponds (for Z � 232) to the energy resonance
e � � 4:85, and g � � 0:09 to the resonance width. This agrees
with Fig. 2, where the phase d � � 1:67 corresponds to the
positron energy e �, and the resonance width falls into the
region of the fast variation of the phase.

6

3

0
1 2 3 4 5 6ep

d k
�e p

;Z
a�

d � � 1.67

p
Z � 232, k � ÿ1

Figure 2. Scattering phase dk�ep;Za� for k � ÿ1 versus the positron energy
for Z � 232 in the interval Z

�0�
cr �ÿ1;R� � 177 < 251 � Z

�1�
cr �ÿ1;R� for

R � 0:031 (solid line). The dashed-dotted line is the asymptotic phase for

small positron momenta, Eqn (25), and d � is the phase corresponding to

the positron energy e �.
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close to the boundary of the lower continuum e � ÿ1. The
arrows indicate the direction of the trajectory as the charge Z increases.

4 The same `wrong' sign in front of the imaginary part of the energy for

Z > Zcr was obtained previously in Refs [11, 12].
5 In Refs [35, 36], the solutions of the Klein±Fock±Gordon and the Fock

equations in the framework of the effective radius approximation are

compared in terms of the trajectories of scattering matrix poles near the

lower continuum boundary. A qualitative difference between these two

problems was noted in [10].
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�Zÿ Zcr�a for the Coulomb potential cutoff radius R � 0:031. e � and g �

are the position and width of the S-matrix pole that correspond to the

resonance at Z � 232.
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With modification (11) of the Coulomb potential, the
Hamiltonian HD�r; k;R� becomes self-adjoint, and its eigen-
fuctions form a complete system, i.e., a basis. Because the
electron spectrum ÿ1 < e <1 and the positron spectrum
04ep <1, ep � ÿe for e4 ÿ 1 do not overlap,6 Furry's
quantization procedure [37] using this basis is applicable.
Importantly, for the complex energy of a positron quasista-
tionary state, we have

eps � e0 ÿ i

2
g ; e0 > 0 ; g > 0 ; �29�

which is the usual expression for the energy of a quasidiscrete
level (for Z > Zcr, the resonance scattering of a positron,
albeit on a supercritical atom, was briefly discussed in [20]).
The above quantization is consistent for any value of the
charge, and hence there is no reason to expect the nuclear
charge to be screened at Z > Zcr by vacuum-produced pairs
(as discussed in Refs [11, 12, 14±25]).

Mathematically, the assertion of no spontaneous e�eÿ

pair production follows from the fact that in the problem
we are considering, the in- and out-states with a given
quantum number k are unitarily equivalent because scatter-
ing matrix (22), Sk�k;Z� � exp �2id�k;Z��, is unitary due to
the real-valuedness of the scattering phase (see Fig. 2). This is
where the supercritical Coulomb problem differs consider-
ably from the problem of the Klein paradox [38], where
positive- and negative-frequency states overlap and two
complete solution sets of the Dirac equation (the in- and
out-sets) must be used [39±42].

6. Conclusion

The `cutoff' procedure [10], i.e., the Coulomb potential
regularization at short distances, ensures the self-adjointness
of the Dirac Hamiltonian and hence determines a complete
set of orthonormal solutions of the radial Dirac equation for
any nucleus charge Z. This implies that the one-particle
approximation for the Dirac equation is consistent not only
forZ < Zcr but also for the supercritical regionZ > Zcr, thus
implying that a bare supercritical nucleus is stable in the
vacuum. We note that corresponding to the vacuum, i.e., to
the lowest-energy state, are the unfilled states of the upper
continuum, the unfilled discrete levels, and the states (fully
occupied by electrons) of the lower continuum (the Dirac sea
distorted by the presence of a heavy Z > Zcr nucleus). By the
Pauli principle, e�eÿ pair production from the vacuum by a
supercritical Coulomb field is impossible because the electron
of a pair cannot occupy an already occupied state in theDirac
sea, and therefore the supercritical atom that was discussed in
Refs [20, 23] cannot form. In the framework of Furry's
secondary quantization procedure, the states corresponding
to the Dirac sea are unoccupied positron states, and those
corresponding to the vacuum are no-particle states.

We discuss the question, addressed in Ref. [10], of what
happens to the electron of a hydrogen-like atom when the
nucleus charge exceeds the critical value. If the charge
changes as a result of a proton or an a particle being
absorbed by the nucleus, then the question reduces to the
standardly solvable problem of atom ionization by `shake-
up' [43]. In this case, a bound `undercritical' electron can be
found with different probabilities in the electron states of the

discrete and continuous spectra of the supercritical nucleus,
and therefore a Z > Zcr ion does not have the specific
properties of a `superctitical' ion as described in [20].

For a charge changing adiabatically nearZ � Zcr, screen-
ing due to the vacuum polarization, i.e., the change in the
shape of the electrostatic potential, should be taken into
consideration, making the problem a many-particle one.
The adiabatic increase in the effective charge occurs in the
collision of two nuclei, but this is already a completely
different problem, the subject of many experimental and
theoretical studies (for more on this, see Ref. [44]). We note
that e�eÿ pair production due to two heavy nuclei approach-
ing each other was recently treated in the standard quantum
electrodynamics framework in [45].

We finally note that all the above-mentioned aspects of
the supercritical Coulomb problems arise in the nonrelati-
vistic theory of two-dimensional impurity heterostructures.
For example, the electronic properties of SiC-substrated
graphene doped with light nuclei or ions are described in
terms of an effective two-dimensional gapped Dirac equa-
tion [27, 46]. The energy spectrum in such a two-dimen-
sional Coulomb problem is determined by Dirac system (1)
with the replacement k! ÿJ, where J is the total conserved
two-dimensional angular momentum, which can take any
negative or positive value (including half-integer values
J � 0;�1=2; �1;�3=2; . . .) and can also be zero [27]. All the
questions raised above can be answered by measuring the
energy levels in graphene doped with charged impurities.
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7. Appendix

The term `critical nuclear chargeZcre' usually refers [10] to the
value of Ze for which the level Ed � edmc 2 of the discrete
spectrum lowers to the boundary of the lower solution set of
the Dirac equation:

ed�k;Zcra� � ÿmc 2 �A:1�

(we set �h � c � m � 1 hereafter). Below is a brief discussion
of how to calculate Zcr.

Solving Dirac equation (15) with the Coulomb potential
V�r� � ÿZa=r for the energy ed � ÿ1 is quite straightforward
because, in this case, r � 2lr! 0, a!1, and the identities

lim
a!1

�
G�aÿ c� 1�C

�
a; c;

x

a

��
� 2

����������
x 1ÿc
p

Kcÿ1�2
���
x
p � ;

C 0�a; c; x� � 1

x

��aÿ c� x�C�a; c; x� ÿC�aÿ 1; c; x��
hold (see the reference book [33]). We note that

F�r� � Kin
ÿ �����������

8Zar
p �

; G�r� � 1

Za

�
r
d

dr
� k
�
F ; �A:2�

F;G � r�1=4 exp
ÿÿ �����������

8Zar
p �

; r!1 ; �A:3�

where n � 2��Za�2 ÿ k 2�1=2 > 0, k � �� j� 1=2�, j � 1=2;
3=2; . . . ; k is an integral of motion of the Dirac equation in a

6 This also remains true forZ � Zcr when the energy ed � ÿ1 corresponds
to a bound electron state and ep > 0.
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central field, Kin�z� is the Macdonald function,7 and F and G
are the radial wave functions for the respective upper and
lower components of the Dirac bispinor.

Expression (A.2) is valid for ed � ÿ1 and r > R; in the
range 0 < r < R5 1, the potential V�r� differs from the
Coulomb potential because of the finite nucleus size. Neglect-
ing terms of the order of R5 1 and matching wave functions
at the edge of the nucleus, we obtain the equation for the
critical charge Zcr [11, 12],

zK 0in�z�
2Kin�z� � x ; �A:4�

where z � 2
���������������
2ZcraR
p

, and

x � r

F

�
dF

dr

�
r�R
�

Za
tan �Za� ; k � ÿ1 ;

�Za�2 tan �Za�
tan �Za� ÿ Za

; k � 1

8>>><>>>: �A:5�

is the dimensionless logarithmic derivative [the last expres-
sions refer to the rectangular cutoff model (11)]. The
numerical solution of Eqns (A.4) and (A.5) yields the values
of Zcr listed in Table 1. A more realistic cutoff model,

V�r� �
ÿZa
2R

�
3ÿ

�
r

R

�2�
; 0 < r < R ;

ÿZa
r
; r > R ;

8>><>>: �A:6�

which corresponds to a nucleus with a constant volume
charge density, yields the respective values Zcr�1s1=2� � 168,
170, 173 for r0 � 8, 10, 12 F [11, 12]. We also note that
extrapolating the dependence r0 � 1:2A1=3 [F], A � 2:5Z
common to heavy nuclei to the region Z > 137 yields
Zcr�1s1=2� � 169 for the ground state.

Setting e � ÿ1 in Eqn (17) for the energy spectrum with
Za > jkj, we obtain Eqn (18) for the critical charge for which
the level with a given k reaches the boundary of the lower
continuum. The solutions of this equation obtained using
equality (14) resulting from cutoff model (11) are listed in
Table 1 for different values of the cutoff radius R.

Although markedly different in their form, Eqns (A.4)
and (18), (14) for the critical nuclear charge produce similar
values of Zcr (see the tabulated values for the lowest levels
ns1=2 and np1=2), thus providing independent support to the
method developed in this paper.
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