
Abstract. We discuss the mechanisms of unconventional super-
conductivity and superfluidity in 3D and 2D fermionic systems
with purely repulsive interaction at low densities. We construct
phase diagrams of these systems and find the areas of the
superconducting state in free space, as well as on the lattice in
the framework of the Fermi-gas model with hard-core repul-
sion, theHubbardmodel, the Shubin±Vonsovskymodel, and the
tÿJ model. We demonstrate that the critical superconducting
temperature can be greatly increased in the spin-polarized case
or in a two-band situation already at low densities. The pro-
posed theory is based on the Kohn±Luttinger mechanism or its
generalizations and explains or predicts anomalous p-, d-, and
f-wave pairing in various materials, such as high-temperature

superconductors, the idealized monolayer and bilayer of doped
graphene, heavy-fermion systems, layered organic supercon-
ductors, superfluid 3He, spin-polarized 3He mixtures in 4He,
ultracold quantum gases in magnetic traps, and optical lattices.

Keywords: anomalous superconductivity, Kohn±Luttinger mech-
anism, superfluidity, repulsive Fermi gas, Hubbard and tÿJmodel,
Shubin±Vonsovsky model, graphene monolayer, graphene bilayer

1. Introduction

The recent discovery of Cooper pairing at a recordly high
temperature of 190 K in metallic hydrogen sulfide H2S [1, 2]
under pressure of the order of 1 Mbar raises our hopes to
move forward from `high-temperature' to `room-tempera-
ture' superconductors. At the same time, there are many
interesting low-temperature superconducting and superfluid
systems with anomalous types of pairing and a nontrivial
structure of the order parameter. In this review, we consider
systems with a low density of fermions in the framework of
the nonphononmechanisms of superconductivity, such as the
famous Kohn±Luttinger mechanism and its generalizations,
and the exchange mechanisms connected with the antiferro-
magnetic attraction of spins on neighboring sites, which are
topical, in particular, for the tÿJ model, in which both low
and high critical temperatures of the superconductive transi-
tion and anomalous p-, d-, and f-wave Cooper pairing can
appear.

As is known from textbooks, the conduction electrons in
metals, together with the positively charged ions, form a
solid-state plasma, which determines the combination of their
electric, galvanomagnetic, kinetic, and superconducting
properties. The coupling between the subsystem of massive
positive ions and the subsystem of light fermions leads to the
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appearance of the electron±phonon interaction, which affects
the properties of the electron subsystem. In particular, the
effective interaction between electrons in a solid-state plasma
can differ significantly from the Coulomb interaction of
electrons in the vacuum and can even change sign. This most
important effect is the basis of the electron±phonon mechan-
ism of Cooper instability in standard superconductors [3].

It is obvious that the role of the mediator (coupling to
which initiates the renormalization of the Coulomb interac-
tion) can be played by any other subsystem. It is only
necessary that the interaction of the electron gas with this
subsystem lead to polarization effects that cause the genera-
tion of electrons and holes in the vicinity of the Fermi surface.
Notably, in many theoretical studies on high-temperature
superconductors, collective excitations of the subsystem of
localized spins of copper ions serve as such a mediator. This,
in particular, determines the spin-fluctuation mechanism of
Cooper instability, which leads to the formation of a super-
conducting phase with d-type symmetry of the order para-
meter.

Within the formalism of the secondary quantization of
fermions, the operator of Coulomb interaction of electrons
contains terms that in the higher orders of the perturbation
theory initiate polarization contributions to the ground-state
energy, which also leads to the renormalization of the
Coulomb interaction of electrons. Therefore, the effective
interaction of electrons in such a metal can differ significantly
from the electron±electron interaction in the vacuum. This
makes topical the problem (first formulated by Anderson [4])
of such a renormalization of Coulomb interaction under
which the effective electron±electron interaction in a sub-
stance would have an attractive rather than repulsive nature.
In other words, the problem consists in searching for
conditions under which the above-mentioned polarization
effects in the electron plasma of a metal would lead to a
change in the sign of the resulting interaction between the
electrons. From the mathematical standpoint, the problem
reduces to calculating the effective pairwise interaction of
electrons with multiparticle effects in the electron ensemble
taken into account. No less important, according to Ander-
son, is the problem of explaining the unconventional proper-
ties of the normal state of many strongly correlated electronic
systems at temperatures higher than the critical temperature,
especially in the pseudogap state.

In recent decades, considerable progress has been
achieved in experimental and theoretical studies of super-
conductive systems with a nonphonon nature of the Cooper
pairing and with a complex, nontrivial structure of the order
parameter. The first experimentally discovered systems with
unconventional triplet p-wave pairing (the total spin of the
Cooper pair Stot � 1 and the orbital momentum of the
relative motion of the pair l � 1) were the superfluid A and
B phases of 3He with low critical temperatures, Tc � 1 mK.
Another example of systems in which the p-wave pairing is
realized are 6Li2 and

40K2 molecules in magnetic traps in the
regime of the p-wave Feshbach resonance with ultralow
critical temperatures: Tc � 10ÿ6ÿ10ÿ7 K [5, 6]. It is assumed
that unconventional p-wave pairing with critical tempera-
tures Tc � 0:5ÿ1 K is realized in some heavy-fermion
intermetallic compounds, such as U1ÿxThxBe13 and
UNi2Al3, with large effective masses m � � �100ÿ200�me [7,
8]. Frequently, the p-wave pairing is mentioned in connection
with organic superconductors, such as a-(BEDT-TTF)2I3
with Tc � 5 K [9]. Finally, p-wave pairing with Tc � 1 K

is apparently realized in the ruthenates Sr2RuO4 [10, 11],
and it cannot be excluded in the layered dichalcogenides
CuS2ÿCuSe2 or the semimetals and semimetallic super-
lattices InAsÿGaSb, PbTeÿSnTe [12]. The heavy-fermio-
nic intermetallic compound UPt3 with m � � 200me and
Tc � 0:5 K, as well as a large class of high-temperature
cuprate superconductors with critical temperatures from
Tc � 36 K (for the lanthanum-based compounds) to
Tc � 160 K (obtained in mercury-based superconductors
under pressure), are related to unconventional superconduc-
tors with the singlet d-wave pairing (Stot � 0, l � 2). Finally,
in connection with the problems of applied superconductiv-
ity, it is also necessary to mention new multiband super-
conductors with a more conventional s-wave pairing, such
as MgB2 [13], and the recently discovered superconductors
based on iron arsenide [14] and the H2S and PoH2 metallic
compounds already noted above [15].

Along with the problems of Cooper pairing in the above
electron systems, also of significant interest is the search for
fermionic superfluidity in three-dimensional (3D) and two-
dimensional (2D) (thin films, submonolayers) solutions of
3He in 4He [16±18] and for superconductivity in doped
graphene [19], which are problems that have still not been
solved experimentally. These systems are among the most
promising ones from the standpoint of the experimental and
theoretical description of a wide class of physical phenomena
and of the nature of multiparticle correlations in them.

Notably, submonolayers of 3He adsorbed on different
substrates, such as a solid substrate or the free surface of
superfluid 4He, with the variation of the particle density in
wide ranges, allow the realization of different regimes in the
systemÐfrom the ultrararefied Fermi gas to strongly corre-
lated Fermi systems [20]. This makes the solutions ideal
objects for the development and verification of different
methods of the Fermi liquid theory. The unbalanced (spin-
polarized) ultracold Fermi gases in 3D and especially in 2D
magnetic traps are also very promising [21, 22].

Of significant interest from both the fundamental and
applied standpoints is graphene, because of its unique
electronic properties [23, 24]. Near the Fermi level, the
electrons in graphene have a linear dispersion, and the energy
gap between the valence band and the conduction band is
absent; therefore, the electrons in graphene can be described
by a 2D Dirac equation for massless charged quasiparticles
[25]. The properties of these quasiparticles, such as their two-
dimensionality, the spinor nature of their spectrum, the zero
mass, and the absence of the gap in the spectrum, lead to a
number of phenomena that have no counterparts in other
physical systems [26].

The above-mentioned studies have stimulated an inten-
sive search for alternative mechanisms of pairing based on
strong correlations in the Fermi liquid. Themost promising in
this respect are the Kohn±Luttinger mechanism [27], pro-
posed in 1965, and its generalizations (see, e.g., [28]). The
Kohn±Luttinger mechanism assumes the transformation of
the bare repulsive interaction of two particles in the vacuum
in the presence of a fermionic background into an effective
attraction in the substance in the channel with a nonzero
orbital angular momentum of the pair.

This review is devoted to the description of the basic
results obtained in recent decades concerning Kohn±Luttin-
ger superconductivity in repulsive Fermi systems and its
generalizations as well as exchange mechanisms of super-
conductivity in the generalized tÿJmodel.
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2. Superconductivity in the model
of a Fermi gas with repulsion

The basic model for studying the nonphonon mechanisms of
superconductivity in low-density electron systems is the
model of a Fermi gas. In the case of a Fermi gas with
attraction, the scattering length a is negative �a < 0�, which
results in a traditional s-wave pairing (total spinS � 0, orbital
angular momentum l � 0) with the critical temperature

T s
c � 0:28 eF exp

�
ÿ p
2jajpF

�
; �1�

where eF is the Fermi energy and pF is the Fermi momentum.
This result was obtained in Ref. [29] soon after the

appearance of the Bardeen±Cooper±Schrieffer (BCS) the-
ory [3]. Result (1) differs from the classical formula given in [3]
by the presence of a quantity 0:28 eF in the preexponential
factor instead of the Debye frequency oD typical for the
phonon models in conventional superconductors.

In the model of a Fermi gas with repulsion, the scattering
length a is positive �a > 0� and the superconductivity
corresponds to the Kohn±Luttinger mechanism in the low-
temperature region. The physical reason for this consists in
the effective interaction of quasiparticles, which arises as a
result of the polarization of the fermionic background.Due to
a sharp boundary existing in the momentum space which is
equal to the diameter of the Fermi sphere 2pF and separates
the occupied states from the empty ones, the effective
interaction of quasiparticles that are located on the Fermi
level does not decrease exponentially, but has an oscillating
form (Friedel oscillations [30, 31])

Ueff�r� � cos �2pFr�
�2pFr�3

: �2�

If the distance between two electrons in a Cooper pair is
relatively large, effective interaction (2) in the coordinate
space has a large number of maxima and minima (Fig. 1).
Then the integral effect determined by the averaging over the
potential relief of Friedel oscillations can, in principle, lead to
an effective attraction and the appearance of superconductiv-
ity in the system.

The first to advocate this mechanism of superconductivity
were Kohn and Luttinger [27], who considered 3D repulsive
Fermi systems. They showed that the effective interaction in
the first two orders of the perturbation theory in the gas
parameter (more precisely, in the scattering length a) is
described by the sum of the five diagrams shown in Fig. 2.
The first diagram corresponds to the bare interaction of two
electrons in the Cooper channel. The next four diagrams
(Kohn±Luttinger diagrams) are due to second-order pro-
cesses and take into account the polarization effects of the
filled Fermi sphere. In the case of a short-range potential, the
contribution to the effective interaction is determined only
by the fourth exchange diagram, and in the first two orders
of the perturbation theory, the expression for Ueff can be
written as

Ueff�p; k� � 4pa
m
�
�
4pa
m

�2

P�p� k� ; �3�

where 4pa=m is the pseudopotential, which corresponds to
the wavy line in Fig. 2, andP�p� k� is the static polarization

operator, which is described by the standard Lindhard
function [34, 35]

P�p� k� � 1

N

X
p1

nF�ep1ÿpÿk� ÿ nF�ep1�
ep1 ÿ ep1ÿpÿk

: �4�

This operator is responsible for the charge screening in the
electron plasma in metals. The plus sign in the argument of
the polarization operator is due to the so-called crossing,
which, in the case of short-range repulsion, distinguishes the
exchange diagram from the true polarization loop, which
contains the argument pÿ k. In the absence of a lattice,
ep � p2=�2m� is the energy spectrum,

nF�x� �
�
exp

�
xÿ m
T

�
� 1

�ÿ1
is the Fermi±Dirac distribution function, and m is the
chemical potential.

It was noted in the early work of Migdal [36] and Kohn
[37] that at low temperatures �T5 eF�, the polarization
operator contains, apart from a regular part, a singular

r

x0

Ueff

Figure 1. Friedel oscillations in the effective interaction of two particles as

a result of the polarization of the fermionic background. x0 is the

coherence length of the Cooper pair [32].
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Figure 2. Diagrams of the first and second order for the effective

interaction of electrons Ueff. The solid lines with light (dark) arrows

correspond to the Green's functions of electrons with the spin projec-

tions �1=2 �ÿ1=2�; q1 � p1 � pÿ k and q2 � p1 ÿ pÿ k. The wavy lines

correspond to the bare interaction. In the case of a Fermi gas (see

Section 2), the Hubbard model (see Section 3), and the Shubin±

Vonsovsky model (see Section 6), the indices in the diagrams are:

i � j � l � m � 1. In the case of a graphene monolayer (see Section 8),

i � j � 1, and l;m � 1; 2. In the case of a graphene bilayer (see Section 9),

i; j � 1; 2, and l;m � 1; 2; 3; 4 [33].

August 2015 Anomalous superconductivity and superêuidity in repulsive fermion systems 735



partÐ the so-called Kohn anomaly, which in the 3D case has
the form

Psing�~q� � �~qÿ 2pF� ln j~qÿ 2pFj ; �5�

where we have ~q � jp� kj in the cross-channel. In the
coordinate space, the singular part of Psing leads to Friedel
oscillations (2) in the effective interaction (see Fig. 1).

Thus, the purely repulsive short-range potential between
two particles in vacuum induces an effective interaction in the
electron gas in a metal with the competition between
repulsion and attraction. It turns out that the singular part
in Ueff favors attraction, ensuring a contribution that always
exceeds the repulsive contribution caused by the regular part
of Ueff. At large orbital momenta l4 1, this leads to a
superconducting instability with the critical temperature
Tcl � eF exp �ÿl 4�. In this case, the conventional singlet
pairing in the s-wave channel (Stot � 0, l � 0) is suppressed
by the short-range Coulomb repulsion caused by the main
maximum in Ueff (see Fig. 1), and superconductivity is
realized at large orbital momenta, l4 1. We note that at
l 6� 0, the role of the main maximum is weakened by the
centrifugal potential, which improves the conditions for the
appearance of superconductivity in channels with anomalous
pairing.

From Ref. [27], a nontrivial conclusion followed that no
Fermi systems exist in the normal state at a zero temperature;
any 3D electronic system with a purely repulsive interaction
between particles is unstable with respect to the transition to
the superconducting state with a large orbital angular
momentum of the relative motion of a Cooper pair �l4 1�.
However, the estimates carried out in [27] for the critical
temperature in electronic systems in metals with realistic
parameters and for superfluid helium at l � 2 gave very low
values of the critical temperature: Tc � 10ÿ16 K for 3He and
Tc � 10ÿ11 K for metallic plasma. The low value of Tc was
one of the reasons why the Kohn±Luttinger mechanism was
not popular among researchers for a sufficiently long period
and was unjustly forgotten.

Later on, in Refs [38, 39], it was shown that the
temperature of the superconducting transition in [27] was
underestimated because of the utilization of an asymptotic
expression for large values of the orbital angular momentum,
l4 1. In reality, at l � 1, an exact analytic calculation shows
that the contributions to Ueff that correspond to the
attraction of quasiparticles dominate over the repulsive
contributions. As a result, the repulsive 3D Fermi gas is
unstable with respect to the superconducting transition with
the triplet p-wave pairing at the critical temperature [38±41]

Tc1 � eF exp
�
ÿ 5p2

4�2 ln 2ÿ 1��apF�2
�
� eF exp

�
ÿ 13

l2

�
; �6�

where l � 2apF=p is the effective 3D Galitskii gas parameter
[42]. We note that for l � 1, the contribution from the Kohn
anomaly only increases the value of Tc1, but does not play a
decisive role in the appearance of the triplet superconductivity
itself.

It was demonstrated inRef. [43] the critical temperature of
a superfluid transition can be substantially increased already
at low fermionic densities by placing the system of neutral
Fermi particles into a magnetic field or by creating spin
polarization �n" > n#�. This occurs because the paramag-
netic suppression of the superconductivity (which takes

place for s-wave pairing) is absent in the p-wave channel for
the so-calledA1 phase and the increase in Tc is possible due to
the enhancement of the effective interaction and the changes
in the character of the Kohn anomaly. The highest critical
temperatures then correspond to the A1 phase, where the
Cooper pair is formed by two spins up, and the effective
interaction for them is prepared by two spins down. In this
case, Tc is a function of the ratio of the density of spin-up
particles to the density of spin-down particles, n"=n#, or more
precisely of the spin polarization a � �n" ÿ n#�=�n" � n#�.

In the case of a repulsive 2D electron gas, in the first two
orders of the perturbation theory in the gas parameter, the
effective interaction takes the form [44, 45]

Ueff�p; k� � 4p
m

f0 �
�
4p
m

f0

�2

P�p� k� ; �7�

where f0 � 1=�2 ln �pFr0�� is the Bloom 2D gas parameter [46]
and P�p� k� is the 2D polarization operator in the cross
channel.

In the 2D situation, the effective interaction in the
coordinate space also contains Friedel oscillations:

Ueff�r� � f 2
0

cos �2pFr�
�2pFr�2

; �8�

which are even much stronger than in the 3D case. But in the
momentum space, the 2D Kohn anomaly has one-sided
character [47],

U sing
eff �~q� � f 2

0 Re
����������������
~qÿ 2pF

p
� 0 ; �9�

for ~q � jp� kj4 2pF, and is therefore ineffective for the
problem of superconductivity (in which ~q4 2pF). Thus, the
2D Fermi gas with repulsion remains in the normal state at
least in the first two orders of the perturbation theory in the
gas parameter f0. Nevertheless, it was shown in [44] that the
superconducting p-wave pairing appears in the next (third)
order of the perturbation theory in f0, in which, for the
singular contribution to the effective interaction, the expres-
sion under the square root in (9) reverses sign:

U sing
eff �~q� � f 3

0 Re
����������������
2pF ÿ ~q

p
: �10�

In this case, an exact calculation [48] of the critical
temperature, taking all irreducible third-order diagrams into
account, yields

Tc � eF exp
�
ÿ 1

6:1 f 3
0

�
: �11�

For the submonolayers of 3He on the surface of superfluid
films of 4He [49], the temperature of the superconducting
transition is estimated as 10ÿ4 K [44, 48] for the maximal
densities at which the Fermi-gas description is still applicable,
and this estimate is quite reasonable for experimental
observation.

3. Superconductivity in the 3D and 2D Hubbard
model with repulsion

In connection with the discovery of high-temperature super-
conductivity [50], the Hubbard model [51] acquired substan-
tial popularity as one of the basic models for describing the
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anomalous properties of cuprates. The Hubbard model is a
particular case of the general model of interacting electrons,
whose band structure is described within the strong-coupling
approximation and is the minimal model that accounts for
band electron motion in the metal as well as the strong
electron±electron interaction [52±56]. This model is of special
importance in the description of narrow-band metals [48].
The Hamiltonian of the Hubbard model on a lattice has the
form

Ĥ 0 �
X
fs

�eÿ m�nfs �
X
fms

tfmc
y
fscms �U

X
f

nf "nf # ; �12�

where c
y
fs�cfs� is the operator of creation (annihilation) of an

electron with a spin projection s � �1=2 at a site f ; e is the
on-site energy of the electron; m is the chemical potential of
the system; nf �

P
s nfs �

P
s c
y
fscfs is the operator of the

number of particles on the site f ; the matrix element tfm
stands for electron hoppings from site f to sitem; andU is the
parameter of the Coulomb interaction of two electrons that
are located on the same site and have opposite spin
projections (Hubbard repulsion).

Since extensive experimental data have indicated that the
basic dynamics of Fermi excitations in cuprates is developed
in the CuO2 planes, the nonphonon mechanisms of super-
conductivity weremainly based on the 2DHubbardmodel on
a simple square lattice. In the momentum space, the
Hamiltonian of the model has the form

Ĥ 0 �
X
ps

�ep ÿ m�c ypscps �U
X
pp 0q

c
y
p"c
y
p 0�q#cp�q#cp 0" ; �13�

where the energy of an electron, including distant hoppings
(which are determined by the parameters t2 and t3) is given
by

ep � 2t1
�
cos �pxa� � cos �pya�

�� 4t2 cos �pxa� cos �pya�
� 2t3

�
cos �2pxa� � cos �2pya�

�
; �14�

where a is the lattice constant (intersite distance).
We note that when simulating electron spectrum (14) and

constructing the phase diagram of the superconducting state
in the Hubbard model, going beyond the framework of the
nearest-neighbor approximation (t2 6� 0, t3 6� 0) becomes
essential. This is because the leading contribution to the
effective coupling constant comes from the interaction of
electrons that are located near the Fermi surface, whose
geometry depends on the structure of the energy spectrum.
An important role is also played by the fact that account for
distant hoppings shifts the Van Hove singularity in the
density of electronic states from the position at half-filling
�n � 1� into the region of smaller or higher electronic densities
(Fig. 3). We note that the introduction of hoppings to the
third coordination sphere of the square lattice, t3 6� 0, can
lead to a qualitative change in the geometry of the Fermi
surface, which connected with the formation of a multisheet
Fermi contour (see the inset in Fig. 3).

Thus, an account for distant hoppings can lead to a
modification of the phase diagram that determines the
regions of the realization of the superconducting states with
different types of the order parameter symmetry.

In the Hubbard model, the perturbation theory can be
constructed in two limiting cases: (1) the Born weak-coupling
approximation, U5W (W � 2zt is the band width; z is the

number of nearest neighbors) and an arbitrary electron
density, 0 < n < 1; and (2) the strong-coupling approxima-
tion U4W at low electron density, n5 1. The utilization of
the weak-coupling approximation U5W in the analysis of
the feasibility of Kohn±Luttinger superconducting pairing
allows us to calculate Ueff for the Cooper channel at all the
densities 0 < n4 1 by restricting ourselves to the second
order diagrams in the interaction U (see Fig. 2). In the
opposite limit of strong coupling, U4W, the restriction to
first- and second-order diagrams is justified only in the region
of low electron density n5 1, where the Galitskii±Bloom
Fermi-gas expansion is valid [42, 46].

In one of the first studies [57], the authors analyzed the
conditions for the realization of the Kohn±Luttinger super-
conductivity in the 2DHubbardmodel withHamiltonian (13)
in the weak-coupling limit U5W, in the nearest-neighbor
approximation �t2 � t3 � 0� at low electron densities
�pFa5 1�. In this case, the following expansion is valid for
the electron spectrum:

ep ÿ m � 2t1
�
cos �pxa� � cos �pya�

�ÿ m

� p 2 ÿ p 2
F

2m
ÿ �p

4
x � p 4

y �a 2

24m
� �p

6
x � p 6

y �a 4

720m
; �15�

wherem � 1=2t1a
2 is the bandmass. It can be seen that in the

chosen approximation, the bare spectrum of electrons at
pFa5 1 almost coincides with the spectrum of a free Fermi
gas, and the Hubbard Hamiltonian is equivalent to the
Hamiltonian of a weakly nonideal Fermi gas with short-
range repulsion between the particles [58]. To determine the
possibility of the superconducting pairing in this approxima-
tion, the effective bare vertex for the Cooper channel was
calculated in first two orders of perturbation theory:

Ueff�p; k� � U�U 2P�p� k� ; �16�

where P�p� k� is polarization operator (4). To solve the
problem of superconducting pairing, the function Ueff�p; k�
was expanded in a series with eigenfunctions of the irreducible

ky

kx
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rjt1j
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Figure 3.Modification of the density of electronic states and the shift of the

Van Hove singularity in the Hubbard model on a square lattice upon a

change in the hopping integrals: t2 � t3 � 0 (solid curve); t2 � 0:15, t3 � 0

(dotted curve); t2 � 0:15, t3 � 0:1 (dashed curve); t2 � 0:44, t3 � 0

(dashed-dotted curve).The inset shows the formation of a multisheet

Fermi contour at t2 � 0:44, t3 � ÿ0:1, and m � 2 (all the parameters are

given in units of jt1j) [32].
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representations of the C4v symmetry group of the square
lattice (see Section 6), and then the sign of the expressions for
U g

eff was analyzed for each representation g. As a result, it was
shown that the 2D electron system described by the Hubbard
model for small filling and U5W is unstable towards the
superconducting pairing with the dxy-type symmetry of the
order parameter D�f� � sin �4m� 2�f, where the integer m
satisfies the condition m 2 �0;1�.

The weak-coupling limit U5W in the 3D and 2D
Hubbard model near the half-filling, n � 1, was analyzed in
[59±61]. In the 2D case [61], in the nearest-neighbor approx-
imation at n � 1, the electron spectrum becomes quasihyper-
bolic

ep � �
p 2
x ÿ p 2

y

2m
; �17�

near the corner points �0;�p� and ��p; 0� at which the Fermi
surface almost touches the Brillouin zone (Fig. 4). As it is well
known, the density of electronic states has a logarithmic
singularity in these regions near the Van Hove filling, namely
r�E � � ln �t=jmj�, where jmj5 t is the modulus of the
chemical potential near the half-filling. It can be seen from
Fig. 4 that there are almost flat regions of the Fermi surface,
which satisfy the condition for ideal nesting in the exactly
half-filled case �n � 1�,

ep�Q � ÿep ; �18�

where Q � �p=a; p=a� is the nesting vector for the 2D square
lattice. In these regions, the polarization operator reads
P�Q� � ln2 �t=jmj� [61, 62], where one logarithmic factor
comes from the density of states and the other one is due to
the Kohn anomaly. The following quantity serves here as the
parameter of the perturbation theory in the 2D weak-
coupling limit:

f0 � U

8pt
5 1 ; �19�

and in the second order of the perturbation theory in f0, the
expression for the effective interaction takes the form

Ueff � f0 � f 2
0 ln2

t

jmj : �20�

Since the expression for the Cooper loop L at n � 1, apart
from the usual Cooper logarithm, also contains a logarithm
due to the Van Hove singularity, we have

L � 1

N

X
p

tanh �xp=2T �
2xp

� ln
m
T
ln

t

jmj ; �21�

where xp � ep ÿ m. Therefore, the expression for the critical
temperature with the order parameter of the typical for
cuprates dx 2ÿy 2 -wave symmetry obtained in Ref. [61] in the
leading logarithmic approximation has the form

f 2
0 ln3

t

jmj ln
m
Tc
� 1 ; �22�

or

T
d
x 2ÿy 2

c � m exp
�
ÿ 1

f 2
0 ln3 �t=jmj�

�
: �23�

It can be seen from expression (23) that the denominator in
the right-hand side, in spite of the low value of f 2

0 at f0 5 1,
increases substantially due to the large value of
ln3 �t=jmj�4 1.

The results in [57] on the realization of dxy-wave pairing
at n9 0:6 and on the dx 2ÿy 2 -wave pairing at n � 1 [59±61] in
the weak-coupling limit were subsequently confirmed by
other authors. In [63], a phase diagram of the superconduct-
ing state of the 2D Hubbard model was constructed at small
and intermediate occupation numbers, which shows how the
results of the competition of different types of the order
parameter symmetry to depend on the value of the para-
meter t2 of the electron hoppings to the next-nearest-
neighbor sites. The phase diagram obtained in the second
order of the perturbation theory shows that at t2 � 0 in the
region of the low electron densities, 0 < n < 0:52, super-
conductivity with the dxy-type symmetry of the order
parameter is realized. In the range of 0:52 < n < 0:58, the
ground state corresponds to the phase with the p-wave
pairing, and at n > 0:58 the dx 2ÿy 2 -wave pairing appears.
Similar results were obtained in [64] in the framework of the
renormalization group approach.

In the immediate vicinity of the half-filling, 0:95 < n < 1,
where strong competition between superconductivity and
antiferromagnetism is observed, the problem of Cooper
instability was examined in Refs [62, 65, 66]. In these
studies, the so-called parquet diagrams were summed up,
and at m � Tc, the relation

f 2
0 ln4

t

jmj � f 2
0 ln4

t

Tc
� 1 �24�

was obtained, which yields an elegant estimate of themaximal
critical temperature:

T
d
x 2ÿy 2

c � t exp

�
ÿ const����

f0
p

�
: �25�

3

2

1

0

px=p

py=p

ÿ1
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ÿ3
ÿ3 ÿ2 ÿ1 0 1 2 3

Q

Figure 4. Fermi surface for a nearly half filling �n � 1� in the 2DHubbard

model on a square lattice: Q � �p=a; p=a� is the nesting vector [32].
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The maximal critical temperature of the superconducting

transition in the 2DHubbard model was obtained in Ref. [67]

in the regime U=W � 1 at optimal electron concentrations

n � 0:8ÿ0:9. According to the estimate obtained in [67], the

critical temperature can reach the values T
d
x 2ÿy 2

c � 100 K,

which is quite reasonable for optimally doped cuprate

superconductors.

4. Enhancement of the critical temperature
in the two-band Hubbard model
and in a spin-polarized Fermi gas

Along with the possibility to enhance the anomalous super-
conductivity by applying a magnetic field to a system of
neutral Fermi particles as described in Section 2, there is also
another possibility to increase Tc significantly already at a
low electron density. It is related to the two-band situation [68]
or a multilayer system with geometrically separated layers. In
this case, the role of spins-up is played by the electrons of the
first band (or layer), and the role of spins-down by the
electrons of the second band (or layer). The coupling
between electrons of two bands is achieved by means of the
interband Coulomb interaction U12n1n2. As a result, the
following exciton-type mechanism of superconductivity
becomes possible: the electrons of one band form a Cooper
pair via polarization of the electrons of the other band [68±
70]. In this case, the role of spin polarization is played by the
relative filling of two bands n1=n2.

We now examine the two-band Hubbard model with one
broad band and one narrow band [69, 70], which accordingly
contains `heavy' �n1 � nH� and `light' �n2 � nL� electrons.
This model is a natural generalization of the well-known
Falikov±Kimball model [71] for systems with a mixed
valence; however, it exhibits a richer physics in view of the
presence of a finite bandwidth of heavy electrons instead of a
localized level. In the Hubbard model with one narrow band,
the effective interaction, as it was shown in Refs [69, 70, 72,
73], is determined mainly by the interband Coulomb repul-
sion of heavy and light electronsU12 � UHL. The correspond-
ing critical temperature of the superconducting transition
depends nonmonotonically on the relative filling of the bands
nH=nL and exhibits a wide and clearly pronounced maximum
at nH=nL � 4 in the 2D case. The maximal critical tempera-
ture can be expressed as

Tc max � Tc1

�
nH
nL
� 4

�
� eF exp

�
ÿ 1

2f 2
0

�
; �26�

and corresponds to the triplet p-wave pairing of heavy
particles via the polarization of light particles. In the Born
weak-coupling approximation, the effective gas parameter
depends linearly on the interband Coulomb repulsion and on
the square root of the product of the masses [68]:

f0 �
�������������
mHmL
p

2p
UHL :

In the opposite limit of strong coupling [69, 70],

f0 �
��������
mH

mL

r
1

ln
�
1=�pFa�2

� :
In the so-called unitary limit of the strongly screened
Coulomb interaction � f0 ! 1=2� and of the strong electron±

polaron effect, m �H=mL � �mH=mL�2. Correspondingly, the
maximal critical temperature in this case yields [69, 70]

Tc1 � e �FH exp

�
ÿ 1

2 f 2
0

�
� e �FH exp �ÿ2� ; �27�

where e �FH is the renormalized (strongly narrowed) Fermi
energy of heavy particles,

e �FH �
p 2
FH

2m �H
� 30ÿ50 K :

Let us stress that in the unitary limit the sharp increase in the
effective mass of heavy particles up to m �H � 100me is caused
by the many-body electron±polaron effect [72, 73]. As a
result, quite reasonable critical temperatures are obtained
for the superconducting p-wave pairing: Tc � 5 K, typical for
uranium-based heavy-fermion compounds, mentioned in the
Introduction, U1ÿxThxBe13 and UNi2Al3 with large effective
masses m � � �100ÿ200�me [7, 8] and for organic super-
conductors.

We note that the electron±polaron effect, which leads to a
significant increase in the effective mass in the model, is
connected with the nonadiabatic part of the wave function
that describes a heavy electron surrounded by a cloud of
virtual electron±hole pairs that belong to the band of light
electrons [72, 73].

The discussed mechanism of superconductivity possibly
can be realized in the bismuth- and thallium-based cuprate
superconductors, as well as in the PbTeÿSnTe super-
lattices [12] and dichalcogenides CuS2 and CuSe2 with
geometrically separated layers. We note that, in general, the
two bands can belong to the same layer or to different layers.
It is also reasonable to assume that this mechanism can be
fulfilled in the ruthenates Sr2RuO4 [10] and in the ultracold
Fermi gas of 6Li atoms in magnetic traps with a strong
imbalance of the hyperfine components (see Section 10).

We note again that in the presence of the band of heavy
and light electrons with strongly different masses, mH 4mL,
and different densities, nH > nL, the critical temperature Tc is
determined mainly by the pairing of the heavy electrons via
the polarization of the light electrons. However, taking into
account even an infinitely small Geilikman±Moskalenko±
Suhl term [74±78] K

P
pp 0 a

y
pa
y
ÿpbp 0bÿp 0 (where K is the

parameter of interaction corresponding to the rescattering
of the Cooper pairs between the `heavy' and `light' bands),
leads to the opening of superconducting gaps in both bands at
the same critical temperature close to one in (26).

Let us consider the application of this theory to low-
temperature physics in more details. We emphasize that the
ultracold quantum gases in magneto-dipole traps, as well as
with the spin-polarized solutions of 3He in 4He, especially in
the quasi-two-dimensional situation (in which the largest
increase in the temperature of the triplet p-wave pairing
occurs), are the excellent systems for verifying the theoretical
predictions of [20, 41, 43, 68±70, 79]. Good experimental
opportunities for the realization of the `high-temperature'
superfluidity in spin-polarized (imbalanced) Fermi gases in
quasi-two-dimensional magnetic traps, in particular, has
G E Thomas's group in North Carolina [21]. We also note
that in the 1990s G Frossati's group in Leyden experimen-
tally obtained a 20% increase (from 2.5 up to 3.14 mK) in
the critical temperature of the superfluid transition T ""c1 in the
A1 phase of the superfluid 3He in magnetic fields up to
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H � 15 T (at a spin polarization of 7%) [80, 81]. In this case,
at the maximum for the critical temperature of the triplet
p-wave pairing [reached at the spin polarization a �
�n" ÿ n#�=�n" � n#� � 48%], the theory of [20, 43] predicts
an increase in T ""c1 by a factor of 6.4 in comparison with the
nonpolarized case. A similar value for T ""c1 at the maximum
(with the maximum T ""c1 � 5:6Tc1), but for a 35% spin
polarization, was also predicted in the metamagnetic model
in Refs [82, 83] in the framework of the so-called sÿp
approximation for the Landau Fermi liquid theory [84]. We
note, however, that the approach in [20, 43] in the framework
of the enhanced Kohn±Luttinger mechanism of superfluidity
is characterized by the only one fitting parameter, the gas
parameter apF, and therefore this approach is more model-
independent than the one in [82], which uses two fitting
parameters that are not connected with each other, namely,
the s and p harmonics of the scattering amplitude of
quasiparticles on the Fermi surface.

We also note that for solutions of 3He in 4He, the theory
of [20] and the results in [85, 86] predict a phase diagram for
the fermionic superfluidity of 3He in the 3D case with the
regions of s-wave pairing at small concentration of 3He in the
solution (x � 1ÿ2%) and the regions of p-wave pairing at
larger concentrations of 3He (x > 2ÿ4%). The critical
temperatures of the s-wave pairing in the solutions are
maximal at a zero magnetic fields and at x � 1%. According
to the estimates in [85, 86], the s-wave critical temperature is in
the range 10ÿ4ÿ10ÿ5 K.

The temperature of the triplet p-wave pairing grows
sharply in a magnetic field, and at the maximal possible
concentration xmax � 9:5% of 3He in the solution in the
field H � 15 T, we have T ""c1 � 10ÿ5ÿ10ÿ6 K. In 2D
solutions of 3He in 4He, that is for the submonolayers of
3He at the Andreev levels [87, 88] (appearing similarly to
Tamm levels on the free surfaces of thin films of superfluid
4He [89, 90]) or on the grafoils [91, 92], the phase diagram of
the solution also contains the regions of s- and p-wave
pairings.

We emphasize that for s-wave pairing in 2D systems,
usually two phenomena are realized simultaneously: the
pairing of two particles in the real space (with the formation
of a molecule or a dimer) and the Cooper pairing in the
momentum space. The maximal Tc for the s-wave pairing,
according to [93±95], is in the range of 10ÿ3ÿ10ÿ4 K at the 2D
density n3 � 0:01 of a monolayer [85, 86]. At the same time,
the temperature of the triplet p-wave pairing can be increased
in magnetic fields, and at H � 15 T and the 2D density
n3 � 0:05 of a monolayer, it can become quite accessible
experimentally (T ""c1 � 1 mK, according to [20]). The experi-
mental observation of fermionic superfluidity in the 3D
solutions and submonolayers of 3He remains a challenge for
the `low-temperature community' [96]. A similar phase
diagram with the regions of s- and p-wave pairings was
theoretically predicted in [41] and in [97] for the fermionic
isotope of lithium 6Li on the Cooper (BCS) side of the
crossover with a region of the Bose±Einstein condensation
(BEC) in the regime of the s-wave Feshbach resonance.

Let us recall that in the fermionic 6Li, the quasiresonance
scattering length, which is very large in absolute value
�a � ÿ2:3� 103 A

� �, corresponds to attraction. As a result,
in the balanced case �n1 � n2�, a singlet s-wave pairing with
the critical temperature determined by formula (1) is realized
for the two hyperfine components of the nuclear spin I that
are captured in a magnetic trap. The maximal temperature

Tc0 in the 3D case, according to [97], is of the order of 10ÿ6 K
at eF � 10ÿ5 K. However, if the imbalance between the
hyperfine components is sufficiently large, such that
�n1 ÿ n2�=�n1 � n2� > Tc0=eF, then, according to the Landau
criterion of superfluidity [41], the s-wave pairing is totally
suppressed. Nevertheless, in this case a p-wave pairing can
arise if the Cooper pairs (as is the case of the A1 phase of
superfluid 3He) are formed by Fermi particles of one
hyperfine component while the effective interaction for them
is prepared byFermi particles of another (or others) hyperfine
component. In this situation, the maximal critical tempera-
ture T ""c1 � eF exp �ÿ7=l2� of the p-wave pairing for the
optimal ratio of the densities of the hyperfine components,
according to [41], can reach 10ÿ7 K at eF � 10ÿ5 K and l � 1.

The effect of Tc enhancement in total analogy with the
solutions of 3He in 4He, for the p-wave pairing in the
imbalanced gases manifests itself much more strongly and
clearly in the quasi-two-dimensional situation [68]. Therefore,
the experimental achievements obtained in [21], whichmake it
possible to create the quasi-two-dimensional traps and to
control their essential parameters (such as the density,
temperature, and number of particles on layer-by-layer
basis) are very important.

We finally consider one more promising prediction of this
theory. It was shown in Ref. [79], that in quasi-two-
dimensional (layered) materials in a magnetic field that is
strictly parallel to the layer, the appearing vector potential
Ay � Hz (H � Hex, with x and y being the coordinates in the
layer) does not change themotion of the electrons andCooper
pairs in the plane of the layer. Therefore, the diamagnetic
Meissner effect is completely suppressed. As a result, the
electronic monolayer (or the layered system) becomes
equivalent to an uncharged (neutral) fermionic layer of 3He.

Thus, for low-density quasi-two-dimensional systems, the
phase diagram of the superconducting state in a magnetic
field parallel to the electronic layer can contain again the
regions of conventional s-wave pairing in the absence of a
magnetic field and the regions of triplet p-wave pairing
(similar to the A1 phase of the superfluid 3He) in strong
magnetic fields, when the s-wave pairing is totally suppressed
paramagnetically. Moreover, in the magnetic fieldsH � 15 T
and at low Fermi energies (eF � 30 K) for sufficiently large
degrees of spin polarization of electrons (a5 10%) the
reasonable critical temperatures (T ""c1 � 0:5 K) can be
obtained. Of course, in this case, as in the case of graphene
(see Sections 8 and 9), the experimentalists should be very
careful analyzing the role of the structural disorder and
nonmagnetic impurities, which lead to the isotropization of
the order parameter and therefore suppress the nonspherical
p-wave pairing [98, 99]. Furthermore, it is necessary to ensure
a high degree of the parallelism of the magnetic field to the
plane of the layer, because the presence of even a relatively
small perpendicular component would lead to the diamag-
netic suppression of superconductivity [96]. Nevertheless, the
proposed mechanism is very interesting for the possible
realization of superconductivity in very pure heterostruc-
tures (see Section 10).

5. Nontrivial corrections
to the Landau Fermi liquid theory
in low-density 2D systems

It is well known that a high temperature of the super-
conducting transition in cuprate superconductors is con-
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nected with very unusual properties of these systems in the
normal (nonsuperconducting) state. Among the unconven-
tional properties of the normal phase, the small jump in the
distribution function of the interacting particles on the Fermi
surface and a linear temperature dependence of the resistivity
at temperatures much lower than Debye temperature in
optimally doped cuprate superconductors are of interest. To
explain these facts, Anderson advanced a concept of a
Luttinger-type Fermi liquid with a zero jump of the distribu-
tion function on the Fermi surface [100]. A similar idea of a
marginal Fermi liquid, which is a special case of a Luttinger
liquid, was proposed by the authors of [101] based on the
analysis of the experimental data.

Later on, Anderson advanced an even more nontrivial
idea that not only a high-density strongly interacting 2D
Fermi system but even a weakly interacting low-density 2D
Fermi gas should also described by a Luttinger Fermi
liquid [102] rather than by the Landau Fermi-liquid theory
with a finite jump of the distribution function. In Refs [100,
102], Anderson formulated three important points, which led
to his doubts regarding the applicability of the standard
Galitskii±Bloom Fermi-gas approach [42, 46] in the 2D case.
These are, firstly, the problem of the finite scattering phase-
shift for the particles with almost parallel spins, which leads to
the vanishing of the Z-factor (Migdal jump) on the Fermi
surface; secondly, the problem (connected with the first one)
concerning the essential role of the upper Hubbard band in
the lattice models already in the case of a low electron density;
and, finally, the problem of the possible existence of a strong
singularity in the Landau f-function for the quasiparticles
interaction, which arises in a 2DFermi gas even in the absence
of a lattice.

Many theorists participated in the discussion developed
after the publication of Anderson's work; most of them [103±
107] supported the Fermi-gas ideology and attempted to
prove its consistency in the 2D case using ladder and parquet
approximations in terms of the diagrammatic technique.
Anderson continued to insist on his point of view, assuming
that the diagrammatic technique is inapplicable to the 2D
systems even at the level of summing up an infinite series of
parquet diagrams. In fact, the dispute considered the problem
of the choice of a correct ground state, which would allow us
to construct a regular procedure of successive approxima-
tions in the interaction (or, to be more precise, in its part that
was not taken into account in choosing the ground state).
According to Anderson's qualitative considerations, the
Landau function f �p; p 0� of the interaction of quasiparticles
with almost parallel momenta p and p 0 and opposite spins of
the colliding particles in the 2D case, when there is a small
deviation from the Fermi surface for p and p 0, contains a
singular part of the form

fsing�p; p 0� � 1

jpÿ p 0j : �28�

The existence of such a strong singularity leads to a
logarithmic divergence of all Landau harmonics f0; f1; . . . ;
and, thus, to the complete crush of the Fermi-liquid theory.
The accurate calculation of the Landau quasiparticles
interaction function f �p; p 0� carried out in the second order
of the perturbation theory in Ref. [106] and, independently,
in [107], leads to a significantly weaker singularity in f of the
form jpÿ p 0jÿ1=2, which, in addition to that, exists only in a
small window of angles f / jpÿ p 0j3=2 near the parallel

orientation of momenta p and p 0. As a result, this
singularity leads only to nontrivial temperature corrections
to the f-function rather than to the destruction of the Fermi-
liquid picture as whole.

Concerning the second point of the discussion raised by
Anderson, the authors of [108] examined the 2D Hubbard
model in the limit of strong coupling �U4W� and low
electron density �n5 1� in the Kanamori T-matrix approx-
imation [109]. In the low-energy region e4 eF, in the frame-
work of this description, the 2D Hubbard model becomes
equivalent to a 2D electron gas with a quadratic spectrum and
short-range repulsion (see Section 2). This model can be
characterized by the 2D Bloom gas parameter f0 �
1= ln �1=na 2� [46], which allows to conduct a controlled
diagrammatical expansion (here, n � p 2

F=2p is the electron
density in the 2D case for both spin projections). For the first
iteration of the self-consistent T-matrix approximation, the
authors of [108] found the contribution from the T-matrix
pole corresponding to the upper Hubbard band. As a result, a
dressed one-particle Green's function was obtained with a
double-pole structure [108], which resembles the Green
function in the Hubbard-I approximation [51]:

G�o; k� � 1ÿ na 2=2

oÿ zk�1ÿ na 2=2� � io

� na 2=2

oÿU�1ÿ na 2=2� ÿ zkna 2=2� io
; �29�

where o is the notation for infinitesimally small imaginary
part. The first term in the right-hand side of (29)
corresponds to the contribution from the lower Hubbard
band, and the second term corresponds to the contribution
from the upper Hubbard band. We note that the second
iteration of the self-consistent T-matrix approximation does
not change the principal properties of expression (29).
Thus, the presence of the upper Hubbard band leads to
nontrivial corrections to the Landau Fermi liquid picture at
low electron densities without total destruction of this
picture in the 2D case. More specifically, they produce
only small Hartree±Fock corrections to the thermodynamic
potential.

We note that all the results concerning superconductivity
in the Hubbard model obtained in the single-pole approxima-
tion for the one-particle Green function remain valid at
U4W and low electron density (up to small corrections
�W=U, whereW is the bandwidth), when the second pole is
taken into account. Thus, this result concerning the two-pole
structure of the Green function plays the role of a very
interesting bridge connecting the exact results of Galitskii
and the Hubbard-I approximation (the Gutzwiller approx-
imation) in the Hubbard model. At the same time, it does not
affect the type of pairing or the estimate of the critical
temperature at low electron densities.

6. Superconductivity
in the Shubin±Vonsovsky model

The authors of [110] raised an important problem of the role
of full of the Coulomb interaction in the nonphonon super-
conductivity mechanisms, which in real metals does not
limited to the short-range Hubbard repulsion. The authors
of [110] examined the 3D jelly model with realistic values of
the electron density, when the Wigner±Seitz correlation
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radius is not very large rS 4 20,

rS � 1:92

pFaB
; �30�

where aB � e0=�me 2� is the Bohr radius of the electron
��h � 1�. In calculation of the effective interaction, the
contributions from the first and second order caused by all
diagrams presented in Fig. 2 were taken into account. The
authors of [110] noted that the previous studies of Kohn±
Luttinger superconductivity were mainly limited to the
calculation of only the short-range Hubbard interaction of
electrons U, in view of the computational difficulties con-
nected with taking into account the first and higher orders of
the Fourier transform of the long-range Coulomb repulsion
Vq (depending on the wave vector q) in the diagrams. As a
result, the strong long-range Coulomb repulsion in the first
order of the perturbation theory (the first diagram in Fig. 2)
was ignored, and the contribution of the electrons to the
effective interaction in the Cooper channel, which was
determined only by the last second-order (exchange) dia-
gram in Fig. 2, had an attractive nature and ensured p-wave
pairing in the 3D case [38, 39] and d-wave pairing in the 2D
case [40, 67].

In Ref. [110], the long-range Coulomb interaction Vq was
chosen in the form of the Fourier transform of the Yukawa
potential V�r� � �e 2=r� exp �ÿkr�, which in the 3D case takes
the standard form

Vq � 4pe 2

q 2 � k 2
; �31�

where k is the reciprocal Debye screening length. The authors
of [110] concluded, based on the results of calculations, that
the low and intermediate values of the Hubbard repulsion U
in the presence of the long-range part of Coulomb interaction
(31) do not lead to the Cooper instability both in 3D and 2D
Fermi systems in the p-wave and d-wave channels, irrespec-
tive of how small the screening length is. The pairing
appearing at large orbital momenta �l5 3� leads to the
almost zero values of the critical temperature at any reason-
able value of the Fermi energy. According to the authors
of [110], the anomalous pairing caused by strong Coulomb
repulsion cannot be measured experimentally in practice,
since the corresponding condensation energy (if it exists) is
several times lower than the condensation energy caused by
the electron±phonon interaction.

The growth of interest in the problem of account for the
long-range part of Coulomb interaction in the description of
the phase diagram of high-temperature superconductors
raised the popularity of the extended Hubbard model that
includes the interaction between the electrons located on
different sites of the crystal lattice (in the Russian literature,
this model is often called the Shubin±Vonsovsky model
[111±113]).

In the historical aspect, the Shubin±Vonsovsky model,
which was formulated almost immediately after the creation
of quantum mechanics, is a predecessor of some important
models in the theory of strongly correlated electronic systems,
in particular, the sÿd�f�model and the Hubbard model itself.
The Shubin±Vonsovsky model was actively used in studies of
polar states in solids [114, 115], for describing the metal±
insulator transition [116], and also in the study of the
influence of the intersite Coulomb repulsion on the effective
band structure and superconducting properties of strongly
correlated systems [117±119].

In the Wannier representation, the Hamiltonian of the
Shubin±Vonsovsky model can be written as

Ĥ 0 �
X
fs

�eÿ m�c yfscfs �
X
fms

tfmc
y
fscms

�U
X
f

n̂f "n̂f # � 1

2

X
fm

Vfmn̂f n̂m ; �32�

where the last term in the right-hand side corresponds to
the energy Vfm of the Coulomb interaction of electrons that
are located on different sites of the crystalline lattice. The
last three terms together in the right-hand side of (32)
reflect the fact that the screening radius in the systems in
question is equal to several lattice spacings [116]. This
determines the efficiency of the Shubin±Vonsovsky model,
in which the intersite Coulomb interaction is taken into
account within several coordination spheres. In the
momentum representation, the Hamiltonian (32) takes the
form

Ĥ 0 �
X
ps

�ep ÿ m�c ypscps �U
X
pp 0q

c
y
p"c
y
p 0�q#cp�q#cp 0"

� 1

2

X
pp 0qss 0

Vpÿp 0 c ypsc
y
p 0�qs 0cp�qs 0cp 0s ; �33�

where the Fourier transform of the Coulomb interaction
between the electrons located on the nearest-neighbor sites,
V1, and on the next-nearest sites, V2, of the square lattice in
the 2D case is written as

Vq � 2V1

�
cos �qxa� � cos �qya�

�� 4V2 cos �qxa� cos �qya� :
�34�

The authors of [120] made a contribution to the discussion
in [67, 110] by investigating the conditions of the appearance
of the Kohn±Luttinger superconducting pairing in the 3D
and 2D Shubin±Vonsovsky models with a Coulomb repul-
sion of the electrons located on neighboring sites (V1 6� 0,
V2 � 0). As for the interaction, they considered the maxi-
mally strong Coulomb repulsion on both the same and
neighboring sites: U4V1 4W (W is the bandwidth;
W � 12t for the 3D cubic lattice and W � 8t for the 2D
square lattice).

On the cubic lattice in the 3D case, we have the following
expressions for the bare interaction of electrons in vacuum in
the s-wave and p-wave channels:

U s
vac � U� 6V� o�p 2a 2� ; U p

vac � 2Vpp 0a 2 : �35�

In this case, the Tmatrices in the appropriate channels in the
strong-coupling limit are determined as

Ts � 4p
m

as ; Tp � 4p
m

2appp
0a 2 ; �36�

where as � a and ap � a for the scattering lengths in the
s-wave and p-wave channels. As a result, the dimensionless
gas parameter in the s-wave channel takes the form
ls � l � 2apF=p, just as in the Hubbard model, whereas the
bare gas parameter lp in the p-wave channel is proportional
to �pFa�3, in accordance with the general quantum-mechan-
ical results for slow particles �pFa < 1� in vacuum [121].
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Thus, even in the maximally repulsive 3D Shubin±
Vonsovsky model, which is the most unfavorable for the
appearance of effective attraction and superconductivity, the
normal state in the strong-coupling regime with low electron
density is unstable with respect to the triplet p-wave pairing.
Notably, the effective interaction of electrons at l � 1 in the
substance takes the form [120]

r3DU
l�1
eff � lp ÿ l2s

13
; �37�

where r3D � mpF=�2a 2� is the density of states in the 3D
Fermi gas. As was mentioned above, the contribution from
the p-wave harmonic of the polarization operator Pl�1 in
substance, ÿl2s=13 < 0, favors attraction, and it cannot be
compensated by the contribution from the intersite Coulomb
repulsion V1 in the p-wave channel, which is proportional to
�pFa�3.

Similarly, in the 2D case, in the regime of strong coupling
and low electron density, the dimensionless gas parameter in
the s-wave channel is fs� f0�1= ln �1=na 2��1= ln �1=�pFa�2�,
just as in the 2D Hubbard model, whereas the dimensionless
gas parameter in the p-wave channel is fp � p 2

Fa
2, again in

agreement with the results for slow particles in vacuum. The
effective interaction in the 2D case in substance takes the
form [120]

r2DU
l�1
eff � ÿ6:1f 3

s � 2p 2
Fa

2 ; �38�

where r2D � m=�2a� is the density of states of a 2DFermi gas.
Since f 3

s 4 p 2
Fa

2 for pFa5 1, we obtainUl�1
eff � ÿ6:1f 3

s , as in
the case V1 � 0 (see Section 2).

Thus, the previous results concerning the realization of
superconducting p-wave pairing in both 3D and 2D repulsive
Hubbard models at strong coupling �U4W� with low
electron density remain valid even when we take the strong
Coulomb repulsion V1 4W of electrons at the nearest sites
into account in the framework of the Shubin±Vonsovsky
model. As a result, the same expressions for the main
exponent [which determines the critical temperature of p-
wave pairing (6) and (11)], are obtained just as in the absence
of the intersite Coulomb repulsion �V1 � 0� in both three-
dimensional and two-dimensional cases. Account for V1

changes only the preexponential factor [48], which means
that the superconducting p-wave pairing can be developed in
Fermi systems with pure repulsion [120] (in the absence of
electron±phonon interaction) even in the presence of the
long-range Coulomb repulsion.

The authors of [122] carried out a similar analysis for the
extended Hubbard model in the Born weak-coupling approx-
imation and came to the same conclusions as the authors
of [120]. Moreover, it was noted in [122] that in the weak-
coupling regime W > U > V, the effect of the long-range
Coulomb interactions is also suppressed, and does not impair
the conditions for the development of Cooper instability. This
is explained by the fact that the long-range interactions in the
lattice models usually contribute only to some specific
channels of pairing and do not affect the other channels. At
the same time, the polarization contributions that are
described by the diagrams shown in Fig. 2 have components
in all the channels and usually more than one of them favors
attraction. In this situation, it turns out that the long-range
interactions either do not influence the principal components
of the effective interaction which lead to the pairing or

suppress the main components but do not affect the
secondary ones [see the discussion after expression (49)].

In this connection, a phase diagram was constructed in
Ref. [122] based on the extended Hubbard model in the
framework of the Kohn±Luttinger mechanism, which clearly
reflects the result of the competition of the superconducting
phases with different types of the symmetry of order
parameter. In the calculations of the effective coupling
constant, an expression for the renormalized scattering
amplitude in the Cooper channel was used in the form

Ueff�p; q� � U� Vpÿq �U 2P�p� q� ; �39�

where Vpÿq is the Fourier transform of the intersite Coulomb
repulsion of electrons, Eqn (34), andP�p� q� is the Lindhard
function (4). Thus, the intersite Coulomb interaction V was
taken into account only in the first order of the perturbation
theory, and the polarization contributions were determined
only by the term of the order ofU 2. It was shown in [122] that
although the long-range interactions have a tendency to
suppress the anomalous pairing in some channels, the
Kohn±Luttinger superconductivity survives in the entire
region of electron concentrations 0 < n < 1 and for all
relations of the model parameters.

It was noted in Refs [123, 124] that the effective
interaction Ueff�q� is characterized by a dependence that is
quadratic in the quasimomentum only in the region of qa5 1.
Outside this region, the dependence of Vq on the momentum
is determined by periodic functions. As a result, the behavior
of Ueff�q� is modified significantly in comparison with the
behavior of the momentum dependence of the Fourier
transform of the Yukawa potential. These factors substan-
tially affect the conditions of the realization of Cooper
instability at large electron densities, when the Fermi
surfaces do not have the spherical symmetry. Therefore, it
can be expected that the conditions for the realization of
superconducting pairing in the framework of the Kohn±
Luttinger mechanism are determined not only by the
dynamic effects caused by the Coulomb interactions but also
by the effects related to the Brillouin zone.

The authors of [123, 124] discussed the influence of the
Coulomb interaction of electrons located in the first and
second coordination spheres on the development of Cooper
instability in the Born weak-coupling approximation,
W > U > V. Accordingly, they used the effective interaction
Ueff�p; k�, which is determined in the graphic form by the sum
of five diagrams (see Fig. 2) and for the Shubin±Vonsovsky
model has the following analytic form

Ueff�p; k� � U� Vpÿk � dU�p; k� ; �40�

dU�p; k� � 1

N

X
p1

�U� Vpÿk��2Vpÿk ÿ Vp1�p ÿ Vp1ÿk�

� nF�ep1� ÿ nF�ep1�pÿk�
ep1 ÿ ep1�pÿk

� 1

N

X
p1

�U� Vp1ÿp��U� Vp1ÿk�
nF�ep1� ÿ nF�ep1ÿpÿk�

ep1ÿpÿk ÿ ep1
:

�41�

The presence of the renormalized expression for the effective
interaction allows us to analyze the conditions for the
realization of the Cooper instability. Taking into account
the fact that the leading contribution to the total scattering
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amplitude of two electrons with opposite momenta and spin
projections G (the total amplitude in the Cooper channel) is
determined by electron scattering near the Fermi surface, the
dependence of G on the Matsubara frequency can be
neglected in the Bethe±Salpeter integral equation. As a
result, this equation is simplified taking the form

G�pjk� � Ueff�p; k� ÿ 1

N

X
q

Ueff�p; q�L�xq�G�qjk� ; �42�

where L�xq� � tanh �xq=2T �=�2xq� is the standard expression
for the kernel of the Cooper loop.

It is known [29] that the appearance of Cooper instability
can be extracted from an analysis of the homogeneous part of
Eqn (42). In this case, the dependence of G on the momentum
k is factorized and can be neglected. As a result, we proceed
from (42) an integral Gor'kov equation for the superconduct-
ing gap D�p�. Passing to the integration with respect to the
constant-energy contours (in the 2D case), we obtain that the
possibility of the Cooper pairing is determined by the
characteristics of the energy spectrum in the vicinity of the
Fermi level and by the effective interaction Ueff�p; k� of the
electrons that are located near the Fermi surface eq � m [59,
60]. As a result, the analysis of the Cooper instability reduces
to the solution of the eigenvalue problem

1

�2p�2
�
eq�m

dq̂

vF�q̂� Ueff�p̂; q̂�D�q̂� � lD�p̂� ; �43�

in which the superconducting order parameter D�q̂� plays the
role of an eigenvector, and we have the eigenvalues of
lÿ1 ' ln �Tc=W�. In this case, the quasimomenta p̂ and q̂ lie
on the Fermi surface, and vF�q̂� is the Fermi velocity. The
feasible solutions of Eqn (43) with l < 0 are determined not
only by the effective interaction Ueff�p; q� but also by the
shape of isoenergetic contours. As far as the concrete
structure of these contours is closely connected with the
energy spectrum, it is obvious that if we are not limited to
the nearest-neighbor approximation and take into account
the distant hoppings, we can substantially influence the
conditions for the realization of the Cooper instability and
significantly modify the structure of the phase diagram of the
superconducting state.

To solve Eqn (43), we represent its kernel in the form of a
superposition of the functions which belong to one of the
irreducible representations of the symmetry group C4v of the
square lattice. As it is well known, this group has five
irreducible representations [121], and for each of them
Eqn (43) has its solution with an appropriate effective
coupling constant l. Subsequently, the following classifica-
tion is used for the symmetry of the order parameter: the
representation A1 corresponds to s-wave type symmetry;
A2 to the extended s-wave type symmetry �sext�; B1 to the
dxy-wave type symmetry; B2 to the dx 2ÿy 2 -wave type symme-
try; and E to the p-wave type symmetry.

For the irreducible representations g � A1, A2, B1, B2, E,
the solution of Eqn (43) is searched in the form

D�g��f� �
X
m

D�g�m g �g�m �f� ; �44�

where m is the number of the basis function of the
representation g, and f is the angle that characterizes the
direction of the momentum p̂ with respect to the axis px. The
explicit form of g

�g�
m �f� is determined by the following

expressions:

A1 ! g �s�m �f� �
1�����������������������1� dm0�p

p cos �4mf� ; m 2 � 0;1� ;

A2 ! g �sext�m �f� � 1���
p
p sin

�
4�m� 1�f� ;

B1 ! g �dxy�m �f� � 1���
p
p sin

��4m� 2�f� ; �45�

B2 ! g
�d

x 2ÿy 2 �
m �f� � 1���

p
p cos

��4m� 2�f� ;
E! g �p�m �f� �

1���
p
p

n
A sin

��2m� 1�f�� B cos
��2m� 1�f�o :

The basis functions satisfy the orthonormalization conditions� 2p

0

df g �g�m �f� g �b�n �f� � dgbdmn : �46�

Substituting (44) in Eqn (43), integrating with respect to
the angles, and using the orthonormalization condition for
the functions g

�g�
m �f�, we obtainX

n

L�g�mnD
�g�
n � lgD�g�m ; �47�

where

L�g�mn �
1

�2p�2
� 2p

0

dfp

� 2p

0

dfq

dq̂

dfqvF�q̂�
Ueff�p̂ ; q̂�

� g �g�m �fp� g �g�n �fq� : �48�
Since Tc �W exp �1=l�, each negative eigenvalue lg corre-
sponds to a superconducting phase with the g-wave symmetry
of the order parameter. The expansion of the order parameter
D�g��f� in the basis functions includes many harmonics in
general, but the leading contribution is determined by only
several first terms. The largest value of the critical tempera-
ture is associated with the largest value of jlgj.

If the intersite Coulomb interaction is taken into account
only for electrons that are located on the nearest sites [V1 6� 0,
V2 � 0 in (34)] and the excitation spectrum is described by
only one hopping parameter (t1 6� 0, t2 � t3 � 0), then the
phase diagramof the superconducting state atU � jt1j (Fig. 5)
contains five regions. Figure 5a displays the dependence of
the effective coupling constants l for different types of the
symmetry of the superconducting order parameter on the
electron density n obtained atV1 � V2 � 0. Based on the l�n�
dependencies, a phase diagram for different values of the
intersite Coulomb repulsion V1, which reflects the competi-
tion between the superconducting phases with the different
symmetry types of the order parameter can be constructed
(Fig. 5b). The case depicted in Fig. 5a corresponds to the
abscissa axis in Fig. 5b. To construct this phase diagram,
Eqn (39) for the effective interaction of electrons in the
Cooper channel was used, which takes contributions of only
the first order in V into account and ignores the contribu-
tions proportional to UV and V 2. The region of the phase
diagram that lie on the abscissa axis �V1 � 0� are in a good
agreement with the phase diagrams regions obtained in
Refs [63, 125]. In the region of low and intermediate
densities of electrons, n � 0ÿ0:52, in the two first orders of
the perturbation theory, superconductivity with the dxy
symmetry type of the order parameter [40, 57] is realized; in
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the range of n � 0:52ÿ0:58, the ground state corresponds to
the phase with p-wave pairing, but in this case jlpj
insignificantly exceeds jldxy j (see the inset in Fig. 5a). We
note that according to the calculations of the authors of [122],
dxy-wave pairing is realized instead of p-wave pairing in this
interval of electron densities. At n > 0:58, the dx 2ÿy 2 -wave
type of superconductivity appears, which is relevant for
cuprate superconductors.

Note that with an account of the Coulomb repulsion V1

on neighboring sites in the first order of the perturbation
theory, the absolute value of l decreases for all types of
symmetry. In this case, the superconducting dx 2ÿy 2 -wave
phase is suppressed most strongly and, with increasing V1,
the phases with the order parameters that have different
symmetry types are realized at these concentrations.

The first order of the perturbation theory in the intersite
Coulomb repulsion always has a tendency to suppress the
superconducting pairing. Hence, the possibility of realization
of the Cooper instability based on the Kohn±Luttinger
mechanism is connected with the appearance in the second
order of the perturbation theory of the attractive and
sufficiently strong contributions to the effective interaction
matrix (41). Thus, in order to take into account the
polarization effects for the intersite Coulomb interaction, we
should use the full expression (40) for Ueff�p; q� but not

reduced one (39). In this case, the polarization effects
proportional to UV and V 2, even at small values of V1,
substantially change and complicate the structure of the
phase diagram (Fig. 6a). With an increase of the intersite
Coulomb interaction parameter V1, an increase of jlj occurs
for Tc �W exp �ÿ1=jlj�. In this case, only three phases are
stabilized, which correspond to the dxy-, p-, and s-wave
symmetry types of the superconducting order parameter.

We note that in the region of high electron concentrations
and at 0:25 < V1=jt1j < 0:5, theKohn±Luttinger polarization
effects lead to the appearance of a superconducting s-wave
pairing. This qualitative effect clearly demonstrates the
importance of the second-order processes in calculating the
effective interaction of electrons in the Cooper channel and in
constructing the phase diagram presented in Fig. 6. A
quantitative comparison of the different partial contribu-
tions to the total effective interaction showed that the
realization of s-wave pairing was due to the polarization
contributions proportional to V 2. In this case, the leading
contribution is determined by the angular harmonic
g
�s�
1 �f� � �1=

���
p
p � cos �4f� rather than by the constant (as in

the case of the usual s-wave pairing in the isotropic situation
and in the absence of a lattice).

The above-mentioned scenario of the realization of
superconducting s-wave pairing due to the higher angular
harmonics correlates well with the experimental data recently
obtained in Ref. [126], which presents the results of the
experimental studies of a superconductor based on the iron
arsenide KFe2As2 by angle-resolved photoemission spectro-
scopy (ARPES). These studies showed that this compound is
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a nodal superconductor (containing zeroes of the gaps) with
an s-wave type symmetry of the order parameter, which has
eight points at which the gap vanishes.

Figure 7a shows the angular dependence of the super-
conducting order parameter

D�s��f� � D�s�0���
2
p � D�s�1 cos �4f� � D�s�2 cos �8f�

� D�s�3 cos �12f� � D�s�4 cos �16f� ; �49�
calculated in Ref. [124] for the point of the phase diagram at
which the s-wave pairing is realized at large electron densities.
This dependence demonstrates the presence of eight nodal
points at which the gap vanishes. Their arrangement on the
Fermi contour (Fig. 7b) according to the results of calcula-
tions [124] is in a qualitative agreement with the experimental
picture presented in [126].

A similar scenario for the realization of the super-
conductivity is also observed in the p-wave channel. Here,
the pairing obtained by taking into account the second
order of perturbation theory in the Coulomb interaction is
suppressed by the bare repulsion only for the first
harmonic g

�p�
0 �f� � �1=

���
p
p � �A sinf� B cosf�. In this

case, the leading contribution to D�p��p̂� comes from the
next p-wave pairing harmonic on the lattice, g

�p�
1 �f� �

�1= ���
p
p ��A sin �3f� � B cos �3f��.
The authors of [124] have also analyzed the influence of

the Coulomb repulsion between next-to-nearest neighbors
�V2 6� 0� and distant electron hoppings �t2 6� 0, t3 6� 0� on the
phase diagram of the superconducting state of the Shubin±
Vonsovskymodel. Figure 8 shows amodification of the phase
diagram of the Shubin±Vonsovsky model that takes place
with an increase in the Hubbard repulsion parameter. It can
be seen that in the region of low electron densities and in the
region of densities close to the Van Hove singularity, we get a
superconducting phase with a dx 2ÿy 2 -wave of the order
parameter and with the sufficiently large values of jlj �
0:1ÿ0:2. This result can be interesting for the possibility of
the implementation of the Kohn±Luttinger mechanism to
cuprate superconductors. Note that at jlj � 0:2 the critical
temperatures of the superconducting transition can reach
values Tc � 100 K which are quite reasonable for the
cuprates.

7. Superconductivity in the 2D tÿJ model

After Anderson advanced an idea [4] that the electronic
properties of cuprate superconductors can be described by

the Hubbard model in the strong-coupling limit U4W, the
so-called tÿJ model acquired great popularity among the
researchers (see reviews [127±130]). This model was initially
derived by a canonical transformation from the Hubbard
model near the half-filling, n! 1, in the limit t=U5 1 [131,
132]. Later on, for cuprates, a generalized tÿJ model was
suggested [133, 134], The Hamiltonian of the generalized 2D
tÿJmodel with a weakened constraint and an arbitrary ratio
J=t derived from the three-band Emery model [135, 136] is
written as [133, 134, 137]

Ĥ 0 �
X
fs

�eÿ m�c yfscfs � t
X
h fmis

c
y
fscms �U

X
f

n̂f "n̂f #

� J
X
h fmi

�
Sf Sm ÿ n̂f n̂m

4

�
: �50�

In fact, this is a model with a strong Hubbard repulsion
between electrons on one site and weak antiferromagnetic
attraction J > 0 on neighboring sites. The hierarchy of the
parameters of the model is U4 fJ; tg. The phase diagram of
the tÿJmodel constructed in [137] is presented in Fig. 9.

For the parameters that are realistic for optimally doped
cuprate superconductors, J=t � 0:5 and n � 2eF=W � 0:85,
the critical temperature of the superconducting transition has
been estimated as

T
d
x 2ÿy 2

c � eF exp
�
ÿ pt
2Jn 2

�
� 102 K : �51�

We note that a similar estimate for the critical temperature of
the dx 2ÿy 2 -wave pairing has been obtained in the framework
of a more rigorous spin-polaron theory in [138, 139] with the
use of the Hubbard operators [140].

The authors of [138, 139] also used the generalized tÿJ
model derived from the Emery model in the limit of a small
number of holes by constructing the Zhang±Rice singlets
[141] at J < t and neglecting the Coulomb repulsion between
the charge carriers from the energy bands of copper and
oxygen �Vpd � 0�. In this approximation, the weakened
constraint is also not very important, and we can neglect the
kinematic interaction [142, 143].

We note that a very interesting physics appears in the so-
called `difficult' comer of the phase diagramof the generalized
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tÿJ model, namely, in the case of small J (J=t5 1) and low
doping d � �1ÿ ne�5 1 (this region is frequently called the
pseudogap). For this part of the phase diagram, in accordance
with the ideas of Laughlin [144, 145] on the spin-charge
confinement of spin and charge in two-dimensional and
three-dimensional strongly correlated electron systems (see
also [146, 147]), a concept of a strongly interacting Fermi±
Bose mixture of spinons and holons has been proposed. The
spinons and holons in themixture form the composite holes in
the confinement potential of an antiferromagnetic (AFM)
string [131, 148]). In this case, according to the assumption
made in [96, 147], the phase diagram of cuprate super-
conductors in the region of low doping can be considered in
the framework of the scenario of the BCS±BEC crossover
between the local and extended pairs for pairing of two
composite holes (two spin polarons or two AFM strings) in
the dx 2ÿy 2 -wave channel. Certainly, the transition from the
region of optimal doping with a large Fermi surface and
extended Cooper pairs to the region of low doping with local
pairs and hole-type pockets (small Fermi surface) can be
realized in a very nontrivial way and can contain a singularity
in the middle, such as a quantum critical point (QCP) (see,
e.g., [149±151]), or even certain intermediate phases.

Returning to the region of the extended Cooper pairing
and optimal doping ne 5 0:85, we emphasize that the
development and utilization of the Kohn±Luttinger ideas
for the strong-coupling regime would be one of the most
challenging directions in the modern theory of superconduc-
tivity in strongly correlated systems. However, the solution
of this problem requires an account of the strong on-site
correlations in all the orders of perturbation theory. More-
over, the intersite correlations must be described taking into
account at least the second-order contributions. One of the
possibilities to develop the theory in this direction is to use
the atomic representation [140] and the diagram technique
for the Hubbard operators [152, 153]. The relevant models
that can be used for the investigation of the Kohn±Luttinger
renormalization are the generalized tÿJÿVmodel [154±157]
and the tÿJ �ÿV model (which takes three-center interac-
tions into account), whose important role in describing the
superconducting state was studied in [158±165]. These
models, which can be derived from the Shubin±Vonsovsky

model in a certain range of parameters, effectively represent
its low-energy versions.

Concluding this section, we note that ultracold quantum
gases in optical lattices also provide an excellent experimental
opportunity to simulate strongly correlated systems on a
lattice, in particular, to study the phase diagram of the tÿJ
model and even the structure of the AFM string and spin
polarons in a situation with well-controlled and easily tunable
parameters t, J, and ne [166].

8. Superconductivity
in an idealized graphene monolayer

Nowadays, the popularity of theKohn±Luttingermechanism
continues to grow due to the possibility of its utilization in
other physical systems. For example, the conditions of its
appearance in topological superfluid liquids [167], as well as
in the idealized monolayer and bilayer of graphene (where the
effect of impurities and the van der Waals potential of the
substrate are ignored) are being discussed actively.

At present, graphene is of significant interest from both
the fundamental and applied points of view because of its
unconventional transport, pseudo-relativistic, and quantum-
electrodynamic properties [23, 24, 26]. These properties of
graphene are caused, first of all, by its unique gapless energy
band structure with the cone-shaped valence and conduction
bands (Fig. 10), touching each other at the corners of the first
Brillouin zone at the Dirac points [25]. It has been established
that near the Dirac points, the electrons propagating in
graphene are similar to massless fermions with linear
dispersion [168], minimal conductivity at vanishing concen-
tration of carriers [168, 169], high mobility [170±172], Klein
tunneling [173, 174], oscillating motion (Zitterbewegung)
[175, 176], universal absorption of light [177], and many
other properties that have no analogs in other physical
systems.

Placed in contact with superconductors, graphene man-
ifests unconventional superconducting properties [178]. The
authors of [179] experimentally studied the Josephson effect
[180] in mesoscopic junctions consisting of a short sample of
graphene monolayer placed between two closely spaced
superconducting electrodes. By cooling this device below the
critical temperature of the electrodes (Tc � 1:3 K), the
authors of [179] observed a supercurrent in the graphene
monolayer (a similar result was obtained in [181]). By
changing the voltage of the electric field at the gate
electrode, the researchers could shift the Fermi level from
the valence band to the conduction band and thus control the
density of charge carriers in the graphene monolayer.
Irrespective of the position of the Fermi level in the system,
a Josephson current was observed, which indicates that this
device works as a bipolar supercurrent transistor. Namely,
the supercurrent was transferred by p-wave type Cooper pairs
when the Fermi level was located in the valence band, and by
electron Cooper pairs when the Fermi level was located in the
conduction band. More important is the fact that the
supercurrent could flow in the graphene monolayer even
when the Fermi level was located precisely at the Dirac
point, i.e., at the zero density of carriers. This behavior was
explained within the theory of ballistic transport from
graphene to the Josephson junctions [182]; however, later
experiments [183±185] have demonstrated that the transport
in the superconductor±graphene±superconductor junctions
is, rather, of a diffusive nature.
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0.25

0 1 2 3 4 J=t

p s
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Figure 9. Phase diagram of the superconducting state of the 2D tÿJmodel

at small and intermediate electron densities [96, 137].
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Although so far no confirmation has been found that the
Cooper instability can be developed in graphene itself
(possibly because of permanently present structural disor-
der), the results of the above-mentioned experiments indicate
that the Cooper pairs can propagate in graphene coherently.
In this connection, a question arises as to whether it is possible
to modify graphene structurally (for example, by introducing
twinning planes and grain boundaries) or chemically, such
that it would become a magnet [186] or even a true super-
conductor [187].

The theoretical analysis in [188] has shown that the model
with a conical dispersion requires a minimal strength of
pairing interaction for the development of Cooper instability
in the undoped system. Furthermore, several attempts were
undertaken to analyze the possibility of realization of the
superconducting state in doped graphenemonolayer. In [189],
the role of topological defects in the realization of Cooper
pairing in this material was studied. The superconducting
phase was also investigated and the symmetry of the order
parameter was determined on a hexagonal lattice of gra-
phene. In the case of the attractive Hubbard interaction U

between electrons, as it was shown in [190], the usual singlet
pairing with an s-wave type symmetry of the order parameter
is realized. In [191], a phase diagram of the superconducting
state was constructed (in the mean-field approximation) for a
graphene monolayer in the extended Hubbard model with
attraction, and the plasmon mechanism of superconductivity
was investigated, which led to low critical temperatures in the
s-wave channel at realistic values of the electron concentra-
tion. Furthermore, it was demonstrated that in the presence
of the attractive interaction V at the nearest sites, the
realization of an exotic combination of the s-wave and the
p-wave pairings becomes possible [191].

At present, along with the frequently investigated
problem of implementation of the superconducting state
in a graphene monolayer within the electron±phonon
pairing mechanism [192±196], the possibility of the develop-
ment of Cooper instability in graphene as a result of the
electron±electron interactions is being studied actively.
In [197], in the tÿJ model within the renormalized mean-
field theory, the possibility of realization of the super-
conducting pairing in a graphene monolayer was studied.
Both superconductivity with s-wave symmetry of the order
parameter and a chiral superconductivity with the d-wave
symmetry (which is described by a two-dimensional repre-
sentation and breaks the symmetry with respect to time
reversal), were shown to be possible. In this case, a
significant predominance of d-wave pairing over s-wave
pairing was demonstrated in [197].

When we discuss chirality with respect to the super-
conducting state, we understand that this state is character-
ized both by spontaneous time-reversal symmetry breaking
and by parity violation (see [198] and also review [199]). In
other words, this type of superconductivity necessarily
includes a linear combination of the two order parameters
that belong to a unified higher-dimensional representation of
the point symmetry group of the crystal. The chiral super-
conducting state with the d-wave symmetry of the order
parameter in graphene is the spin-singlet dx 2ÿy 2 � idxy-wave
state. Since the hexagonal lattice belongs to the symmetry
group C6v, the two d-wave states make similar contributions
but have a phase shift p=2 relative to each other. This causes
the appearance of a superconducting state in graphene at any
finite doping level [198, 199].

The appearance of chiral superconductivity with the
dx 2ÿy 2 � idxy-wave symmetry of the order parameter was
investigated earlier in cuprates in the presence of magnetic
fields [200, 201] and magnetic impurities [202], and also in 2D
superfluid 3He [203]. We note that the realization of d� id-
wave chiral superconductivity was observed experimentally
in the pnictide SrPtAs near the Van Hove filling nVH [204].
Note that this compound with Tc � 2:4 K [205] consists of a
set of weakly bound layers of PtAs that form a hexagonal
lattice.

In [206], in the framework of the tÿJmodel [207] with the
Coulomb interaction V between the fermions at neighboring
carbon atoms of the hexagonal lattice of graphene (investi-
gated by the method of the functional renormalization
group), a triplet f-wave pairing and a singlet d� id-wave
pairing far from the half-filling were detected. The possibility
to realize d� id-wave chiral superconductivity due to the
spin-fluctuation mechanism was also confirmed by quantum
Monte Carlo calculations [208, 209].

The situation where the Fermi level is near one of the Van
Hove singularities in the density of states of graphene
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monolayer was considered in [210]. It is known that these
singularities can enhance magnetic and superconducting
fluctuations [211]. According to the scenario described
in [210], the appearance of Cooper instability is caused by
the strong anisotropy of the Fermi contour at the Van Hove
filling nVH, which is in fact related to the Kohn±Luttinger
mechanism. It is emphasized in [210] that the realization of
this mechanism is possible in graphene, since the electron±
electron scattering becomes strongly anisotropic and there-
fore a channel can arise in which the scattering amplitude has
an attractive component with a nontrivial angular depen-
dence on the Fermi surface. According to [210], such a
Cooper instability in the idealized graphene monolayer is
developed predominantly in the d� id-wave channel, and it
can lead to critical temperatures up to Tc � 10 K, depending
on the possibility to tune the level of the chemical potential
maximally close to the Van Hove singularity. In [212], the
possible coexistence and competition between the Pomeran-
chuk and Kohn±Luttinger instabilities in graphene mono-
layer were discussed.

The authors of [213] obtained experimentally a heavily
doped monolayer of graphene by a chemical method
(different combinations of K and Ca were used in [213] as
dopants), and they investigated the prepared sample by
ARPES. It was found that the many-body interactions
significantly deform the Fermi surface, leading to the so-
called extended Van Hove singularity at the M point of the
hexagonal Brillouin zone and inducing a topological transi-
tion in the electron system.

Note that the extended Van Hove singularity [214] leads
to the divergence in the density of electron states which
appears when the energy band of a system is almost flat (up
to 1meV) in one of the directions of the Brillouin zone. In this
case, a set of simple saddle points appears forming a critical
line or the so-called extended saddle point [214]. Such an
extended saddle point induces a stronger square root-type of
the Van Hove divergence in the density of electron states, in
contrast to the ordinary saddle point in the energy band,
which leads to the usual logarithmic divergence (in the 2D
case) [215]. This square root-type divergence, in turn, can
favor a significant increase in the superconducting critical
temperature of the transition [214].

Besides the experimental investigation of a heavily doped
graphene monolayer, the authors of [213] studied the ground
state theoretically and analyzed the competition between the
ferromagnetic and superconducting instabilities. The analysis
showed that the tendency to superconductivity prevails in this
competition, as a result of the strong modulation of the
effective interaction along the Fermi contour, i.e., due to
electron±electron interactions only. The superconducting
instability is then predominantly developed in the f-wave
channel [213].

The authors of [216, 217] used the method of the
functional renormalization group [218±220] to analyze the
competition between the superconductivity caused by elec-
tron±electron interaction and the phases of spin and charge-
density waves at the Van Hove filling in graphene monolayer
[221±223]. The analysis showed that three Van Hove saddle
points with an ideal nesting lead to the domination of the
superconducting pairings. The renormalization group analy-
sis has indicated that under these conditions, a spin-singlet
superconducting state with the d� id-wave symmetry type of
the order parameter is realized, which spontaneously breaks
the symmetry with respect to the time reversal and leads to the

chiral Andreev states at the boundaries of the sample. In [224],
it was stressed that upon a small shift of the Fermi level from
the Van Hove singularity, a transition to a spin-density-wave
(SDW) phase occurs, and hence the region of the coexistence
of superconductivity and the antiferromagnetic ordering in
the doped graphene is absent.

It was noted in [225] that the long-range Coulomb
interactions can substantially influence the competition
between the superconducting phases with different symme-
try types of the order parameter in doped graphene. In
particular, it was shown in the extended Hubbard model for
graphene that far away from the Van Hove singularity,
where the d� id-wave spin-singlet pairing is realized, the
SDW phase experiences strong competition with the charge-
density-wave (CDW) phase enhanced by the long-range
Coulomb interactions, which can favor the realization of
the triplet f-wave pairing [67] (see below).

The importance of the correct account of the long-range
part of the Coulomb interaction when we derive an effective
many-particle model for graphene and graphite from ab initio
calculations was emphasized in [226]. In fact, from these
calculations we can properly determine the values of the
partially screened frequency-dependent Coulomb interac-
tion. The Hubbard repulsion in graphene was found to be
U � 9:3 eV in agreement with the estimation given in [227],
but contradicting the intuitive expectations of a small U and
weak coupling U <W; it is known [228] that t1 � 2:8 eV in
graphene. The authors of [226] also calculated the Coulomb
repulsion parameters for electrons located on the nearest and
next-to-nearest carbon atoms in a graphene monolayer and
get V1 � 5:5 eV and V2 � 4:1 eV, respectively. We note that
other researchers (see, e.g., [229]) assume that these para-
meters are much smaller.

The competition of superconducting phases with different
symmetry types in a wide range of the concentrations of the
charge carriers 1 < n4 nVH in the idealized monolayer of
doped graphene was investigated in [33, 230]. It was shown
that at the intermediate electron densities, the distant
Coulomb interactions stimulate superconductivity with the
f-wave symmetry of the order parameter and upon approach-
ing the Van Hove singularity, the superconducting pairing
with the d� id-wave symmetry type is realized [33, 230].

In the hexagonal lattice of graphene, each unit cell
contains two carbon atoms; the lattice can therefore is
divided into two sublattices, A and B (Fig. 11). The
Hamiltonian of the Shubin±Vonsovsky model for a mono-
layer of graphene, with the electron hoppings between the
nearest and the next-to-nearest atoms and the Coulomb
repulsion of electrons located on the same or different
atoms taken into account, in the Wannier representation is
given by

Ĥ 0 � Ĥ 00 � Ĥint ; �52�
Ĥ 00 � ÿm
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Here, a
y
fs�afs� are the creation (annihilation) operators of an

electron with the spin projection s � �1=2 on the site f of the
sublattice A; n̂A

fs � a
y
fsafs is the operator of the number of

fermions on the site f of the sublattice A (and similarly for the
sublattice B); the vector d connects the nearest-neighbor
atoms of the hexagonal lattice; the double angular brackets
mean that the summation is carried out only over the next-to-
nearest neighbors; t1 is the hopping integral between the
neighboring atoms (hoppings between the different sublat-
tices); t2 is the hopping integral between next-to-nearest
neighbors (hoppings over one sublattice); U is the parameter
of the Hubbard repulsion; and V1 and V2 are the respective
Coulomb repulsions of electrons located on the nearest and
next-to-nearest carbon atoms. It is assumed that the position
of the chemical potential m and the number of current carriers
n in the graphene monolayer can be controlled by the electric
field of the gate electrode.

After passing to the momentum space and carrying out
the uÿv Bogoliubov transformation,

aks � w11ka1ks � w12ka2ks ; �53�
bks � w21ka1ks � w22ka2ks ;

where a1ks and a2ks are the operators that describe the
respective dynamics of electrons in the upper and lower
bands of the graphene, the Hamiltonian Ĥ 00 is diagonalized
and, as a result, a well-known expression [25] for the two-
band energy spectrum is obtained (see Fig. 10):

E1k � t1jukj ÿ t2 fk ; E2k � ÿt1jukj ÿ t2 fk ; �54�

where

fk � 2 cos
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The coefficients of the Bogoliubov transformation are

w11�k� � w �22�k� �
1���
2
p u �k
jukj ; �58�

w12�k� � ÿw21�k� � ÿ 1���
2
p :

In Bogoliubov representation (53), the operator of the
interaction in (52) is determined by an expression that
includes the operators a1ks and a2ks,

Ĥint � 1

N

X
i jlm
kpqss

G ki j; lm�k; pjq; s�a yiksa yjpsalqsamssd�k� pÿ qÿ s�

� 1

N

X
i jlm
kpqs

G?i j; lm�k; pjq; s�a yik"a yjp#alq#ams"d�k� pÿ qÿ s� ;
�59�

where G ki j; lm�k; pjq; s� andG?i j; lm�k; pjq; s� are bare amplitudes,
whose form is given below, and d is the Dirac delta-function.

The scattering amplitude in the Cooper channel can be
calculated using the weak-coupling Born approximation with
the hierarchy of the model parameters

W > U > V1 > V2 ; �60�

whereW is the bandwidth [at t2 � 0 in Eqn (54)] for the upper
and lower branches of the energy spectrum of graphene. We
restrict again the consideration to the second-order diagrams
in the effective interaction of two electrons with opposite
values of momentum and spin, using the quantity Ueff�p; k�.
Graphically, this quantity is the sum of the diagrams
represented in Fig. 2. Assuming that the chemical potential
of doped graphene falls into the upper energy band E1k and
analyzing the conditions of the appearance of the Kohn±
Luttinger superconductivity, we can examine the situation
where both the initial and the final momenta belong to the
upper band.

Analytically, the effective interactionUeff�p; k� is given by

Ueff�p; k� � ~G0�p; k� � dUeff�p; k� ; �61�
~G0�p; k� � G?ii; j j�p;ÿpj ÿ k; k� ; �62�
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where the expressions
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Figure 11. (Color online.) Crystal structure of a graphene monolayer. The
carbon atoms belonging to different sublattices are given by different
colors; d1, d2, and d3 are the vectors in the directions of the nearest
neighbors; t1 and t2 are the hopping integrals between the nearest and
next-nearest-neighbor atoms.
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describe the strength of the interaction of fermions with
parallel projections of spin, and the expressions

G?i j; lm�k; pjq; s� � Ui j; lm�k; pjq; s� � Vi j; lm�k; pjq; s�
� Vji;ml�p; kjs; q� ; �65�

Ui j; lm�k; pjq; s� � U
ÿ
wi1�k�wj1�p�w �l1�q�w �m1�s�

� wi2�k�wj2�p�w �l2�q�w �m2�s�
�

correspond to the interaction of Fermi quasiparticles with
antiparallel projections of spin. In expressions (61)±(65), the
indices i � j � 1, and the indices l andm can take the values 1
or 2 for upper and lower bands. We introduce the generalized
susceptibilities

wl;m�k; p� �
nF�Elk� ÿ nF�Emp�

Emp ÿ Elk
; �66�

where nF�x� � fexp ��xÿ m�=T � � 1gÿ1 is the Fermi±Dirac
distribution function, and the energies Eik are defined in (54).
For compactness, the following notation is introduced in
Eqn (61) for the combinations of the momenta:

q1 � p1 � pÿ k ; q2 � p1 ÿ pÿ k : �67�
Just as in the case of the Shubin±Vonsovskymodel, on the

square lattice (see Section 6), the problem of the Cooper
instability in graphene monolayer can be reduced to the
eigenvalue problem

3
���
3
p

8p2

�
eq�m

dq̂

vF�q̂� Ueff�p̂; q̂�D�q̂� � lD�p̂� ; �68�

where the integration is carried out over the contour shown in
Fig. 10b.

To solve Eqn (68), we represent its kernel as a super-
position of the eigenfunctions, each belonging to one of the
irreducible representations of the symmetry group C6v of the
hexagonal lattice. As it is known, this symmetry group has six
irreducible representations [121]: four one-dimensional and
two two-dimensional. For each representation, Eqn (68) has a
solution with its own effective coupling constant l.We use the
following notation for the classification of the symmetries of
the order parameter, namely, representation A1 corresponds
to s-wave symmetry; A2 to extended s-wave pairing; B1 and
B2 to f-wave symmetry; E1 to p� ip-wave symmetry, and E2

to d� id-wave symmetry.
For each irreducible representation n � A1, A2, B1, B2,

E1, E2, we search the solution to Eqn (43) in the form

D�n��f� �
X
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D�n�m g �n�m �f� ; �69�

where m is the number of an eigenfunction of the representa-
tion n, and f is the angle that determines the direction of the
momentum p̂ relative to the axis px. Explicitly, the orthonor-
malized functions g

�n�
m �f� are given by

A1 ! g �s�m �f� �
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Here, for the two-dimensional representations E1 and E2, the
indices m range over to values such that the coefficients
2m� 1 and 2m� 2 are not multiples of 3.

Figure 12a shows the phase diagram of the Kohn±
Luttinger superconducting state when the energy spectrum
of the monolayer is described by only one hopping
parameter �t1 6� 0, t2 � 0�, the Hubbard repulsion, U � 2
(hereinafter, all parameters are given in the units of jt1j), as
well as the Coulomb repulsion of electrons located only on
the neighboring carbon atoms �V1 6� 0, V2 � 0� are taken
into account.

We see from Fig. 12a that the phase diagram contains
three regions. At low electron densities n, superconductiv-
ity with the d� id-wave symmetry of the order parameter
is realized. At intermediate electron concentrations, a
superconducting f-wave pairing takes place. The contribu-
tion to it is determined by the harmonics g

�f1�
m �f� �

�1= ���
p
p � sin ��6m� 3�f�, while a contribution from the har-

monics g
�f2�
m �f� � �1= ���

p
p � cos ��6m� 3�f� is absent. At larger

densities n, a region of the chiral d� id-wave pairing appears
again [197, 210, 216, 225]. With an increase in the parameter
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Figure 12. The nÿV1 phase diagram of the superconducting state of the
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of the intersite Coulomb interactionV1, in the region of small
n, the d� id-wave pairing is suppressed, and the pairing with
f-wave symmetry of the order parameter is realized. The thin
curves in Fig. 12 correspond to the lines of constant jlj. It can
be seen that at the approaching the Van Hove filling nVH
(solid curve in Fig. 13), the values of the effective coupling
constant reach quite reasonable values jlj � 0:1.

Here, again to avoid the summation of parquet diagrams
[62, 65, 66], only the regions of electron concentrations that
are not to close to the Van Hove singularity in the density of
electronic states of graphene are analyzed (see Fig. 13). For
this reason, the boundaries between the different regions of
the realization of the Kohn±Luttinger superconducting
pairing and the lines of the constant jlj located very close to
the VanHove singularity are depicted in the phase diagram as
dashed curves.

When we take into account the long-range Coulomb
interactions of electrons V2 on the hexagonal lattice of
graphene, a qualitative change occurs in the phase diagram
of the superconducting state [231]. This can be seen from
Fig. 12b, which was obtained at a fixed relation between
the parameters of the long-range Coulomb interactions
V2 � 0:6V1. In this case, a suppression occurs of the wide
region of the superconducting state with the f-wave symmetry
at the intermediate electron densities, and a superconducting
pairing with the p� ip-wave symmetry is realized. Further-
more, an account ofV2 leads to an increase in the values of the
effective coupling constant to jlj � 0:3.

Account for the electron hoppings to the next-to-
nearest carbon atoms t2 in the graphene monolayer does
not qualitatively affect the competition between the super-
conducting phases with different symmetry types, as can be
seen from Fig. 12b [33]. This behavior of the system is
explained by the fact that the hoppings with t2 > 0 or
t2 < 0 do not cause an essential modification of the density
of states of the monolayer in the ranges of concentrations
of charge carriers between the Dirac point and both Van
Hove singularities (see Fig. 13). But when we take the
hoppings t2 into account we get an increase in the absolute
values of the effective interaction and, consequently, the
realization of the higher critical temperatures in the
idealized graphene monolayer [33].

We note that the Kohn±Luttinger superconductivity
(and the corresponding value of jlj) in graphene is never
connected with the Dirac points. Calculations show that in
the vicinity of these points, where a linear approximation to
the energy spectrum of the monolayer (and a parabolic
approximation for the spectrum of graphene bilayer, see
Section 9) works well, the density of states is very low, and
the value of the effective coupling constant jlj is less than
10ÿ2. Larger values of jlj, which indicate the development
of a Cooper instability, appear at electron densities
n > 1:15. However, at these concentrations, the energy
spectrum of the monolayer along the KM direction of the
Brillouin zone (Fig. 14) already differs significantly from the
Dirac approximation [231].

In Refs [232, 233], the possibility of Cooper pairing in
graphene was investigated in the opposite limit of strong
coupling, U4 t [226], which is based on the kinematic
mechanism of superconductivity using the diagram techni-
que for the Hubbard operators [56, 152, 153]. In particular, a
phase diagram for the superconducting ordering was con-
structed and the BCS coupling constant was calculated
depending on the filling of the p or s shell.

9. Enhancement of superconductivity
in the idealized bilayer of graphene

As far as the electronic properties of graphene depend on the
number of carbon layers [234], we therefore analyze the
possibility of the development of superconducting instability
in an idealized graphene bilayer [231, 235], whose crystalline
structure is shown in Fig. 15. The energy band structure of a
monolayer is characterized by a linear dispersion near the
Dirac points, while the bilayer has a quadratic energy
spectrum in the low-energy limit (see [236±238], and also
reviews [239, 240]).

The authors of [241] examined the effect of the
interplanar electron hopping in bilayer graphene and
graphite on the formation of the superconducting phase.
Assuming that the Hubbard interaction is attractive and
leads to a superconducting s-wave pairing, the authors
of [241] showed in the mean-field approximation that the
interplanar hopping increases the critical temperature Tc of
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Figure 13. Modification of the density of electronic states of a graphene

monolayer by taking electron hopping onto next-nearest-neighbor atoms

into account at t2 � 0 (solid curve), t2 � ÿ0:2jt1j (dashed curve), and

t2 � 0:2jt1j (dotted curve) [33].
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Figure 14. (Color online.) Comparison of the energy spectrum of a
graphene monolayer determined by expressions (54) (blue and green
solid lines) and of the spectrum obtained in the Dirac approximation
(black dashed line). The inset depicts the contour for going around the
Brillouin zone.
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the superconducting transition at low values of the chemical
potential.

The authors of [242] investigated the possibility of the
realization of the superconducting phase in the mean-field
approximation in the framework of the tÿJ model for a
graphene bilayer with the direct interlayer hopping g1 (see
Fig. 15) and the superexchange interaction caused by the
strong Hubbard repulsion U of electrons. It was shown that
in the bilayer with moderate doping and for the low-energy
scales, the d� id-wave pairing is predominant. In [243],
using the same model the authors discussed the coexistence
of chiral superconductivity with the d� id-wave symmetry
and antiferromagnetism near the half-filling for the graphene
bilayer.

The authors of [244, 245] studied the exotic super-
conductivity mechanism based on the interlayer pairing of
chiral electrons in a graphene bilayer, which leads to
anomalous thermodynamic properties. According to the
conclusions in [244, 245], this mechanism of superconductiv-
ity in a graphene bilayer is quite similar to color super-
conductivity [246] (based on the pairing of quarks in high-
density quark matter at low temperatures) and to gapless
states in nuclear matter [247].

The authors of [248] used the random phase approxima-
tion (RPA) to calculate the screening of Coulomb interaction
in a graphene bilayer in both doped and undoped regimes.
They found that the static polarization operator of a doped
bilayer contains theKohn anomaly that is considerably larger
than in the case of graphene monolayer or a 2D electron gas.
As it was already noted in Section 2, the singular part of the
polarization operator, or the Kohn anomaly, favors an
effective attraction of two particles ensuring a contribution
that (for the orbital angular momenta of the pair l 6� 0)
always exceeds the repulsive contribution caused by the
regular part of the polarization operator. Thus, the authors
of [248] concluded that in the idealized bilayer, it is possible to
expect an increase in the critical temperatures Tc of the
superconducting transition in comparison with Tc in the
idealized graphene monolayer.

According to the results in [249], the ferromagnetic
instability near the Van Hove singularities prevails over

the Kohn±Luttinger superconductivity. Nevertheless,
in [250], the possibility of the superconducting pairing in
the repulsive case on the hexagonal lattice for the graphene
bilayer was investigated within the renormalization group
formalism in the weak-coupling regime far away from the
half-filling. Although the utilization of the renormalization
group approach in this regime can be substantiated only
formally [250], the authors discovered, a chiral d-wave type
superconductivity besides the f-wave type of the super-
conducting pairings. Estimating the critical temperature of
the superconducting transition in the idealized system, the
authors of [250] obtained Tc � 1 K and noted that the
critical temperature can be lower if we take into account the
electron scattering on impurities.

In [231, 235], the authors investigated in details the
influence of the Coulomb interaction of the Dirac fermions
on the formation of the Kohn±Luttinger superconducting
state in doped bilayer graphene neglecting the van der Waals
potential of the substrate and the role of impurities. Within
the Shubin±Vonsovsky model in the weak-coupling Born
approximation, taking into account the Hubbard, intera-
tomic (inside the layer), and interlayer Coulomb interactions
of electrons, a phase diagram of superconducting state was
constructed. It has been shown that the Kohn±Luttinger
polarization contributions on the second order of the
perturbation theory and the long-range intraplane Coulomb
interactions substantially influence the competition between
the superconducting phases with the f-, p� ip-, and d� id-
wave symmetries. It has been demonstrated that the interlayer
Coulomb interaction can lead to an increase in the critical
temperature of the superconducting transition. Now, we
discuss the results of the calculations performed in [231, 235]
in more details.

We consider an idealized graphene bilayer, assuming that
two monolayers are located according to the AB-stacking,
i.e., one layer is turned through 60� relative to the other one
[236, 240]. In this case, we choose an arrangement of the
sublattices in the layers in such a way that the sites from the
different layers located on top of one another will be referred
to the sublattices A1 and A2, and the remaining sites to the
sublattices B1 and B2 (see Fig. 15). In this case, the
Hamiltonian of the Shubin±Vonsovsky model for bilayer
graphene taking into account the electron hoppings between
the nearest and next-to-nearest atoms, the Coulomb repul-
sion of electrons located on the same and on different atoms
of one layer, as well as with the interlayer Coulomb
interaction, has the following form in the Wannier represen-
tation:

Ĥ 0 � Ĥ 00 � Ĥint ; �71�
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Figure 15. (Color online.) Crystal structure of a graphene bilayer. Carbon

atoms A1 and B1 in the lower layer are shown by red and black circles;

carbon atomsA2 and B2 in the upper layer are depicted by black and green

circles; t1 and t2 are intraplane electron hoppings; g1, g3, and g4 are

interplane hoppings [231].
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The notations used here are similar to ones used for
monolayer Hamiltonian (52). In Hamiltonian (71), the index
i � 1; 2 stands for the number of a layer. The vector d�ÿd�
connects the nearest-neighbor atoms of the hexagonal lattice
of the lower (upper) layer. It is assumed that the on-site
energies are eAi � eBi � e. The symbols g1, g3, and g4 are the
parameters of interlayer electron hoppings (see Fig. 15), and
G1, G3, and G4 are the interlayer Coulomb interactions.

As in the case of a monolayer (see Section 8), the
Hamiltonian Ĥ 00 is diagonalized by the Bogoliubov transfor-
mation

aiks � wi1�k�a1ks � wi2�k�a2ks
� wi3�k�b1ks � wi4�k�b2ks ; i � 1; 2; 3; 4 ; �74�

and is reduced to the form

Ĥ 00 �
X4
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X
ks

Eika
y
iksaiks : �75�

Since the results of ab initio calculations [251, 252] performed
for graphite indicate a very low value of the parameter of the
interlayer hopping g4, we assume that g4 � 0. In this case, the
four-band energy spectrum of bilayer graphene is given by
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����������������������
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������
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The conditions for the appearance of the Kohn±Luttinger
superconductivity in the graphene bilayer in the Born weak-
coupling approximation are analyzed using the hierarchy of
the model parameters

W > U > V1 > V2 > G1 > G3; G4 �77�

(where W is the bandwidth of the graphene bilayer),
according to the general scheme presented in Section 8.
Upon doping of the bilayer, the chemical potential is
assumed to be located inside the two upper energy bands,
E1k and E2k, as it is shown in Fig. 16a. In this case, if g1 6� 0
and m > g1, in the vicinity of each Dirac point at the electron
densities 1 < n < nVH (where n is the electron concentration
calculated per number of atoms of one layer), the Fermi

contour consists of two lines, as it is shown in Fig. 16b. The
initial and the final momenta of electrons in the Cooper
channel then also belong to the two upper bands and,
consequently, the indices i and j in the Kohn±Luttinger
diagrams in the case of a bilayer (see Fig. 2) take the values
1 or 2. As a result, we arrive at expression (61) for the effective
interaction of electrons in the Cooper channel, in which the
bare amplitudes for the graphene bilayer are given by
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Figure 16. (a) Energy structure of a graphene bilayer near the Dirac points

and (b) the formation of a multisheet Fermi contour at t2 � 0, g1 � 0:12,
g3 � 0:1, and m � 0:7 (all parameters in units of jt1j) [231].
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Here, the indices l and m can take the values 1, 2, 3, or 4.
As it was already noted in the case of the monolayer, there

is no common opinion in the literature concerning the values
of the intraplane and interplane Coulomb interaction para-
meters in a graphene bilayer [226, 243]. In our calculations, we
used the hierarchy of parameters given by (77), which allows
the application of the Born weak-coupling approximation.
For the parameters of the interlayer hopping g1 and g3, values
close to those determined for graphite in Refs [251, 252] are
used.

Let us consider the superconducting phase diagram of the
graphene bilayer and its modifications by different interac-
tions. First of all, we note that at g1 � g3 � g4 � 0 and
G1 � G3 � G4 � 0, when the graphene bilayer represents
two isolated monolayers, a limiting transition to the results
obtained for the monolayer in Section 8 is checked in the
numerical calculations. Choosing the interlayer electron
hopping parameters as g1 � 0:12; g3 � 0:1 (hereinafter, all
parameters are taken in the units of jt1j), with all the other
parameters having the same values as in Fig. 12, we do not get
considerable changes in the phase diagram of the graphene
bilayer. Including the Coulomb interaction G1, we get only a
weak shift of the boundaries of the f1- and d� id-wave
pairing in the phase diagram of Fig. 12. Moreover, this
inclusion does not affect the absolute values of l.

Figure 17 demonstrates the influence of the interlayer
Coulomb interactions G3 and G4 on the phase diagram of
the graphene bilayer. This diagram was obtained using the
set of parameters t2 � 0, g1 � 0:12, g3 � 0:1, U � 2, and
V2 � 0 for the relations between the interlayer and intersite
(intralayer) Coulomb interactions. In Fig. 17a, we chose the
set of parameters G1 � 0:5V1, G3 � G4 � 0:4V1 in accor-
dance with the hierarchy of the parameters specified by (77).
The results of the calculations show that an increase in G3

and G4 separately leads to a suppression of the d� id-wave
pairing and to an expansion of the region of the f-wave
pairing at low electron densities. In this case, a stronger
suppression of the superconducting d� id-wave phase can
be achieved by an increase in the interlayer Coulomb
interaction parameter G4. Simultaneously, when we take
the interactions G3 and G4 into account, as it is shown in
Fig. 17a, we get not only an intensive suppression of the
superconducting d� id-wave pairing at low electron densi-
ties and realization of the superconductivity with the f-wave
symmetry, but also an increase in the absolute values of the
effective coupling constant l.

Figure 17b shows the phase diagram of a graphene
bilayer calculated at the same parameters as in Fig. 17a,
but with an account of the long-range Coulomb repulsion of
electrons V2. It can be seen from the comparison of Fig. 17b
and Fig. 12b that the inclusion of G3 6� 0 and G4 6� 0 leads
to a strong competition between the d� id- and p� ip-wave
pairing and to a significant suppression of the latter in the
region of the intermediate electron concentrations. In this
case, in the preserved region of p� ip-wave pairing, the
value of jlp�ipj exceeds the f-wave coupling constant jlfj
insignificantly.

The inclusion of electron hoppings t2 to the next-to-
nearest carbon atoms does not affect qualitatively the
competition between the superconducting phases shown in
Fig. 17. This can be seen from Fig. 18, which shows the phase
diagram of a graphene bilayer obtained with the parameter
values t2 � 0:1, g1 � 0:12, g3 � 0:1, U � 2, G1 � 0:5V1, and
G3 � G4 � 0:4V1. This behavior of the system is explained by
the fact that the hopping t2 > 0 or t2 < 0 for the graphene
bilayer, just as in the case of the monolayer, does not lead to
an essential modification of the density of states in the regions
of charge-carrier concentrations between the Dirac point and
both nVH points (Fig. 19).However, it can be seen fromFig. 18
that an account for hoppings t2 leads to an increase in the
absolute values of the effective interaction and, consequently,
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Figure 17. The nÿV1 phase diagram of the superconducting state of a

bilayer of graphene at t2 � 0, g1 � 0:12, g3 � 0:1, U � 2, G1 � 0:5V1,
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in the units of jt1j). Thin curves show lines of constant jlj [231].
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to the higher critical temperatures of the superconducting
transition in the idealized graphene bilayer.

Our calculations show that the Kohn±Luttinger mechan-
ism can result in critical temperatures of the superconducting
transition as high as Tc � 20ÿ40 K in the idealized graphene
bilayer. In spite of these rather optimistic estimations, the
superconductivity in real graphene, as it was stressed in
Section 8, has not been discovered yet. Real graphene is only
close to superconductivity.

There are several reasons why the results of the theoretical
calculations presented in this review can be in disagreement
with the experimental data. First of all, in our calculations, we
did not take into account the influence of the van der Waals
potential of the substrate [253±257]. With an increase in the
number of layers, the role of this potential should be
weakened apparently. However, even in the case of a multi-
layer system, the van der Waals forces can worsen the
conditions for the development of the Cooper instability.

Secondly, as we noted, there is no common opinion in the
literature concerning the values of the parameters of the
intraplane and interplane Coulomb interactions in the
graphene bilayer. In this review, the values close to those

obtained from ab initio calculations (performed in [226] for
graphite) were used for the intraplane Coulomb interactions.
The values of the interplane Coulomb interactions were taken
such that they would satisfy the hierarchy of the parameters
of the Born weak-coupling approximation.

Thirdly, in our calculations, a clean and structurally ideal
graphene bilayer is considered, whereas a real material
contains various impurities and structural imperfections,
including grain boundaries and twinning planes. For conven-
tional s-wave pairing, the singlet superconducting state is
destroyed by magnetic impurities [99, 258±260], but for
anomalous pairing with f-, p� ip-, and d� id-wave symme-
try even nonmagnetic impurities [98] and structural imperfec-
tions are known to contribute to the destruction of the
superconducting state [250, 261, 311].

We also emphasize one additional possible reason for the
discrepancy between the results of the theoretical calcula-
tions in graphene and experimental observations. In recent
work [262], the role of quantum �T � 0� fluctuations in the
graphene layers was investigated. These fluctuations were
shown to initiate logarithmic corrections to the elasticity and
bending moduli of the layers. In other words, according
to [262], quantum fluctuations of the flexural vibrations of
graphene layers can lead to a situation when the electrons
move along strongly curved string-like trajectories rather
than along the atomically smooth layers. This situation
requires examination, although in this case superconductiv-
ity can not be excluded and can even be enhanced via the
exchange by the quanta of the bending vibrations between the
pairing electrons.

10. New promising systems
with anomalous pairing

We can assume today that there is a number of systems in
which anomalous superconducting pairing can be realized,
and in particular, the pairing based on the Kohn±Luttinger
mechanism and its generalizations. One such a system is
strontium titanate SrTiO3. At room temperature, SrTiO3

has a cubic crystal structure, while at T � � 105 K, its
structure becomes tetragonal as a result of a phase transi-
tion. The electron structure of SrTiO3 is characterized by the
presence of an energy gap with a width of 3 eV, which
separates the filled 2p bands of oxygen from the empty
3d bands of titanium [263, 264].

It was shown in [265] that in a limited region of the
momentum space near the center of the Brillouin zone, the
band structure of the strontium titanate can be effectively
described by dxy, dyz, or dzx Bloch waves, each having two
directions with a strong dispersion (kx and ky for the dxy-wave
orbital, etc.) and one direction with a weak dispersion, which
is orthogonal to the first two directions [265]. As a result,
three degenerate energy bands are formed, which with good
accuracy can be approximated by parabolas, and the Fermi
surface consists of three overlapping ellipsoids with the center
at the center of the Brillouin zone, which are oriented along
the axes x, y, and z of the reciprocal cubic lattice.

Effectively, the strontium titanate is a semiconductor,
which in the case of weak electronic doping demonstrates
metallic properties with a relatively high mobility of charge
carriers, quadratic temperature dependence of the electrical
resistivity, and a strong temperature dependence of the
infrared optical conductivity [265]. At low temperatures, the
material becomes superconducting [266], with the maximal
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calculated per unit cell of one layer on the electron concentration for the

set of parameters t2 � 0, g1 � 0:12jt1j, g3 � 0:12jt1j [231].
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critical temperature Tc � 1:2 K [50], although superconduc-
tivity is usually observed at lower temperatures, Tc 4 0:7 K,
and is characterized by a domelike Tc�n� dependence [267,
268]. Superconducting pairing is also observed at Tc � 0:2 K
in the 2D electron gas, which is formed at the interface of the
SrTiO3/LaAlO3 heterostructures [269, 270]. In this case, the
superconducting transition temperature can be increased to
Tc � 0:3ÿ0:4 K by the application of an electric field [271,
272].

We note that at present the nature of superconductivity in
strontium titanate and in related heterostructures remains
unclear. Superconductivity in SrTiO3 was first investigated in
Ref. [273] based on the mechanism of electron±electron
attraction due to the exchange of phonons of the same and
the different valleys. This study was stimulated by the earlier
results of the band-structure calculations [274], which demon-
strated the multivalley band structure of SrTiO3. Subse-
quently, the mechanism of multivalley superconductivity in
strontium titanate was investigated in [275±277]. However,
later on, when the data were accumulated indicating that
SrTiO3 is a superconductor with three almost parabolic
bands, other mechanisms of superconductivity, which are
not connected with the multivalley structure were suggested
(see, e.g., [278±280]).

In Ref. [281], in the framework of the phenomenological
2D model, were investigated manifestations of multiband
superconductivity in thin films of SrTiO3 and at the interfaces
of the SrTiO3/LaAlO3 heterostructures at various doping
levels. The authors of [281] did not discuss the nature of the
superconducting instability and limited themselves to an
examination of s-wave pairing. In their model, the dxz, dyz,
and dxy-orbitals form two electron bands, as in a weakly
doped compound, and only one of them intersects the Fermi
level [281]. With an increase in the doping level, the chemical
potential intersects the second band, leading to a strong
modification of the superconducting properties of the
system. Theoretical results for the calculations of the
dependences of Tc and local density of states on the doping
level [281] have been compared with the experimental data
[268]. It was shown that the intraband (intraorbital) effective
attraction in SrTiO3 prevails over the interband (interorbital)
attraction, whereas in othermultiband superconductors, such
as in pnictides, no predominance of the intraband effective
attraction over the interband one was observed.

Another systems in which the development of Cooper
instability is possible via the Kohn±Luttinger mechanism is a
family of the `vertical' heterostructures, which consist of
graphene layers separated by intercalating layers of boron
nitride [282±285]. These structures demonstrate a number of
interesting properties connected with the interaction of
electrons from different layers. In these systems, the boron
nitride (h-BN), like graphene, has a hexagonal structure
(because of its color and the similarity of its structure to the
structure of graphite, it is frequently called `white graphite'
[286]). At the same time, at the sites of the A and B sublattices,
it contains atoms of boron and nitrogen. This causes the
appearance of a wide energy gap (5.2±5.9 eV) in the electronic
structure of h-BN [287±291], which underlies the wide usage
of h-BN as a high-quality dielectric in graphene devices [292].
Note that h-BN is chemically and thermally stable and is not
characterized by the presence of broken bonds or surface
traps for the charge carriers. That is why graphene structures
based on h-BN substrates demonstrate a higher mobility of
charge carriers [293, 294], smaller roughness, and twofold-

lower fluctuations of the potential than the similar graphene
structures on the substrates of SiO2 [295, 296].

Graphene structures with h-BN can easily be modified.
The concentration of charge carriers in the graphene layers,
the spacings between these layers, and the nature of the
substrate can be changed independently in a wide range of
parameters. These changes can lead to a strong modification
of electron±electron interaction in this family of hetero-
structures, which can open the possibility of realization of
superconductivity at relatively small concentrations of
carriers and in the absence of any specific properties of the
density of states [297].

We note that the possibility of Cooper pairing due to
electron±electron interaction was investigated in Ref. [297] in
the model of a vertical heterostructure consisting of two
graphene layers with the concentrations of carriers n1 and n2
and with three dielectric intercalating layers with different
static dielectric constants E1, E2, and E3. The possibility of the
superconducting instabilities was analyzed in the framework
of the Kohn±Luttinger mechanism and the most probable
superconducting phase was described. In particular, it was
shown that the superconducting state with odd momenta, at
which the superconducting gaps have opposite signs in
different Dirac cones, is the ground state of the system due
to the intervalley scattering at high densities.

Note that in solids, the crystalline structure strictly
determines the effective mass, the velocity of electrons, and
the strength of their interactions. This constraint significantly
limits the development and the verification of different
theoretical and experimental methods of physics of strongly
correlated electronic systems. Another, more flexible method
for studying the different models of strongly correlated
electrons is connected with the systems of ultracold atoms
captured by a periodic potential obtained by the interference
of three laser beams [298, 299].

In Ref. [300], an experimental scheme was suggested of
simulation and observation of the Dirac fermions in a system
of the ultracold atoms in a two-dimensional hexagonal
optical lattice. The authors of [300, 301] showed theoretically
that it is possible to control the anisotropy of the optical
lattice by changing the intensity of the trapping laser and
realize both the regimes of massive and massless Dirac
fermions, as well as to observe a phase transition between
these two regimes. In fact, the authors of [300, 301] predicted a
topological semimetal±dielectric Lifshitz transition with the
gap opening in the fermionic spectrum and with a change in
the temperature behavior of the electronic heat capacity. It
was noted in [300] that Bragg spectroscopy [302] and different
methods of determining the atomic-density profile in mag-
netic or optical traps [303±305] can be used for the experi-
mental detection of both gapped and gapless regimes and the
phase transitions between them. The physical picture
observed in this case, according to the authors of [300], must
be very close to the picture of the ensemble of the Dirac
fermions in the graphene monolayer.

Recently, the researchers of Eslinger's group [306] in
Zurich experimentally realized the Dirac points with well
controlled properties using the ultracold fermionic atoms of
40K in a hexagonal optical lattice. The presence of the Dirac
points in the band structure was detected by the authors
of [306] by the observation of a minimal gap in the Brillouin
zone. The authors of [306] used the unique experimental
technique of the optical tuning of the lattice potential for
controlling the effective mass of the Dirac fermions. More-
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over, the change in the lattice anisotropy allowed the authors
of [306] to change the position of the Dirac points in the
Brillouin zone. It turns out that if the anisotropy exceeds a
certain critical value, then the two Dirac points merge and
annihilate. This phenomenon generated a broad theoretical
interest [301, 307±309], but at the same time the difficulties
concerning the possibility of its experimental observation in
solids became obvious to the community [310].

The experimental realization of the Dirac points in a
system of the ultracold atoms in the hexagonal optical
lattices [306] also opens the great prospects for the experi-
mental and theoretical study of a broad class of the physical
phenomena caused by the complex topology of the lattice,
including the anomalous superconducting pairing and the
appearance of the various chiral phases.

11. Conclusions

The Kohn-Luttinger mechanism and its generalizations
(which assume the appearance of the anomalous pairing in
the systems with a purely repulsive interaction) represent a
universal pairing mechanism for many superconductive
systems. We demonstrated the instability of the Fermi gas
with repulsion towards the superconducting transition in a
triplet p-wave state. The initial conclusion about the
possibility of the Cooper instability for the Fermi-gas with a
short-range (Hubbard) repulsion and a quadratic dispersion
law was generalized for the electrons in the real crystalline
solids in the tight-binding approximation. It turns out that the
character of the energy spectrum of electrons (which is
determined by the hopping parameters) greatly affects the
symmetry of the superconducting order parameter and the
phase diagram of superconductivity.

Nevertheless, in a fundamental sense, the conclusion
about the development of the Cooper instability via the
Kohn±Luttinger mechanism and its generalizations remains
valid even in the presents of the lattice. Moreover, in many
cases this mechanism can lead to a substantial increase in the
superconducting transition temperature already at low
density of charge carriers in particular in a spin-polarized
case and in a two-band situation.

It has been demonstrated that the universality of the
Kohn±Luttinger mechanism is preserved when we take into
account the finite screening radius in electron systems with
repulsion. In the framework of the Shubin±Vonsovsky
model, we showed that the Coulomb repulsion of electrons
located at different sites of the crystalline lattice could
substantially modify the superconducting phase diagram
and can lead to an increase of the critical temperature
under appropriate conditions. In particular, at the electron
concentrations close to the Van Hove singularity in the
density of states the critical temperatures can reach the
values of the order of 100 K (realistic for cuprates) at the
moderate ratios of U=W between the Hubbard repulsion U
and the bandwidth W.

We have also shown in this review that the Kohn±
Luttinger mechanism of the superconducting pairing can be
realized in the systems with a linear (Dirac-like) dispersion
relation. This possibility was demonstrated for an idealized
graphenemonolayer whose atoms form a hexagonal lattice. It
was shown that in this system, the polarization effects also
lead to the effective attraction of electrons in the Cooper
channel. The results obtained for the graphene monolayer
were generalized on the case of a graphene bilayer, which

consists of two layers that interact by means of interlayer
Coulomb repulsion. It was shown that the examination of the
idealized two-layer system of graphene leads to an increase in
the critical temperature of the superconducting transition in
the framework of the Kohn±Luttinger mechanism.

Along with the analysis of the superconducting state, we
also analyzed the structure of the normal state of the basic
models with the Hubbard repulsion and found nontrivial
corrections to the Fermi gas Galitskii±Bloom expansion
caused by the presence of the upper Hubbard band in the
lattice models or by the presence of a singularity due to the
Landau f-function of quasiparticles interaction at low
electron densities. However, these corrections do not destroy
the Landau Fermi-liquid picture in three-dimensional and
two-dimensional systems, and also preserve all the results
concerning the realization of the superconducting pairing in
them.

In the review, the significant attention has been paid to the
description of the systems and materials important for the
development of the microelectronics, such as the vertical
heterostructures of graphene/boron±nitride/graphene, stron-
tium titanate, and the related heterostructures. We have
analyzed in details both an anomalous superconductivity
and the possibility of fermionic superfluidity in 3D and 2D
solutions of 3He in 4He, and also in a system of ultracold 6Li
and 40K atoms in the magnetic traps and the optical lattices.
Thus, we built a bridge connecting the interests of the solid-
state and the low-temperature scientific communities.

To conclude, we emphasize once again the universal
nature of the Kohn±Luttinger mechanism and its general-
izations for the formation of the Cooper instability in
repulsive Fermi systems and its importance for the realiza-
tion of an anomalous superconducting and superfluid pairing
with a nonzero value of the orbital angular momentum
�l 6� 0�.
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