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Abstract. While ubiquitous at all levels of organization in
nature, including in nanotechnology, low-frequency 1/f noise is
not yet understood. A possible reason is the unjustified applica-
tion of probability theory concepts, primarily that of indepen-
dence, to random physical phenomena. We show that in the
framework of statistical mechanics, no medium can impart a
definite diffusivity and mobility to a particle that performs
random walk through it, which gives rise to flicker fluctuations
in these properties. A universal source of 1/f noise in many-
particle systems in this example is a dependence of the time
behavior of any particular relaxation or transport process on
the details of the initial microstate of the system as a whole.
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1. Introduction

1.1 Root of the question and a popular hypothesis

For many years, the question of 1/f noise (flicker noise) has
grown in urgency, extending and deepening together with
physical experiments and new technologies and concerning
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almost all things in the world, from cosmic phenomena down
to molecular biology and nanoelectronics. However, there are
no modern reviews proportional to the volume and signifi-
cance of the question — perhaps, because investigators do not
find inspirational ideas. True, one appropriate suggestion
considered below was already made in [1-4], but it received no
response. Meanwhile, today we see reports on more and more
inventive and fine measurements of 1/f noise, for instance, in
metal and alloy films [5] or atomic layers of graphene [6], but
repeatedly without unambiguous indications of its origin.
As was noted in [6], ... despite almost a century of research,
1/f noise remains a controversial phenomenon and numerous
debates continue about its origin and mechanisms.”

It can be added that the ‘“‘debates,” as our experience
suggests, not infrequently take rather totalitarian forms.
Maybe partly by this reason, from the author’s standpoint,
the present situation in general barely differs from what was
outlined in [1] and a little later in [7]. It is to be compared
with the situation in astronomy more than 300 years ago,
before the publication of Isaac Newton’s celebrated Princi-
pia [8]. We venture such a comparison not for the sake of
witticism but in view of our intention to demonstrate in this
article that just Newton’s laws of mechanics may be the
place where the solution to the 1/f noise problem is hidden.
More precisely, 1/f noise is an immanent property of systems
of many particles moving and interacting by these laws (in
their classical or quantum formulation, also including fields).
In order to recognize this, one has only to follow Newton’s
advice to avoid unnecessary hypotheses (‘“‘Hypotheses non
fingo™ [8]).

What hypotheses, then, are proposed by physicists as
regards 1/f noise? We discuss this with the example of electric
current noise in a conductor at a fixed voltage. The presence
of 1/f noise there means that the current has no definite value,
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in the sense that its averaging (smoothing) over time produces
an unpredictable result, randomly varying from one experi-
ment to another, with a scatter that hardly decreases, or even
increases, as the averaging interval grows in duration
(because the related narrowing of the frequency band
contributing to the scatter is almost compensated or even
exceeded by the growth of the noise power spectral density
inside that band).

As regards the cause of such a phenomenon, one usually
first of all assumes that it lies in some specific fluctuation
processes influencing the current (for instance, via the number
of charge carriers or their mobility), while a feature of these
processes is an extremely wide variety of their time scales (of
memory, life, relaxation, correlation times, etc.) [5, 6, 9]. Just
this is the basic hypothesis.

1.2 Concept of the answer and the strategy

The hypothesis just pointed in Section 1.1 is actually not
necessary because the mechanical laws as they are in no way
require certainty of the current, and do not therefore require
any special reasons for its uncertainty. Indeed, no matter
what concrete mechanism of conductivity takes place, if it is
indifferent to the amount of charge transported previously
through the conductor from one side of an outer electric
circuit to the other and hence to a past value of time-
smoothed current, then this mechanism continues to be
indifferent to them, and on the whole it is unable to set
conditions for certainty of the current. It therefore serves as a
mechanism of 1/f noise. The mentioned indifference, in turn,
is supported by the experimental conditions themselves,
which state that fluctuations of the (time-smoothed) current
do not induce back reaction of the outer circuit, which
passively swallows them.

In this reasoning, no collections of large characteristic
times are present; instead, there is a single time only, in
practice usually a short one, after which the memory of the
conductance mechanism expires. For instance, if it is less than
several hours, then the transfer of charge carriers, under their
collisions, scatterings, reflections, etc., that occurs now, at the
present time interval, is indifferent to what amount of charge
was transported yesterday, even if an experimental device was
not switched off the preceding night. Correspondingly, at
frequencies lower than 1 day~!, one can find 1/f-noise.

Analogously, if somebody possesses unlimited resources
for income and expenditures and does not keep count of
them, then he himself cannot know how much his expendi-
tures are on a time average, and they should be expected to be
distributed over time like 1/f noise.

If, returning to the conductor, we short-circuit it, then the
current 1/f noise disappears along with the direct current, but
irregular charge displacements in opposite directions con-
tinue, again, indifferently to their past amount and therefore
to their time-averaged intensity. The latter, therefore, is not
aimed at a certain value, which results in 1/f fluctuations of
the intensity (power spectral density) of thermodynamically
equilibrium white (thermal) current noise. They are con-
nected with the 1/f noise in a nonequilibrium current-
carrying conductor by means of the ‘generalized fluctua-
tion—dissipation relations’ [1, 2, 10-12].

If, on the contrary, one measures equilibrium thermal
noise of the potential difference between sides of an open
conductor, e.g., an electric junction, then 1/f fluctuations of
the intensity of this noise can also be found, which testifies
that the sum of numbers (per unit time) of random charge

carrier transitions from one side to the other and back is
not tracked and controlled by the system, in contrast to
the difference of the forward and backward transition
numbers [10]. Therefore, the characteristic time constant of
the system (equivalent RC circuit) determines the upper time
scale for fluctuations of the difference and the lower one for
fluctuations in the sum (whose upper time scale does not exist
because they do not change the system macrostate).

The aforesaid can easily be extended, under nonprincipal
substitutions of particular terms and meanings, to other
manifestations of 1/f noise in nature. Numerous examples
were listed in[1, 2,4, 10, 11, 13—-15]. Our demonstration below
is performed in terms of equilibrium ‘molecular Brownian
motion’ [3, 7, 10, 12, 16-23].

Using the simplest tools, we show that the assumption of
the certainty of a Brownian particle’s diffusivity, or the rate of
diffusion, is incompatible with exact equations of statistical
mechanics, that is, with the dynamics underlying Brownian
motion. Therefore, mechanics inevitably generates 1/f noise,
or flicker fluctuations, of diffusivity and mobility of the
particle. We then consider quantitative characteristics of this
noise and in Section 4 we present their explanation in the
language of the theory of deterministic chaos in many-particle
systems.

2. Phenomenology of Brownian motion

2.1 Formulation of the problem

We imagine a small ‘Brownian’ particle in a three-dimen-
sional statistically uniform, isotropic, and thermodynami-
cally equilibrium medium. A very small particle of dust or
flower pollen, whose movement in liquid was first observed
through a microscope [24, 25] in the 19th century and
theoretically analyzed [26-28] in the early 20th century, are
suitable objects for us. But it is better to have in mind some
‘nanoparticle’ or merely a separate atom or molecule in a
liquid or gas [29]. In principle, we can even speak about a free
charge carrier or a point-like defect in a solid, but confine
ourselves to a particle, a subject of the classical version of
mechanics.

Let R(7) and V(¢) = dR(¢)/dz denote vectors of the center-
of-mass coordinate and velocity of our Brownian particle
(BP) at a given time instant, and R and V be their possible
values. We assume that initially at time ¢ = 0, the BP was
placed at some point of space known with certainty, although
it is unimportant where exactly, owing to the spatial
homogeneity of the medium and the thermodynamical
equivalence of all BP positions. Therefore, it is convenient to
choose the coordinate origin: R(0) = 0. Then the instant
current position of the BP, R(7), coincides with the vector of
its total displacement, or path, during all the preceding
observation time.

We now ask ourselves what the BP ‘diffusion law’ is, i.e.,
what the probability distribution of the BP path is. The
density of this distribution is denoted by W(¢,R). It can be
represented as

W(1,R) = (5(R—R(1)), (1)

where the Dirac delta-function is involved, R(¢) is under-
stood as the result of all the preceding interaction between
the BP and the medium, and the angular brackets denote
averaging over the equilibrium statistical ensemble (Gibbs
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ensemble [30]) of initial states of the medium and initial values
of the BP velocity. Undoubtedly, the plot of W(#,R) as a
function of R looks like a bell spreading with time. We are
interested in what shapes may be taken by this bell in reality.

2.2 Conditional averaging and the continuity equation

In fact, Eqn (1) is a mere identity, but its time differentiation

immediately brings us food for thought. From it, we have
oW(t,R)

TR ~V(V(1)o(R = R(1))).

Invoking mathematical tools of probability theory [31], we
can rewrite this equality as

ow(t,R -

PR vV Ry Wi R), @
where V(£,R) = (V(¢))g is the conditional mean of the BP
instant velocity determined under the condition that its
current position, and hence its previous path, is known
(measured) to be equal to R(7) = R. Generally, the operation
of conditional averaging (.. .)g is defined by the formula

) _(---9(R(r) =R))
VRO (5(R(1) —R))

Obviously, Eqn (2) is the ‘continuity equation’ for the
probability density W(z,R), and the ‘velocity field of the
probability flow’ ¥(¢,R) contains important information
about solutions of this equation. Therefore, first of all, we
consider the possible construction of the vector function
V(#,R).

2.3 Conditional mean velocity of a Brownian particle

We keep in mind that the duration ¢ of our observations of a
BP is much longer than the characteristic relaxation time t of
(fluctuations of) the BP velocity.

We then first apply a heuristic argument as follows. On the
one hand, by the condition R(z) = R, the mean of the BP
velocity in the past, at the time of its preceding observation, is
equal to R/¢. On the other hand, because the BP makes a
random walk and ¢ > 7, the same condition R(#) = R tells us
almost nothing about the BP velocity in the future; therefore,
its mean at an equal next time interval can be expected to be
zero. Hence, because the mean in question, V(z, R), is related
to the present time instant ‘in the middle between the past and
the future’, it seems likely that it is equal to the half-sum of the
mentioned quantities:

— R

V(#,R) = % (3)

We can confirm this conclusion in a more formally
rigorous way, based on the main distinctive statistical
property of Brownian motion [27]:

(R*(1)) = JRZ W(t,R)dR = 6Dt (4)

for ¢ > 7, stating that the ensemble average of a squared BP
displacement grows proportionally to the observation time.

For confirmation, it suffices to note that the continuity
equation implies that

0 _
aJRszR: 2JRVWdR,

and that this requirement is naturally satisfied together with
Eqn (4) (because V|| R) when equality (3) is valid.

Incidentally, we note that the BP diffusivity, or the
diffusion coefficient, D and the relaxation time 7 can always
be related as

T
D=Vit=—

T )
M

where T is the temperature of the medium, M is the mass of
the BP, and Vy = 1/ T/ M is its characteristic thermal velocity.

2.4 General form of the probabilistic law

of diffusion and uncertainty of diffusivity

After inserting function (3) into (2), we arrive at the partial
differential equation

ow
2t — = -3W —-RVW, (5)
ot
which clearly suggests a scale-invariant character of its
solutions. The isotropic (spherically symmetric) solutions of
interest have the form

W(t,R) = (2D1) /> ‘P<2R—l;) (6)

with some dimensionless function ¥(z) of the dimensionless
argument z = R?/(2D¢). In our context, representing the
probability density, it must be nonnegative and satisfy the
normalization condition [ WdR =1 together with equality
(4), which can always be ensured. Equation (6) is then the
most general law of diffusional random walk, when typical BP
displacements are proportional to the square root of the
observation time: R?(¢) o .

In particular, taking Y(z)= (215)73/2 exp (—z/2), we
obtain the commonly known Gaussian diffusion law

W = Wp(t,R) = (4nD1)~>* exp (f 4R;[> . (7

The corresponding walk is appealing because in a time scale
sufficiently coarse in comparison with 7, its successive
increments are mutually statistically independent. Owing to
this, the only parameter of such random walk —its diffusion
coefficient, or diffusivity, D—can be uniquely determined
from observations of any of its particular realizations, by
means of a long enough time averaging.

However, similar observations of non-Gaussian random
walk corresponding to a distribution of general type (6) would
produce different values of diffusivity every time [1-4, 7, 10].
Indeed, their coincidence — the convergence of all results of
time averaging to the same value—would be impossible
without the statistical independence of increments (at least
those distant from one another in time), which, in turn, would
mean, in accordance with the appropriate limit theorem in
probability theory (the ‘law of large numbers’), that the
probability distribution of the total path tends to the
Gaussian (normal) one at ¢ > 7 [32].

This becomes quite obvious if distribution (6) is repre-
sented by a linear combination of Gaussian bell-shape curves:

o8]

W(t,R) = J

A d4
0 WA(t,R) U(B’ é) E .
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Such decompositions naturally arise in microscopic theory
[12, 16-18]. Accordingly, instead of ¥(z) in (6), we can write

o0
¥(z,0) :J % U, ¢)de. (8)
o (2nd)
The function U((, &) here plays the role of the probability
distribution of { = 4/D, which is the random diffusivity 4
expressed in units of the mean diffusivity D. The latter is
formally defined by equality (4), while practically one can try
to determine it by averaging over many experiments or many
identical Brownian particles.

The additional argument ¢ in this decomposition, if
introduced, for example, as & =t/ under the convention
that ¥(z,0) = ¥(z), allows us to take violation of the ideal
scale invariance of random walks at £ # 0 into account, first
of all at the far “tails’ of the diffusion law, where R* > V312,
that is, z 2 1/¢. There, the rate of diffusion reaches values of
the rate of free flight, 4 ~ V3t = D/¢.

Of course, a correction to the tails of the diffusion law may
strongly influence its higher-order statistical moments and
cumulants, even if ¢ < 1. Be that as it may, nevertheless, the
shape of the W(t,R) bell mainly stays almost unchanged.
Accordingly, a change in the function V(¢,R), required by
Eqn (2) and condition (4), is as small as ¢ is, and hence
expression (3) remains valid.

We note that the very possibility of long-term violation of
the scale invariance automatically presumes that the diffusion
law is non-Gaussian, because Gaussian statistics merely
reserve no place for the violation [which would contradict
condition (4)]. This fact gives evidence that the Gaussian law
is not a perfect reflection of reality, although in the minds of
scientists it is firmly associated with diffusion of physical
particles. At the same time, neither the general reasoning
leading to (3) and (5) nor Eqn (5) by itself dictates the special
Gaussian choice. Therefore, it is desirable to discuss other
possibilities and search for criteria of choice among them in
statistical mechanics.

3. Microscopic approach

3.1 Newton equation and Liouville equation
We pass from the kinematics of Brownian motion to its
dynamics and directly consider a BP interaction with a
medium using methods of statistical mechanics. For this, we
can take a standard simple Hamiltonian for our system,

P2

H:m+@(R,F)+ch(F), (9)
where P = MV is the BP momentum, I" is the full set of
(canonical) variables of the medium, ®(R, I') is the energy of
the BP-medium interaction, and Hy, (I) is the Hamiltonian of
the medium itself (or, in other words, that of the ‘heat bath’).
If the BP has internal degrees of freedom, their variables are
assumed to be included in the set I', thus being formally
treated as pertaining to the medium.

Let D=D(t,R,P,I') be (the density of) the full prob-
ability distribution of states of our system. Its evolution is
described by the formally exact Liouville equation [30, 33].
We write the part of it that directly concerns the BP:

oD

5, = VVD-FRI)VeD+ ...

(10)

Here, F(R,I') = —V®(R,T') is the force acting on the BP
because of its interaction with the medium, and the ellipsis is
for terms with I derivatives.

Considering the probability distribution of the BP
displacement (coordinate),

W(i,R) = ”D(z, R,P,I)drdpP,

from Eqn (10) after its integration over I" and P, we of course
obtain continuity equation (2). The same integration after
multiplying (10) by V produces the additional equation

9VW: —VVoVW+ M~ 'FW.

5 (11)

Here and below, the symbol o denotes the tensor product of
vectors, and the overline, as before, means the conditional
average at a given R(#) = R; namely, in the first term in the
right-hand side,

o VoVDdrdpP
VoV(,R) = (V(1) o V(1)) = HOT )
and in the second term,

_ [[FR,I)DdrdP
- 7 :

F(1,R) = (F(R(1), T (1))

Equation (11) describes momentum exchange between the
BP and the medium and, in essence, as can easily be verified, is
merely the Newton equation M dV/d¢ = F expressed in terms
of the conditional averaging:

dv(z)

<M & F(R(t),F(z))> =0.

R

We transform it into a relation between functions F(z, R) and
W(t,R), which can be useful in selecting admissible diffusion
laws without going deeper into the Liouville equation.

3.2 Friction equation for a Brownian particle

Replacing the derivative 0W/0r in Eqn (11) with the right-
hand side of (2), after simple manipulations, we arrive at the
equivalent exact equation

dVv _VVoVWw F

_ 12
dtJr w M (12)

with the ‘material derivative’ of the BP average velocity
dv oV  __ _
—=—+(VV)V
a -tV

and with the double overline denoting the tensor (matrix) of
conditional quadratic cumulants (second-order cumulants)
of velocity:

VoV—-VoV.

<

oV

We first consider this last expression.

Because we are speaking about thermodynamically
equilibrium Brownian motion, we can state that the condi-
tional cumulant matrix VoV(¢,R) at ¢ > 7 coincides with the
matrix of unconditional equilibrium quadratic statistical
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moments of velocity, (V(¢) o V(z)), that is, reduces to a
number V¢ = T/M that is independent of R. Indeed, if
t > 7, then at any R, the condition R(7) = R fixes the BP
position after many random steps and cycles of momentum
and energy exchange between the BP and the medium in the
framework of the detailed balance between them. Therefore,
the value (variance) of the corresponding thermal random-
ness of the BP velocity is not affected by this condition
(otherwise, the thermal kinetic energy of the BP, on average
equal to MVV/2, would be dependent on where the BP is
found).

The above can be confirmed by direct calculation of the
matrix VoV(£,R) in the case of a Gaussian random walk
subject to distribution (7), which yields

VoV(t,R) = V02<1 —§> -V (13)

2
as ¢ =1/t — 0. This result is also valid for a non-Gaussian
walk obeying (6) and (8), because the difference between it
and the Gaussian one starts at higher-order cumulants.

We next compare the two terms in the left-hand side of
(12). For the first of them, inserting expression (3) gives
dv R

dr A2

ET R
2 M2Dt’

For the second term, after inserting (13) and (6), we have

! A T2dln¥P(z,¢) R T R
( Z)M dz 2Dt M2Dt’
with the same notation z = R?/(2D¢) as before. The right-
hand expression here corresponds to the Gaussian diffusion
law, for which dIn ¥/dz = —1/2, but it is also valid by order
of magnitude in general, at least at z < 1/&. This shows that
the first term, being approximately 27/7 times smaller than the
second, is negligibly small in the limit ¢ — 0.

Hence, consideration of long enough time intervals leads
us from (12) to the shortened relation

_[g (_2dlnd'f;(z,é)>} ZBZ:E

(14)
which resembles the equation of viscous friction, with
R/(2¢) = V playing the role of velocity of a body moving
through a fluid, while the role of the friction coefficient is
played by the contents of the square brackets.

One more simplification can be obtained, under the
mentioned limit, by neglecting scale invariance violation and
treating ¥(z, £) as a function of a single argument, ¥(z). In
Sections 3.3-3.5, we first proceed this way.

But before that, we once again comment on the vanishing
of the first term in (12). Writing its contribution to the mean
force as

dav MV?

Mg="V 73
we can say that this is the force of reaction of the medium to
the addition of MV ?/2 to the energy of the BP and the system
as a whole, introduced by the very measurement of the BP
path, and therefore this force is independent of the form of the
diffusion law and of concrete peculiarities of the medium in
particular. There is an evident analogy to the perturbing
effects of measurements in quantum mechanics.

Conversely, the part of the force remaining under the
large-time limit, Eqn (14), is determined solely by the shape of
the probability distribution of equilibrium Brownian displa-
cements (‘diffusion law’). Consequently, this force charac-
terizes inherent BP-medium interaction unperturbed by
observations, in particular, the levels of the interaction forces
and energies necessary to realize one concrete diffusion law or
another. We now examine Gaussian law (7) from this
standpoint and make sure that it is unrealistic.

3.3 Statistical paradox of Brownian motion

For the Gaussian diffusion law, the content of the large round
brackets in ‘friction equation’ (14) becomes equal to unity,
and the equation becomes linear:

— TR R T
F=—— —=—— /z— 15
D 2t |R|f\/zm (15)

with the ‘friction coefficient’ in front of R/(2¢) = V connected
with the diffusivity via a relation similar to the widely known
Einstein relation [27, 29]. Such a similarity, however, is not an
advantage of equality (15), instead being a defect.

The problem is as follows. The friction force in the
original Einstein relation represents the resistance of the
medium to the directed motion of a particle. When the
particle is displaced by a distance R, this force makes the work

— TR
~ |RF|~—=—R~zT
IRF] Dt =

thus producing heat [we recall that z = R?/(2Dt)]. This
quantity, like the force itself, in principle can be arbitrarily
large for a suitable initial value of the particle kinetic energy.

This is clear. But it is strange that equality (15) offers the
same, also unbounded, characteristic values of the force and
work. Such a picture categorically contradicts the sensible
meaning.

Repeating the aforesaid, here the force that features in
(15) represents a medium reaction to the particle displacement
along a random trajectory of thermal motion, when the initial
energy value is demonstrably only ~ 7. Moreover, the
medium creates obstructions to the inertial free flight of the
BP but does not prevent the particle from traveling arbitrarily
far from the beginning of its path. On the contrary, the
particle travels arbitrarily far just due to the ‘medium’s will’
and at the expense of its own equilibrium fluctuations.

Therefore, in reality, in contrast to (15), the mean force in
(14) as a function of the traversed path R cannot take
arbitrarily large absolute values, instead always being
bounded. This is required by such a factual inherent property
of Brownian motion as translational invariance, that is,
indifference of the system to irretrievable departures of the
BP to anywhere. Moreover, it is reasonable to expect on these
grounds that the returning force vanishes at large |R|.

Thus, we have to conclude that the Gaussian law is
inadequate to the physical nature of real Brownian motion.

The inevitability of this conclusion is obvious if we notice
that if equality (15) was true, then it would mean that the
medium returns the BP to the starting point of its path with a
force proportional to the separation fromit, F oc —R, i.e., like
anideal spring with the potential energy z7/2 oc R?. From the
physical standpoint, this looks absurd, because an arbitrary
far excursion by the BP is permitted just because it does not
change the thermodynamical state of the system.
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Our conclusion may seem paradoxical if we recall that the
Gaussian diffusion law, which periodically flows from the
pens of theoreticians in various physical contexts, occupies a
central place in the idealized world of mathematical physics.
But the paradox is resolved in a very simple way: the
Gaussian statistics always appeared as a consequence of the
explicit or implicit use of hypotheses (or establishing of
postulates) about ‘independences’ of random events or
quantities. We have managed without such hypotheses and
thus showed their fallacy in application to Brownian motion.

We did not bind ourselves to them in the past either, and
therefore arrived at the same paradoxical conclusion, in the
framework of both a phenomenological statistical analysis of
diffusion and transport processes [1-4, 10] and an analysis
based on the full hierarchy of Bogoliubov—Born—-Green—
Kirkwood-Yvon (BBGKY) equations [7, 10, 16, 18, 19, 23],
as well as on the basis of exact ‘generalized fluctuation—
dissipation relations’ (FDRs) or ‘dynamical virial relations’
[12,17,18,22], and other methods[10, 11, 15], including those
for quantum systems [13, 15, 21].

In Section 4, we again touch on the ‘paradox of
independence’, but before that, just below, we consider an
example of a physically correct alternative to the Gaussian
law.

3.4 Thermodynamics of Brownian motion

and statistics of large deviations

From the left-hand side expression in (14), it is clear that the
boundedness of the force F in general implies the relation

T

|F([7R)| < fmax([) ~ \/2—DZ7

(16)

whose right-hand side can easily be surmised on dimensional
grounds. Of course, the symbol ~ here hides some dimension-
less coefficient that reflects the specificity of the concrete
system and details of the construction of its function
—In¥(z). A comparison of (16) and (15) shows that in the
region of ‘tails’ of the diffusion law, at z = 1, the Gaussian law
requires that the real force value be increased by at least
~ +/z times, thus entirely incorrectly describing (greatly
underestimating) the probabilities of large displacements of
aBPatz> 1.

In reality, according to (16), the function — In ¥(z) grows
no faster than o +/z, that is, —In ¥(z)/y/z < oo, and there-
fore the decrease in W(z,R) at large |R| — oo is always sub-
exponential (anyway, not faster than a simple exponential, to
say nothing about the ‘Gaussian’).

The difference between reality and the ‘Gaussian ideal’
becomes aggravated when it is not only the force itself that is
bounded, but also the characteristic energy (work) conjugate
to this force:
R|[F|

T < Amax = A(OO

A(2) )~ T (17)

(with the same remark about ~). This is a natural expectation
because, as a result of any walk (any path R), the medium
takes no more energy from the BP than the BP had been able
to take from the medium before.

The boundedness of A(z) implies the boundedness of the
force; moreover, this implies that under an increase in |R|, the
force passes through a maximum and then decreases to zero,
approximately as |F| & 24max/|R| o< T/|R|. This asymptotic

behavior is again prompted by the dimensionality of
quantities we put at the disposal of statistical thermody-
namics.

As a result, according to equality (14), the tails of the
diffusion law and hence the probabilities of large deviations
(z> 1) from typical behavior (z ~ 1) decrease as |R| grows
even much more slowly than in a mere sub-exponential
fashion generally dictated by inequality (16); namely, they
now decay in a power-law fashion:

P(z) oz Am/T 7 o,
This can be seen after scalar multiplication of (14) by R, then
solving the obtained differential equation, which yields

FA(2)

Y(z) = ¥(0)exp ( Jo 7 dz) ,
and finally applying inequality (17).

We emphasize, however, that the boundedness of the
force, (16), also logically implies the vanishing of the force at
infinity (excluding the extreme case where Fuax(f) =
|[F(¢,00)|), such that the medium’s ‘spring’ resists small
‘stretching’ only and always loses elasticity at large stretching.

An appropriate example of the diffusion law satisfying
(17), that is, having power-law tails, is

M(l . z>—5/2—~7

v = (27511)3/211! Z

(18)

with a free parameter n > 0 [the factorial x! is a standard
‘synonym’ of the gamma function I'(x+ 1)]. Obviously,
Amax = (5/2 +n) T. The condition 5 > 0 is necessary for the
finiteness of the mean diffusivity in (4).

Such a distribution, with n = 1, was first obtained in [16]
from a consideration of Brownian motion (‘self-diffusion’ [7])
of a probed, or marked, atom of a gas. A similar distribution
was found for molecular Brownian motion in a liquid [17,
18]), although, strictly speaking, this is an approximation of
formally more exact but more complicated expressions,
which, in particular, take the violation of the scale invariance
into account.

Formula (18) turned out to be a reasonable approxima-
tion also for a BP whose mass M differs from the mass m of
medium (gas) atoms. Here, various mathematical approaches
[19, 22, 23] to the BBGKY equations lead to an identical
estimate of the parameter n as a function of the mass ratio:
n=M/m.

Hence, the investigation of the complete (infinite-dimen-
sional) Liouville equation qualitatively justifies the results of
our semi-heuristic analysis of the initial terms of this
equation.

We may further lower formal rigor and try to interpret
mathematical connections between statistics of Brownian
motion and its microscopic mechanism in ‘layman’s terms’.
For instance, let IT be internal pressure of the medium (gas)
and the quantity Ay.x = A(co) be identified with 37/2 + I1Q,
where Q is the gas volume displaced by a far walking BP, and
I1Q is the related displacement work. In essence, Q represents
the deficiency of the BP collisions with gas atoms, facilitating
its nontypically far excursion. Because the position of the
center of mass of the system stays fixed, an effective decrease
in the gas mass near the BP, mQn, with n being the mean
concentration of gas atoms, just compensates the local mass
excess M + m accompanying the current BP—atom collision.
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We hence have Q= (M/m+1)/n and, assuming that
II/n = T for a not too dense gas, Amax = (5/2+ M/m) T.

This reasoning, of course, by itself is unsafe, but can be
supported by exact results on pair and many-particle non-
equilibrium statistical correlations [12, 17, 18, 22], in
particular, a theorem stating that the short-range character
of a one-time spatial BP—atom pair correlation (finiteness of
the ‘correlation volume’ Q) implies a long-range (‘long-lived’)
behavior of many-time self-correlations in the BP motion
and, hence, invalidity of the Gaussian diffusion law
(reciprocally, the validity of the latter requires nonlocality of
the BP—gas correlations in space) [17, 18].

3.5 Uncertainty and flicker fluctuations of the diffusion rate
Decomposing non-Gaussian diffusion law (18) with respect
to Gaussian ones in accordance with (8), we obtain the
probability distribution of the random quantity { = 4/D in
the form

1 n+1
ooz (2) e (-2)

According to the FDR [1, 4, 12], this distribution is
transferred to the BP mobility (at least the ‘low-field’ one)
and therefore can be observed in measurements of diversity of
the ‘time-of-flight’ (time of drift) values for BPs under the
influence of an external force (for example, electrons or holes
injected in semiconductors) [20].

Effects of non-Gaussian statistics were also observed
directly in equilibrium, by measuring ‘fourth cumulants’
(irreducible fourth-order correlations) of electric current or
voltage noise [1]. Here, low-frequency fluctuations of power
spectral density of thermal electric noise (at frequencies
f~ 1/t) were under investigation, which, in essence, is the
uncertainty and fluctuations of the charge transfer rate and
the rates (coefficients) of diffusion of charge carriers.

In our example (18), (19), assuming that # > 1, it is not
difficult to calculate

_ 1) _ 3
n—1

(R 3(<A2>
(R%)? (4)?
with (4) = D and (R*) = 6Dt. This formula shows not only a
degree of uncertainty of the diffusion rate but also defects in
the approximation of pure scale invariance: a divergence of
the variance of the diffusion rate for # < 1 and the complete
independence of the variance from the duration of observa-
tions. The last circumstance means that the rate fluctuations
are similar to quasistatic ones, with the spectrum (spectral
power density) Sp(f) ox D?3(f) concentrated at the zero
frequency. This is the usual result of the simplest (although
nontrivial) approach to 1/f noise from microscopic theory
[13-15].

Undoubtedly, in a more precise theory beyond ideal scale
invariance [16, 19], the tails of the diffusion law are cut off at
least at R* 2 V312 [A 2 D/E~ Vit in (8)], such that the
variance of 4, as well as all higher-order statistical moments
of R and 4, are definitely finite and hardly exceed values
corresponding to a free BP flight,

(19)

k
(R < k+ D)D), (4% < 2k + 1>;!<VT°2[> .

Simultaneously, the delta-function J(f) does somehow
‘spread’, keeping the dimensionality and singularity at zero

and taking the form ~ 1/f, where ~ includes a function of
In (¢f).

The first of these corrections can be easily described by
replacing U((,0), for instance, in (19), with the approximate
expression U((, &) ~ U({,0) Z(¢&), in which Z(0) =1 and
Z(-) sufficiently rapidly tends to zero at infinity. Then,
instead of (18), we obtain

Y(z,8) = ¥Y(z) O(z¢E),

where the scale-invariant factor ¥(z) is the same as before, for
instance, in (18), and also ©(0) = 1 and O(-) rapidly tends to
zero at infinity, thus cutting off the tail of ¥(z). As a result,
the quadratic cumulant of 4 becomes finite even at n < 1. At
once, it acquires time dependence, such that the fourth
cumulant of the BP displacement increases with time, oc £3~"
if n <1, and  ¢?In(¢/1) at y = 1. Correspondingly, the
quasistatic spectrum o 0(f) transforms into the flicker
spectrum

D2 (1\'"

Solf) ~ 2 (f> ,
at tf < 1, and, in particular, into the 1/f spectrum atn = 1.

However, at n > 1, such a correction is insufficient for a
full ‘spreading’ of the frequency delta function— which
means that the scale invariance violation has now a more
complex or different character. We can obtain a notion of
how else it may look, for example, if we consider [1-4, 10, 34]a
diffusion law that has infinite divisibility and stability proper-
ties in the sense of probability theory [32] but only
asymptotically as & =1/t — 0, because no real transport
process can be physically divided into infinitely small
independent fragments. The corresponding kernel in expan-
sion (8) is simplistically describable by the formula

a(&)exp, [—(C—Co(8))/c]
-o@+x@]

(20)

U, &) = (21)

1 1

In(z/7)’

x>0,
0, x<0,

@
>
o
+
—
=
Na
Il

the function {,(¢) is determined by condition (4), that is,
[CU, &) dl =1, and ¢ = r}/Dr, with ry and 7y being the
minimal space scale and the time scale down to which the
‘infinite divisibility’ of a random walk is physically mean-
ingful [for simplicity, it is presumed in (21) that the constant ¢
is not too small, ¢ > a(&)]. Obviously, as ¢ — 0, expression
(21) becomes U({,0) = o({ — 1). Thus, the scale-invariant
‘seed” of such a diffusion law is purely Gaussian, which
motivates us to name it quasi-Gaussian [10]. In [34], it was
considered in detail along with its generalizations and a
comparison with experimental data [20].

For tails of the quasi-Gaussian law at z > 1, Eqns (8) and
(21) yield
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and hence the tails satisfy boundedness requirement (16),
although they lie on the boundary of the set of diffusion laws
permitted by inequality (16). As regards the spectrum of
flicker fluctuations of the diffusion rate (or, generally, the
transport process rate), we find

2 Y
SMEESCEYN

(22)
where y = —2.

Spectrum (22) reflects the difference between the most
probable value and the (ensemble) average of the transport
rate, {o(¢) and 1 in relative units in (21); the difference
decreases with the observation time, albeit logarithmically
slowly: 1 — {o(&) = (&) In (c/a(£)). Kernel (19) is similar in
form to (21) (a more or less sharp ‘wall’ on the left and
comparatively gentle slope on the right), but the analogous
difference in (19) is fixed. Imparting a time dependence to it
may be one more, parallel, scenario of the spectrum
spreading of o(f) under improved analytic approximations
of solutions of the BBGKY equations. From our standpoint,
this is a relevant question in statistical mechanics.

However, even the already available approximations of
microscopic theory are able to produce realistic quantitative
estimates of the 1/f noise amplitude. Although the estimates
obtained in[7]and in [16, 20] in different approximations [(22)
with y = 1 and (20) with = 1 or (22) with y = 0] differ from
one another by the factor In[l/(zf)], they are both in
reasonable agreement with experimental data on liquids and
gases [1, 20], taking their diversity into account. On the other
hand, the quasi-Gaussian random walk scheme rather well
predicts or explains the magnitudes of electric 1/f noise in
various systems [1-3, 10, 20]. Because we here deal with the
transfer of charge instead of mass (in view of the smallness of
the mass of usual charge carriers), while the interaction of
walking charges with the medium is long-range, it is not
surprising that the transport statistics are non-Gaussian in an
essentially other manner than in the case of molecular
Brownian motion. Analysis of the relation of these statistics
to a quantum many-particle Liouville equation or equivalent
‘quantum BBGKY hierarchy’, for example, for standard
electron—phonon Hamiltonians, also seems to be a relevant
issue.

At the current stage of development of statistical
mechanics, it is useful to state that unprejudiced treatment
of this science inevitably discovers flicker fluctuations of rates
of transport processes, even the rate of the random walk of a
particle interacting with an ideal gas [17, 18, 22, 23] and,
moreover, even in the formal Boltzmann—Grad limit (the
infinitesimal gas parameter) [35].

This fact excellently highlights the inconsistency of
attempts to reduce 1/f noise and related long-lived statis-
tical correlations and dependences to some very long
memory or relaxation times, and thus the inconsistency of
the opinion nourishing such attempts by presuming any
statistical correlations between random phenomena to be
evidence of literal or at least indirect physical connections
between them.

In Section 4, we show with the help of elementary logic
that in reality, just the physical disconnectedness of inter-
particle collisions leads to the uncertainty and 1/f noise of the
relative frequency of collisions and rate of wandering of each
of the particles in many-particle systems. Thus, from a new
standpoint, we justify both the general logic of the introduc-

tion and elementary mathematical treatment in Sections 2
and 3 of molecular random walk.

4. Myths and reality of molecular random walks

4.1 Gaussian probability law

and two meanings of the independence of random events
We first recall why the Gaussian law appeared and continues
to appear in various theoretical models. One reason is that it
naturally comes from the assumption of the statistical
independence of BP displacements (random walk incre-
ments) at nonoverlapping time intervals. But the main
reason is that physicists have become accustomed to identify-
ing the statistical independence of random events in the sense
of probability theory with their independence in the worldly
sense of their lack of influence on one another.

Both these circumstances have more than a 300-year
history. The history of the Gaussian law began from the
celebrated ‘law of large numbers’ by J Bernoulli [36], who
investigated the statistics of sequences of observations on the
vicissitudes of life or, for instance, playing dice, under the
assumption that unpredictable outcomes of successive
‘random trials’ are mutually independent or, to be more
precise, that their probabilities are independent, that is, the
joint probability of several random events decomposes
(factores) into the product of their individual probabilities.

In exactly the same way, statistical independence is
introduced in modern probability theory [31]. But in the
probability theory, it is nothing but a formal mathematical
definition and therefore, as Kolmogorov warned in [31],
deducing this property of probabilities from the indepen-
dence of physical phenomena as such is possible as a
hypothesis only, which should be verified in experiment.

In other words, any evidence of the independence of
physical random events in each of their concrete realizations
(e.g., in the sense of the absence of cause-and-effect connec-
tions between them) by itself is not sufficient for declaring the
statistical independence of these events in a set (statistical
ensemble) of realizations.

Logically inverting this thesis, we conclude that if
statistical experiments reveal a statistical dependence in an
ensemble of realizations of random events, this does not
necessarily mean that some real interaction between the
events exists. That is precisely the case where one encounters
1/f noise.

Hence, identifying the two senses of ‘independence’ is
nothing but a fallacy, which, unfortunately, traditionally
governs physicists’ relation to randomness, even despite its
careful disclosure —in the context of fundamental statistical
mechanics — made by Krylov more than 60 years ago [37].

4.2 Collisions, chaos, and noise in a system of hard balls
Mathematicians know Krylov as one of the founders of the
modern theory of dynamical chaos. According to this theory
[38, 39], notably, the motion of N > 3 elastic hard balls in a
box or disks on a torus obeying deterministic laws of
mechanics is indistinguishable from a random process [39,
40]. For us, it is important that statistical characteristics of
this process are crucially sensitive to the ratio of the duration
of observing it and the total number of balls participating in
it.

More precisely, we consider the role of the parameter
t/TN, where 7 is the mean time separation of collisions of a
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given ball with others and therefore the relaxation time of the
ball velocity due to collisions with other balls [16, 18]. For

t
->N
T

clearly, the number o ¢/t of quantities describing the
trajectory of any of the balls is much greater than the number
o« N of quantities establishing the initial state of the whole
system, and hence each particular ball trajectory contains the
same exhaustive information on the system. Moreover, this
information is already contained in any small part of a
particular trajectory with duration ~ Nt < t.

Due to this circumstance, fluctuations in the numbers of
collisions of a given ball, from one time subinterval with a
duration ~ Nt to the next such subinterval, behave like
statistically independent random quantities, or white noise
(which is quite understandable: the presence of some relation
or correlation between them would reveal some special
features, not yet realized, of the system initial state, which
would contradict the condition 7> Nt). Accordingly, the
relative frequency of a particular ball collisions averaged
over the whole observation time is almost nonrandom, i.e.,
is the same for all balls and all initial conditions (at a fixed
total energy of the system, of course), while the statistics of
fluctuations in the number of collisions (of a given ball) at
intervals > Nt obey the law of large numbers, i.e., are
asymptotically Gaussian.

4.3 Paradox of independence

Such a picture of the chaos of collisions—as with usual
noise —is quite attractive for physicists. But we should not
forget that it required the condition 7/t > N establishing a
rigid (deterministic) physical (cause-and-effect) inter-depen-
dence between collisions, which is nonlocal in time and space
(nonvanishing as ¢/t — oo and pertaining to all the balls).
Just this dependence, very paradoxically, provides the
statistical independence of events (collisions) that are distant
from one another in time or in space.

We see that maintaining the ideal disorder with which
statistical independence is usually associated requires vigilant
underlying control of it and, in this sense, a global order.

At this point, it involuntarily comes to mind how the
Dodo in Lewis Carroll’s Alice’s Adventures in Wonderland (as
translated into Russian by B Zakhoder) agitated other
characters to ‘fit into strict disorder’, or ‘stand up strictly
anyhow’. In addition, analogies to the mysterious ‘quantum
nonlocality’ and ‘entangled quantum states’ suggest them-
selves.

4.4 Uncertainty and 1/f noise of the relative frequency

of collisions and rate of diffusion

However, in real world, it is not easy to measure the temporal
disorder of random events so strictly as to subordinate it to
the law of large numbers. This is not easy for the simple
reason that real many-particle systems are characterized by
the opposite ratio of the duration of observations achievable
in experiments and the number of particles in the system:

t
- <N.
T
Therefore, the appeal to arbitrary large averaging times, so

much beloved in mathematical physics, has no factual
grounds [40].

The above inequality is satisfied even for very small
volumes of fluids isolated from the rest of the world [18].
This inequality is all the more true in view of the impossibility
of complete isolation and hence the necessity of adding to N
the number of particles (and generally degrees of freedom) of
all huge surroundings of the system. And this inequality
definitely covers objects of the Gibbs statistical mechanics,
in which the number of particles N is not bounded. Exactly
this was under Krylov’s critical analysis [37].

Now, the number « 7/7 of quantities sufficient for a
description of the observed trajectory of one particle (ball)
or another all the time stays small compared with the number
« N of independent causes (parameters of the system initial
state) influencing the trajectory.

But averaging over a relatively few number of conse-
quences of a larger number of causes cannot produce a certain
result, because the result remains dependent on many
unknown free parameters and does not represent all possible
variants of the course of events, and all the more cannot
represent them in some definite proportion. Therefore, time
averaging over time intervals that are available for observing
the life of a particle in any particular experiment (at each part
or realization of a phase trajectory of the system) inevitably
gives an unpredictable new value of the relative frequency of
particle collisions and, moreover, a new distribution (histo-
gram) of collisions (or more complex events) with respect to
their internal characteristics. In other words, an experimenter
encounters 1/f noise (see the Introduction).

It hence follows that instead of thinking up hypotheses on
relative frequencies or ‘probabilities’ and the ‘independence’
of events constituting random walks, it would be better to
imitate Newton [8] and devote ourselves to investigating
equations of statistical mechanics.

4.5 Independence game
and problems of statistical mechanics
To investigate the equations of statistical mechanics rather
than producing hypotheses was Krylov’s appeal in his book
[37] when explaining the falseness of widespread prejudices
“as if'a probability law exists regardless of theoretical scheme
and full experiment” and ‘“‘as if ‘obviously independent’
phenomena should have independent probability distribu-
tions.”t

The full experiment here means a concrete realization of a
phase trajectory of a system considered as a single whole —as
an image of a practical experiment— without its artificial
division into ‘independent’ time fragments (in Sections 2
and 3, we considered exactly a full experiment). At N > ¢/,
the time-smoothed relative frequency of a given sort of
random event (collisions of a given particle with others)
varies from one experiment to another, and therefore we
cannot introduce a definite a priori ‘probability’ for separate
events. This means that they are all mutually statistically
dependent because, figuratively speaking, all are equally
responsible for the resulting (and each time new) rate of
their appearance (a posteriori probability). This is so
although all the events are physically independent, because
at N > t/t they arise from interactions with different groups
of a total set of N particles. Correspondingly, Bernoulli’s law
of large numbers breaks down, because it is based on the
postulate of statistical independence.

+ Author’s translation of the Russian original.
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Here, we clearly see another side of the ‘paradox of
independence’: genuine full-fledged chaos involves infinitely
long statistical dependences and correlations.

It is also clear why molecular Brownian motion, being
associated with such full-fledged chaos, does not want to fit
the Procrustean bed of Gaussian statistics and, all the more,
Boltzmann’s kinetics.

5. Conclusion

Unfortunately, the above-mentioned popular careless ideas
of independences and probabilities of random phenomena
“are so much habitual that even a person who agreed with our
argumentation then usually automatically returns to them as
soon as he faces a new question. The origin of the stability of
these ideas lies in the fact that they are based on a common
intuitive notion about statistical laws, and therefore they would
be permissible and advisable if the issue was learning phenom-
ena of empirical reality. However, such ideas turn out to be quite
unsatisfactory as a benchmark for substantiation of probability
laws when the question is the connections between statistical
laws and the principles of micro-mechanics” [37].

Fortunately, we currently have an understanding of the
errors of replacing micro-mechanics by speculative probabil-
istic constructions, even if these are beautiful in and of
themselves. Besides, as we noted above, there is already an
experience of systematic investigation of equations of
statistical mechanics in application to transport processes. It
clearly shows that the mechanics of systems of very many
interacting particles, or degrees of freedom, in no way
prescribes interactions to keep the certainty of the rates of
changing the system micro-states (transition probabilities),
even when molecular chaos takes the form of macroscopic
order.

The point is that any realization of an ‘elementary’ act of
interactions is in fact a product of the full (initial) micro-state
of the system, and therefore the number of causes of visible
randomness always greatly exceeds the number of its
manifestations under time averaging over factually achiev-
able durations of experiments. As a consequence, any
particular experiment presents to the researcher its own
unique assortment of relative frequencies (‘probabilities’) of
random events composing a process under observation. That
is 1/f noise.

Hence, being surprised by 1/f noise is no more grounded
than being surprised by noise in general. Nature needs
1/f noise as a manifestation in any particular ‘irreversible’
process of all inexhaustible resources of nature’s randomness,
and on the whole the uniqueness of the observed realization of
our Universe’s evolution at all of its time scales. A purely
stochastic world, without 1/f noise, where anything can be
easily time-averaged, would be too boring (and even,
possibly, would suppress free will [41]).

Unfortunately, as we have seen above, 1/f noise has ‘bad’
statistics absolutely alien to the law of large numbers and
resembling those that sometimes force their observers (see,
e.g., [42]) to suspect the action of mysterious ‘cosmophysical
factors’. This circumstance strongly complicates theoretical
tasks.

Fortunately, although influence from the cosmos is never
undoubtedly ruled out, a source of randomness quite
sufficient for 1/f noise creation is already hidden, as we
noted above, in such a simple system as a molecular
Brownian particle interacting with an ideal gas. As we have

demonstrated, such a source definitely exists in any medium
that allows Brownian motion. Hence, we have every prospect
of success in building and experimentally verifying the theory
of 1/f noise (and accompanying statistical anomalies) starting
from quite usual Hamiltonians.

We hope that this article will induce some interested
reader to work in this intriguing area of statistical physics.
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