
Abstract. The results obtained to date by the one-dimensional
theory of the emission of positive ions by a plasma are reviewed
from a unified point of view. Simple and generalized forms of
the Bohm criterion are discussed. The unipolar sheath model
and the two-scale theory are outlined. Kinetic and hydrody-
namic models for the formation of the Debye sheath and of the
ionization zone in the presheath are described. It is shown that,
except for some artificial ionization models, the Bohm criterion
is fulfilled in the equality form. The emission current from the
plasma emitter is calculated in the hydrodynamic and kinetic
approximations. Existing numerical codes for the simulation of
positive ion sources in two and three dimensions are briefly
described.

Keywords: Bohm criterion, Debye sheath, unipolar sheath,
space-charge-dominated beams, plasma simulation

1. Introduction

Only a limited number of papers in the Russian scientific
literature provide reviews of ion sources. Examples from 20±

40 years ago comprise monographs [1, 2] and UFN paper [3],
respectively coauthored and authored by Gabovich, and a
Russian translation of Forrester's book [4]. Kreindel's
monograph [5] focuses on electronÐbut also touches on
ionÐemissions from plasma. In a recent monograph [6] by
Koval' and coworkers, two chapters describe present-day
plasma sources of electrons and ions and analyze some
aspects of charged particle emission from a plasma. Other
publications address specific aspects of this vast field and
usually assume a basic knowledge by the reader of the theory
of charged particle emission from plasma. The present paper
makes an attempt at a unified description (with lacunas, if
present, filled) of the theoretical results known to date on the
emission of positive ions from plasma. The theory of the
formation of electron and of negative ion beams in sources
with a plasma emitter will be left out of our discussion.

Let us first clarify the concept of a plasma emitter. We
consider the plasma emitter as a construction element of an
ion source, and the ion source as a device for producing ion
beams. The plasma emitter replaces the solid state emitter, for
example, the thermionic cathode in an electron source. In a
source with a plasma emitter, charged particles are drawn
from a plasmawith a free boundary whose shape and position
are not known a priori.

On the other hand, we consider the plasma emitter to be
an object of physical research. According toRefs [2, p. 10] and
[6, p. 529], a plasma emitter is most simply described
(neglecting neutral atoms) as a homogeneous mixture of an
electron gas and an ion gas with approximately equal
concentrations. This, however, is a very simplistic first-
approximation definition. We will see that there are two
components which should be considered as integral to the
plasma emitter: the Langmuir sheath on the side of the
charged particle collector (or the accelerating electrode), and
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the ionization region deep inside the plasma, where the
plasma is of necessity inhomogeneous.

The basis of the theory of a plasma emitter is the well-
known Bohm criterion [7], which determines the necessary
condition for the formationof aDebye sheath at the boundary
of quasineutral plasma. Its derivation, to be found in classical
textbooks [4, 8±13] and reviews [14], assumes the presence of a
Debye sheath which arises near an electrode immersed in the
plasma. The origins of plasma physics as a science can be
traced to the study by Langmuir and coworkers of gas
discharge phenomena that form a charged sheath near such
an electrode [15±19]. Today, the Bohm criterion is a
curriculum topic for any undergraduate student interested in
probe measurements in plasma [20±24].

The method invoked in deriving the Bohm criterion is
quite applicable to a description of the plasma emitter of
positive ions, a device which has recently become very
important for the development of high-current sources of
charge particles and neutral atoms. A correspondingÐand
quite obviousÐgeneralization of Bohm's theory is discussed
in Chen's book [10], which does not mention the plasma
emitter thoughÐunlike monograph [2] by Gabovich and
coworkers, with a special section devoted to the plasma
emitter of positive ions.

Following the terminology of Riemann and Tsendin [25],
the Debye sheath on the plasma surface is separated from the
ion collector by a unipolar sheath whose potential approxi-
mately obeys the Child ± Langmuir law [26, 27]. The Debye
and unipolar sheaths combined form the so-called Langmuir
sheath [25, 28]. The exact boundary between the Debye and
unipolar sheaths defies a rigorous definition. The Debye
sheath changes smoothly into the unipolar sheath over a few
Debye lengths. As for the qualitative difference between
them, in the unipolar sheath the electron density is negligibly
small compared toÐ is, say, less than two percent ofÐ the
positive ion density, whereas the ion and electron densities in
the Debye sheath are of the same order of magnitude. As for
the boundary between the quasineutral plasma and theDebye
sheath, it can be defined with a sufficient rigor applying the
two-scale theory [29±33].

In this theory, the smaller and larger scales are those of the
Debye length lD and of the ionization zone thickness L,
respectively. In the ionization zone, which is more often
referred toÐbut is not always the same asÐ the Debye
presheath, plasma can usually be considered quasineutral. In
the Debye sheath, with its marked departure from quasineu-
trality, ionization can be neglected, assuming that the ion
current arising in the ionization zone remains unchanged.
Bohm's theory is formulated for the Debye sheath. On the
scale of the ionization zone, the Debye sheath appears as a
mathematical singularity which arises due to the Poisson
equation being replaced by the quasineutrality condition.

The regular Bohm solution for the Debye sheath is
matched with the singular solution for the ionization zone at
a distance of dzD � l 1ÿb

D Lb from the singularity, with
b � 1=5 in the hydrodynamical model, and b � 1=9 in the
kinetic theory. If measured in units of lD, in the limit of
lD=L! 0 the distance to the matching point, dxD �
dzD=lD � Lb=lb

D, moves off to infinity. Therefore, Bohm's
theory assumes that the ion flow is specified at an infinite
distance from the Debye sheath. If, on the other hand, the
distance is measured in units of L, then in the same limit the
Debye sheath width dsD�dzD=L�l 1ÿb

D =L 1ÿb tends to zero,
and the sheath itself degenerates into a singularity.

The analytical theory of the plasma emitter is limited by
the one-dimensional case. A one-dimensional theory is
intended to help in formulating the boundary conditions for
numerical codes that are applied in calculating real-life charge
particle sources. In high-current sources, the Debye length is
often too small compared to the device size for the numerical
codes to resolve it; therefore, the real potential distribution
near the free plasma surface is replaced in some codes by
model boundary conditions between the quasineutral plasma
and the unipolar sheath with a transitional zero-thickness
Debye sheath. The free plasma surface (free meaning no
contact with a solid electrode) is in the present context called
the emission surface or plasma meniscus (see, for example,
monograph [13]).

The paper outline is as follows. In Section 2, we start
introducing the theory of the plasma emitter of positive ions
by first deriving the Bohm criterion in the hydrodynamic
approximation. The basic concepts of the theory, such as the
Debye, unipolar, and Langmuir sheaths, are defined in
Section 3. The unipolar sheath is described in Section 4. The
two-scale theory is formulated in Section 5. Section 6
considers hydrodynamic models of the ionization zone in
the Debye presheath. A kinetic generalization of the Bohm
criterion is formulated in Section 7. A kinetic model of the
ionization zone is described in Section 8. Section 9 presents a
model of a spatially localized ion source. In Section 10, the
calculation of the emission current from the surface of a
plasma emitter is performed. Section 11 lists some of the
existing numerical codes for modeling ion sources in two and
three dimensions. Section 12 discusses the shape of a plasma
emitter in a two-dimensional geometry. Finally, the basic
conclusions are arrived at Section 13.

2. Bohm's criterion

To obtain the Bohm criterion in its original formulation, we
make use of the system of equations for two-fluid hydro-
dynamics supplemented by the Poisson equation:

q
qz

neve � 0 ; �1a�
q
qz

nivi � 0 ; �1b�
q
qz

menev
2
e � ÿ

q
qz

neTe � ene
qj
qz

; �1c�
q
qz

miniv
2
i � ÿ

q
qz

niTi ÿ eni
qj
qz

; �1d�
q 2j
qz 2
� 4pe�ne ÿ ni� : �1e�

Here, e > 0 denotes the elementary charge, ve and vi are the
electron and ion flow velocities, respectively; the remaining
notation is conventional.

We will assume that electrons are, on average, at rest, so
that ve � 0. But even if the electron and ion flow velocities, ve
and vi, are of the same order of magnitude, the electron
kinetic energy mev

2
e =2 is small compared to the ion kinetic

energy miv
2
i =2 due to the huge difference between me and mi,

allowing the left-hand side of Eqn (1c) to be set equal to zero.
Then, from this equation it follows that the electron density
obeys the Boltzmann distribution

ne � n0 exp

�
ej
Te

�
; �2�
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where n0 is the electron number density in the quasineutral
region, whose potential we will consider to be zero. We are
looking for a solution that describes a plasma emitter of ions,
assuming that j! 0 and qj=qz! 0 deep in the plasma for
z! ÿ1 and that, outside of the plasma region, for z! �1
the potential tends to ÿ1 according to the Child±Langmuir
(three halves) lawÐsimilar to a diode with emission limited
by a space charge, where j / ÿz 4=3 [26, 27].

Following D Bohm, let us consider the case in which the
ion temperature Ti is so much less than the electron
temperature Te that it can be neglected. Then, using
Eqns (1b) and (1d), we easily find the ion velocity and ion
number density as functions of the electric potential j, the
former being given by

vi �
��������������������������
v 2
0 ÿ 2ej=mi

q
; �3�

and the latter by

ni � n0v0��������������������������
v 20 ÿ 2ej=mi

q ; �4�

where v0 is the ion velocity at j � 0. Next we substitute
Eqns (2) and (4) into the Poisson equation (1e) and change to
the dimensionless variables

x � z

lD
; w � ej

Te
; u0 � v0

cs
; �5�

where lD �
����������������������
Te=4pe 2n0

p
is the Debye length, and

cs �
�������������
Te=mi

p
is the ion speed of sound. The equation

d2w

dx 2
� exp �w� ÿ u0����������������

u 2
0 ÿ 2w

q � ÿ qU
qw

�6�

obtained in this way admits a useful mechanical analogy with
an imaginary quasiparticle which moves in the field of the
effective potential

U�w� � 1ÿ exp �w� ÿ u0

����������������
u 2
0 ÿ 2w

q
� u 2

0 ; �7�

where x has the meaning of time, and w is the pseudoparticle
coordinate. Themechanical energy of such a pseudoparticle is
an integral of motion:

W � 1

2

�
dw
dx

�2

�U�w� � const : �8�

Assuming that for x! ÿ1 both the coordinate w and
velocity dw=dx of the pseudoparticle vanish, we find that the
constant in Eqn (8) is zero. Hence, it follows that

1

2

�
dw
dx

�2

� exp�w� ÿ 1� u0

����������������
u 2
0 ÿ 2w

q
ÿ u 2

0 : �9�

In the limit of w! 0, this equation can be simplified by
applying the Taylor expansion of its right-hand side near
w � 0:

1

2

�
dw
dx

�2

�
�
1

2
ÿ 1

2u 2
0

�
w 2 : �10�

Because the left-hand side of Eqn (10) is nonnegative, a
solution exists if the right-hand side is also nonnegative, i.e.,

u 2
0 5 1 : �11�

Notably, the solution which decreases with increasing x has
the form

w � ws exp

 ��������������
1ÿ 1

u 2
0

s
�xÿ xs�

!
; �12�

where ws < 0, and xs are certain constants whose meaning will
be made clear in Section 3. In dimensional variables, this
solution describes the variation of the electric potential

j � ÿ jwsjTe

e
exp

 ��������������
1ÿ 1

u 2
0

s
zÿ zs
lD

!
from zero deep in the plasma (for z! ÿ1) to small negative
values close to its boundary (z! zs).

At the other extreme, w! ÿ1, we have

1

2

�
qw
qx

�2

� u0
���������
ÿ2w

p
; �13�

which gives

w � ÿ
�
u 2
0

2

�1=3�
3x
2

�4=3

; �14�

i.e., for z! �1, one finds

j � ÿTe

e

�
u 2
0

2

�1=3�
3z

2lD

�4=3

:

The last expression, when rewritten as

j3=2 � en0v0 �
�����
2e
p

9p
�����
mi
p jjj3=2

z 2
; �15�

shows that outside of the plasma the current density obeys the
Child±Langmuir law. In the approximation specified by
Eqn (15), it does not depend on the electron temperature Te.

A formal solution of Eqn (9), for which w � wp at x � xp,
can be written down in an implicit form as

xÿ xp � ÿ
�w
wp

dw���
2
p ���������������������������������������������������������������

exp�w� ÿ 1� u0

����������������
u 2
0 ÿ 2w

q
ÿ u 2

0

r : �16�

With condition (11) satisfied, formula (16) defines a single-
valued monotonically decreasing function w�xÿ xp�. This
function is plotted in Fig. 1 for several values of u 2

0 at
wp � ÿ4 and xp � 0. The corresponding plots of ion and
electron number densities are shown in Fig. 2.

Written in terms of dimensional quantities, the meaning
of condition (11) is that the ion velocity in the quasineutral
region is greater than or equal to the ion speed of sound:

v0 5 cs : �17�

This condition is known as Bohm's sheath criterion [4, 10±13,
30], although Bohm himself called it ``a criterion for the
stability of a sheath'' [7, 34]. If Bohm's criterion is not met,
then it was shown [35] that a rarefaction wave [36] forms,
which propagates opposite to the ion flow toward the source
region and interferes with the source there. How the discovery
of the Bohm criterion was made and what events preceded
and followed it are described in Allen's paper [37].
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3. Debye sheath

The problem discussed in Section 2 and concerned with the
potential profile at the boundary of a collisionless plasma
presents a difficulty in that some of the terms it involves are
given different interpretations in the literature. That part of
the charged layer at the plasma boundary where the electron
and ion number densities, although order-of-magnitude
similar, are not even approximately equal is referred to as
the Debye sheath (see, for example, Ref. [25]). The common
belief is that the Debye sheath has a thickness of a few Debye
lengths (see, for example, Ref. [38]) and that the Debye length
is much smaller than other characteristic dimensions, which is
exactly the reason why the Debye sheath can be considered
collisionless. Within this sheath, the dimensionless electric
potential w is negative, and its absolute value varies from
fractions to several units. The exact boundaries of the Debye
sheath are not defined within Bohm's theory. In what follows,
we will stipulate that the interval

ÿ4 < w < 0 �18�
corresponds to the Debye sheath. At the top of this interval,
for w! 0, the plasma becomes quasineutral in the sense that
ne � ni � n0; however, asymptotic form (12) does not hold
true and cannot explain how the supersonic (v0 5 cs) ion flow
formed. A consistent theory should take into account particle
collision and ionization processes that occur in the neutral gas
and actually form this flow, whereas in Bohm's theory the
plasma is considered collisionless, which is expressed in the
fact that the right-hand sides of equations (1a) and (1b) are
zero.

If plasma ions are created with small velocities, they are
accelerated to the Bohm criterion velocity by the electric field
in the ionization zone, where a positive electric potential
forms. It is this potential in the ionization zone which gives
rise to the formation of an ion flow at the boundary of the
quasineutrality zone in front of the entrance to the Debye
sheath at w � 0, whereas in Bohm's theory this flow is
considered to be specified as a boundary condition for

x! ÿ1. Because according to the Bohm criterion (17) the
ion velocity v0 at the entrance to theDebye sheath should, as a
minimum, reach the speed of sound cs �

�������������
Te=mi

p
, it follows

that the drop in the potential energy ej in the ionization zone
is, as a minimum, equal to mic

2
s =2 � Te=2, i.e., in the

ionization zone we have

0 < w <
1

2
: �19�

Following Refs [25, 30, 32, 39], we will also apply the term
Debye presheath when referring to the ionization zone,
although this term is sometimes used to denote the `transi-
tion region' between the Debye sheath and the quasineutral
plasma [33, 40]. The Debye presheath is quasineutral. In
probe measurements made in a preliminary ionized plasma,
the presheath around the (most often cylindrical) probe is
formed by Coulomb collisions and its size is determined by
the ion mean free path; in this paper, however, we neglect
Coulomb collisions. The theory of the presheath presented in
Sections 6 and 8 predicts that its upper boundary w � wpl in
fact exceeds the value of 1/2 and approaches unity. We will
label by `pl' the quantities referring to this boundary, having
in mind that they characterize the parameters of the
quasineutral plasma outside of the presheath.

Finally, when referring to the region

w < ÿ4 �20�

on the opposite side of the Debye sheath, we will, following
Ref. [25], use the term unipolar sheath; this is a region where
the Child±Langmuir law [26, 27] holds approximately. The
unipolar and Debye sheaths together form the Langmuir
sheath, which Riemann calls the Langmuir±Debye sheath
[25, 28], and Lieberman and Lichtenberg call the Child law
sheath [11].

The value of w � wp � ÿ4 at the interface between the
Debye and unipolar sheaths was chosen to ensure that the
electron density does not exceed exp �wp� � 2% of n0 any-
where in the unipolar sheath. This value is used in determin-
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Figure 1. Potential profile near a plasma emitter for different values of the parameter u 2
0 : (a) u

2
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0 � 2, and (c) u 2
0 � 10; wp � ÿ4, xp � 0.
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ing the emission surface in certain numerical codes and is
close to the value of w � ÿ ln

�������������
mi=me

p � ÿ3:8 for which the
ion current in a hydrogen plasma becomes comparable to the
electron current onto the probe with a floating potential.
Throughout what follows, we will mark by the subscript p the
quantities that refer to the Debye±unipolar sheath interface;
for example, zp denotes the coordinate z at this boundary, and
xp is the value of the dimensionless variable x � z=lD.

The different regions of the plasma emitter of positive ions
are shown schematically in Fig. 3, where the quasineutral
region immediately borders the Debye sheath. In Section 9,
we will discuss an example which features a formation in the
ionization zone of a second Debye sheath, separated from the
Langmuir sheath by an extended quasineutral region inwhich
the potential is everywhere approximately zero.

Finally, let us identify the position w � ws of the applic-
ability boundary of Bohm's theory in the w! 0 limit. We will
use the subscript s to label the quantities referring to this
boundary. If we assume that ws ! 0, then the Debye sheath
thickness dxD � xp ÿ xs calculated by comparing the exact
solution (16) with the asymptotic form (12) tends to infinity,
which sets considerable difficulties before the theory, because
the ion mean free path is finite and collisions in an infinite
plasma sheath cannot be neglected (as they were in Bohm's
theory). The two-scale theory to be outlined in Section 5 gives
a reasonable definition of the boundary ws by interpreting the
Debye sheath thickness dzD � zp ÿ zs as a length which is
larger than the Debye length, dzD 4 lD, but which, however,
tends to zero, dzD ! 0, if lD ! 0. The Debye sheath in this
theory can be considered collisionless, whereas in the
quasineutral zone one should take into account neutral gas
ionization and Coulomb collision processes. In this sense,
w � ws is the boundary between the Debye sheath and
quasineutral presheath.

Recalling our assertion earlier in this section that this
boundary is w � 0, we see now that this was just the first
approximation. The exact value of the parameter ws is close to
zero and is important when calculating the Debye thickness
but not the plasma density or the ion flow velocity, which vary
negligibly between w � 0 and ws points in the plasma. In this
sense, the first approximation was not that bad after all.

4. Unipolar sheath

As our further discussion will show, the Bohm criterion (17) is
usually satisfied in the form of an equality [25, 30, 31, 37, 41,

42]. Such, at least, is the conclusion suggested by the theory
presented in Sections 6 and 8, which assumes that the
ionization zone greatly exceeds the Debye length and is
therefore quasineutral. The consequence is that the Debye
sheath at the boundary of a plasma emitter of ions bears a
universal character, i.e., of the three ion and electron number
density profiles shown in Fig. 2a±c, only 2a is realized. Hence,
v0 � cs, and the emission current jp � en0v0 has a strictly
defined value:

jp � en0cs : �21�

In Section 10, we will see that this equation acquires in
kinetic theory a numerical coefficient close to unity. Any-
way, the emission current is determined by the processes
occurring in the ionization zone, for example, by the neutral
gas supply rate and radio-frequency (RF) heating power.
Accordingly, the plasma density n0 � jp=ecs at the edge of
the quasineutral zone in front of the entrance to the Debye
sheath is uniquely determined by the magnitude of the
emission current jp, whereas in Bohm's theory outlined in
Section 4 the plasma density n0 is, on the contrary,
considered a free parameter.

If a large negative voltage jU j4Te=e is applied to the ion
collector electrode, an electron-free unipolar ion sheath forms
behind the Debye sheath. In the collisionless case, its
thickness is obtained from Eqn (15) by substituting z � d
and j � U to give

j3=2 �
�����
2e
p

9p
�����
mi
p jU j3=2

d 2
: �22�

Known in this form as the Child±Langmuir law [26, 27] or as
the `three halves' law, this equation relates three quantities:
the current in the planar diode with the emission limited by a
space charge; the specified value d of the electrode±electrode
gap, and the specified value of the applied voltage U. As
applied to the plasma emitter, the meaning of relation (22) is
completely different. Here, the emission current jp � en0cs is
determined by processes inside the plasma, and the variable
quantity is the gap d between the emitter surface and the ion
collector: at a specified voltage U, the plasma fills all the
accessible space, leaving a gap of the desired size before the
collector. Combining Eqns (21) and (22) at jp � j3=2 yields

d �
���
2
p

3

�
2ejU j
Te

�3=4

lD : �23�

For d=lD 4 1, there are reasons for modeling the plasma
emitter as an emission surface on which the electron density
jumps down to zero [43, 44]. If the Debye sheath thickness (on
the order of a few lD) is small compared to the unipolar
sheath width d, the electron density could presumably be
represented by a step function. Setting the electric field and
initial ion velocity to zero at the edge of the step at z � 0, we
obtain the Child±Langmuir law (22). This law, however, gives
only an approximate, rough picture of the unipolar sheath.

Riemann and Tsendin [25] offered a more accurate
description. Following their treatment, we start by substitut-
ing u0 � 1 into Eqn (9) to obtain

1

2

�
dw
dx

�2

� exp �w� ÿ 2� �1ÿ 2w�1=2 : �24�

0.5

ÿ4.0

1
ej=Te 2 3

z

Figure 3. One-dimensional model of a plasma emitter: 1, quasineutral

ionization zone (Debye presheath), 0 < ej=Te < 1=2; 2, Debye sheath,

ÿ4 < ej=Te < 0 (the Debye sheath length is usually much less than

shown), and 3, unipolar sheath, ej=Te < ÿ4; solid line is the potential

profile in the two-scale theory, dashed line is the Bohm solution, which is

invalid in region 1.
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Neglecting the electron density, i.e., dropping the term exp �w�
which is small for w! ÿ1, we obtain the equation

dw
dx
� ÿ

���������������������������������
2�1ÿ 2w�1=2 ÿ 4

q
: �25�

It has been possible to integrate yielding the potential in the
unipolar sheath in the implicit form

xÿ xp �
���
2
p

3

�����������������������������������������
1ÿ 2w

p
ÿ 2

q ÿ ��������������
1ÿ 2w

p
� 4� : �26�

Formula (26) correctly takes into account both the initial ion
velocity and the integral contribution of electrons to the space
charge. The error due to neglecting the contribution from
those electrons present in the unipolar sheath is exponentially
small. The Child±Langmuir limit

xÿ xp �
���
2
p

3
�ÿ2w�3=4 �27�

is obtained from formula (26) by dropping terms of order
wÿ1=2 as against unity.

The accuracy of the unipolar approximation is illustrated
in Fig. 4, where the plot of formula (26) is compared bothwith
the exact numerical solution of equation (24) and with the
Child±Langmuir formula (27). The unipolar potential termi-
nates at w � ÿ3=2 because, for w > ÿ3=2, the expression on
the right-hand side of Eqn (26) becomes complex-valued. For
w < ÿ2, given the scale of the figure, the potential is virtually
undistinguishable from that given by the exact solution.
Reference [25] suggests w � ÿ2:303 (at which ne � 0:1n0) as
the boundary between the Debye and unipolar sheaths. For
us, however, the boundary between above sheaths is best to be
set at w � wp � ÿ4, corresponding to the electron number
density ne � 0:018 n0; such a potential is marked by a
horizontal dashed±dotted line in Fig. 4.

It is interesting to note that, changing to dimensional
variables, expression (25) at w � wp � ÿ4 takes the form

E 2

8p
� n0Te : �28�

The numerical code POISSON-2 to be described in Sec-
tion 11.3 uses equality (28) as a boundary condition at the
emission surface of the plasma emitter. This equality implies

that the electron pressure n0Te and the dynamic thrust of ions
nimiv

2
i � n0mic

2
s � n0Te from the inside of the Debye sheath

(where E � 0) are balanced by the sum of the increased (due
to the potential drop from j � 0 to j � ÿ4Te=e) dynamic
thrust of ions, nimiv

2
i � 3n0Te [see Eqns (3) and (4)], and the

negative electric field pressure (tension) ÿE 2=8p from the
outer side of the Debye sheath (where ne � 0).

5. Two-scale theory

There was an early recognition by the pioneers of gas
electronics for the distinction between quasineutral plasma
and the thin near-electrode (Langmuir) sheath which pro-
duces a large volumetric charge density [15±19, 37, 45, 46]. If
the electrode potential is large and negative, the near-
electrode sheath can, in turn, be provisionally divided into
the Debye sheath and the unipolar sheath described in
Section 4. The Debye sheath typically has an estimated
characteristic thickness of a few Debye lengths lD. Within it,
the electron density falls by orders of magnitude, whereas in
the unipolar sheath its value is already small compared to the
ion density. It is therefore natural to consider that quasineu-
tral plasma, whose sizeL4 lD, has its `edge' tied to theDebye
sheath. On an intuitive level, this fact was formulated both by
Bohm [7] and much earlier by Langmuir [15±19].

For a sufficiently small value of the ratio

e � lD
L
; �29�

the boundary between the Debye sheath and the quasineutral
plasma can be given a rigorous mathematical definition. The
corresponding asymptotic (for e! 0) two-scale theory was
developed early in the 1960s by Caruso and Cavaliere [29].
The papers by Riemann [28, 30±33] provided an easy-to-
access description of the theory, and those by Franklin and
Snell [47, 48] tested the theory by performing numerical
calculations under various assumptions concerning the
mean free path of particles in plasmas.

We will outline the theory by first introducing the ion
source Si into hydrodynamic equations (1) used in the
derivation of the Bohm criterion and by assuming from the
outset that Ti � 0. We have then a set of equations

ne � n0 exp

�
ej
Te

�
; �30a�

q
qz

nivi � Si ; �30b�

q
qz

miniv
2
i � ÿeni

qj
qz

; �30c�

q 2j
qz 2
� 4pe�ne ÿ ni� : �30d�

Without loss of generality, we again believe that potential
zero (j � 0) and the normalization density n0 refer to the
`onset' of the Debye sheath, where ne � n0. In writing down
equations (30), it was assumed that the source of ions injects
them into the plasma with a zero initial velocity, so that the
continuity equation (30b) contains an Si�z� term, whereas the
equation of motion (30c) does not. A common assumption in
theoretical work is that the ion source intensity Si is
independent of, proportional to, or varies as the square of
the electron density ne depending, respectively, on whether
the ionization is by an RF field, by electron impact, or by

0ÿ2ÿ4ÿ6ÿ8

ÿ2
ÿ4
ÿ6
ÿ8
ÿ10

0

zÿ zw
lD

w

Figure 4. Potential profile in the Langmuir sheath: solid line, the exact

solution of Eqn (24); dashed line, unipolar approximation (26); dotted

line, the Child±Langmuir formula (27). Potential on the wall is always

ww � ÿ10. The horizontal dashed±dotted line is the adopted boundary

w � ÿ4 between the unipolar and Debye sheaths.
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electron impact from an excited state. In this case Si � Sqn
q
e ,

where Sq is a constant, and q � 0, 1, or 2 for these three
mechanisms of ionization, respectively.

Equations (30) involve two `natural' scales: the Debye
length lD � �Te=4pn0e 2�1=2, and the ionization length
L � csn0=Sqn

q
0 . Introducing the dimensionless variables

w � ej
Te

; u � vi
cs
; n � ni

n0
;

equations (30) reduce to the form

d

dx
nu � e exp �qw� ; �31a�

d

dx
nu 2 � ÿn dw

dx
; �31b�

d2w

dx 2
� exp �w� ÿ n ; �31c�

if the coordinate z is normalized to the Debye length:

x � z

lD
; �32�

or, alternatively, to the form

d

ds
nu � exp �qw� ; �33a�

d

ds
nu 2 � ÿn dw

ds
; �33b�

e 2
d2w
ds 2
� exp �w� ÿ n ; �33c�

if one introduces another dimensionless coordinate

s � z

L
: �34�

Equations (31) and (33) are equivalent for a finite e > 0, but
tend to different limits as e! 0. In the sheath representation,
with the corresponding system of equations (31), e appears as
a coefficient of the ion source in Eqn (31a). Dropping this
term in the limit of e! 0 takes us back to Bohm's theory (see
Section 2). In the plasma representation leaning upon the
system of equations (33), e enters the Poisson equation (33c).
In the limit of e! 0, this equation reduces to the quasineu-
trality condition, which indicates that the ion and electron
densities are approximately equal. The corresponding solu-
tion is discussed in Section 6.

6. Hydrodynamic ionization model

In this section, we will work out the solution to the set of
equations

d

ds
nu � exp �qw� ; �35a�

d

ds
nu 2 � ÿn dw

ds
; �35b�

n � exp �w� ; �35c�
which follow from equations (33) in the limit of e � 0. A point
to note in retracing the derivation of these equations in
Section 5 is that the ion velocity was assumed to be zero at
the moment of ion injection into the plasma. Therefore, ions
injected into plasma regions with different potentials differ in
their acquired energies from the outset, with the consequence

that their distribution function cannot be characterized by a
zero temperature. In other words, the cold-ion plasma model
defined by Eqns (35) is not fully self-consistent. Still, the
model is of some methodological interest, and we will use it in
this section. Attempts to include a finite ion temperature in
the hydrodynamic approximation were made in Refs [39, 49,
50]. A more adequate kinetic model is discussed in Section 8.

Recall that the parameter q in equations (33) has different
values depending on what mechanism ionizes the neutral gas
injected into the system to maintain the emission current. If
the ionization is effected by primary electrons or an RF field,
the ionization rate is independent of the electron density and
q � 0. If the ionization is dominated by electron impact, the
ionization rate is proportional to n 1

e and q � 1. Finally, when
q � 2, the ionization occurs from an excited state when the
number of excited atoms is proportional to the electron
density.

System of equations (35) can be solved for any q, yielding
the dependence of the coordinate s on the velocity u or
potential w in the form of a combination of hypergeometric
functions. For integer values of q, these functions are
expressed in terms of polynomials and elementary functions.
The solutions for q � 0; 1; 2 are given in Ref. [51].

Combining equations (35b) and (35c), and adding the
condition

u � 1 at w � 0 �36�

which simply fixes the value of the potential at the location
where the flow velocity reaches the speed of sound, as a
preliminary we note that

w � ln
2

1� u 2
�37�

for any value of parameter q. Substituting this into Eqn (35a)
and imposing the additional condition

u � 0 at s � 0 �38�

which ties the coordinate origin s � 0 to the location where
u � 0, it is found that

s � 21ÿqu
qÿ 1

�
q 2F1

�
1

2
; 1ÿ q ;

3

2
;ÿu 2

�
ÿ �1� u 2�qÿ1

�
; �39�

where 2F1 denotes the hypergeometric function. In the cases
of interest here, one finds

s � 2u

1� u 2
at q � 0 ; �40a�

s � 2 arctan�u� ÿ u at q � 1 ; �40b�

s � 1

6
�3uÿ u 3� at q � 2 : �40c�

The corresponding solutions are plotted in Fig. 5.
At q � 0, the s dependence of the potential and flow

velocity can be written down in the explicit form

w � ÿ ln

�
1ÿ

�������������
1ÿ s 2
p

s 2

�
; u � 1ÿ

�������������
1ÿ s 2
p

s
: �41�

At point s! sp � 1, where the flow velocity approaches the
speed of sound, i.e., u � 1, the electric field dw=ds and the
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space charge e 2 d2w=ds 2 become infinite, with

dw
ds
� ÿ 1������������������

2�sp ÿ s�p : �42�

This singularity corresponds to the Debye sheath in the
exact solution, so that in the neighborhood of the singularity
asymptotic solution (41) becomes meaningless. The coordi-
nate ss of the boundary between the quasineutral ionization
zone (s < ss) and the Debye sheath (s > ss) can be determined
by following the Riemann method [28]. At this boundary, the
terms dropped in the quasineutral plasma model [namely, the
space charge in Eqn (33c)]:

e 2
d2w
ds 2
� e 2

�sp ÿ ss�3=2
;

and those dropped in Bohm's theory [namely, the correction
to the ion density due to the supply from the ion source
e exp �qw� over the length dxD � �sp ÿ ss�=e in Eqn (31a)]:

dn � e exp �qw� dxD
u
� edxD ;

make equal contributions.
From the equality e 2=�dsD�3=2�dsD, where dsD�sp ÿ ss,

we obtain

dsD � e 4=5 ; dxD � eÿ1=5 : �43�

In dimensional units, it means

dzD � lDdxD � LdsD � l 4=5
D L 1=5 :

The same estimate was found in Refs [52±55]. From this, it is
seen that, for e � lD=L! 0 in the scale given by formula (34),
the Debye sheath thickness dsD turns out to be zero, whereas
in the scale given by formula (32), the same, in fact, thickness
dxD will be infinite. A poor understanding of this funda-
mental point is a rich source of sometimes hotly debated
paradoxes [28, 56±60].

The electric field at the distance dzD from the singularity,
i.e.

Es � Te

el2=5D L 3=5
; �44�

is small compared to the electric field E � Te=elD in the
Debye sheath, while the potential

js � ÿ
Te

e

l 2=5
D

L 2=5
�45�

is small compared to the potential j � ÿTe=e there.

At q � 1, although the solution is not expressible in an
explicit form, it is also singular for u! 1 in the sense that the
derivative dw=ds becomes infinite, as was the case at q � 0.
Now, however, the coordinate of the singularity, sp �
p=2ÿ 1, is not numerically equal to unity.

At q � 2, it proves possible to solve equation (40c) in u
and to find the dependence u�s� in an explicit form, but the
resulting expression is cumbersome and will not be presented
here. We only note that the singularity is located at point
sp � 1=3.

Comparing the three panels in Fig. 5a±c, the results of
calculations for different ionization models are very similar.
In fact, the plots of the potential, ion velocity, plasma density,
and current density go almost unchanged with q and differ
only by the numerical value of the singularity coordinate sp.
In all three cases considered, as one moves from u � 0 (wall)
to u � 1 (singularity), the plasma density n decreases by a
factor of two, whereas the ion flux density increases
monotonically from 0 to 1 due to ionization. Ions in the
ionization zone are accelerated due to the potential drop from

wpl � ln 2 � 0:693 �46�

to zero, with the plasma density decreasing from npl � 2n0 to
n0. Importantly, in all three examples, the Bohm criterion is
satisfied only marginally, i.e., in the equality form

v0 � cs �47�

(recall that v0 was defined in Section 2 as the value of vi at
j � 0). The order of singularity is also the same for all three
cases, so that the estimates of the electric field, formula (44),
and potential, formula (45), at the boundary for matching the
obtained solutions to the Debye sheath apply to all the
examples considered.

We are now in a position to somewhat `improve' the
definition that was given in Section 3 for the loose boundary
between the quasineutral plasma and the Debye sheath.
Inequalities (18) and (19) assign to this boundary the value
of w � 0. But if we think of this boundary as an imaginary
interface between the quasineutral ionization zone and the
collisionless charged sheath, it should be admitted that at this
boundary w � ws � ejs=Te � ÿ�lD=L�2=5. However, the dif-
ference between w � 0 and w � ws is important only in
calculating the Debye sheath thickness, whereas the differ-
ence between their associated electron densities at w � 0 and
w � ws is absolutely negligible. The same is true for the ion
flow velocity and ion current density. In addition, we will see
that ws has a different value in the kinetic model of the
ionization zone, which is described in Section 8. As a first
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Figure 5.Flow velocity u (solid line), potential w (dashed line), density n (dotted line), and ion flow j � nu (dashed±dotted line) profiles for different values

of the parameter q (shown in figures).

708 I A Kotelnikov, V T Astrelin Physics ±Uspekhi 58 (7)



approximation then, we can consider that ws � 0, the same as
we did in Section 3.

7. Generalized Bohm's criterion

In Section 2, the Bohm criterion was formulated for the
simplest (and not entirely natural) model of cold ions with
only two distribution parameters: the ion number density ni,
and flow velocity vi. For an arbitrary ion distribution
function f �vz�, the Bohm criterion can be generalized by
writing it down in the form

hvÿ2z iÿ1=2 5
�����
Te

mi

r
; �48�

with

hvÿ2z i �
1

ni

�1
0

f �vz�
v 2z

dvz :

This criterion was first established by Harrison and Thomp-
son [61], but their derivation was not accepted as convincing.
The generalized Bohm criterion has been discussed at various
levels of rigor in the literature [11, 30, 35, 42, 62, 63]. Allen [64]
mentions the criterion in the form of the equality

hvÿ2z iÿ1=2 �
�����
Te

mi

r
: �49�

In his remarkable paper [65], Allen highlights the physical
meaning of this condition and shows that the generalized
Bohm criterion in the form (49) follows from the dispersion
relation for ion-sound waves. Featuring a negative frequency
o � k�cs ÿ v0�, waves propagate backward against the ion
flow, i.e., for v0 > cs, a perturbation is carried forward by the
flow. In this case, the current collector cannot have any effect
on the processes in the ion source.

The fact that the Bohm criterion is almost always (except a
few artificial models) satisfied in the form of an equality was
discussed by Riemann [30]. Of the several arguments
Riemann advances in favor of this treatment of the criter-
ion, one, in fact, follows Allen's reasoning [65], which is
reproduced in one form or another in Refs [63, 66±71].

The Bohm criterion for a system involving more than one
sort of ion has also been discussed [72, 73].

8. Plasma equation

Turning now to the kinetic description, consider a plasma
layer between two parallel absorbing walls located at z � �L.
The system is considered to be symmetrical about the middle
plane z � 0, so that we will restrict ourselves to the region of
z5 0. The plasma consists of electrons and one sort of singly
charged positive ions. As was the case with Bohm's theory,
the electrons are again taken to be Boltzmann-distributed
with a fixed temperature Te. Because ions are due to the
ionization of a cold homogeneous background of a neutral
gas, they are created with zero velocity and then move
exclusively in the direction of the electric field. We will find
the ion distribution function F�z; vz� from the kinetic
equation

vz
qF
qz
ÿ e

mi

dj
dz

qF
qvz
� Sid�vz� ; �50�

where, as in Sections 5 and 6, Si denotes the ion source. For
convenience, we introduce the dimensionless variables

E � miv
2
z

2Te
� ej

Te
; w � ej

Te
; s�w� � z

L
;

s�w� � LSi

n0cs
; n � ni

n0
;

where, as before, L denotes the characteristic ionization
length (to be determined quantitatively later), n0 is the
electron density at w � 0, and cs �

�������������
Te=mi

p
is the ion speed

of sound. As the notation s � s�w� suggests, we consider the
dimensionless potential w rather than the dimensionless
coordinate s as an independent variable. Accordingly, we
introduce the dimensionless distribution function

f �E; w� � cs
n0

F�z; vz� �51�

as a function of the dimensionless energy E and dimensionless
potential w. In this notation, kinetic equation (50) becomes

qf
qw
� s�w� s 0�w� d�Eÿ w� ; �52�

where the quantity s 0 � ds=dw is the inverse of the electric
field strength. In integrating equation (52), we shall assume
that the potential w�s� is a monotonically decreasing function
similar to that shown by the dashed line in Fig. 5, so that at a
given energy E the argument of the delta function d�Eÿ w� on
the right-hand side cannot be zero at more than one point.
Because the right-hand side of equation (52) is zero every-
where except at w � E, the distribution function f �E; w� is, in
fact, independent of its second argument except for this point,
where the function f �E� possesses a discontinuity. Hence, one
has

f �E; w� � fÿ�E� for w < E ;
f��E� for w > E

�
�53�

and

f��w� ÿ fÿ�w� � s�w� s 0�w� :

In a monotonically decreasing potential w�s�, the point with a
potential w is inaccessible to ions with energy E < w. Hence,
one arrives at

f��E� � 0 ; fÿ�E� � ÿs�E� s 0�E� ; �54�

where s 0 < 0. In this case, the ion number density is given by

n �
� wpl

w

fÿ�E������������������
2�Eÿ w�p dE � ÿ

� wpl

w

s�E� s 0�E������������������
2�Eÿ w�p dE ; �55�

where wpl is the maximum value of the potential in the plasma
(equal as well to the potential of the quasineutral plasma
outside of the region where ionization sources are at work).
Because in dimensionless variables the electron density
assumes the form exp �w�, Poisson's equation for the self-
consistent potential w takes the form

e 2
d2w
ds 2
� exp �w� ÿ n�exp �w� �

� wpl

w

s�E� s 0�E������������������
2�Eÿ w�p dE : �56�
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The dimensionless ionization rate, s � LSi=n0cs, is
defined in terms of two variables: the ionization zone
thickness L, and the electron number density n0 at the
location where w � 0, both as yet unknown. Assuming, as in
Section 6, that Si � Sqn

q
e and L � n0cs=Sqn

q
0 , we have

s�w� � exp �qw� �57�

for ionization models with different values of parameter q.
Thus, the final definition of L and n0 is postponed until the
coordinate sp of the Debye sheath is calculated.

In the plasma approximation, the term with e 2 in Poisson
equation (56) is omitted, yielding the `plasma equation',
which is, essentially, the quasineutrality condition� wpl

w

s�E� s 0�E������������������
2�Eÿ w�p dE � ÿ exp �w� : �58�

The plasma equation, which is recognized as the first order
Volterra integral equation, was first derived and studied
numerically by Tonks and Langmuir [19]. In Harrison and
Thompson's paper [61], it is solved by the Abel transform to
give

s�w� s 0�w� �
���
2
p

p
d

dw

� wpl

w

exp �Z������������
Zÿ w
p dZ ; �59�

which, when integrated, becomes

s�w� s 0�w��ÿ
���
2
p

p

�
exp �wpl���������������wpl ÿ wp ÿ ���

p
p

exp �w� erfi
� ��������������

wpl ÿ w
p ��

;

�60�
where

erfi �x� � 2���
p
p

�x
0

exp �t 2� dt ;

and the ionization rate s�w� is determined in equation (57). It
is interesting that ion distribution function

f �E; w�

�

���
2
p

p

�
exp �wpl���������������wpl ÿ Ep ÿ ���

p
p

exp �E� erfi
� ��������������

wpl ÿ E
p ��

; w < E < wpl

0; E < w or wpl < E

8><>:
�61�

does not depend on s�w�.
According to Eqn (60), the derivative s 0�w� starts from a

singularity for w! wpl, then monotonically decreases (in
absolute value) for w < wpl and becomes zero at w �
wpl ÿ 0:854. At the point of singularity at w � wpl, the electric
field vanishes, so the potential w�s� has a maximum there,
whereas the zero of the derivative s 0�w� represents a
singularity in an electric field, which, as we saw in Section 6,
corresponds to the Debye sheath. The root of the equation
s 0�w� � 0 does not depend on the shape of the function s�w�
and is therefore universal for all ionizationmodels. Following
the convention adopted in Section 6, let us agree again that
the potential at the entrance to the Debye sheath is close to
zero. Then, the root of an equation s 0�0� � 0 gives the value of
the potential maximum:

wpl � 0:854 : �62�

The plasma density at the maximum, npl � exp �wpl� n0, is a
factor of 2.349 larger than the density n0 at the entrance to the
Debye sheath. Note that quantity (62) is 23% larger than the
similar-in-meaning value (46) written down in Section 6.
Moreover, it is larger than wpl � 1=2, a value which is most
often used when calculating the density drop over the Debye
presheath [11±13, 24, 74].

We will further assume that the potential maximum
resides in the center of the plasma at s � 0. Figure 6 plots
the potential profiles calculated by integrating equation (60)
for three values of parameter q. The result of the integration
can be expressed implicitly as

s�w� �
���
2

p

r
exp �w� erfi

� ��������������
wpl ÿ w

p �
at q � 0, as

s�w� �
���
2

p

r ��
1

2
� wÿ wpl

�
erfi
� ��������������

wpl ÿ w
p �

� 1���
p
p exp �wpl ÿ w� ��������������

wpl ÿ w
p �

at q � 1, and as

s�w� �
��������
2=p

p
qÿ 1

� ���
q
p

exp
�ÿ �qÿ 1� wpl

�
erfi
� �������������������

q�wplÿw�
q �

ÿ exp
�ÿ �qÿ 1� w� erfi� ��������������

wpl ÿ w
p ��

in the general case. Close to the singularity, the potential takes
the form

w �
������������
sp ÿ s
p
0:579

; �63�
where sp � 1:144 at q � 0, sp � 0:572 at q � 1, and sp � 0:296
at q � 2. A comparison with calculated results of Section 6
reveals that the kinetic and hydrodynamic models place the
singularity at about the same coordinate sp.

In addition to the already mentioned Refs [19, 61], the
solution of the plasma equation (56) was examined in Refs [4,
30, 32, 33, 75].

Returning to Poisson's equation (56) smooths out the
singularity for w! 0, resulting in the derivative s 0�w�
vanishing nowhere (and the electric field goes to infinity
nowhere). Because the approximate expression (63) implies
that s 0�w� � ÿw for w! 0, it follows that a deviation from
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Figure 6. Ionization zone potential profile in the kinetic model of a `plasma

equation' at q � 0 (solid line), q � 1 (dashed line), and q � 2 (dotted line).
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such a dependence results in the difference exp �w� ÿ n on the
right-hand side of the equation, for w! 0, being of order w 3=2

rather than zero. Therefore, the quasineutrality approxima-
tion becomes inadequate where

e 2
d2w
ds 2
� w 3=2 :

From this expression, substituting formula (63), it is straight-
forward to estimate the Debye sheath thickness and then also
the potential at the point where the quasineutral solution is
matched with the exact solution:

dsD�sp ÿ ss � e 8=9 ; dxD�xp ÿ xs � eÿ1=9 ; ws � e 4=9 :

Here, as in Section 6, the subscript s labels quantities referring
to the matching point. In dimensional units, one finds

dzD � l 8=9
D L 1=9 ; js � ÿ

Tel
4=9
D

eL 4=9
; Es � Te

el 4=9
D L 5=9

; �64�

which differs somewhat from the analogous quantities (43)±
(45) calculated in the hydrodynamic approximation.

References [32, 76] provide a more detailed study of the
region between the ionization zone and Debye sheath.

To describe the Debye sheath quantitatively requires that
the problem be reformulated in terms of the Debye scale by
replacing s � z=L with x � z=lD � s=e. On this scale, the
Poisson equation

d2w

dx 2
� exp �w� ÿ n �65�

does not contain the small parameter e, so the space charge
cannot be neglected. On the other hand, because the Debye
sheath is collisionless, the ion distribution function within it
(for w < 0) is known in the form of the limit f �E; 0� of the
distribution function (61) at the edge of the quasineutral
plasma (for w! 0), with f �E; 0� � 0 for E < 0. Thus, the ion
density in the Debye sheath is given by

n�w��ÿ
� wpl

0

s�E� s 0�E������������������
2�Eÿ w�p dE � exp �w� ÿ

�w
0

s�E� s 0�E������������������
2�Eÿ w�p dE :

�66�

Substituting Eqn (66) into Eqn (65) gives in the limit of w! 0:

d2w

dx 2
� ÿ0:947�ÿw�3=2 ;

from which we have the asymptotic form

w � ÿ
�

4:59

xp ÿ x

�4

�67�

for x! ÿ1, which differs qualitatively from the hydrody-
namic asymptotic form (12).

Substituting the distribution function f �E; 0� into the
generalized Bohm criterion (48) yields the condition� wpl

0

s�Z���s 0�Z����
2�wÿ Z��3=2 dZ4 1 : �68�

It can be shown that this condition is satisfied in the form of
an equality [30, 61]. Importantly, the ion flow velocity at the
entrance to the Debye sheath exceeds somewhat the ion speed
of sound:

v0 �
�
vzF dvz � cs

� wpl

0

s�Z���s 0�Z��� dZ � 1:144cs : �69�

This is possibly due to the fact that, as indicated above, the
potential drop in the ionization zone is 23% larger than
predicted by Bohm's theory.

9. Localized ion source

Let us remove the assumption that ions emerge with a zero
initial velocity. Of interest is the exactly solvable example
(Cohen and Ryutov [35]) of a spatially localized ion source
which injects finite-velocity ions into the plasma, a situation
which approximately corresponds to how the users of the
PBGUNS [77] and POISSON-2 [78, 79] codes should specify
the ion source and which, in a sense, invalidates the statement
that the Bohm criterion is most without exception satisfied in
the form of the equality v0 � cs. Cohen's and Ryutov's
example involves the formation of a supersonic (v0 > cs) ion
flow but assumes, in a less than natural way, that the size of
the ionization zone is less than the Debye length, L < lD Ð
contrary to the assumption L4 lD we have always used.

Cohen and Ryutov considered a one-dimensional plasma
sandwiched between two flat ion collectors. The localized ion
source, which resided in the symmetry plane of the problem,
z � 0, midway between absorbing walls, injected ions with a
finite initial velocity vin to either side symmetrically. Due to
the symmetry, the electric field in the plane z � 0 should be
zero: E�0� � 0.

If the initial ion velocity vin was equal to the speed of
sound cs, then the potential jin � j�0� in the injection plane
settled to the level of the quasineutral plasma potentialjs � 0
at the entrance to the Debye sheath, so the ion velocity v0 in
the quasineutral region of the plasma was also cs, and the
Bohm criterion was satisfied in the form of the equality
v0 � cs. For vin < cs, the potential jin at the injection point
was found to be larger than js, and close to the source a
Debye sheath formed, where ions were accelerated to beyond
the speed of sound: v0 > cs. In the limit of vin ! 0, the ion
velocity in the quasineutral part of the plasma approaches
v0 � 1:585 cs, a value which Dubinov and Senilov [80]
declared to be the maximum ion outflow velocity from a
plasma emitter. We will show, however, that solutions exist
with a flow velocity v0 > 1:585 cs, although they are incon-
sistent with the boundary condition E�0� � 0.

Proceeding to calculations, let us consider a plasma layer
between two parallel absorbing walls, assuming the presence
of an ion source given by

Si�z; vz� � S0d�z�
�
d�vz ÿ vin� � d�vz � vin�

�
: �70�

It is assumed that the function Si�z; vz� is even in both its
arguments and falls off sufficiently rapidly away from the
source region for the z dependence to be represented by a
delta function, as in formula (70). The initial ion velocity vin is
generally different from zero. As we will see, the potential
j�z� has a maximum jin � j�0� at the ion injection point;
therefore, there are no ion stopping points close to the source,
i.e., miv

2
in=2� ejin > ej�z� for all z > 0. Hence, the ion
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velocity

vz �
�������������������������������������������
v 2
in �

2e

mi

�
jin ÿ j�z��r

�71�

vanishes nowhere, and the ion number density

ni � S0

vz
�72�

nowhere becomes infinite. As regards the electron density ne,
we will again assume that it obeys the Boltzmann distribution
(2). Because the electric potential is defined to within a
constant, this constant can be chosen such that ni � ne at
j � 0. Then, it is straightforward to show that

n0 � S0������������������������������
v 2
in � 2ejin=mi

q �73�

is the electron density in that part of the quasineutral region
where j � 0.

Introducing the dimensionless quantities

w � ej
Te

; x � z

lD
; u 2

0 �
miv

2
in � 2ejin

Te
;

where, as before, lD �
����������������������
Te=4pe 2n0

p
, Poisson equation (1e)

yields equation (6) for the dimensionless potential w, which
allows the useful mechanical analogy we already used in
Section 2. According to formula (8), this equation has the
energy integral

W � 1

2

�
qw
qx

�2

�U�w�

and describes the motion of an imaginary pseudoparticle in
the effective potential U�w� specified by formula (7) provided
that w and x are interpreted as a coordinate and time in a
certain mechanical system.

The effective potentialU�w� at w � 0 has either aminimum
if u 2

0 < 1 or a maximum if u 2
0 > 1, as shown in Fig. 7;

therefore, the point w � 0 is stationary for a pseudoparticle
with zero energy,W � 0.

Let us consider themotion of a pseudoparticle with energy
W! 0� (i.e.,W! 0 forW > 0).

In the case of u 2
0 < 1 (Fig. 7a), such a pseudoparticle is

locked in the neighborhood of the effective energy minimum
near w � 0, so there is no solutionwhich links the quasineutral
region w � 0 to the unipolar sheath w9ÿ 4.

The situation changes if u 2
0 > 1. In this case, the region

w < 0 becomes accessible in full to a pseudoparticle with
W! 0�. It is readily seen that the `time' it takes for such a

pseudoparticle to reach the absorbing wall (ion collector)
somewhere in the region w! ÿ1 will be very long, because
the pseudoparticle almost stops near the maximum of the
effective potential at w � 0 and stays there very long before it
is accelerated and continues to move toward the wall. In a
real-life system, some part of the trajectory of such a
pseudoparticle corresponds to a long quasineutral zone
located between the ion source and the Debye sheath and
where the variation of the electric potential is very slow.

When analyzing the solution of the Poisson equation in
Section 2, we in fact assumed that the pseudoparticle starts
from a certain point w! 0ÿ with a small `velocity'
dw=dx! 0ÿ. In this section, we will continue this solution
into the region of w > 0 and will see a second Debye sheath
forming there near the source, in which the injected ions are
preliminarily accelerated.

Importantly, the function U�w� for w � win > 0 has a
second zero if

1 < u 2
0 < 2:513 ; �74�

as shown in Fig. 7b. The upper boundary of interval (74) is
determined from the equation U�u 2

0 =2� � 0 (see below). The
trajectory of a pseudoparticle which starts with zero `velocity'
dw=dx � 0 from a point close to w � win satisfies the boundary
condition E�0� � 0 at the ion source due to the symmetry of
the problem with respect to the z � 0 plane. On the other
hand, for such a trajectory W! 0, so that it `slows down'
near w � 0 to form a long quasineutral zone going over to a
Debye sheath, as shown in Figs 8a, b by a solid line. The
dimensionless local ion velocity

u � vi
cs
�

����������������
u 2
0 ÿ 2w

q
is shown in Fig. 8 by a dashed line. In Figs 8a, b, its initial
value

uin �
�������������������
u 2
0 ÿ 2win

q
at the injection point is greater than zero. However, it tends to
zero as u 2

0 ! 2:513. On the contrary, win ! 0 and, hence,
uin ! u0 ! 1 as u 2

0 ! 1. As seen from Figs 8a, b, the injected
ions are accelerated to a supersonic velocity during the time
they move through the Debye sheath in the zone of
preliminary acceleration near the ion source, where w > 0.
The acquired velocity remains nearly constant, as ions move
through the quasineutral plasma, where w � 0. The ions then
start to be accelerated again in the second Debye sheath,
where w < 0.

In the case of u 2
0 > 2:513 (Fig. 7c), the second zero of the

effective potential w � win > 0 disappears, because the func-
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tion U�w� becomes complex-valued for w > u 2
0 =2. As a result,

it turns out that we cannot satisfy the boundary condition
dw=dx � 0 corresponding to the vanishing of the electric field
E�0� in the symmetry plane.

Abandoning the condition E�0� � 0 (either by removing
the symmetry requirement or by allowing for the electric field
discontinuity on either side of the z � 0 plane) makes the
point U � 0 undistinguishable from other points. We can
then place the source at any point in the range of existence of
the solution w < u 2

0 =2, where U4 0 (Figs 8b, c). The value of
w � u 2

0 =2 at the injection point will then correspond to a zero
initial ion velocity, uin � 0.

In the PBGUNS code mentioned above, the imaginary
ion source is placed on the rear wall of the plasma emitter
chamber. The ions are liberated from this wall with a specified
initial velocity. To our knowledge, the electric field is not
assumed to be zero there, so that the corresponding potential
distribution can be described by that part of the solid line in
Fig. 8 which starts from any of its points located to the left of
the quasineutral zone, provided the ion velocities are initially
subsonic. In the quasineutral zone, the flow is supersonic, and
the electric field is near zero. Hence, a solution which starts
from any point in the quasineutral zone describes a super-
sonic ion source in which a Debye preacceleration sheath is
absent.For suchasourceweshould setjin � 0 in formula (73).
In real-life devices, arc sources are used to inject supersonic
ions into the plasma [81].

10. Emission current

Within the Debye sheath, where both ionization and
Coulomb collisions are of negligible importance due to the
sheath's small thickness, the ion current density is a constant
quantity

jp � enivi � en0v0 ; �75�

to which we will refer as the `emission current'. Bohm's
criterion (17) bounds the emission current from below:

jp 5 en0cs : �76�

The question now is raised: Is the emission current bounded
from above?

In their recent paper [80], Dubinov and Senilov argued
that yes, it is and, as shown in Ref. [82], there is formal
reasoning behind their claim. Similarly to the procedure
followed in Section 9, Dubinov and Senilov consider the
motion of a pseudoparticle in an effective potential U�w� for

W! 0� by analyzing its trajectory, which starts near the
maximum of U�w� at w � 0 with a small positive velocity
dw=dx > 0. This trajectory first moves in a reverse direction
from the ion collector, reflects near w � win > 0, and only then
starts moving toward the collector for w! ÿ1. Because, as
we saw in Section 9, the reflection point w � win disappears for
u 2
0 > 2:513, such a trajectory exists only in interval (74). From

this, Dubinov and Senilov conclude that the ion flow velocity
v0 � u0cs can fall in a relatively narrow range

cs < v0 < 1:585 cs ; �77�

although they fail to explain why the Langmuir sheath in the
region w < 0 should in any way depend on whether a
reflection point does or does not exist in the region w > 0.

If formulated realistically, the problem of the plasma
emitter [2] should involve an ion source in the bulk of the
plasma. As shown in Section 9, if ions are created with a small
velocity, then a Debye sheath forms near the source, in which
the electric field accelerates ions to the velocity determined by
the Bohm criterion. It is this sheath for which the correspond-
ing part of the pseudoparticle trajectory is between w � win
and w � 0. On the other hand, a discussion in the same section
shows that suitable solutions exist even for u 2

0 > 2:513 if one
assumes the presence of sources from which a highly super-
sonic ion flux is injected into the plasma with the rate
significantly exceeding the ion speed of sound. Such sources
should apparently be more than one-dimensional, because in
one-dimensional volume-ionized systems the Bohm criterion
is satisfied in the form of an equality, so that the ion outflow
velocity automatically settles to or near the speed of sound.
As shown in Section 6, v0 � cs in the hydrodynamic
approximation and, hence

jp � en0cs ; �78�

whereas the kinetic theory described in Section 8 predicts

jp � 1:144 en0cs : �79�

The main conclusion to draw from these theories is that
the emission current density is completely determined by bulk
plasma processes. As pointed out in monograph [2], this is
what makes the fundamental difference between a plasma
emitter and thermal emission from the surface of a solid
electrode. In a thermionic diode, the external potential
controls the emission current density through a mechanism
which uses spatial charge to restrict the emission. In the case
of a plasma emitter, the emission current is specified; there-
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fore, the external potential controls the size of the diode gap,
and the plasma occupies exactly that section of the gap
necessary to ensure that the emission current is equal to the
current predicted by the Child±Langmuir law.

Some authors (see, for example, Refs [11±13, 24, 74])
append a factor of exp �ÿ1=2� � 0:61 into the emission
current expression (78) and take n0 to mean the plasma
concentration npl in the region where the ion flow velocity is
zero, whereas in formulas (78) and (79), n0 is the plasma
concentration at the entrance into the Debye sheath, where
the ion velocity is equal to cs. Treating the emission current in
this way is not entirely self-consistent, because the emission
current is then expressed in terms of quantities that refer to
different parts of the plasma. On the other hand, this
approach is quite natural if the presheath thickness is much
less than the linear size of the plasma, as is the case in the
probe measurements of plasma parameters.

The use of probes requires that the plasma temperature
and density be relatively low; otherwise, the probes burn out.
At a temperature Te � 1 eV and density n � 1012 cmÿ3, the
mean free path is a mere 1 cm, and the presheath thickness is a
few centimeters. If the thickness is smaller than the linear size
of the plasma, then it is better to express jp in terms of the
outside-the-sheath plasma density npl rather than the density
n0 at the `entrance' into the Debye sheath. Assuming, as in
Section 3, that the potential drop over the presheath is 1/2 (in
units of Te=e) yields npl � n0 exp �1=2� � 1:649 n0 and for-
mula (78) is equivalent to

jp � 0:607 enplcs : �80�

However, the hydrodynamic model described in Section 6
predicts the potential drop over the presheath to be
ln 2 � 0:693, and npl � 2n0. We then have

jp � 0:5 enplcs : �81�

In the kinetic model constructed in Section 8, one has
npl � n0 exp �0:854� � 2:349 n0, and formula (79) is equiva-
lent to

jp � 0:487 enplcs ; �82�

which is identical to Eqn (3.69) in monograph [4] by
Forrester. As noted earlier in Ref. [39], formulas (81) and
(82) give close results, whereas Eqn (80) obtained heuristically
from Eqn (78) is apparently not quite accurate.

11. Numerical simulation of the plasma emitter

Real-life ion sources with a plasma emitter take advantage of
arc, RF, or surface-plasma discharges to produce plasma (see,
for example, Refs [83±94]). The calculation of such sources in
two or three dimensions requires the use of numerical codes.
Numerically calculating plasma emitter sources turns out to
be much more challenging than in the case of their solid
counterparts, the main reason being that the shape of the
plasma boundary is not specified beforehand. In multi-
aperture systems, the plasma is in contact with a multihole
metal grid. If the hole diameters are much larger than the
Debye length, then we are dealing with the emission of
charged particles from a free plasma surface, and the surface
itself is referred to as a plasma meniscus [13, 74, 95±98]. The
shape and location of themeniscus depend on how the plasma

is produced, the plasma potential and density, the velocity
distribution of plasma particles, and the shape of the focusing
electrodes. To further complicate things, there are several
sorts of charged particles and of neutral gas, necessitating the
introduction of new concepts such as quasineutrality, the
Debye length, the mean free path, and the ionization cross
section.

In high-current charged particle sources, theDebye length
is often too small compared to the device size for numerical
codes to resolve it given a reasonable difference grid spacing.
Such devices are calculated either by making the grid denser
near the meniscus or by using a sharp boundary plasma
model. In the latter case, the real potential distribution in the
Debye sheath is replaced by model boundary conditions on
the free surface of the plasma, the plasma being considered
quasineutral up to this surface. The outer surface of the sharp
boundary plasma is bordered by a unipolar sheath without
there being a Debye sheath between. The one-dimensional
theory outlined in the previous sections is intended to provide
a correct formulation of the boundary conditions for such
numerical codes. The shape of the plasma meniscus and the
corresponding free surface boundary conditions are discussed
in Section 12. Here, we will briefly review the computer codes
for modeling ion sources with a plasma emitter.

Due to the complexity of the problem, such codes are
considerably fewer than those for other problems in electronic
optics. There are three basic modules in any available code:
(1) solving Maxwell's equations for electric and magnetic
fields or the Poisson equation for the electric potential;
(2) solving the kinetic equation for the distribution function
of charged plasma particles or their hydrodynamic analogs,
and (3) carrying out an iterative procedure to match these
solutions.

The numerical methods for solving kinetic and hydro-
dynamic equations include the method of macroparticles, a
range of difference schemes [99], the method of integral
equations [100], the finite element method [101], and
combinations thereof. The often-used way to model plasma
and beams in nonstationary problems is to apply the
`particles-in-cells' (PIC or CIC) method [102]. Stationary
problems are treated by the trajectory method or by the
method of tube currents [99], the choice depending on the
nature of the problem at hand.

Whealton and coworkers list in paper [103] the plasma
emitter modeling codes that were developed at the early stages
of computer technology and are designed for analyzing the
sources of negative ion beams and discuss some aspects of
emitter modeling in two and three dimensions. A brief
discussion of numerical codes currently under active devel-
opment will now be given.

11.1 PBGUNS
The interactive code PBGUNS (Particle Beam GUN Simula-
tions) [77, 104, 105], which has been developed since 1960 as
a means to model first electron and then ion beams, is a
2.5-dimensional (2.5D) code (i.e., two-dimensional in coordi-
nate space and three-dimensional in velocity space) and
calculates all three magnetic field components. The electrons
of the emitting plasma are modelled by a Boltzmann density
distribution, and ions by the method of tube currents, the
tubes starting from the inner surface of the plasma chamber,
where the current density and ion velocity are specified by the
user. The recommended value of the initial ion energy
corresponds to the electron temperature. The volumetric
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charge density of the emitted ion flux is obtained from the
equation of continuity for tube currents on a square grid,
which becomes denser near the free surface of the plasma. The
electric potential distribution is calculated iteratively using
the method of relaxation for square grid difference schemes.
PBGUNS calculates the shape of the plasma meniscus and
does not require that the meniscus curvature or any other
beamor plasma parameters be known to the user; what it does
require, though, is the user's knowledge of the meniscus's
initial location and shape.

PBGUNS treats a wide range of problems concerning the
formation and transport of relativistic and nonrelativistic
beams of electrons and of (positive and negative) ions in
systems involving plasma and solid emitters, contains a
convenient interactive interface for the input and output of
information, and features a vast archive of sample tasks.
Among its weaknesses is performance instability, probably
due to the statistically small number of trajectories and due to
the fact that the source operates in regimes close to physically
unstable states. Furthermore, the code is designed to handle
only one plasma region, preventing modeling of counter-
propagating electron and ion beams emitted from more than
one plasma region simultaneously.

11.2 COBRA-3
The three-dimensional code COBRA-3 [106±108] was devel-
oped to model the formation of high-current ion beams in
systems with a plasma emitter in self-consistent electric and
magnetic fields. The Poisson equation in the difference form
is solved by the iterative method of upper relaxation; the
equations of motion of ions are integrated, including the
contribution of ions to the space charge. COBRA-3 assumes
the Boltzmann electron distribution and calculates the free
surface shape of a plasma which emits differently charged
ions. The parameters of the emitted ions are determined
from an experimental database. If need be, the self-magnetic
field of the currents involved can be taken into consideration
[109]. The predecessor of COBRA-3 was the AXCELL code
[110±112].

11.3 POISSON-2
The applied software package POISSON-2 [78, 79, 113±118]
is designed for solving 2.5-dimensional (plane and axisym-
metric) stationary problems in the electron and ion optics of
high-current relativistic sources. POISSON-2 is capable of
handling sources with particles of ten kinds emitted by several
surfaces simultaneously. Algorithms for modeling plasma
emitters in POISSON-2 have been developed since the early
1980s with consideration for collisional, ionization, charge
exchange, and other processes in gas-filled accelerators [114,
115].

The development of this software package was given an
impetus by 2006 experiments on the generation in plasma
emitter accelerators of high-power long-duration pulses for
heating plasma in open systems for magnetic plasma confine-
ment [116]. Currently, the package is capable of simulating
the simultaneous generation of an electron beam and an ion
beam emitted counter to each other from the cathode and
anode plasma surfaces, respectively, the beam and emission-
surface shapes being calculated by iteratively matching the
fields and current tubes [78].

Figure 9 illustrates the calculation of an axisymmetric
elementary cell of a multiaperture electron source; the
electrons injected into the plasma of the open plasma trap

located behind the anode heat the plasma and thereby cause it
to expand and to flow out with a large directed velocity into
the accelerating gap.

The two-dimensional Poisson equation is solved by the
method of integral equations, and the flow of particles is
calculated by the current tube method, the current tubes
featuring a central trajectory and a variable cross section.
Relativistic equations of motion are solved by the Boris
method [119]. The space charge density is calculated for the
cell centers of a rectangular nonuniform grid in solving the
continuity equation. The potentials and electric fields are
calculated at the grid nodes and interpolated to the particle
coordinates. The magnetic field is determined as the sum of
the specified external field and the self-magnetic field of the
current tubes.

Because the Debye length is assumed to be infinitesimal,
POISSON-2 leans upon a sharp-boundary plasma model.
The electric field at the boundary is finite and is determined by
substituting the plasma parameters into formulas which are
similar to Eqns (9), (28) but differ from them in including the
space charge of the particles in the counter flow, as shown in
Fig. 9. Field and current trajectory matching are performed
iteratively through the space charge relaxation mechanism.
An improvement in the calculated location and shape of the
free plasma surface was carried out in another iteration
procedure which uses the displacement of the surface nodes
along one of the coordinates. The iteration process terminates
when the emission current density determined by the plasma
parameters is equal to the current the Child±Langmuir law
predicts for the accelerating gap. A more detailed description
of the algorithm for the plasma meniscus shape is given in
Section 12.

11.4 ELIS
Also noteworthy among the codes for plasma emission
electronics is the ELIS software design developed by the
V A Gruzdev team [120±122] in Belarus. ELIS's application
is limited to two types of source geometry: a hollow cathode
with an emission hole, and a hollow cathode coated with an
emission grid. The code models the emission of electron (not
ion) flows from the plasma emitter and has the ability to
include the ionization of the gas in the accelerating gap by
electrons, the secondary ion±electron emission from the
cathode surface, and the effect of the flow of secondary ions
on the emission plasma. The electron fluxes emitted from the
meniscus surface are modelled by current tubes, and the
fluxes of secondary ions and electrons are determined by
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Figure 9. Example of modeling the cell of a multiaperture electron beam

source using the POISSON-2 package. Beam electrons penetrating into

the plasma behind the anode cause it to heat and expand toward the

cathode: 1, cathode; 2, plasma; 3, cathode plasma boundary; 4, anode;

5, plasma flux from the magnetic trap; 6, anode plasma boundary. Diode

voltage U � 100 kV, accelerating gap d � 12 mm, electron and ion

current densities are 60 A cmÿ2 and 1 A cmÿ2, respectively, and the

directed ion energy is 7 keV.
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solving the hydrodynamic equations. The potential and
electric field distributions in the system are found by solving
the Poisson equation by difference methods on a rectangular
grid. ELIS code solves self-consistent stationary and quasista-
tionary problems, is module-structured, provides a user-
friendly input±output interface, and has, in our view, the
potential to model the plasma emitters of positive ions if
equipped with appropriate modules. Even as it currently is, its
scope includes the most important processes involved in the
operation of plasma emitters.

12. Plasma meniscus

As pointed out in Section 10, in a one-dimensional theory the
external potential controls the thickness of the unipolar
sheath, and the plasma occupies precisely as much of the
diode gap as needed to ensure that the emission current jp is
equal to the current j3=2 predicted by the Child±Langmuir
law. In two dimensions (Fig. 10), the plasma meniscus has its
edges tied to the triple point on the outlet hole aperture, so
that the diode gap size is to a limited extent controlled by
varying the meniscus shape. It is sometimes argued [13, 74,
123] that the meniscus surface will be flat if jp � j3=2, concave
toward the plasma if jp < j3=2, and concave outward if
jp > j3=2. It is also clear that the meniscus shape affects the
focusing of the beam drawn from a plasma emitter. It is
assumed that the beam is focused best when the focusing
electrode surface looking toward the collector is Pearce-
shaped [88, 90, 91, 124 ±126] and smoothly matches the
plasma meniscus [13], as illustrated in Fig. 10.

While the meniscus shape is extremely difficult to
determine experimentally, a well-established fact is that the
optimum conditions exist under which the ion beam can be
focused best [97, 127]. It is known that the beam cannot be
guided through the transport channel if PBGUNS calcula-
tions reveal a convexity toward the diode gap on the meniscus
near the triple point [127]. The beam is also somewhat
defocused if jp < j3=2, and the meniscus displaces into the
depth of the outlet hole aperture.

The Debye sheath forms not only on the free plasma
surface (i.e., on the plasma meniscus), but also on its
boundary, with the focusing electrode within the plasma
chamber. The conditions of the formation of these Debye
sheaths are very different, however. Whereas ions leave the
plasma volume through the free surface virtually alone, the
plasma quasineutrality requirement implies that the walls of

the plasma chamber are reached predominantly by electrons.
Still, because electrons are more mobile than ions, in the
Debye sheath near the chamber wall ions are speeded up and
electrons slow down, just as in the Debye sheath on a free
surface. Hence, the plasma acquires a small positive potential
with respect to the chamber walls (with respect to the focusing
electrode) and a large positive potential with respect to the ion
collector. To reduce the current to the plasma chamber walls,
the walls are made magnetically insulated.

Algorithms for calculating the plasma meniscus shape are
among the most safely guarded secrets of software code
designers. The only paper the authors know of that comes
anywhere close to clearly describing them is that of Humph-
ries [74], which presents a method of numerically modeling
the plasma emitter of positive ions using the finite element
method in combination with the dynamic generation of a
triangular conform grid. A feature of the method is that some
of the grid elements are considered to belong to the plasma
and some to the accelerating gap.

The surface of the meniscus is identified as one bringing
together those grid element edges along which the elements of
one sort are glued to those of the other. It is argued that such
an approach yields high precision, has universality, and is
adaptive, a property necessary for calculating complex multi-
aperture emission surfaces. The iteration process displaces the
grid nodes in such a way as to reduce the nonuniformity of the
emission current density on the meniscus surface. The
criterion for terminating the iteration process isÐas the
author postulates without elaborationÐ that the emission
current density become uniform.

An algorithm for calculating the meniscus shape codeve-
loped by one of us (VTA) within the POISSON-2 framework
is worth outlining here in general terms. Unlike Humphries's
[74] algorithm, the emission current density jp is not assumed
to be distributed uniformly over the meniscus surface but is
calculated in about the sameway as in the PBGUNS package.
The angular distribution, velocity, and density of ions on the
rear wall of the plasma chamber are specified by the user (we
do not consider here electron sources which can also be
modelled by the POISSON-2 package). Because a quasineu-
tral plasma has no electric field, these ions move ballistically.

This model approximately corresponds to the supersonic
(vin > cs) injection of ions into the quasineutral zero-potential
(j � 0) part of the plasma, a scenario described in Section 9.
Some of the trajectories terminate at the inner walls of the
plasma chamber, and such ions are considered lost, whereas
some others move out to the plasma free surface to form the
emission current there, and the density of the emission current
jp turns out to be nonuniform, with jp on the periphery of the
outlet hole usually being lower than on its axis. Choosing a
certain value of j � jp, for example, jp � ÿ4Te=e, as a
potential of the plasma free boundary, the equations of
Section 9 yield the ion flow velocity vp and the electric field
Ep at this boundary [79].

Outside of the plasma, a thin layer adjacent to its
boundary is considered as a planar diode in which the current
density is limited by the space charge of the ions drawn from
the plasma. The diode thickness d should be specified by the
user and is usually equal to two or three difference grid
intervals. The voltage U across this diode is determined
from the potential calculated in the previous iteration.
Given the known values of U, vp, Ep, and d, the solution of
the one-dimensional Poisson equation yields the diode
current density j3=2, which is used to calculate the parameters

3

4

1

2

5

R

z

Figure 10. Plasma emitter in a two-dimensional geometry: 1, focusing

electrode; 2, plasma; 3, plasma emission surface (plasma meniscus);

4, triple point; 5, accelerating electrode. The edges of the plasma meniscus

are adjacent to the focusing electrode at the triple point. With the

accelerating gap voltage optimized, the plasma meniscus surface goes

over smoothly, with no kinks, to that part of the focusing electrode surface

that looks toward the ion collector.

716 I A Kotelnikov, V T Astrelin Physics ±Uspekhi 58 (7)



of current tubes in the accelerating gap. Then, as a result of
the iteration process, the fields and current tubes in the gap
are matched. Once this process is completed, one step of the
next iteration process is performed, which causes the nodes of
themeniscus to displace. Then, repeating the iteration process
results in matching the fields and current tubes, etc. Iterations
terminate when jp becomes identical to j3=2.

13. Conclusion

This paper presents, in a single framework, the key results of
the one-dimensional theory of a plasma emitter of positive
ions. The Bohm criterion is formulated in a simple form and
in a generalized form. The theory of a unipolar sheath and the
two-scale theory are described, which enable the quantitative
determination of the thickness of a collisionlessDebye sheath.
The kinetic and hydrodynamic formation models of the
Debye sheath and of the ionization zone in the Debye
presheath are described in an easy-to-access form. It is
shown that, except for some artificial ionization models,
Bohm's criterion is satisfied in the form of an equality. The
emission current from a plasma emitter is calculated in the
hydrodynamic and kinetic approximations.

The existing numerical codes for two- and three-dimen-
sional modeling of positive ion sources are briefly discussed,
and their critical analysis in light of the analytical theory
described in the paper points to the modeling of bulk plasma
processes as their least-developed aspect. In particular, the
analytical theory predicts that under real-life conditions, the
Bohm criterion is satisfied in the form of an equality, and
therefore the ion flow velocity at the entrance to the Debye
sheath is equal (in the hydrodynamic limit) or close (in kinetic
theory) to the ion speed of sound. A positive aspect of these
codes, however, is that the initial ion velocity can be
prespecified to have an arbitrary value.
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