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Abstract. The example of a gas flowing through an orifice into
the surrounding rarefied space is used to demonstrate the pos-
sibility of using clusters for diagnosing gas flows. For the
conditions studied (it takes a cluster velocity about the same
time to relax to the gas velocity as it does to reach the orifice),
information on the flow parameters inside the chamber is
obtained from the measurement of the cluster drift velocity
after the passage through an orifice for various gas consump-
tions. Other possible uses of clusters in gas flow diagnostics are
discussed as well.

Keywords: clusters, gas flows with clusters, size distribution func-
tion of clusters, gasdynamics of gas flows, cluster beams

1. Introduction

Gas transfer to a region of low pressure is accompanied by the
formation of gas fluxes or gas beams, and this gas, with
various additions in the form of ions, excited atoms,
molecules, clusters and microparticles, has various applica-
tions (see, for example, books [1-3]). It is convenient to insert
microparticles into a gas flux in order to visualize the gas
laminar motion where individual gas elements move along
certain streamlines. Since these particles are entrained by a
gas flow, scattered light allows the gas flow lines to be seen if
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obstacles are placed in the gas path or the gas outflows into a
surrounding space. This approach has received acceptance
for a dusty plasma where reliable optical methods had been
elaborated for the determination of microparticle positions in
a space and their displacements in time. The latter allows
finding gas flow lines, in particular, as a result of streamlining
bulk objects. Then, the assumption is made that particles are
entrained by a gas flow and move together with the gas.

In the case of variation of the gas velocity or the motion
direction, it is necessary that the relaxation time for particle
motion in a gas be small compared to the variation time of the
gas velocity, and then particles move together with the gas.
This criterion is often violated under laboratory conditions,
and then the character of particle motion and the particle
relaxation time in a gas flow allow the motion of the gas flow
to be restored before the region of particle registration.

In this paper, we demonstrate this for the motion of
clusters —nano-sized particles—in a gas stream outflowing
through an orifice into a vacuum or the surrounding rarefied
space. Measurement of the distribution function of charged
clusters over velocities and motion directions after the gas
passes through an orifice allows one to understand the
character of gas motion ahead of the orifice and to retrieve
the parameters of this motion.

2. Formation of a gasdynamic flow

Figure 1 gives a schematic of laminar gas motion in a chamber
and the outflow of gas into the surrounding rarefied space.
Precisely this setup is used in cluster experiments (see, for
example, Refs [4, 5]), the basis of which is the NC-200 cluster
source designed at Oxford Applied Research (Great Britain).
A gas flows along a wide tube, or chamber, and the radius of
orifice r in the chamber end significantly exceeds the mean
free path 1 of atoms in a gas, so this gas outflows from the
chamber in the form of a gasdynamic jet. Since the rate of gas
flow near an orifice is on the order of the gas sound velocity,
whereas this rate inside the chamber is several orders of
magnitude less, a strict gas acceleration takes place near the
orifice. Clusters located in a gas have no time to follow atoms
near an orifice because of their inertia, and the average cluster
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Figure 1. Schematic of the formation of a gasdynamic flow with clusters:
I—injection of a gas flux into the wide tube, 2-—chamber, 3—
magnetron, 4— gas flow with clusters in a chamber, 5— orifice, 6 —
beam outside the chamber.
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Figure 3. Space distribution of atoms in and near a beam at a distance that
is marked by the arrow in Fig. 2: ] — orifice projection, 2— beam region,
3, 4—regions outside the beam.

Figure 2. Beam destruction in the course of its propagation: / — an orifice,
2—a region occupied by a beam, 3, 4—regions outside the beam; the
arrow indicates the distance from the orifice where the distribution
function plotted in Fig. 3 is valid.

velocity at the orifice is lower than that of atoms. Correspond-
ingly, the velocity distribution function of clusters behind the
orifice gives information about the character of variation of
the gas velocity ahead of the orifice.

Let us consider the evolution of a gasdynamic stream as it
expands behind an orifice in a vacuum or rarefied gas. Since
the flow radius is large compared to the mean free path of
atoms in a gas, internal atoms propagate downstream from
the orifice in the form of a beam which is stabilized due to
collisions with neighboring atoms. Because this stabilization
is absent for periphery atoms, the atoms located at distances
of order the mean free path of atoms away from the beam
boundary propagate freely in the surrounding space. As a
result, the gasdynamic atomic beam spreads with distance
from the orifice, as shown in Fig. 2.

Figure 3 displays the space distribution function of atoms
in and near a beam for the above-mentioned character of
beam formation and propagation. Then, inside a beam
(region 2), the atom number density is constant over the
beam cross section and is determined by the equation of state
for an ideal gas. At the beam boundary, the atom number
density decreases sharply, because atoms travel freely into the
surrounding space (region 3 in Fig. 3). The thickness of the
transition layer between regions 2 and 3 in Fig. 3 is of the
order of the mean free path of atoms in a gas. Region 3
corresponds to an effusion beam which outflows from the
gasdynamic beam surface in the radial direction, so that, in
accordance with the beam cylinder symmetry, the atom
number density in this region decreases as we move from the
beam center. The boundary of region 3 is determined by the

distance from the center, which is attainable by most
periphery atoms. Only fast atoms may reach region 4.

The gasdynamic regime of beam formation and propaga-
tion corresponds to the criterion where the atom mean free
path / in a beam is small compared to orifice radius r, which
corresponds to small values of the Knudsen number Kn:

Kn:%<l. (2.1)

r

It is convenient to invoke the rarefaction coefficient 6 defined
as [6-8]

Vi _ VA
2

T 2Kn (22)
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A

for a small beam parameter 1/6. This parameter will be used
below in the analysis of processes of formation and propaga-
tion of a gasdynamic beam.

3. Clusters in a gas flow

The schematic of the generation of an atomic gasdynamic
beam in Fig. 1 is simultaneously a schematic of the generation
of cluster beams in a magnetron discharge [9, 11]. Metal
clusters are formed here from the bombardment of the
cathode by fast ions in a magnetron discharge, and metal
atoms resulting from cathode erosion partake in a certain
sequence of processes [10]. The clusters are entrained by the
slow gas flux and remain in the gas beam after its formation
and subsequent beam evolution after passing through an
orifice of the magnetron chamber.

Let us analyze the character of cluster interaction with a
gas in the course of cluster motion under given conditions. A
low cluster density is a natural requirement for this system, at
which one can neglect interactions between clusters. The
interaction of gas atoms with a cluster has a simple
character. Indeed, strong cluster interaction with an incident
atom takes place only near the cluster surface at distances on
the order of atomic sizes, i.e., on the order of the Bohr radius
ap. Being guided by clusters consisting of a hundred atoms or
more, clusters can be considered to be spherical particles of a
certain radius rg, where ry > ap. Assuming angles of atom
scattering on a cluster to be random, we can obtain the
following relation for the diffusion cross section gy of atom
scattering on a cluster: 6y = mr¢.

We are guided by the kinetic regime of cluster motion in a
gas, A > rg, where a strong cluster interaction at any time
takes place with one atom only. Figure 4 represents condi-
tions for the kinetic and diffusion regimes of cluster motion in
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Figure 4. Cluster interaction with atoms of a surrounding gas for the
kinetic and diffusion regimes of cluster motion in a gas.

a gas. In particular, the kinetic regime at atmospheric
pressure is signified if the number of cluster atoms is
significantly less than 10'°. Thus, we consider the following
hierarchy of cluster sizes:

r>i>r0>ao, (31)
where notations are given above for each size.

If a cluster is located in a gas and its average velocity w
differs from the average directed gas velocity wvg, these
velocities must be equalized in the end as a result of cluster—
atom collisions. The relaxation character for the cluster
velocity is described by the relaxation time 7, that is a
parameter of the cluster equation of motion:

dw vy —w

= . 2
dr Trel (3 )

The relaxation time in the kinetic regime is given by the
following formula [12] that takes into account atom—cluster
collisions:

3IM n'/3
Tra] = = ,
el 8V 2TCI’}’ITNa7'02 kel Ny (33)
8V2mmTrg
kg = YW g
3m,

Here, M is the cluster mass, m, is the mass of cluster atoms, m
is the mass of gas atoms, N, is the number density of gas
atoms, ry is the Wigner—Seitz radius [13, 14], and # is the
number of cluster atoms. Notably, for water drops traveling
in atmospheric air at the temperature 7= 300 K, formula
(3.3) gives ke =2.8x 107! em? s~!. As is seen, the
relaxation time of the cluster velocity depends on the number
of cluster atoms as T, ~ n'/3 according to formula (3.3),
since the cluster mass is M ~ n, and the cluster radius is
estimated as ro ~ n'/3.

One can also use formula (3.3) as an estimate for atoms
moving in a gas. As is seen, the difference between the
relaxation times for average velocities of atoms and clusters
is characterized by the factor n'/3, if the masses of atoms
which belong to a gas and clusters have the same order of
magnitude. In particular, this fact is used in impactors (see,
for example, Refs [15-17]) which are intended for particle
selection from a gas. The concept of an impactor is illustrated
in Fig. 5. In this case, a gas stream flows inside a bent
cylindrical tube where the velocity of atoms or molecules
varies due to the tube turns. Since nano- and microparticles
are moving along straightforward trajectories, they attach to
walls or are ejected from a flowing gas.

Figure 5. Gas flow along a tube.

4. Passing of a gas stream through an orifice

In considering a system consisting of a gas stream with
clusters inside it, we assume a low cluster number density, so
that clusters do not influence the gasdynamics of a gas flow. If
parameters of a gas flow vary at small distances, clusters
located there cannot come into equilibrium with the gas flow.
Notably, if the flow rate varies during a small time compared
to the relaxation time 7, according to formula (3.3), the
equilibrium between clusters and a gas flow is violated in the
course of variation of the flow rate. Therefore, cluster
registration with determination of the velocity distribution
function of clusters allows, in principle, finding the para-
meters of velocity variation for the gas stream.

Below, we shall consider this problem for the passage of
a gas stream through an orifice into the region of low
pressure. Let us analyze first the character of passage of a
gasdynamic stream through an orifice irrespective of the
cluster presence in this flowing gas. Assume for a gas flow
with clusters that the orifice radius is small compared to the
chamber radius, but is large compared to the mean free path
of gas atoms.

Figure 6 shows the character of a gas passage through an
orifice. For the laminar gas motion under consideration, the
Reynolds number is not large and a gas moves along certain

|
|
| Vi 3
|

Figure 6. Character of passing a gas stream through a chamber orifice into
the surrounding space: /— orifice, 2— streamlines for an effluent flow,
3—chamber boundary, 4—vortices of a gas remaining inside the
chamber, and 5— boundary for an outgoing gas flow.
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Figure 7. Passage of a gas flux through a chamber orifice; / — boundary
streamline for the gas flow [12].

streamlines. Thus, a gas emerging from the chamber
propagates along lines outgoing to infinity, whereas a gas
remaining in the chamber flows along closed trajectories, and
the gas velocities for these regions are identical at their
boundary.

We first analyze the character of a gas stream passing
through an orifice, based on considering the formation of an
atomic beam as a result of irradiation of a metal surface by a
focused laser beam [18-20]. Though this problem relates to a
somewhat different process [21], the character of a beam
production is identical for these cases. Indeed, as a result of
vaporization of a metal surface, which is located in a vacuum
or rarefied gas and is irradiated by a laser beam, an atomic
vapor is formed near the surface with the semi-Maxwell
velocity distribution function of atoms, i.e., evaporated
atoms come into equilibrium with the surface and move
outward from the surface. A beam of evaporated atoms is
formed with a certain drift velocity and temperature at the
distance from the surface equal to the mean free path of
atoms, and beam parameters are connected with gas para-
meters inside the chamber ahead of the orifice due to the
momentum and energy conservation laws.

In the case of a gas passage through an orifice, the
character of this transition is given in Fig. 7. The energy
conservation law then has the form

3 1 3
—mcsz(Tb)Jr— Tb,

. (4.1)

where m is the mass of a gas atom, T is the gas temperature
(hereinafter the temperature is expressed in energy units),
Ty is the gas temperature in a beam, and ¢ is the speed of
sound, which is expressed through the gas temperature as
¢ = (yT/m)l/2 (5T/3m)1/2. Since the speed of sound
corresponds to the beam region, the gas temperature in the
beam and in the moving gas before beam formation is given
by
9

Ty =— T=0.64T.

= (4.2)

From the equality of fluxes inside and outside the
chamber at the orifice boundary, it follows that

(2_T> N es(To)No (4.3)

m

where N is the atom number density ahead of an orifice, and
Ny, is the atom number density in the beam. From this, one
can obtain the following relation between the atom number

densities in a gas and in a beam:

T 2
Ny = 6 N = 8

—N= N.
SnTy 15n 077

(4.4)

Note that relations (4.2) and (4.4) correspond to the infinity
value of the rarefaction coefficient (2.2). Table 1 contains
values of the parameters entering formula (4.4) for finite
values of parameter (2.2) [22].

Table 1. Ratio of beam and gas parameters [22].

) Tv/T Ny/N References
00 0.64 0.77 formulas (4.2) and (4.4)
6.3 0.7 0.3 [23]
0.8 0.6 [24]
1 0.8 0.6 [25]
10 0.85 0.75 [25]
1 0.85 0.75 [26]

Keeping to the schematic in Fig. 1, one can determine on
the basis of simple measurements the drift velocity of gas
atoms outflowing from an orifice. In order to do so, it is
necessary to determine the discharge of gas inserted into the
chamber (7 in Fig. 1) and the gas pressure in it. Then, the gas
consumption, i.e., the number of atoms inserted into the
chamber per unit time (and, correspondingly, passed through
an orifice per unit time) is Q = nr> Nv, under the assumption
that the atom number densities near the orifice and inside the
chamber are identical, and the atom velocity vy = ¢5(T}) in
the orifice plane is independent of the distance to the orifice
center (¢ is the speed of sound). Here, the atom number
density N follows from the equation of state N = p/T (p is the
gas pressure, and T is the gas temperature).

Thus, one can find the drift velocity vq, of a gas which
outflows from an orifice on the basis of simple measurements
and compare it with the speed of sound in the beam. In
particular, Fig. 8 depicts the drift velocity of argon atoms, if
argon escapes through an orifice into a vacuum, and the drift
velocity is retrieved on the basis of measured argon consump-
tion Q and the pressure p inside the chamber under the above
assumption about the flux uniformity. The gas consumption
unit 1 sccm corresponds to the consumption of 1 cm? of a
standard gas (i.e., at the temperature 0°C and pressure

p =1 atm) per minute, so that the gas flow measurement

unit is 1 sccm = 4.48 x 107 cm—3 s~!.

Note that the speed of sound in argon at the temperature
T=300Kisc(T) = 3.2 x 10*cms~!. According to formula
(4.2), the gas temperature in a beam is 7= 190 K, which
corresponds to the speed of sound ¢,(7p) = 2.6 x 10*cm s~
This result relates to the limit 6 = co and more or less
corresponds to large values of argon consumption and
orifice radii. For the limiting case of Fig. 8b, where the
orifice radius is r =3 mm and the gas consumption is
Q =60 sccm at a measured pressure p =60 Pa in the
chamber, one can obtain N=1.5x 10 cm=3 for the
number density of argon atoms in the chamber.

Since the gas-kinetic cross section for the collision of two
argon atoms is g, = 3.7 x 10715 cm? [27], this corresponds to
the mean free path A =0.2 mm of argon atoms and,
correspondingly, a value of 6 = 14 is deduced for rarefaction
coefficient (2.2). Since at this value of § the beam velocity is
equal to the speed of sound, the assumptions used are valid,
evidently, for a gasdynamic beam.
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Figure 8. Drift velocity of argon atoms in a gas escaping through an orifice
according to measurements (a) [4], and (b) [22]. The arrow in figure a and
the dotted line in figure b correspond to the speed of sound ¢(7%) given by
formulas (4.2)—(4.4); d — orifice diameter.

5. Cluster drift velocity in a gas flow

Let us insert a small number of nano-sized clusters into a gas
flow in such a way that, on the one hand, the clusters do not
influence the passage of the gas stream through an orifice and,
on the other hand, the interactions between the clusters can be
neglected, i.e., their behavior in the flowing gas is determined
by cluster interaction with gas atoms only. Since a strong
atom-—cluster interaction takes place in a narrow region near
the cluster surface, whose extent is on the order of atomic
sizes, we may consider the scattering of atoms on clusters
within the hard sphere model (see, for example, book [28]),
and the diffusion cross section becomes ag = mrg [29, 30],
where r is the cluster radius.

The cluster velocity will change in the vicinity of the
orifice, together with the gas flow rate, on a scale
comparable to the orifice radius. However, if the cluster
transit time in this region is smaller or comparable to the
cluster relaxation time 7. [formula (3.3)], an equilibrium of
clusters with the gas flow is not achieved, i.e., the clusters
pass through the orifice and propagate behind it with a
velocity differing from the gas flow rate. Therefore, one can
retrieve the character of acceleration of a gas flow ahead of
an orifice on the basis of measurements of the velocity
distribution function behind the orifice.

Considering this process from the standpoint of an
experimental study, let us ascertain which parameters of a
cluster beam may be obtained taking into account the
measurement accuracy. These parameters follow from mea-
surements of the velocity distribution function of clusters
with the help of a mass spectral filter.

in this way according to their mass. It is essential that the
clusters be only singly charged or remain neutral under
these conditions [9, 11, 31, 32]. The distribution function of
cluster ions with a given energy eU and with a velocity v
corresponding to this energy is given by [33, 34]

e? ~dI(U)
Mf(v) TR

(5.1)
Figure 10 illustrates examples of the velocity distribution
functions of clusters measured along the flow direction.

It is convenient to approximate the measured velocity
distribution function of clusters after passage through the
orifice by the expression

My — w)? Mov?
27T, 2T,

f(v)=Cexp |- , (5.2)

and the parameters of this distribution characterize the
passage of a gas flow through an orifice. Here, C is a
normalization factor, M is the cluster mass, w is the drift
velocity of a cluster beam, vy, v, are the cluster velocities
along the axis and perpendicular to it, respectively, and T,
T, are the cluster effective temperatures in these directions.

Being guided by the distribution function of clusters
defined by formula (5.2), one can connect the parameters of
this formula with the character of atom cluster collisions in
the gas flux. For simplicity, we can model the gas flow near an
orifice with a conical shape, as shown in Fig. 11. We consider
below this simple chamber geometry as a model of the gas
flow ahead of an orifice.

In what follows, an analysis of gas flow motion in a
conical tube is considered [36]. Let us introduce the parameter
¢as

ztan o

=1
(=1+—0—,

(5.3)
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Figure 10. Velocity distribution function for positive and negative copper cluster ions which are attained by an argon flow under the following conditions:
argon flow rate Q = 15 sccm, argon gas pressure p = 19 Pa, magnetron discharge power P = 120 W, and orifice radius » = 3 mm [35].

Ry

Figure 11. Geometry of a gas flow as motion in a cylinder with a conic end.

where z is the distance from the orifice for a given cross
section, R = r + ztan o is the tube radius in this cross section,
and, from the law of conservation of a mass of the gas
intersecting this cross section, we obtain for the flow velocity
v(z) at a distance z from the orifice in the form

dz csr? Cs
VZ)=F7—="""""""S5=—, 54
(2) ds (r+ztanc¢)2 &2 (54)

where ¢ is the flow velocity of a gas stream in the orifice
plane. The solution of equation (5.4) leads to the following

law of gas flow propagation:

-t r

3
t S —
&) Tor °F T 3¢ tan o

(5.5)

This solution specifies the distance from the orifice for a given
element of the gas flow if at the initial time moment the
parameter ¢ is small (¢ < 1), and then the solution is
independent of the parameter ¢y, or, in other words, 7y > 7.
A given element of the gas flow reaches the orifice at the time
moment #y — Tor, and its velocity v(¢) at time ¢ equals

Tor

v(t) = ¢s (to — t) . .

Let us determine now the cluster velocity w in a gas flow
that is governed by the equation

dw o(t)—w
—_— = 5.7
dz Trel ( )

(5.6)

In the limit of w(#) < v(¢), where clusters have no time to
adapt to the gas flow velocity, we have the following estimate
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of the cluster velocity w when the gas flow with clusters
intersects the orifice plane:

2/3

(Tor) /
wecs| — ,

Trel
and this dependence of the drift cluster velocity on the process
parameters takes place if the following criterion holds true
when taking formula (5.5) into account:
Tor r

—_—~— L

Trel  CsTrel tano

(5.8)

(5.9)

The exact solution of equation (5.7) takes in this limit the
following form [36]

1 Tor )\ 2
wo = cs(vror)2/3f<§) = 2.68¢ (r_or])
re

. 2/3
=13¢| ———— .
cstan (o) Trel

This drift velocity corresponds to the limit of the small ratio
Tor/Trel given by formula (5.9). Taking into account that the
cluster drift velocity cannot exceed the velocity ¢, of a gas
flow, the cluster drift velocity w can be approximated in a
wide range of parameters by the formula

(5.10)

WoCs
W=

N 5.11
wo+ ¢ (5-11)

which transforms into formula (5.10) in the limit of small drift
velocities w < ¢, and is equal to the gas flow velocity ¢ near
the orifice in the case of fast relaxation of the cluster velocity.

Let us make a numerical estimation, being guided by the
parameters of copper clusters in an argon flow, which were
specified in Fig. 10. Copper clusters consist of n = 1.4 x 10*
atoms, on the average, corresponding to an average cluster
radius rp = 3.5 nm. At a pressure of p =60 Pa, which
corresponds to the gas consumption Q = 60 sccm and the
number density N = 1.5 x 10'® cm™ of argon atoms, the
reduced rate constant of relaxation process according to
formula (3.3) is kr = 2.2 x 107! cm? s7!, and the appro-
priate relaxation time 7, = 70 ps. The required small ratio
according to formula (5.9) is r/(¢stre) = 0.2. This confirms
the underlying assumption of the regime under consideration
for the cluster drift in a gas flow. Experimental values of the
cluster drift velocity as a function of gas consumption are
presented in Fig. 12.

200 Cu-
n = 14,000 ,{‘ +
7150 F
: t
" 100 |-
¢
50 | | | | |
0 20 40 60 80 100

Q, sccm

Figure 12. Dependence of the drift velocity of negatively charged copper
clusters consisting of n = 1.4 x 10* atoms on the argon flow rate at the
orifice radius r = 3.5 mm [35].
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Figure 13. Dependence of the semi-cone angle on the gas flow rate Q as a
result of modeling the gas streamlines by straight trajectories near an
orifice using the data given in Fig. 12.

In the following, we consider a conical shape for the gas
flow profile near an orifice. With the help of formulas (5.10)
and (5.11) for the cluster drift velocity, we can retrieve the
cone semi-angle o, being guided by the experimental data
given in Fig. 12. Figure 13 contains the semi-cone angle
dependence on the gas flow rate. Despite the large error bars
at large flow rates, the following conclusions can be drawn
from an analysis of the experimental data in Fig. 13. As the
gas flow rate and, correspondingly, the number density of
atoms increases, the region where the clusters gather drift
velocity shifts closer to the orifice. Since this leads to a
decrease in the effective angle for the gas flow motion
according to the data given in Fig. 13, the gas streamlines
tend to be parallel to the motion axis, i.e., they have the form
displayed in Fig. 6.

Data for the cluster drift velocity given in Fig. 12 may be
used to determine the streamlines of the gas flow which passes
through an orifice under the above-mentioned conditions.
Then, the number density of the clusters is relatively small, so
they do not influence the gas propagation near a chamber
orifice. Therefore, by modeling the gas stream passing
through a given tube cross section by a conical flow shape,
the cluster drift velocities can be determined on the basis of
formulas (5.10) and (5.11) from the experimental data and the
appropriate semi-cone angles o which are displayed in Fig. 13.
Next, in the limit of w(¢) < v(¢), equation (5.7) gives

dz = 1 dw, (5.12)

where the z-axis is perpendicular to the orifice plane.
Assuming the angle « to be small (see Fig. 13), i.e., the flow
is directed almost perpendicular to the orifice plane, we can
find that the cluster drift velocity is mainly gathered at a
distance z ~ wt.. Then, we find the effective semi-cone angle
o in accordance with data presented in Fig. 13.

The parameters o and z obtained allow determining the
boundary of a passing flow, so that a gas inside this region
outflows from the chamber, whereas a gas outside this region
remains in the chamber. Figure 14 represents streamlines for
an argon flow, which were obtained on the basis of formulas
(5.10)—(5.12).

The algorithm formulated above for the determination of
the gas streamlines may be applied in the one-dimensional
case if the gas pressure inside the chamber varies with a
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Figure 14. Gas streamlines for the right side of an argon flow which passes
through an orifice with radius » = 3.5 mm under the conditions specified in
Fig. 13.

variation of the gas flow rate and, simultaneously, the cluster
drift velocity is fixed for a given gas consumption (or for a
given gas pressure in the chamber).

Note that the laminar character of cluster motion in a gas
flow is characterized by the Stokes number Stk, which is given
by [37]

o TrelCs

Stk = —— | (5.13)
ro

where 1. is the relaxation time for the cluster velocity to the
gas flow velocity, ¢ is the typical maximum velocity of the gas
flow, and ry is the radius of a copper cluster. Using typical
values of the parameters specified in Fig. 12, namely, a cluster
radius of 7y = 5 nm, and a velocity ¢; = 2 x 10* cm s~! of the
gas passing through the orifice, we arrive at the relaxation
time 7. =& 50 ps of cluster motion for gas consumption
Q = 100 sccm, which corresponds to a Stokes number of
Stk ~ 2 x 10°.

A large value of the Stokes number signifies the absence of
perturbations near an orifice [38, 39]. In addition, in the case
of laminar motion that takes place in the regime under
consideration, the viscosity acts weakly on the gas motion
[6, 40]. Hence, the motion of a gas is characterized by small
Reynolds numbers [41, 42]

Re=2 =1 (5.14)
v p

where 7 is the dynamic gas viscosity, v is the kinematic gas
viscosity, p is the gas density, R is the current flow radius, and
v is the current velocity of a gas flow. Since gas stationarity
requires the conservation of mass of a gas that flows through
each tube cross section per unit time, we have v(R)R? = vyr2,
where v, is the gas directed velocity near an orifice. This gives
for the current Reynolds number

Re (R) = Re (1) % : (5.15)
i.e., the maximum Reynolds number is attained near the
orifice. For typical parameters of the gas flow under
consideration (Q =60 sccm and r=3 mm), we have
n=23x10"* g ecm™' s7! and v=230 cm? s~! for the
dynamic and kinematic argon viscosities, respectively, and
the Reynolds number becomes Re = 30, whereas the laminar

gas motion is violated at higher Reynolds numbers, larger
than Re ~ 10% [43, 44].

6. Kinetics of cluster motion in a gas flow

The possibility of retrieving the streamlines of a gas flow on
the basis of measured cluster drift velocities was shown in
Section 5. The accuracy of this operation is restricted, because
we model the boundary of a gas passing through an orifice by
its conical shape, and change the current distance from the
orifice plane with its average value. Nevertheless, we can
determine streamlines for a gas flow passing through an
orifice on the basis of the cluster drift velocity measured as a
function of the number density of gas atoms (or the gas
consumption) with a certain accuracy. This accuracy can be
improved by using other measured parameters of the velocity
distribution function of clusters at the exit.

Indeed, along with the cluster drift velocity w, the velocity
distribution function (5.2) of clusters at the exit contains two
additional parameters: the temperatures of the longitudinal
and transverse cluster motion, 7} and 7', , respectively. These
parameters may be determined from measured distribution
functions of clusters over longitudinal velocities, as shown in
Fig. 10, and also on the basis of cluster distributions over
angles of divergence after passing through a chamber orifice.
The small width of the velocity distribution function of
clusters, as follows from Fig. 10, allows operating with the
effective longitudinal temperature, i.e., with the velocity
distribution function (5.2) at the exit behind the orifice. We
discuss below the possibility of determining parameters of this
distribution function on the basis of an analysis of cluster
kinetics in a gas flow.

The basis of this consideration lies in the analysis of the
kinetic equation for the cluster velocity distribution function
f (v, 1), which has the form

y.: Icol(f) .

= (6.1)

Assuming the absence of external fields and nonuniformities,
we include collisions of atoms with the clusters in the collision
integral I.,;( /) and take into account the variation of the gas
flow velocity in the course of its approach to an orifice. Elastic
atom—cluster collisions are included in the collision integral,
so that it takes the form

Tea(f) = J[f(v') o)) —f) p(v)]gdodvdv,.  (62)

Here, v, v/ are cluster velocities before and after the collision,
and vy, v{ are atom velocities before and after the collision. In
this case, the differential atom—cluster cross section as an
element of the collision integral has the simple form within the
framework of the liquid drop model for a cluster:
do = Ttl’g dcos? = ggdcosd, where ry is the cluster radius,
oo is the diffusion atom—cluster cross section, and ¢ is the
scattering angle. Correspondingly, expressions for variation
of the average cluster momentum Mv and its energy Mv?/2
are given by

Iy = JMV Loil(f) dv = Jggf(v) o(vi)dvdyvy,
(6.3)

Ig

JMTUz Lo (f) dv = JVggf(V) @(vi)dvdy; .
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Here, g = v; — v is the atom—cluster relative velocity, and
V = (Mv + mv;)/M is the center-of-mass velocity for collid-
ing particles. We made use of the fact that the cluster mass
significantly exceeds the atomic mass, M > m, i.c., the cluster
coordinate simultaneously coincides with the center of mass
for a colliding atom and a cluster.

These quantities are used in equations for average cluster
parameter distributions. Indeed, multiplying the kinetic
equation by the cluster momentum My and energy Mv?/2,
we obtain the following equations for average quantities after
averaging over cluster and atom velocities [45, 46]:

dw

M — = mooN,(gg) .

de
T — = mogN,(Vgg),

& (6.4)

and the distribution functions of clusters and atoms used in
equations (6.3) and (6.4) are given by expressions in the first
approximation:

f(V) = NC15(V - W) ;

) = N (22 ) exp [0 )
¢ =Nalgper ) P 2T ’

where N,, Ny are the number densities of atoms and clusters,
w is the cluster drift velocity, and w, is the average atomic
velocity. Because of the criterion M > m, the above form of
the cluster distribution function is also valid, when the
following criterion is met [47]:

(6.5)

Mw?s>T. (6.6)
In particular, the extreme left point in Fig. 12, where we have
a gas flow rate Q =16 sccm, corresponds to an average
cluster energy Mw?/2 = 24 eV, which significantly exceeds
the thermal cluster energy, i.e., criterion (6.6) holds true.
Next, a Maxwell distribution for the atoms is assumed.
Indeed, collisions of atoms with clusters have no influence
on establishing the equilibrium between atoms. Assuming the
variation length of the average atom velocity to be large
compared to the mean free path of atoms, one can obtain a
local thermodynamic equilibrium for atoms that leads to the
Maxwell distribution function (6.5) over velocities, so we
assume below the gas temperature to be constant as the gas
stream accelerates in the vicinity of an orifice.

The first equation in Eqn (6.4) may be considered the
Newton equation, where the friction force acting on the
cluster is determined by its collisions with gas atoms [48],
being directed perpendicular to the orifice plane. This gives

F=" (), (6.7)
where the mean free path of atomsis 2 = 1/(N,0¢). Introduc-
ing an angle ¥ between vectors w and vy, we obtain for the
right-hand side of the first equation in Eqn (6.4):

(g.g) = <(w — vy COS 19)\/1)12 + w2 — 2uywcos? > , (6.8)

where averaging is taken over the distribution functions (6.5)
for clusters and gas atoms. In the limit of w < v}, we have

(g:8) = {(w—v; cos¥)(v; — weosV)) = % \/TET (6.9)
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Figure 15. Drift velocities of positive and negative copper clusters (a) and
the ratio of the number densities of positive and negative copper clusters
(b) as functions of the number of cluster atoms [35]. The argon flow rate is
Q = 16 sccm, and the orifice radius is » = 3.5 mm. (a) The solid line is
obtained with the help of formulas (5.10) and (5.11). (b) The solid curve
corresponds to establishing electron—ion equilibrium at an electron
temperature of 0.2 eV.

As a result, the first equation in Eqn (6.4) agrees with
equation (3.2), where the relaxation time is given by
formula (3.3).

If criterion (6.6) holds true, we can obtain in the first
approximation the expression for the center-of-mass velocity
for colliding atom and cluster:

Mw + mv,
—_— W

V=
M+ m

(6.10)
This allows us to reduce the second equation in Eqn (6.4) to
the form

de mw
—=—(g.8). 6.11
R E (6.11)
Dividing this equation by the first equation in Eqn (6.4), we
obtain

de
— = MW,

T (6.12)

ie., &= Mw2/2. As can be seen, in order to determine the
cluster temperature, there is a need in the approximation
based on a smallness of the expansion parameter w/v; for
equation (6.8).

Thus, the determination of the longitudinal temperature
in a cluster beam requires additional corrections to the kinetic
equation compared with those considered above. Moreover,
other corrections connected with the flow geometry and some
other problems may be significant. As for the transverse
temperature, it is connected with the flow direction in the
transient region. On the basis of this analysis, one can
formulate a general algorithm for the determination of
streamlines during the passage of a gas flow through an
orifice. In the first approximation, the measured drift
velocity of clusters is used as a function of the number
density of atoms (or the gas flow), as was exemplified in the
construction of Fig. 15. In the next approximation, this
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solution is taken as a basis, and corrections to it follow from a
comparison between experimental and theoretical tempera-
tures of a gas flow, depending on the number density of
atoms.

7. Conclusion

The above theoretical and experimental analysis opens the
prospects of using the cluster measurements to determine the
evolution of a gas flow under certain conditions. The
possibility of applying this method is demonstrated for the
passage of a gas flow through an orifice. To achieve the goals,
it is necessary to take advantage of the theory and experiment
simultaneously in order to analyze various aspects of this
process. Note that the streamlines of a gas flow may be found
in a direct method by the addition of dust particles to the flow
and making videos of that movement to see the streamlines.
The use of nano-sized particles can provide a higher
resolution and is based on other principles related to the
nonequilibrium character of cluster motion in a gas flow.
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