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Abstract. Although the statistical properties of small-scale
velocity perturbations in homogeneous and isotropic hydrody-
namic turbulence have been thoroughly studied experimentally
and numerically, no definite theoretical explanation is available
yet. The concept of breaking vortices, commonly accepted as
the primary turbulent mechanism, not only fails to account for a
number of facts but also is self-contradictory. In this review, we
discuss an alternative concept according to which the stretching
of vortices rather than their decay is the determining process.
The evolution of stretching vortex filaments and their properties
are derived directly from the Navier—Stokes equation. The
model of stretching vortex filaments explains the power-law
behavior of velocity structure functions and the intermittency
of their exponents, thus imparting physical meaning to multi-
fractal theory, which is based on dimensional considerations.
The model of vortex filaments is the only theory that explains
the observed differences between the scaling exponents of long-
itudinal and transverse structure functions.
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1. Introduction

Turbulence is a complex natural phenomenon which over
the past half century has become a research topic attracting
intensive effort of physicists, mathematicians, and engineers
alike. The spectrum of problems arising in studies of
turbulence is very broad, and in this review we limit
ourselves to considering only one particular aspect: the
theoretical description of small-scale perturbations in
homogeneous isotropic hydrodynamical turbulence. The
formulation of a theory that would enable computing all
possible correlations in a random fluctuating flow of a fluid
from ‘first principles’ is still far from completion, in spite of
obvious successes achieved over more than seven decades
following the publication of the pioneering work of
Kolmogorov [1, 2] in 1941. Substantial progress in
experimental techniques and computational facilities in
recent years has considerably broadened the set of
measured quantities and respective limitations in the
theory. Moreover, in our opinion, modern results of both
experiments and numerical simulations notably modify the
traditional physical view on the structure of a turbulent
flow.

For these reasons, we here do not pursue the goal of
offering an all-embracing account of the existing literature;
instead, we briefly sketch the emerging concept and concen-
trate on the difficulties it faces. We then present a model that
in all probability describes the experimental data more
adequately.
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1.1 Brief overview of the problem

We discuss the properties of a turbulent flow on scales much
smaller than the characteristic size of the entire flow (for
example, a pipe radius); it is plausible to assume that the flow
becomes homogeneous and isotropic on such scales. Most of
the energy resides in large eddies (vortices). The range of sizes
much smaller than the energy-carrying scales, and yet
sufficiently large to neglect viscosity, is called the inertial
range.

Because describing a turbulent flow by dynamical means
is impossible, a statistical description is used: correlators of
velocity, specific energy dissipation, etc., are computed. In
particular, the longitudinal and transverse velocity structure
functions are most commonly used:

sl = <<[v(r+l, 1) = v(r,1)] i>n>
Vr+1) —v(r)] x-

SHI) :< ‘n>.

/

They are the nth-order moments of velocity increments
between two close points separated by a vector I; the
averaging is over all pairs of points located at a distance /
(i.e., over all r and over all directions of 1).!

Assuming the finiteness of the mean energy dissipation
rate ¢ in the limit of vanishing viscosity v, Kolmogorovin 1941
derived an exact expression for the third-order longitudinal
structure function in the limit as v — 0 and / — 0 [1]:

sl :%s/. 2)

For the second-order structure function, relying on
dimensional considerations, Kolmogorov obtained the
power law [2]

Si(1) o SN (1) o 23173 . (3)

A detailed discussion of the derivation of relation (3) is
presented in books [3, 4].

This famous ‘law of two-thirds’ agrees well with experi-
mental data, not only in hydrodynamical media [5, 6] but also
in many other media, for example, laboratory and cosmic
plasmas [7].

What can be said about higher correlators, n > 3?
Generalizing Kolmogorov’s dimensional analysis to this
case (which Kolmogorov did not do), we can readily obtain
a power-law dependence of structure functions on /, with the
power-law exponent linearly dependent on the order n.
Indeed, the Kolmogorov theory assumes the existence of a
single parameter, the energy dissipation rate; it suffices to
suppose, for example, that the distribution function F(dvy;/)
depends only on one argument (the index || is suppressed
below for brevity),

F(dv;1) = F<<6?;(Z)>) .

! By virtue of ergodicity, the volume mean is assumed to be equal to the
ensemble mean.
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Figure 1. Power-law exponents of longitudinal and transverse structure
functions of velocity: the results of numerical simulations in [8] (circles and
squares) and [9] (triangles pointing up and down). The straight line with
the slope 1/3 corresponds to Eqn (4).

Taking (3) into account, we then find
(50"(1)) = JF(&;; 1)(30)" d(3v) o /(302(1)) " o 173, (4)

However, subsequent research has indicated that the
problem is more complicated than it seems at first glance.
As experimental techniques, computational power, and
numerical modeling methods have evolved, it has become
clear that the structure functions in the inertial range satisfy
the power laws

Sl o 19, SE(1) o 15

The power-law exponents C,y and C,f computed and
measured for the order n ranging from zero to 10 (Fig. 1) are
substantially different from the exponents in (4). This
distinction is the reflection of turbulence intermittency. We
note that a process is said to be intermittent if the square of the
nth correlator is much less than the 2nth correlator, S”2 < S5,
Intermittency comes from strong but rare fluctuations and, as
can be seen from Eqn (4), this implies the existence of more
than one parameter.

Why does relation (4) become incorrect? It turns out that
the assumption about the homogeneity of ¢ is violated: the
energy dissipation, as witnessed by measurements, is spread
over space in a demonstrably nonuniform way [5]. Thus, the
hypothesis that ¢ is a single dimensional parameter is invalid,
and hence the conclusion on the power-law dependence of
structure functions hinges on incorrect assumptions. (We
note that the mere existence of a power-law dependence is
nevertheless confirmed experimentally.)

The relation between the longitudinal and transverse
structure functions of the same order is also vague. The
theory predicts that S3- o 52” and Sj o S3H [3], and the
opinion shared by theorists is that power-law exponents
should coincide in all orders. However, a significant differ-
ence between the exponents C,U and CnL for n > 3 was found in
a number of recent papers [10-13] (see Fig. 1).

The following questions therefore arise.

e Why do the higher-order structure functions never-
theless satisfy a power law?

e Why does the power-law exponent show a nonlinear
dependence on the order n (and what is this dependence)?
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e Do the power-law exponents C,ll‘ and {;" coincide for
n > 3?7 If not, why are they different and how different are
they?

Before embarking on a discussion of answers to these
questions, we mention that different approaches to the
description of homogeneous isotropic turbulence are
known. Experimental data and results of numerical simula-
tions of the Navier—Stokes equations for close values of the
Reynolds number agree well with each other. Nobody doubts
that the Navier—Stokes equation describes the phenomenon
correctly. From the engineering standpoint, the problem is
thus practically solved. From the mathematical standpoint,
to reach perfect harmony, one only needs to prove the
theorem on the existence and uniqueness of solutions of the
Navier—Stokes equation [14]. The problem is very complex,
yet there have been significant achievements (see Section 1.2
for singularities in solutions of the Navier—Stokes equation).
It is noteworthy that the existence of solutions is proved, at
least, for the Navier—Stokes equation in which the ‘viscous’
term vAv is augmented with a term containing a higher-order
derivative [it suffices to have A" with « > 5/4 (see Refs [15,
16])]. Because vAv is only the first term of the expansion (in
small velocity gradients) of the forces acting in a fluid, the full
equation, describing results of arbitrary experiments, always
contains higher-order corrections, and hence its solution
exists without a doubt.

In our opinion, the problem should be given a different
focus: it is necessary to understand how and from where these
nontrivial properties of the correlations follow and, if
possible, identify the objects responsible for the appearance
of these properties in a turbulent flow.

This review attempts to propose a constructive answer to
these questions.

1.2 Cascade model
Turbulent motion implies the coexistence of a large number
of eddies with differing scales. Since the early 20th century,
the main physical concept associated with turbulence is the
concept of a cascade of eddies splitting into smaller ones,
introduced by Richardson. Large eddies are assumed to
successively break into smaller ones in a turbulent flow,
forming a turbulent cascade (Fig. 2), in analogy with
crushing stones in a landslide or the generation of elementary
particles in an avalanche caused by a cosmic particle in
collisions with air molecules.

Each of these processes is characterized by some con-
served quantity: in the case of crushing stones, it is the total
mass of the parts; for a cosmic particle, it is the total energy. In

Figure 2. Cascade of breaking vortices. The view associated with
Kolmogorov’s theory (see Ref. [4]).
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Figure 3. Kolmogorov—Richardson spectrum. The energy is pumped into
the system on scales of the largest vortices and is carried to ever smaller
scales through vortex breaking, passing through the entire inertial range
and dissipating on ‘viscid’ scales. In the Kolmogorov theory, it is supposed
that the energy flux at large Reynolds numbers is defined by pumping only
and is independent of the Reynolds number.

the turbulent cascade, the conserved quantity is the energy
flux moving from large to small scales. Energy is pumped at
large scales (commonly as a consequence of flow instability),
and at small scales the ‘avalanche’ dissipates due to the
presence of viscosity. The eddies at intermittent scales form
the inertial range where energy is transferred from large to
small vortices (Fig. 3). Itis worth noting that such a picture of
wave breakup is indeed observed in the theory of weak
turbulence dealing with waves [17].

In his work on turbulence theory, Kolmogorov, as could
be expected, relied on the concept of cascading eddies. This
created a picture of a turbulent flow in which the energy flux is
independent of the scale (in the limit of viscosity tending to
zero), which is the physical basis of the Kolmogorov theory.

The concept of cascading eddies, its immense illustrative
and historical role notwithstanding, faces certain difficulties.

First, it is not clear how eddies break up into smaller ones.
For this to happen, an eddy should first be stretched and then
twisted to become a figure eight; finally, its streamlines should
be reconnected (Fig. 4). But the reconnection of streamlines is
only possible by virtue of viscosity v; in this case, the
reconnection time is ~ /2 /v, where / is the characteristic size
of the reconnection domain. For the eddy reconnection time
to be substantially smaller than its viscous dissipation time
(i.e., for eddies to undergo many reconnections to create a
cascade), it is necessary to assume that eddies are very thin at
the reconnection sites (singular in the limit v — 0).

The question of whether singularities may evolve in an
incompressible fluid obeying the Euler equation has been the
topic of numerous studies [18-20], but is still open. A negative
answer to it would leave the mechanism of eddy breakup
indeterminate. If singularities may emerge, this alone is
already sufficient for explaining the scaling of structure
functions (see below). Thus, in this case, the concept of
successive breakups of large-scale eddies would appear
redundant.

Second, there are current reports claiming observations of
long-lived coherent structures— vortex filaments [21]—in
experiments and numerical simulations. The process of the
emergence of vortex structures is suggested by recent acoustic
measurements [22].

The fact that the velocity curl—the vorticity =
V x v—is distributed highly inhomogeneously in space and
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Figure 4. Vortex breakup. A schematic representation of the evolution of a
typical vortex in the cascade model. The vortex lines lie on a torus. For a
reconnection to occur, the vortex (torus) should be very thin in the vicinity
of the reconnection point. In the limit of zero viscosity, a singularity must
occur for the reconnection to happen.

that domains with high vorticity form a complex web of
interlacing thin filaments has been known for a long time [23,
24]. However, it was demonstrated in Refs [21, 25] that these
filaments are in reality stable dynamical formations. Using
modern powerful computers and methods of wavelet analy-
sis, it has become possible to isolate two components: noise
and coherent (nonrandom) structures in a flow evolving with
time. It turns out that just the coherent structures ensure the
functioning of the two-thirds law (3): the correlators
computed over the domains occupied by them (more
precisely, computed by the velocity field reconstructed from
the ‘coherent’ Fourier transform) practically coincide with
the real ones, and, if the coherent structures are ‘detached’
from the velocity field, the structure functions computed with
respect to the remaining ‘noise’ prove to be trivial,
((8v)*) 12, and much smaller than the original ones. The
prevailing part of the energy of oscillations and enstrophy
(dissipation) also resides in the coherent structures.

The life span of coherent structures is several times longer
than the correlation time — the large-eddy turnover time ¢.
Thus, the mere existence of such structures is at variance with
the cascade concept. Indeed, in the Kolmogorov theory,
du(e,1) ~ 1'73, implying that the time associated with an
eddy of a scale [ is #(e, 1) ~ 123 < 1y, because there are no
other parameters in the inertial range and the breakup time
coincides by an order of magnitude with the eddy turnover
time. Hence, according to the cascade model, all eddies
should successively break up over the correlation time, from
the largest to those of the scale # where dissipation becomes
essential.

Finally, because dissipation occurs in narrow regions,
their Fourier transform has a broad spectrum (in contrast to
dissipation at k= 1/#, as in the case of cascades). More-
over, in realistic conditions, the forcing of turbulence is
linked to the instability in narrow boundary layers; their
Fourier representation also contributes to a broad spec-
trum. It thus turns out that the meaning of the inertial range

as the scale interval void of forcing and energy dissipation
becomes lost.

Is there an alternative to the idea of a cascade? A
hypothesis about the formation of singularities in the
vorticity field might be considered as such. If we assume a
power-law dependence of the velocity on any coordinate, it is
then not difficult to ‘arrange’ the power-law behavior of
structure functions. Admittedly, the nonlinear dependence
of the exponents on the function order would require
considering an infinite set of singularities of various degrees.

Whether the singularities may in reality develop in a finite
time (for smooth boundary conditions) is currently not
known for both the Euler and the Navier—Stokes equations.
Intensive studies are being carried out in this regard, and
certain constraints have been found. For example, it has been
shown that the Hausdorff dimension of the set of singularities
of a viscous flow in four-dimensional space—time does not
exceed unity [26], 1.e., even if singularities are present, they are
rather rare (see also Ref. [27]). On the other hand, as we have
already mentioned in Section 1.1, it is proved that the flow
preserves regularity if the viscous term vAv is replaced with
the expression —v(—A)%v, where o> 5/4 [15, 16].% It is
probable that the Navier—Stokes equation does not allow
singularities altogether, but no one has succeeded in proving
this. For the Euler equation, in contrast, it would be natural
to expect singularities to form, because a smoothing mechan-
ism is absent. However, neither numerical simulations nor
theoretical analysis can confirm or refute the last statement. It
is possible that just the formation of stable structures
(filaments, ‘pancakes’, and so on) prevents singularities
from being formed [4, 20, 28].

1.3 Multifractal theory
An important property of the Euler equation is its scale
invariance, i.e., invariance under the transformations

r—r'=y, wvouv =y, -t =y (3)
with arbitrary y and A.

This circumstance laid the basis for various methods of
turbulence research using dimensional analysis, with renor-
malization group methods [29, 30] and models relying on
perturbation theory [31, 32] among them. The multifractal
model proposed in Ref. [33] is the most widely disseminated,
richest in results, and most well recognized. (For an up-to-
date review, see Ref. [34].) We discuss this model in more
detail.

Having a solution, we can use transformation (5) to
obtain an infinite set of solutions for any given 4. Thus, the
entire ensemble of solutions can be split into classes indexed
by different values of #. The proposal of the model is that
within a particular A-class, the leading contribution to the
structure functions comes from solutions that satisfy the
condition

v(Lr) =v(r+1) —v(r) oc I".
inside some domain S; € R3. The fractal dimension of the

domain Sy, denoted as D(h), is assumed to be independent of
the concrete form of the flow.

2 This term looks much more natural in the Fourier representation:
20
—vk*y.
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In the Kolmogorov theory, the global scale invariance
with a single universal parameter & = 1/3 is assumed. The
multifractal model is therefore a generalization of the
Kolmogorov theory to the case of local scale invariance.
Different intermittent scaling characteristics (probability
densities, correlators of velocity, acceleration, dissipation,
and so on) are expressed in the multifractal model in terms
of a single function D(h).

The introduction of the ‘fractal dimension’ D(/) is based
on the mathematical theory of large deviations. It is natural to
expect that for / < L, where L is the correlation scale of
turbulence, structure functions and other characteristics are
determined by rare events (otherwise we would arrive at the
trivial result (Av") ~ ["). The large deviation theory asserts
that the probability P of the velocity increment with a scaling
h, i.e., the probability of a pair of points r,r + I landing in the
region Sy, is given (simply because of the absence of a scale) by
the power-law function

P=[3P0, (6)

If the function D(h) is known, then all structure functions are
expressed as

<AU”> _ ‘[l”hl37D(h> d,u(h) :

where u(h) defines the relative weights of different 4; up to
logarithmic corrections, we can take u(h) = h.

All approximations discussed here are justified in the limit
! — 0, and in this case the integral can be readily estimated by
the steepest descent method:

. In(Av™)(1)
(S Ry R

Ly =min (nh+3 = D(h)) (7)

1
As we see from Eqn (7), the exponent {,, is related to D(/) by
the Legendre transformation. Figure 5 illustrates the simple
geometrical meaning of this relation. Without losing general-

ity, D(h) can be considered to be concave, i.e., D” < 0. Then
the inverse relation

D(h) = min (nh +3 ~¢,) (8)

exists.

D(h)

hy, ho h

Figure 5. Determining (, from the dependence D(h). The quantity A,
satisfies the equation D’ (h,) = n; at this point, the distance from the plot
of D(h) to the straight line n/i + 3 reaches a minimum.

Hence, any set of power-law exponents {,, corresponds to
a function D(h). The multifractal model allows relating
different types of correlators, expressed in terms of D(h),
but does not answer the question of what D(h) is, and,
accordingly, does not allow computing {,, without additional
assumptions.

Study [33] introducing the notion of multi-fractality has
the title “On the singularity structure of fully developed
turbulence.” Indeed, the phenomenological description
given above assumes the existence of singularities in a
turbulent flow. This can be illustrated with the following
example.

We consider a pair of points from the domain Sj; then

duy(l)=ci".

The distance / between the points evolves with time according
to the law

d/
3, = du);
hence follows the differential equation
d/
~_ h
dr

with the solution
I= (" + (1 =mycn)

A nontrivial scaling occurs only if & < 1. For negative C, the
solution exists only for the finite time

]l—h
fy = ——
CTICI=hy

This implies that the multifractal model assumes the emer-
gence of a singularity in solutions of the Euler equation at the
instant 7. At different space locations (related to different
Sy), singularities evolve at different times; moreover, the
degree of the singularity 1/(1 — 4) is also space dependent.

All this resembles the solution of the three-dimensional
Riemann—Hopf equation [3, 35]. But the emergence of
singularities in the Riemann—Hopf equation is related to gas
compressibility. Moreover, the Riemann—-Hopf equation
describes a limit opposite to that for an incompressible fluid:
it corresponds to the speed of sound ¢y — 0, whereas
incompressibility implies ¢ — oco. In the Riemann—Hopf
equation, moreover, only singularities of several different
orders are possible and their number is always finite, while in
the Euler equation, according to the multifractal theory, they
can be practically arbitrary (4 > 0) and their orders form a
continuous spectrum.

Because the existence of any singularities in the Euler
equation is not proved, the presence of an infinite set of
various singularities in the model is highly undesirable. To
alleviate this difficulty, a probabilistic interpretation of the
multifractal model has been proposed. Instead of individual
realizations of the velocity field, functions of the probability
density P(8v,/) are discussed:

(Sv7) = szp(av, 1) dév, 9)

where the probability P(dv,/) of finding dv in a flow is
determined by the multifractal probability P(/,1) oc [3-P%)
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n and the scaling ov o< /":
[Eqn (6)] and th ling & "
/ 3—D(Indv/Inl)

P(6v,1) x Solni
Expression (9) has all scaling properties, but does not
require interpreting the multifractal as a set of structures
or singularities in space and allows generalizing the notion
of dimension D to arbitrary negative values. But in the
statistical interpretation, we refrain from discussing any
structures.

To summarize, although the multifractal theory is (from a
formal standpoint) capable of correctly describing the
observed correlation functions of developed turbulence, it
does not answer the question of how such a solution can
appear in a flow.

1.4 Vortex filaments

as an alternative concept of turbulence

We see that the concept of breaking eddies contradicts some
observations, and that the development of singularities in a
finite time remains a hypothesis. Meanwhile, many authors
point at the possible important role of vortex filaments in the
general picture of turbulence (see, e.g., Ref. [36]). In [37, 38],
the entangled net of vortex filaments is considered as a fractal
that corresponds to the trajectory of self-avoiding random
walk. Kolmogorov’s law of two-thirds (3) is derived from the
properties of random walk (albeit under assumptions very
distant from reality), although no dissipation is present in
such an intermittent model.

In [39], a phenomenological model is constructed based
on the idea of vortex filaments, which allows obtaining
realistic relations between the power-law exponents of
structure functions of different orders.

However, special attention is paid in the above papers to
the mutual location of vortex filaments and to the geometry of
the network formed by them, while the structure elements (the
filaments) are considered as given. The evolution of indivi-
dual filaments is left behind the scene. In reality, just this
evolution, as we believe, may furnish a physical mechanism
alternative to the idea of a cascade.

We tried to fill this gap in Refs [40-43]. In the next
sections, we describe the results obtained there in detail.
Here, we sketch the general framework for these results.

The evolution of a domain around a local vorticity
maximum looks like a sequence of rotations and deforma-
tions. Although forces acting on this fluid domain are
random, their net effect happens to contain a systematic
component: on the background of random rotations, there
is exponential stretching (and because of the incompressi-
bility, the associated transverse contraction), which corre-
sponds to filament formation. The vorticity becomes strongly
intermittent, and the ensemble mean of w” depends on n
nonlinearly, (0") > (o")%.

As a filament is elongated, the velocity profile is ‘adjusted’
to the power-law behavior everywhere except a narrow
nonstationary domain just in its center. Thus, despite there
being no singularity at the center, the structure functions
attain a power-law form. The intermittency in their power-
law exponents comes from the difference in the geometry of
filaments contributing most to the correlators of different
orders (or, in terms of the multifractal theory, to various
h-classes). In this manner, the multifractal model acquires a
rigorous and transparent substantiation.

What happens in the center of the filament? In the case of
a small but finite viscosity, the increase in vorticity stops when
the transverse contraction reaches scales making viscosity
essential. In the absence of viscosity, a singularity takes an
infinite time to develop in the center of the filament. But at any
finite time instant, the vorticity and velocity distributions
remain smooth. In this case, the solution differs from the
steady, ‘viscid’ one only in a narrow transient domain in the
center: the unsteadiness takes the role of viscosity. Although
the initial perturbations are not smoothed out in the ‘inviscid’
solution, they are transferred to ever smaller scales. Likewise,
solutions of the Euler and Navier—Stokes equations behave
similarly in the limit of large time and vanishing viscosity.

We see that the model of a stretching vortex filament has
all the advantages of ‘singular’ models, but there is no
singularity in it; it warrants energy transfer across scales,
albeit endowing it with strong intermittency; finally, it may
elucidate the nature of the dissipative anomaly — the inde-
pendence of dissipation from viscosity in the limit v — 0.
Indeed, even in the absence of viscosity, when the dissipation
is removed altogether, the energy flux over scales is preserved
owing to ever lasting contraction of vortex cores.

A discussion and substantiation of the model of stretching
vortex filaments is the topic of this review.

2. Stochastic equation
for small-scale fluctuations

2.1 Traditional formulation: adding an external force

The famous paper by Kolmogorov [2] begins with the words
“In considering the turbulence it is natural to assume (that)
the components of velocity ... are random quantities.”
Further, averaging the Navier—Stokes equation with differ-
ent weights (and using the results in Ref. [44]), Kolmogorov
[1] arrives at the relation between the correlators S2H and S3|
(see Ref. [3] for more details):

4 0S,
—5&1—53—6\)H (10)
(in our notation). Here, the quantity
10,,
6=575,W ) (11)

is introduced, called ‘the average dispersion rate of energy’ by
Kolmogorov.? In the limit v — 0, it leads to relation (3) for
the third structure function.

Later, relation (10) was derived in a somewhat different
way [4]. In fact, this new derivation was needed because,
viewed from a mathematical standpoint, Kolmogorov’s
argument looks insufficiently rigorous. Indeed, the Navier—
Stokes equation is a dynamical equation, but what is then
implied in the first phrase that the velocity is a random
quantity? Further, Kolmogorov’s definition of ¢ in (11)
invites associations with decaying turbulence. Modern
literature typically deals with stationary turbulence, in
which case 9(v2)/dt=0 and the quantity ¢ requires a
different definition.

3 Here, following Kolmogorov, we discard the term /0S5, /0¢, which is small
compared with ¢ for small /.
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To alleviate these difficulties, a random force F(r,?) is
added to the right-hand side of the Navier—Stokes equation:

0
a—: + (VW)v=—-VP+F(r,1) + vAv,

Vv=0. (12)
After this step, the equation becomes stochastic and the
velocity v becomes random. The force F is assumed to be a
stationary, homogeneous, and isotropic random process,
usually Gaussian. It is expected that the statistical properties
of small-scale pulsations are independent of the way F is
introduced, implying that the force F should at least be large-
scale. This means not only that the correlator decays rapidly
at scales smaller than the size of large-scale pulsations L but
also that any realization of the random process F contains
only large-scale harmonics.

Itis presumed that the force thus introduced not only adds
stochasticity to the Navier—Stokes equation but also ‘pumps’
energy into the flow. Then, under the assumptions of
stationarity and vanishing viscosity, ¢ is defined as ¢ = (Fv).

It is unlikely that Kolmogorov did not see the theoretical
objections outlined above and failed to realize that everything
can be ‘mended’ by adding a random force to the right-hand
side. He did not do it, however, possibly because the
generation of a random flow by a random force seemed to
him to be a somewhat different problem. This is indeed so—
in particular, in this approach, in order to warrant stationar-
ity, one needs dissipation; it furnishes stationarity but drops
from the final result.* In Kolmogorov’s approach, relation (2)
can be obtained exactly also for the Euler equation (its
derivation hinges only on spatial averaging). We note that
the manifestation of the Kolmogorov law is often encoun-
tered in nature when dissipation is not essential (for example,
in a cosmic plasma [7]).

On the other hand, the external force, generally speaking,
is not necessarily pumping energy into the system. The fact
that the sign of (Fv) is positive is an attribute of faith and does
not follow from anywhere. A situation is possible where
(Fv) =0, there is no energy pumping, and the flow is
stabilized because of nonlinearity.’

Finally, in a realistic turbulent flow, external body forces
do not act. Turbulence and stochasticity are generated by
instabilities of large-scale eddies of the basic energy-contain-
ing scale. In this sense, Kolmogorov’s definition of ¢ is ‘more
rigorous’ and agrees better with the process physics. To
formalize the appearance of randomness at small scales, it
would in all probability be more natural to introduce random
initial conditions; strictly speaking, a proof of the equivalence
of different formulations is needed.

In any case, large-scale forces that generate stochasticity
at small scales should be related in some way to large-scale
velocity fluctuations. In other words, these random quantities
should not be independent: the mechanism generating
randomness is already inherent in some sense in the Navier—
Stokes equations. In the ideal perspective, we would like to
separate large-scale random fluctuations and then explore the
dynamics of small scales.

To realize this program, we suggest another approach:
large-scale velocity pulsations instead of a large-scale force F.

4 This is manifested in the necessity of keeping the order of limits: first
t — oo and thenv — 0.

5 An example of a dynamical system with such behavior is a nonlinear
oscillator. The appearance of an external force leads to a phase shift, such
that (Fv) = 0, instead of systematic energy growth.

In light of the discussions presented above, this approach
seems to be closer to the physics of the process. Furthermore,
this approach, in contrast to the ‘standard’ method, allows
simplifying the problem substantially. The extent to which it
is equivalent to the traditional approach involving a random
external force is discussed in Section 2.2.

2.2 Introduction of large-scale velocity pulsations

We introduce a random field U such that VU = 0. To make it
large-scale at distances / < L, we smooth it according to the
relation

1 N 2
Uir. 1) = EJ Oi(r +p, f) exp ({—) dp., (13)

whence VU = 0.
We now define the random large-scale force F by the
relation

& + (UV)U = —Vz + F(r, 1) + vAU,,

F=0.
o \% 0

(14)
Equation (14) is simultaneously the definition of the function
7(r,t). By construction, it is obvious that F is a large-scale
force satisfying the conditions formulated in Section 2.1. (The
time derivative does not introduce additional complications.
Moreover, as we see in Section 3, the final results contain only
the function U and its integrals, but not derivatives.)

We now substitute this random force F in the right-hand
side of Eqn (12) and seek its solutions in the form

vir,t)=U+u, P=p+m.

We then find the equation

0
it (UV)u; + (aV)U; + (uV)u; = =V, p + vAu; ,

15
V,' u = 0. ( )

Equation (15) is a stochastic version of the Navier—Stokes
equation, with stochasticity implemented through the
imposed large-scale random flow, and not a large-scale
force. Pulsations of the velocity U stand here as parametric
noise. Similarly prescribed velocity pulsations, playing the
role of parametric noise, were previously explored in the
framework of the linear problem of passive scalar transport in
Refs [45-47], where they were assumed to be Gaussian. It was
shown that the scalar correlation functions exhibit inter-
mittency.

We note that Eqn (15) is a reformulation of Eqn (12), but
the force F is absent from the final equation, and all
randomness is incorporated in terms of U. Certainly, this
way of implementing F somewhat narrows its range. But this
is not a more voluntary action than that inherent in the mere
assumption of the existence of a random force acting in the
entire fluid volume.

2.3 Small-scale limit

We now simplify Eqn (15). We first note that the drift
part of the velocity U(0,7) drops from the final result
because all correlators in homogeneous isotropic turbu-
lence depend on the difference of coordinates. For this
reason, the drift part of the velocity U(0, ) can be set to
zero without any loss of generality by an appropriate
choice of the reference frame (i.e., the transformation
U—U-U(0,7),r—r— [U(0,7)dr).
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In what follows, we are interested in domains of a size
r < L; a smooth function U inside such a domain can be
expanded in the Taylor series in r/L,

TiTT
Tt
(16)

il
Ui(r, 1) = Aij(0)r; + Aijr(1) 'TA + Ajj(t)
Ai=0

The coefficients A;;(f), Aiju(t),... have the dimension of
inverse time and are determined by the characteristic turnover
time T of large-scale eddies induced by U.

We now pass to the limit L — oo while keeping the time T
fixed. All terms in the right-hand side of Eqn (16), except the
first, then vanish.® As a result, from Eqn (15), we obtain

0
— u; + (AgiriVi)u; + A + (aV)u; = =V p 4+ vAu;,

ot
(17)
V,-u,- =0.

This is the main equation of our theory. It is an exact
consequence of the Navier—Stokes equation in the limit
r < L. The large-scale strain rate tensor A4;; replaces the
external force. With the statistics of this tensor specified, the
statistical properties of small-scale pulsations can be com-
puted.

3. Asymptotic analysis
of the modified stochastic Navier—Stokes
equation in the limit of vanishing viscosity

We now turn to the analysis of Eqn (17) in the limit of large
time 7. We do not immediately seek a stationary solution, asis
done in the standard approach, where the limit ¢ — oo is
necessarily taken at finite viscosity. We can therefore first
take the limit v — 0. The contribution of dissipation is
discussed in Section 4.3.

We therefore consider the Euler equation instead of the
Navier—Stokes one, which implies setting v = 0 in Eqn (17).

As mentioned in Section 1.4, a change in the velocity u
under the action of the external field A4 is given by a
superposition of random rotations and systematic deforma-
tions. Our first task is to separate these two components.

We first eliminate linear terms; for this, we introduce the
variable transformation r,u — X, w,

u(r, 1) = giu(t) wu(Xy, 1), Xy = qy(0)rj, (18)

where the matrices g;,(¢) and ¢,;(¢) satisfy the equations
Sin+Aijgix=0, gi(0) =0, (19)
@i+ aydi =0, q,;(0) =8y

(Latin indices correspond to the old reference frame and the
Greek correspond to the new one.)’

6 The limit transition done here implements a scale separation between U
and u. For the approximation to be valid, the spectrum of u should not
‘drift’ to the region of large scales as time progresses. As we see in
Sections 3 and 4, this condition is satisfied for solutions that are of interest
to us.

7 We note that Eqns (18) define a transformation of the phase space, not
the coordinate space, because velocities and coordinates transform
differently.

Substituting relations (18) in Eqns (17), we obtain

ow ow, op
Gin| ==+ Gy &aWo o | = —vi 5
"\ or rel 0X, ox,’ (20)
ow
qvi&in 67)(“ =0.

Because 4;; is a random process, the matrices g;, and ¢,; are
also random. To analyze the solution as  — oo, we need to
know their asymptotic behavior.

3.1 Asymptotic behavior of T-exponentials

It follows from Eqn (19) that the matrices g;, and ¢,; can be
represented in the form of T-exponentials. When the matrix 4
is a random Gaussian process, these quantities are computed
in Ref. [48]. However, as we see in Section 5.2, this limitation
on A4 is not satisfactory in the turbulence theory: in this case,
the energy flux transferred by large-scale pulsations into
smaller scales would be equal to zero. To analyze the solution
in the general case of arbitrary A, we consider a discrete
approximation: a sequence of nth time instants separated by
intervals Az. Let the components A4;;(7) = (4,);; be constant
within each interval. Then the solution of Eqn (19) takes the
form

dn = qn—1CXp (_AnAt) s

whence

gy = exp (—A1Ar) exp (—AyAf) .. .exp (—AyAr) . (21)
To proceed, we need the Iwasawa decomposition, stating that
any real-valued unimodular matrix ¢ can be represented as

q=z(q)d(q)s(q), (22)
where z is an upper triangular matrix with diagonal elements
equal to unity, d is a diagonal matrix with positive
eigenvalues, and s is a rotation matrix.

According to Eqn (21), the matrix gy is the product of N
random real-valued unimodular matrices® realized by the
same probability distribution. The asymptotic behavior of
such objects is studied in detail in the mathematical literature
(a brief review is available in Ref. [49]), and a set of important
results has been derived. In particular, under plausible
assumptions about the distribution of A, the following
theorems have been proved:’

(1) the limit limy_ (1/N)Indi(gn) = Z; exists with prob-
ability one, where A; are some nonrandom values characteriz-
ing the random process 4,, which are the same for all its
realizations; 4; < A, < A3 (ordering arises due to the presence
a of triangular matrix in the Iwasawa decomposition, which
violates the equal status of the axes) and A, + 4, + 43 = 0.
The A; are known as the Lyapunov exponents [50];

(2) the distribution of #, = (Indi(qy) — LiN)/VN is
asymptotically close to Gaussian and converges to it
(weakly) as N — oo [51, 52];

(3) z(gn) converges as N — 00: z(qy) — Zoo With prob-
ability one. Unlike the Lyapunov exponents, z,, depends on
the individual realization of A4, [53];

8 Unimodularity is a consequence of the zero trace of 4,,, i.e., of the fluid
incompressibility.

9 We note that neither the symmetry nor the Gaussian character of the
matrices A is needed to prove the theorems.
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(4) asymptotically as N — oo, the random quantities
1,(qn) and z(qy) are independent [54].

For our purposes in what follows, theorems 1-4 can be
briefly formulated as

1 N
2(gn) = Zoor Milgn) = TN; &i(n),

d(QN) = diag (eilN+n,\/N7 eigN+n2\/N7 ei3N+n3\/N) ’ (23)

/11<)»2<)»3, /11+/12+}~3:0~

Here, 1;(qy) and ¢; are stationary random processes with a
zero mean. It should be remembered that the matrix z, is a
random quantity and that 4; are constants depending only on
the statistical characteristics of the random process 4,. The
matrix s(gy) is a rapidly varying function of N, strongly
dependent on a concrete realization.

The transition to the limit N — oo corresponds to t — oo
with Az kept fixed. To return from the discrete description to
the continuous one, it is then necessary to also take the limit
At — 0. In that case, N is replaced by 7, 4; and ¢; are
renormalized, and the exponential factors in Eqns (23) takes
the form ;1 + [ &;dz.

3.2 Asymptotic form of the solution of Eqn (20)

We turn to Eqn (20). To simplify the presentation, we limit
ourselves to considering symmetric matrices 4;;. We show in
what follows that this limitation is not essential. From the
symmetry 4;; = A;;, it follows that

gi,u(t) = qui(t) .

Equation (20) then becomes

owy, owy, op

E"_Qlagwcw:x a—n* _ﬁ ) (24)
ow

qvigiy 67.“ =0.

We note that Eqns (24) involve only the matrix combination
g, gv- Remarkably, the factor s(¢) drops out of this
combination:

qg = qq" ~ zood*[q(1))z1

d*[q(1)] = exp (2231 + 2n3V/1) diag (0,0,1) + ... .

We keep only the fastest growing component here. Because
A+ A2 + 43 = 0, it follows that /3 > 0. Neglecting the terms
growing more slowly, we find

qg = Cexp (223! + 2173\/;) = Cexp (211,

where [up to terms O(exp[(42 — 43)7])] C is a constant
(independent of ¢) random symmetric matrix, C=
Zoo diag (0,0,1) 2.

We now introduce a new vector W = Cw instead of w.
From Eqns (24), we then obtain

oW 0 oP oW

§+exp(2xt)(W6—X>W:—Ca—X, X

3
=3+—=.
* : Vi

The asymptotic form as t — oo becomes
0 0 oW
(WG_X>W7_C8_XH’ a—XfO,
P =exp (2y0)II.

(25)

The matrix C is symmetric and independent of time, and
hence it can always be diagonalized by a suitable rotation of
the coordinate system. Therefore, Eqn (25) is equivalent to
the stationary Euler equation, while its solutions correspond
to different stationary configurations of the hydrodynamic
flow.

We note that the entire random process 4;;(t) is reduced in
Eqn (25) to six random quantities forming the matrix C.
Certainly, this has happened owing to the special choice of the
variables (X, W): all the randomness was ‘absorbed’ into the
s-components of the matrices ¢ and g, which vary rapidly with
time.

Next, the right-hand side of Eqn (25) contains pressure,
but situations in which pressure grows exponentially in some
domain, becoming infinite in the end, are highly improbable.
As we see in Section 6.2, this is only possible for special
solutions that correspond to extreme vortices. Therefore, in
general, it is natural to expect that IT — 0 as t — oo. Thus, we
arrive at the degeneration of the nonlinearity in Eqn (25):

0
(W&>W:O.

This agrees with the results in Ref. [20] on the ‘suppression’
(disappearance) of nonlinearity. As we see in Section 3.3,
Eqn (26) describes the stretching of a vortex filament. The
pressure, although it plays a decisive role in the balance of
forces in directions transverse to the filament [55], does not
contribute to the vortex stretching. The absence of the effect
of nonlinearity on the exponential growth of vorticity was
first discussed in Ref. [40] and was substantiated there by
physical considerations.

We now return to the general case 4 # AT. Equation (20)
contains two random matrices, gg and g "'¢T. According to
definition (19), the matrix g can be represented as

g(4) = (¢(4M)".

Here and hereafter, we let ¢(A4), z(A4), d(A), s(A) denote the
functionals ¢[A(t)], z[A(?)], . . .. Taking Eqn (27) into account
and using the Iwasawa decomposition (22) again, we obtain

(26)

(27)

qg = z(A)d(A)s(A)sT(AT)d(AT) zT(4T).

The two rotation matrices do not cancel this time, but give
one more rotation matrix S as their product. The fastest
growing components d of all matrices are the matrix elements
ds3; therefore, in the product d(4)Sd(A") in the limit 7 — oo,
the (3, 3) matrix element proportional to their product plays
the leading role. After left and right multiplication by
triangular matrices z, we obtain the asymptotic from

qg ~ o) Crexp [(1(4) + 2(4"))1] , (28)
where C) is a time-independent matrix and a(z) = S33 is a
rapidly varying random factor.

To find the asymptotic form of the matrix g ~'¢ T, we use
the equality g(4)q(—A) = I, which obviously follows from
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(21), and an analogous equation for g. Then

From considerations fully analogous to those given above, it
follows that

g7'q" = B())Crexp [(x(—A4) +1(4))1] , (29)
where C; is a constant matrix and f(¢) is a random function.

To see which of the terms containing (28) and (29)
increases faster, we need to compare nonrandom parts
of their exponentials. Hence, the term with pressure in
Eqn (20) can be neglected (with probability one) if
/13(141-) > ﬂ3(—A).

It can be shown that A3(—A) = —/i;(47) [43, 56].
Additionally, excluding some pathological cases, 4;(A47) =
2i(A4). For this reason, the condition written above is satisfied
if and only if 1,(4) < 0. As we see in Section 5.2, 1, =0
corresponds to a flow symmetric under time reversal. If this
degeneracy does not occur (and in the case of a nonzero
energy flux toward small scales, the T-symmetry is undoubt-
edly broken), then (28) and (29) increase at different rates. In
the general case, there has been no success in relating the sign
of the last inequality to the direction of the energy flux;
however, in the framework of the simplified model considered
in Sections 4 and 5, the choice /,(A4) < 0 corresponds to the
correct sign of the energy flux. Thus, we once again arrive at
the situation in Eqn (26).

3.3 Properties of the solution obtained
To clarify the general properties of solution (25), we return to
the variables (r,u). We once again limit ourselves to the case
of symmetric matrices 4 = AT. The general case is analyzed
similarly and leads to the same results; some distinctions are
identified below. Additionally, in this section, we neglect the
random noise in the exponential of the matrix d. This
approximation is justified in Section 6, while the contribu-
tion of # to the solution is discussed in Section 5.

Taking relations (18), (19), and (22) into account, we find

u=gw=gC 'WX)=¢TC'WX) =sTdzTC'W(X),
X =gr = zdsr.

To separate a random rotation, we perform one additional
transformation of variables:

!

r'=sr, u' =su.

(30)

This reference frame performs random rotations because the
matrix s is a random function of time (in contrast to matrices z
and d, which become more regular as time progresses).
Instead of the vector W(X), we introduce the new vector
function

V() =zTC ' W(zy).
Then

u' =dv(dr'),
or in a more detailed form,

u/ = exp (Ait) Vi(exp (A10)r{,exp (Aat)r}, exp (A31)r})

(we note the absence of summation here).

Thus, in the rotating reference frame r’ in the asymptotic
limit as ¢t — oo, the solution ceases to be random. Indeed, the
third velocity component, uj, dominates, and the fluid
element stretches exponentially (and contracts accordingly)
with different coefficients along different axes. In this case,
the dependence of the velocity u’ on rj is the strongest. We
note, however, that the condition Vu=0 implies that
8V3/6r3 =0.

We now compute the velocity curl:

!
o = i % = gjiexp (Ait) Z—y/’ exp (A1) .

Because ), 4; = 0, it follows that wy o exp (—Axt). Accord-
ingly, the vorticity is oriented mainly along the r{ axis:

o'~ w{ =exp(—iit) f(exp (131) r}) (32)
where f'=¢;0V;/0y;. We also note that because o’ = sw,
the absolute value of vorticity is the same in the rotating frame
and the rest frame, w = w’.

All this remains valid for arbitrary matrices 4 # AT,
although transformation of variables (30) is generalized to
the transformation r’ = sr, u’ = 5(A7)u, which is no longer a
rotation and does not have a previous illustrative meaning. In
general, the relation u’ = d(A") V(d(A) r') is satisfied instead
of Eqn (31). However, from the isotropy of the distribution of
A, it follows that d(A4) = d(A7) and the result proves to be
identical.

Thus, vorticity is carried from the boundaries to the
center, exponentially increasing with time. However, this
behavior is impossible everywhere in the volume. Otherwise,
the total energy flux and dissipation would exponentially
grow with time.

To maintain a stationary state, we must require that at
some point in the volume of the fluid rj ~ L, the vorticity
remains approximately constant,

o(t,L) ~ 1. (33)

In reality, the weaker condition that there be no exponential
growth is sufficient. This condition is realizable at points with
typical behavior. But as we see in what follows, the choice of
the condition leads to the difference only in multiplicative
factors, but do not affect the power-law exponents in
structure functions. For this reason, we use condition (33)
for simplicity.

With boundary condition (33), we have f(exp (A3¢")L) ~
exp (Ait’) for any time instant ¢’. Selecting ¢’ so as to satisfy
the equality exp (43f)rj =exp(43t’)L, we can represent
solution (32) as

! /%3
o(t,r}) o (i) .

Because the derivation of Eqn (32) relies on asymptotic
approximations from Section 3.1, the time ¢ is required to be
sufficiently large, such that Eqn (23) is valid for some # > .
Then Eqn (34) is valid for all times > t*(rj) =
(1/23)In(r;/L) + 1y, or for rj > Lexp [43(f) — ¢)]. For smal-
ler r§, the effect of boundary conditions is not yet noticeable
and w is determined by the initial conditions.

Thus, Eqn (34) does not imply the occurrence of a
singularity. For any finite time instant, the vorticity distribu-
tion is smoothed in the vicinity of the maximum, with the size

(34)
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of the smooth part decreasing with time. This notwithstand-
ing, expression (34) ensures a power-law dependence of the
structure functions. We therefore derived the power-law, or
scaling (but not yet multi-scaling) behavior of vorticity
directly from stochastic Euler equation (17) [43].

In Section 4, we discuss a simplified model of the solution
obtained, which helps to better illustrate its properties and
also clarify the role of viscosity. We then discuss multifractal
properties of the solution.

4. Simplified model:
solution details and inclusion of viscosity

We see that the solution of stochastic equation (17) is quasi-
one-dimensional and nonrandom (predominantly) at large
times in a specially selected reference frame (30). The
randomness is incorporated into the matrix s ‘controlling’
rotations of the reference frame. To better understand the
solution obtained, we consider the simple example of a one-
dimensional deterministic flow with similar properties.

The idea is to ‘straighten’ the random flow by excluding
rotations of the reference frame. For this, we fix a matrix 4;;.
Additionally, for simplicity, we limit ourselves to the
consideration of a one-dimensional small-scale velocity
u = u,(x, t); the general case of u(x, y, z, t) leads to analogous
results, but is more cumbersome. We see below that the
nonlinearity disappears in this shear flow similarly to the
general case, and the solution turns out to be exactly the same
as (32).

Based on this model, we discuss the influence of viscosity
and the mechanism leading to the appearance of a multi-
fractal solution.

4.1 Simplified model without randomness
We consider the velocity field

vy =—ax, v,=-by+ulx,t), v.=-—cz.

The quantities a, b, and ¢ are parameters of the large-scale

matrix 4;;. From the incompressibility, it follows that
a+b+c=0.

For simplicity of the analysis, we assume that ¢ and b are

constant [although a solution can be obtained for arbitrary
functions «a(#) and b(z)]. We also let

a>b>c, b<0.

The Euler equation becomes

op
2, - =
ax=—z",
Ou(x, 1) Ou(x, 1) > Op
o ax —- bu(x,t) + by = ik (35)
¢’z = —2—1; .

Because the pressure gradient is linear in the variables x, y, z,
it follows that

2 2 2
a b c
) =7 gy

which corresponds to definition (14). We still have a
y-independent part of the second equation in (35), which is
written as

Ou(t, x)

Oul(t, x) N
T —bu(t,x)=0.

(36)

Equation (36), describing the evolution of the small-scale
component of velocity, is analogous to Eqn (17). In the
inertial range, the velocities are small (compared to the
large-scale ones), but the vorticities are large, and we there-
fore proceed with discussing vorticity instead of velocity.
Because w(f,x) = w, = 0u/0x, the corresponding equation
takes the form

ow ow

—ax

ail aerccu:O.

(37)

Equations (36) and (37) can be obtained from Eqn (17) in the
particular case of a constant diagonal matrix 4 and a one-
dimensional shear velocity u(x, f) = u,. However, it can be
easily seen that Eqn (37) is satisfied by any function for which
condition (32) holds if we take

ﬁli
ry=Xx.

a = ),3 s C = /11 s
Thus, solutions of Eqn (37) show a dependence of the
vorticity modulus on the variable r§ in the general case.

We analyze the solution of Eqn (37) in the domain
x €10, 1] for ¢ = 0. We specify the boundary condition as

o(tl)=1, (38)
which is an analog of Eqn (33). To satisfy boundary condition
(38), the initial condition w(0, x) = wy(x) must be such that

aw()

wo(l) =1, aa(l)—c:o

(assuming all quantities in this equality to be defined, i.e.,
t=t'>20, xexpla(t—1t")] <1). As can be seen from
Eqn (39), the vorticity, while increasing, ‘propagates’ from
larger to smaller x.

For any x > exp (—at), with ¢/(x, 1): x = exp [—a(t — t')]
we obtain

o(t,2) = exp [~et = ] o(t’, 1) = x°/,
(40)

x> X(t) =exp (—at).

Thus, w is determined in this domain by the boundary; it is a
power-law function of x, independent of time.

For small values of x, we cannot use this procedure
because the corresponding ¢’ would be negative. The choice
t' =0 gives

o(t,x) = exp (—ct)wg(xexp (ar)), x < X(1). (41)
The effect of boundary conditions does not propagate over
this internal domain, and the profile of w in it is still
determined by the initial conditions. Therefore, everywhere
except a narrowing internal domain, the function w(x) is
constant and follows a power law; but for small x, there is
always a narrow region of transient behavior, and the
vorticity at the center (x = 0) increases unboundedly with



June 2015 Model of stretching vortex filaments and foundations of the statistical theory of turbulence 567
® o 10? B e =5
E t=
= ——i=1
- -=—=—1t=0
10! &
! - N e
L N
| ~ e
I i TN
| 10° b - - — ___ ___ - N N
: [ - T
L1l Lol Lo
exp (—at) 1 x 10-3 10-2 10-1 100

Figure 6. Illustration for Eqns (40) and (41): the evolution of the spatial
distribution of vorticity with time.

time, but is finite at any time instant (Fig. 6). A quite similar
picture occurs in the general case (32), (34).

What happens if we select different boundary condi-
tions? Let the vorticity not be fixed at the boundary as in
Eqn (38), but depend on time in an arbitrary way,
o(t,1) = f(¢). Then, for a sufficiently large 7, choosing
t'(t,x): x = exp [—a(t — t')], we obtain

ot,%) = x"/“f(z+é In x) s el

for any given x. Hence, any plausible functions f (increasing
less rapidly than exponentials) do not modify the power law
but only change the coefficient, which acquires a time
dependence (Fig. 7). Because boundary conditions corre-
spond to large scales, the characteristic time of variability
agrees by the order of magnitude with the large-eddy turnover
time. This is also valid in the general case (34).

4.2 Evolution of the spectrum
We now discuss solution (40), (41) in terms of the Fourier
transform. This is useful because it allows relating the result
obtained to the idea of a cascade, and, simultaneously, taking
viscosity into account.

The Fourier transform of vorticity is '

x(1)
o(t, k) = exp (—ct) Jo exp (ikx) wo (xexp (ar)) dx

+ J exp (ikx)x/*dx.
x(1)

The first integral, which can be represented in the form
1
exp (—ct) exp (—az)J exp [iky exp (—at)]wo(y) dy
0
=~ exp (bt) wo (kexp (—at)) ,

weakly depends on k for all k < k = exp (at) and decays with
time exponentially. (It should be remembered that ¢ > 0 and

10 Tn Section 4.1, we bounded x by the interval [0, 1], and therefore we
needed in fact to discuss the Fourier series instead of the Fourier integral.
However, x = 1 corresponds to the scale L, meaning that we are interested
in the short-wave limit kK > 1, which is equivalent to L — co. Moreover, we
extend the range of x to all positive values in what follows.

Figure 7. The evolution of the vorticity distribution in the particular case
a=3,b=—1,
. 2/3 -1
wo(x) = {1+ [x +0,1sin (10nx)] 7"},
o(t,1) = {exp (=2¢) + [1 + 0,1 exp (—3¢) sin (10w exp (3t))]2/3}71 .

The domain of strong oscillations displaces with time toward smaller x; in
the inertial range, the fluctuations become negligibly small, and a power
law sets in.

k> last — o0.) The second integral, which can be written as
o0
ke j exp (iy) y/“dy,
kx(1)

is a power-law function for k < exp (at) and rapidly decays
for large k.

We see that the function w(z,k) has a stepwise profile,
with the step moving to the right (into the domain of large k)
exponentially fast.

To visually illustrate this property of the solution, we
consider a particular case where the Fourier transform can
readily be computed analytically. We do not insist now that
boundary condition (38) be satisfied, because we have verified
that it suffices to require the absence of exponential growth of
(t, 1). Accordingly, if this is the case, we need not stay in the
interval 0 < x < 1.

For example, we take the initial distribution of vorticity in
the form

wo(x) = (1 +1ix)“ + (1 —ix)*.

In agreement with Eqns (37) and (39), the evolution of w(¢, x)
becomes

o(x,t)=exp (—ct) [(1—!— iexp (al)x)c/a—i- (1 —iexp (at)x)c/a}

=2exp (—ct)(1 + x? exp (2az))r/2a cos $e ,
a

where ¢ = arctan [xexp (at)]. (For x > exp (—at), we have
¢ ~m/2, » o< x/, a power-law dependence once again.) The
Fourier transform of this function has the simple form

w(k, 1) = k" exp [~ |k|exp (—at)] . (42)
The spectrum is exponentially suppressed at k~ x~' =
exp (at). The same tapering occurs for nonzero viscosity, but
in the case of dissipation, the boundary of the cutoff does not
depend on time; here, the spectral boundary continually
moves toward large values of k.
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Such a stepwise function, propagating toward large k, is
commonly interpreted as a cascade of reconnecting (break-
ing) eddies. We see that here such a solution occurred for
rather different reasons. Nevertheless, energy is transferred
toward the range of small scales. In Section 5.2, we revisit the
discussion of the energy transfer process.

It is commonly believed that dissipation is indispensable
to warrant a statistically stationary picture of turbulence.
And yet, the model considered here indicates that the
stationary spectrum (and stationary correlators of velocity
and vorticity, likewise) can be obtained in a certain domain of
scales, even in the absence of dissipation.

4.3 The influence of viscosity

Equation (35) can easily be generalized by including viscosity
in the consideration. We add the term vAu to the right-hand
side of Eqn (36); because the velocity depends only on one
argument, this equation becomes

Ou(x, 1) %u

Oulx, 1) _ —bu(x, 1) =v a2

or o

The corresponding term with viscosity should also be added
to the right-hand side of Eqn (37). Passing to the new
variables ¢ = xexp (at), we obtain

dw(q, 1) B o*w
5 + co(q, t) = vexp (2at) 3

The last equation is easily solved with the help of the Fourier
transformation:

w(gq,t) = J(Z)(lg, 1) exp (ikq) dk ,

a(k,t) = C (k) exp {—ct - 2—‘;/52 [exp (2at) — 1] } .

Returning to the Fourier transform w(x, ), we find
o(x,t) = Ja)(k, t) exp (ikx) dk,

w(k, 1) = exp (br) wo (k exp (—at))

v
X —— k1 - —2at)] }.
exp{ 5 [1—exp( a)]}
In particular, in the example considered in Section 4.2, with
viscosity taken into account, we obtain

w(k, 1) = k" exp [~ |k| exp (—at)]
X exp {—2—‘; k2[1 — exp (—2at)]} .

It can be seen that the viscosity and the presence of a
narrowing domain of exponential growth at small x give
similar results in all cases: both effects lead to an exponen-
tially sharp spectral cut-off. But nonsteadiness creates a
‘moving step’ for k ~ exp (at), while the drop-off created by
viscosity is steeper; moreover, for times ¢ 2 1/2q, it equili-
brates for k ~ \/2a/v.

We conclude that viscid and inviscid solutions do not
differ in the range of wave numbers |k| < exp (at),
|k| < \/2a/v. Even if perturbations cannot be smoothed in
the absence of viscosity, they are transferred toward smaller

wave numbers. As a result, solutions of the Euler and Navier—
Stokes equations coincide in the limit # — oo, v — 0. In this
sense, the Euler equation can be treated as an inviscid limit of
the Navier—Stokes equation.

5. Fluctuations around the Lyapunov exponents
and intermittency

5.1 Fluctuations of the exponents of the matrix d
In Section 4, we considered the model in which large-scale
velocity fluctuations were nonrandom and the matrix 4 was
constant. We have seen that this model leads to a power-law
dependence of the vorticity on coordinate (40) and thus
provides a scaling (power-law) behavior of correlators.
However, in real turbulence, one encounters multi-scaling
instead of scaling, because the power-law exponents of
structure functions and correlators depend on their order
nonlinearly (see Fig. 1). Such a picture can be obtained if the
random character of the matrix A is taken into account.
Indeed, according to the theorems quoted in Section 3.1,
the elements of the diagonal matrix d(qy) have the form

d; = exp (/Iit + Jé,-(l) dt> ,

where &;() are stationary random processes with zero means.
If we set the variance of &; to zero, as we have seen, the
Lyapunov exponents ensure a power-law distribution of
vorticity; the fluctuations of &; can be the rationale of multi-
scaling. A rigorous analysis of stochastic equation (17) with
account for these fluctuations can, in our opinion, result in a
full theory. However, we limit ourselves to the generalization
of the model considered in Section 4 in order to show, using it
as an example, how the fluctuations lead to intermittency.

Before passing to the analysis of solutions, it is worth
keeping in mind that according to the central limit theorem, if
t—t' is sufficiently large, the random quantities #; are
Gaussian:

1 ! "
= &(t")dt".
n; sz'j,ff( )

(The factor v/t — ¢’ is introduced for normalization.) Because
detd =1 due to the incompressibility, it follows that
Ny + 1, +n3 = 0. Therefore, it suffices to consider two
(generally speaking, not independent) quantities 1, and 1
with the covariance matrix

D D
Fi_i = ('71"7]’) = <D113 Dl;) .

The characteristic function K(y) = {(exp (iyn)) is expressed in
terms of I';; as

1 ..
K(y) = exp (_Eyirii%) , 1, je{l,3}.

Below, we need the moment of the form
(exp (am;)) = K(—ioy, —io3)

D D
= exp (71 9512 + Di3oq03 —|—73 oc32> .
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Eventually, the stochastic generalization of model (37)
takes the form

ow

0
2D (a+ BO)x o

+ (c+&(1)w=0. (43)

(We recall that in the simplified model, a = 43 > 0 and
¢ =41 <0.) All the relations in Section 4 can easily be
generalized to this case: in particular, Eqn (39) transforms

into
o(t,x) = exp {—c(l —t')— Jl <1 dt}

X w(t’,xexp {a(l -+ [t & dt}) .

We first consider what happens to the solution at the
center, x = 0. Setting 7’ = 0, we find

(44)

t
o(t,0) = exp <—ct - J & dt)co(0,0) .
0
The moments of this quantity are expressed as
(0"(1,0)) = exp (—nct){exp (—nn; V1) )"(0,0)

wor o)
= exp —nct—&—?nt .

The exponential divergence characterizes the solution inside
an unsteady internal region with growing vorticity (41). The
width of this domain X is determined by the condition

(45)

X >~ exp (—at — ;73\/f) .

As t — oo, the value of X exponentially decreases with
probability one. Hence, adding noise to the Lyapunov
exponents a and ¢ adds to the speed of the vorticity growth
at the center of the filament profile [the more so, the stronger
the vorticity because of intermittency (45)] and reduces the
rate of narrowing of the evolving domain.

We now turn to the external domain x > ¥(¢). In analogy
with Eqn (40), we choose ¢/(x, t) such that

X = exp [—a(z _ - J:{ , dz} . (46)

Then

t

o(t,x) = exp {fc(t —t') - Jl, & dt}cu(t/, 1).

Expressing exp (¢ — ¢') in terms of x and 5, we obtain

o(1,x) = x“/“exp U’ (2 & — é,) dt} .

For sufficiently small x ((—Inx)/a > 1), the last expression
can be represented as

o(t,x) = x/“exp Ki s w)m} (47)

The quantity ¢'(x,¢) is now random and is defined by
Eqn (46). Computing the mean of (47) now proves to be a

difficult task, but for small x, a good approximation of the
correct result can be obtained by replacing ¢ — ¢’ with its mean
value (t — ¢’y = (—Inx)/a. Then

(") = xm’/a<exp [n(i N3 — ’71> <71;x> 1/2]>

. 2(.2D D
c_n c 3_¢ 1
— xnﬂiT(U_zTiﬁD]r"T)

We have thus obtained a power-law dependence of the
vorticity moments on the coordinate with the power-law
exponent nonlinear in n. This scaling for the vorticity
moments is naturally equivalent to the scaling of velocity
structure functions

AV (1)) ~ (@™ ~ 15
(Av"(1)) ~ (") )

A similar dependence was obtained previously in Ref. [57] in
the framework of the shell model of the Navier—Stokes
equation.

Relations (48) explain intermittency, i.e., a nonlinear
dependence of the exponents of structure functions on their
order [4]. In this case, the part linear in n is determined by the
Lyapunov exponents, and the nonlinearity is set by noise.

The nonlinearity of the power-law exponents of structure
functions is described by a multifractal model. The form of
the dependence {,(n) is uniquely related to the fractal
dimension D(%) in Eqns (7) and (8). For this reason, the
quadratic dependence (in the first approximation) derived
here for the exponents defines the form of D(/) and in that
way serves as justification for the multifractal description.

5.2 Time reversibility

Unfortunately, the numerical values of Lyapunov exponents
A; [and, accordingly, the coefficients in Eqn (48)] are not fixed
by the theorems—they depend on the properties of large-
scale fluctuations, and hence a separate study is needed for
computing /;. However, it is possible to obtain some general
bounds on the properties of large-scale pulsations. For
example, it is shown in Refs [45, 58] for the polar decomposi-
tion of the matrices ¢ and g that the coefficient 4, vanishes if
the random matrices 4;; obey the Gaussian statistics. This is
also true for the Iwasawa decomposition. Moreover, 1, =0
for any statistically isotropic distribution, i.e., the distribution
whose probability density is invariant under rotations R,

P(4) = P(RAR™"), YReSO(3),

if the additional condition [56]

PlAy(0)] = P[=4y(1)]

is fulfilled. It should be remembered that the quantity A4;; is
defined by relation (16) as 0U;/0r;, where U is the large-scale
flow velocity. For this reason, the transformation 4 — —A
represents the time reversal. As a consequence, the symmetry
Ay =0, Ay = —A3 corresponds to the invariance under time
reversal.

However, large-scale turbulent pulsations must give rise
to the energy flux into the turbulent flow. This must violate
the symmetry with respect to time. Indeed, the mean energy
flux of large-scale pulsations passing through a sphere of
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radius r is expressed as
<¢7> = <J U2U dS> = <AiinmAkp J ’f/‘rmrp % 1”2 d'Q> X <tI‘A3> .

This flux should be directed inside the sphere for any r; hence,
(tr 4%) < 0. Currently, it is not clear precisely which limita-
tions are imposed by the last requirement on 4;, but for the
simple model without random rotations considered above, it
gives A, = b < 0.

6. Velocity structure functions

6.1 Longitudinal and transverse correlators

The increased accuracy of experiments and numerical
computations allows measuring the exponents of longitudi-
nal and transverse structure functions of velocity (1) sepa-
rately. It turns out that for n > 3, these exponents are
different, and {, < C,‘J [10-13]. Many theoreticians are
skeptical about these results: it was thought before that
structure functions of the same order have the same
exponents. The rationale for this proposition was provided
by two arguments: first, according to Kolmogorov’s assump-
tion, all correlators in a homogeneous and isotropic medium
can depend only on one argument— the energy dissipation
rate &; second, by integrating the Navier—Stokes equation, a
chain of equations connecting all possible (longitudinal and
transverse) velocity structure functions can be derived [55,
59], and different kinds of structure functions in this chain are
strongly ‘entangled’, such that their ‘separation’ seems to be
difficult.

These arguments, however, do not look insurmountable
and in all probability can be reconsidered: indeed, the first of
them is related more to amplitudes than to the exponents,
which do not depend on ¢&. When it became clear that the
power-law exponents {, depend on n nonlinearly, the naive
assumption of the Kolmogorov model was replaced by the
multifractal theory. The values of {, in the multifractal
theory are defined by the function D(%), which cannot be
found from dimensional considerations. Analogously, the
difference between (- and C,‘J, from the standpoint of the
multifractal model, simply implies the existence of two
different functions DI (h) and D*(h) [34]. As concerns the
second argument, the relation S, o< /% is only valid in the
formal limit /— 0. In reality, for finite / a series
Sy = ol b + 15 '+ ... arises, where the unimportant
terms have higher powers. For Cnl < Cn”, the leading term is
St ol 4, and the quantity S can in fact be compensated by
the next terms in the series for S

From the perspective of the model of stretching vortices,
the asymmetry between longitudinal and transverse motions
not only does not seem strange but is in fact rather natural.
Indeed, a vortex is an object whose transverse velocities are
much higher than longitudinal. As anillustration, we consider
a flow composed of randomly oriented cylindrical vortices
performing a solid-body rotation—a set of ‘tops’; then the
longitudinal structure function turns out to vanish, and
strong anisotropy is observed at each point. Simultaneously,
the flow is statistically isotropic because of the random
(isotropic) orientation of the top axes.

Admittedly, a real flow is composed of different eddies
contributing differently to both types of structure functions
(we discuss this in more detail in Section 6.2). But the local
asymmetry inside each eddy fixed by the direction of the

vorticity is in general a natural cause for the correlators to be
different from each other.

The main objections against the observed difference in the
power-law exponents C,D and (- amount to statements that
this difference stems from the finiteness of the Reynolds
number [60] or not fully eliminated large-scale anisotropy
[61] in real experiments or numerical simulations and will be
reduced with an improvement in their quality.

The problem is also complicated by the fact that the
longitudinal and transverse structure functions of various
orders demonstrate different dependences on the Reynolds
number. For example, it is shown in Refs [9, 62] that structure
functions of different orders have cutoffs at different scales in
the presence of viscosity. This fact makes it difficult to
propose a universal definition for the inertial range within
which power-law dependences should be expected. For this
reason, numerous authors warn that the difference between
exponents has to be considered with caution [61].

Recently, however, evidence has been presented favoring
the statement that the difference between structure function
exponents is independent of the Reynolds number [13].
Analogous conclusions were expressed by the authors of
earlier studies [11, 12].

As concerns large-scale anisotropy, which may affect the
results of measurements (or computations) at small scales, it
isindeed such that its influence is very difficult to avoid. From
the standpoint of the vortex model, the major contribution to
structure functions is made by filaments — vortex lines —and
the higher the order of a function is, the more elongated
filaments contribute to it. The length of these filaments may
easily reach a scale of the order of the inhomogeneity. Such a
filament, ‘hooked’ at the fluid boundary, may create aniso-
tropy observed in experiments and numerical simulations,
particularly noticeable in higher-order correlators. However,
the inhomogeneity is not expected to essentially distort the
internal eddy structure and, consequently, to distort the
power-law exponents of structure functions, affecting only
the pre-exponential factor. In that case, the anisotropy
reduces upon an increase in the inhomogeneity scale L,
whereas the difference between the longitudinal and trans-
verse components is preserved.

We therefore suppose that the observed difference
between the exponents (- and ¢/ does not come from the
imperfectness of experiments or simulations, but is a real
physical effect coming from the local anisotropy of a
turbulent medium — the random orientation of the vorticity
vector.

6.2 Finding the exponents of structure functions
We now apply the theory presented in Sections 2-5 to
determine the velocity structure functions. The model of
stretching vortex filaments assumes that different orders of
structure functions are defined by different kinds of eddies.
Each particular eddy has a power-law velocity profile, with
the power-law exponent fixed by a random realization of
random noise () characterizing large-scale pulsations.

In Section 5, in the framework of the simplified model, we
derived expression (48) describing the power-law behavior of
velocity structure functions:

Sn(l) o [ ) {p=on— ﬁnz . (49)
Because the velocity increments were obtained from the
vorticity, we are dealing with transverse structure functions.
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The quadratic dependence of the power-law exponents (,
looks plausible: it satisfies the condition of being concave,
¢ < 0 (this constraint on {, follows from the H5lder inequal-
ity for moments of random quantities [4]). However, the
condition that the velocity be bounded, ¢’ > 0, implies that
the applicability of Eqn (49) is limited by some maximum
value nm.x < o/ (2f3). We find what the cause of this limitation
is and how the the power-law exponents are built for
> Amax-

Let a vortex filament have the velocity distribution v ~ r”
(and, consequently, the vorticity distribution @ ~ r?~!). The
smaller y is, i.e., the higher the singularity of this distribution,
the larger the contribution of this filament to the structure
functions for large n. However, because of the finiteness of
velocity (and pressure), y cannot be negative.!! Is a filament
with y = 0 possible? Yes, this ‘extreme vortex filament” has a
cylindrical symmetry and the velocity profile

r
v= e, -|.
r

This velocity distribution is associated with a logarithmically
diverging pressure. This implies that for an arbitrarily small
h > 0, there is a configuration with a converging pressure.

Integrating over r drin an axially symmetric filament gives
[? (see below for a more accurate expression); because
Av ~ 19, the structure function defined by this extreme
filament does not depend on n: S, (1) I? for any n. Hence,
dependence (49) should tend to the horizontal asymptote with
{y—oo = 2. This condition implies a constraint on the coeffi-
cients o and 5 in Eqn (49):

(50)

é(n = /’lmax) = @ =

As the second relation, we take the Kolmogorov four-
fifths law, {3 = 1. Then the coefficients in Eqn (49) become
defined uniquely as

L [0391n - 1.91 x 107222, n <102,
= (51)

] 2, n>102.

All the above considerations can be naturally restated in
terms of the multifractal model, and then the notions it deals
with become physically transparent. Indeed, different kinds
of eddies correspond to space decomposition into /-classes,
with velocity fluctuations in each of them obeying the scaling
law Sv(l, h) ~ ", 1 — 0 (see Section 1.3).

According to Eqn (7) (see also Fig. 5), large values of n are
associated with small 4. From the condition that velocities be
bounded (or that {, be nondecreasing), it follows that 4 > 0.
Extreme vortex (50) found by us belongs to the class 7 =0,
which implies that dv o /% = const. As can be seen from
Eqn (7), the fact that /i, = 0 corresponds exactly to the
presence of the horizontal asymptote {,,. The axial symmetry
of filament (50) fixes the dimension of the corresponding
h-class:

(=2, D*0)=1. (52)

The power-law exponents in (51) correspond to the quadratic
dependence D(h) =3 —2(1 — h/x)* in the range from
himin = 0 10 hpax = o

! In reality, infinite pressure would have led to a continuity break, i.e., to
the formation of a cavity in the vortex center.

Thus far, we have considered the transverse structure
function. We now turn to the longitudinal one. We assume
that relation (49), even though it was derived for transverse
functions, also holds (albeit with other coefficients) for the
power-law exponents of longitudinal structure functions.

Computations of longitudinal and transverse structure
functions for profile (50) in the limit # — oo can be carried out
directly [63], giving the result

Av x -

l)l n2 L
Z 2pz
< 1>°<n[“/’ <

The power-law exponent equals two in both cases. However,
the contribution of filament (50) to the transverse structure
function increases with n, becoming dominant as n — oo,
whereas the contribution to the longitudinal function tends to
zero. This is natural: the main motion in eddies is orbital, and
therefore longitudinal velocity increments are small com-
pared to the transverse ones. Large contributions to the
longitudinal structure functions come from locations where
vortex filaments are bent. Accounting for the bending would
add a term of the next order in //L to correlators (53). It
would be the leading term in the longitudinal structure
function as n — oo,

(=3,

1
A,
Vi

> xn 12, (53)

D) =0. (54)
In [63], a limit velocity distribution corresponding to 7 =0
was constructed that determines the behavior of D/ (0) in the
same fashion as profile (50) determines D*(0). Such an
extreme filament for the longitudinal structure function
should be strongly (‘extremely’) bent. For example, in
spherical coordinates, the ‘limit’ configuration is
v = (v.(0),v9(6),0). In order to satisfy the condition /1 =0,
the solution, just as in the case of cylindrical extreme filament
(50), does not depend on r, but now r is the distance to the
center of the sphere, and not to the axis. Averaging over r> dr,
we find that the structure function is proportional to /3.

The difference between two limit values, given by
expressions (52) and (54), determines practically the full
difference between the functions {;" and {,L‘ asn — oo.

Selecting expression (54) as the condition imposed on the
coefficients o and f in Eqn (49), with C3” = 1, we obtain

(55)

[ 0.3677 — 1.12 x 10202, n<16.3,
! 3, n>16.3.

A comparison of theoretical predictions (51) and (55) with the
results of numerical simulations [8, 9] is plotted in Fig. 8. The
theoretical curve proves to lie very close to the results of
numerical simulations, within the measurement errors. We
stress that (51) and (55) neither involve fitting nor contain a
tunable parameter.

We have to admit that our simple model encounters a
certain difficulty: the two parabolas shown in Fig. 8 coincide
at the points n = 0 and n = 3 and consequently fail to do so at
n = 2. This contradicts the rigorous theoretical statement that
CZH = CQL. This difficulty arises from the approximation of {,
by a quadratic dependence. Certainly, it accounts for only the
first terms of the expansions; there are terms in higher orders.
However, the difference between C2” and Czl in (51) and (55) is
very small, amounting 1.6 x 1072, The coefficient at the next,
cubic term of the expansion (and, likewise, the corrections to
the first two) is very small, < 107*. Accordingly, the part of {,,
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Figure 8. Power-law exponents of longitudinal (upper curve) and trans-
verse (lower curve) structure functions of velocity: the results of numerical
simulations [8] (circles and squares, respectively) and [9] (triangles
pointing up and down); the solid lines correspond to theories (51) and (52).

not accounted for here would modify the theoretical curve in
Fig. 8 only slightly, in a manner practically indistinguishable
to one’s eye. The neglected part of {, can only change the rate
at which it approaches the asymptotic limit as n — oo. The
contribution of these terms is essential for 10 < n < 15. The
mere fact that the power-law exponents of structure functions
tend to a plateau is an exact consequence of the theory
(namely, the existence of ‘extreme’ vortices that correspond
to h=0). The tendency of the exponents of structure
functions to the horizontal asymptote as n — oo was
discussed in Ref. [64]; saturation also exists in the passive
scalar theory [58].

We see that the concept of stretching vortices not only
offers an explanation of the nature of intermittency in
developed turbulence, suggesting a clear interpretation of
the idea of multifractality, but also provides additional
information owing to which the power-law exponents of
structure functions can be computed with good accuracy.

We also note that because the leading contribution to
structure functions comes from vortex filaments, it follows
that in the limit / — 0, transverse, not longitudinal, structure
functions become most essential, the former being more
difficult to measure. More ‘common’ longitudinal structure
functions turn out to be related to rather rare phenomena
(‘twisted’ filaments); in the chains of equations discussed in
[55, 59], they are secondary terms. This asymmetry is in
correspondence with the sign of the inequality observed in
simulations and experiments: the power-law exponents of
longitudinal structure functions are larger than for the
transverse ones. For this reason, the theory proposed here
describes the leading term (the transverse structure functions)
well and is less reliable for the longitudinal structure
functions.

7. Conclusions

We have discussed the observed statistical characteristics of
homogeneous and isotropic hydrodynamical turbulence and
approaches to explaining them. We described the paradigm
based on the idea of vortices breaking down and pointed out
its drawbacks: the impossibility of explaining the existence of
long-lived coherent structures, the lack of a mechanism for
the breakup of vortices, the need to invoke the hypothesis on
the occurrence of singularities, difficulties in explaining the

power-law character of higher-order structure functions and
their intermittency, and the observed disparity between the
longitudinal and transverse components.

We have also discussed an alternative concept— the
model of stretching vortex filaments. The existence of vortex
filaments is an experimental fact, and their configuration is
the subject of an immense number of papers. Our dynamical
model differs in its focus on the description of the evolution of
an individual vortex. In our opinion, the stretching of
filaments is the basic process determining the statistics of
small-scale motions in a turbulent flow.

The cause of the intensification of vorticity and further
stretching of the vortex filament is that random forces, while
deforming the vortex filament in various directions, contri-
bute to its systematic stretching. To separate this systematic
tendency, we abandoned the traditional way of introducing
stochasticity into the Navier—Stokes equation by the addition
of'alarge-scale force. As an independent random quantity, we
took large-scale velocity pulsations, segregating them in the
Navier-Stokes equation as parametric noise. This way of
introducing randomness is physically motivated and natural,
because the mechanism generating randomness is already
present in the equation. Moreover, the resulting stochastic
formulation of Navier—Stokes equation (15), (17) enables a
substantial simplification of the solution.

It turns out that for a certain transformation of variables,
a degeneration of the nonlinearity occurs in the limit 7 — oo:
the pressure, despite its role in the balance of forces keeping
the filaments from disintegration, does not influence their
stretching. This is why Eqn (26), governing the evolution of
vorticity, proves to be rather simple. An analysis of its
solution (32) shows that a power-law distribution of vorticity
builds up inside the filament, but the singularity does not
develop even in the limit v = 0, because the center of the
filament contains a domain of unsteadiness exponentially
narrowing with time, which ensures the smoothness of the
solution. The solution thus obtained offers all the advantages
of a power-law distribution of the vorticity, but does not share
the drawbacks of ‘singular’ models.

In the framework of the solution obtained, the random-
ness in Eqn (17) is split into two parts: random rotations of
coordinates and noise around the Lyapunov exponents. With
the simplified model where random rotations are excluded,
we could give a clear interpretation to the properties of the
solution, discuss the details of the limit transition v — 0, and
investigate the effect of the remaining noise —random
inhomogeneity in the filament stretching— decoupled from
rotations. It turns out that this inhomogeneity leads to a
nonlinear dependence of the power-law exponents of velocity
structure functions on their order, Eqn (48), i.e., to inter-
mittency.

It is thus shown that by exploring the evolution of vortex
filaments, we succeed in explaining both the power-law
character of structure functions and their intermittency. In
doing so, we explicitly identify objects ‘populating’ different
h-classes of the multifractal theory, which helps to recover its
original meaning without resorting to a probabilistic for-
mulation and at the same time without assuming the existence
of singularities.

The model of vortex filaments is the only theory at present
that explains the difference in the power-law exponents for
longitudinal and transverse velocity structure functions
observed both in experiment and in numerical simulations.
According to this model, the difference found does not stem
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from the finiteness of the Reynolds number, but is a
fundamental property of turbulence. Thus, if the difference
between (- and (| is reliably confirmed in the future, this will
also be a confirmation of the theory presented here.

Power-law exponents (51) and (55) computed in the model
framework coincide with the results of numerical simulations
within the error bars (see Fig. 8). The theory predicts
saturation of (- with the limit value {X = 2. As concerns
longitudinal structure functions, they are secondary with
respect to the transverse ones because (I < C,U. Thus,
although result (55) describes the experimental data, from
the standpoint of theory, its reliability is lower than that for
the transverse component.

This paper was supported by the Program of the
Presidium of RAS “Nonlinear dynamics in the mathematical
and physical sciences.”
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