
Abstract. We present not a literature review but a description,
as detailed and consistent as possible, of two analytic models of
disk accretion onto a rotating black hole: a standard relativistic
disk and a twisted relativistic disk. Although one of these
models is older than the other, both are of topical interest for
black hole studies. The treatment is such that the reader with
only a limited knowledge of general relativity and relativistic
hydrodynamics, with little or no use of additional sources, can
gain insight into many technical details lacking in the original
papers.

Keywords: accretion, accretion discs, black hole physics,
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1. Relativistic standard accretion disk

In the first part of this paper, the model of a standard
accretion disk around a rotating black hole is presented
with general relativity effects rigorously taken into account.
This model was first described in [1] and since then has been
used in many studies to obtain convincing evidence of the
existence of black holes in both stellar binary systems and
active galactic nuclei. It remains topical because a full account
of general relativistic properties of matter motion in the disk
and the generation of its emission allows inferring the
position of the inner disk edge and hence the black hole
spin from observations. Observational appearances of relati-
vistic disks were modeled for the first time in [2] (see [3, 4] and
the references therein for representative examples). In
addition, the standard accretion disk underlies the construc-

tion of more complicated theories of warped (twisted)
accretion disks, which are formed when the accreting matter
moves outside the equatorial plane of a rotating black hole.
Such a theory is presented in [5] and is discussed inmore detail
in Section 2.

Everywhere below, the natural units G � c � 1 are used.
If the mass is measured in units of the black hole massM, the
unit of length is half the Schwarzschild gravitational radius
Rg=2 � GM=c 2 � 1, and the unit of time is the time light
crosses the unit of length.

In addition, Latin indices i; j; k; ::: taking values from 0 to
3 are used to denote components of vectors, with the zeroth
component standing for the time coordinate. Also, wherever
needed, the Einstein summation convention is used.

1.1 Space±time near rotating black holes
1.1.1 Kerr metric. Properties of space±time near a rotating
black hole are described by an axially symmetric and
stationary metric of the form (see, e.g., [6], paragraph 4.2):

ds 2 � %
2D
S 2

dt 2 ÿ S 2 sin2 y
% 2

�dfÿ o dt�2

ÿ %
2

D
dR 2 ÿ % 2 dy 2 ; �1:1�

where the signature �1;ÿ1;ÿ1;ÿ1� is chosen and the
coefficients are

S 2 � �R 2 � a 2�2 ÿ a 2D sin2 y ;

% 2 � R 2 � a 2 cos2 y ; D � R 2 ÿ 2R� a 2 :

The coordinates ft;f;R; yg are called the Boyer±Lindquist
coordinates. Far away from the gravitating body, the spatial
part of these coordinates in the limit of a zero black hole spin
parameter a transits into the usual spherical coordinates,
where f is the azimuthal angle. For nonzero a, the Boyer±
Lindquist coordinates are transformed into generalized
spherical coordinates in which the surfaces of constant radial
distance R � const are spheroids with the aspect ratio
R=�R 2 � a 2�1=2.
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The space±time described by (1.1) is axially symmetric
with respect to the line y � 0, called the black hole rotation
axis; the plane corresponding to y � p=2 is called the black
hole equatorial axis.

In (1.1), an important quantity appears:

o � 2aR

S 2
; �1:2�

which has the dimension of frequency. This is the angular
velocity that every freelymoving observer, without exception,
acquires in the direction of the black hole rotation.

As is described in the literature on the structure of rotating
black holes (see, e.g., [7], paragraph 58), metric (1.1) has
several special hypersurfaces, including the event horizon
and the ergosphere. However, as we show below, of most
importance for the astrophysical problem under considera-
tion is the dynamics of free circular motion of particles in the
equatorial plane of a gravitating body. This motion has
additional features in comparison to the corresponding
Newtonian problem. We also note that weakly elliptical
orbits slightly tilted to the equatorial plane are considered in
Section 2.

We consider a standard, and hence geometrically thin,
accretion disk. Such a disk is basically flat. By definition, this
is a stationary flow of matter with mirror symmetry with
respect to its middle plane and axial symmetry with respect to
the line perpendicular to this plane. Clearly, such a model
flow can be described by dynamical equations in an axially
symmetric metric only if the disk symmetry plane coincides
with the equatorial plane of the black hole. To tackle the
problem, the form of the metric near the plane y � p=2 is
sufficient. Passing to cylindrical coordinates via the standard
transformation

r � R sin y ; z � R cos y ;

we can expand all metric coefficients gik in (1.1) in power
series in the small ratio z=r5 1. For geometrically thin disks,
the corrections to gik due to nonequatorial motion up to
�z=r�2 are sufficient. Indeed, one of the basic equations
describing the disk, namely, the projection of the relativistic
analog of the Euler equation onto the direction normal to the
disk plane, must be odd under the coordinate reflection
z! ÿz due to the mirror symmetry of the disk. This means
that only odd powers of z=r must be present in the series
expansion in z=r. By the main assumption on the smallness of
z=r, only the first term in this expansion should be kept. This,
in turn, corresponds to a series expansion of gik up to
quadratic terms, because only first derivatives of gik, char-
acterizing the `strength' of the gravitational field, enter the
dynamical equations.

We note, however, that hydrodynamic equations also
contain a second covariant derivative of the velocity field
(see below), and hence the final expressions can involve
second derivatives of gik with respect to z, which may seem
to require that we keep terms of the order of �z=r�3 in gik. But
this is not required, because, as follows from the explicit form
of the stress±energy tensor, such terms can appear only when
multiplied by some of the viscous coefficients, which in turn
cannot be greater than approximately z=r, being proportional
to the characteristic mixing length in the fluid, which is
initially assumed to be less than the disk thickness.

As regards other equations (see below)Ð two projections
of the relativistic analog of the Euler equation onto the disk

plane, the energy balance equation, and the rest-energy
conservation lawÐthe same symmetry considerations
imply that they are even under the coordinate reflection
z! ÿz; therefore, the leading term is of the zeroth order in
z=r in the metric expansion.

Using these expansions and expressions for the coordinate
differentials

dR �
�
1ÿ 1

2

z 2

r 2

�
dr� z

r
dz ;

dy � z

r

dr

r
ÿ
�
1ÿ z 2

r 2

�
dz

r
;

we find the metric in the form (see also [8]):

ds 2 �
�
1ÿ 2

r
� z 2

r 3

�
1� 2a 2

r 2

��
dt 2

ÿ
�
r 2 � a 2 � 2a 2

r
ÿ a 2z 2

r 2

�
1� 5

r
� 2a 2

r 3

��
df 2

� 2a

r

�
2ÿ z 2

r 2

�
3� 2a 2

r 2

��
dt df

ÿ
�
1ÿ z 2

r 2D

�
3

r
ÿ 4

r 2
ÿ a 2

r 2

�
3ÿ 6

r
� 2a 2

r 2

���
dr 2

D

ÿ 2z

rD

�
2

r
ÿ a 2

r 2

�
dr dz

ÿ
�
1� z 2

r 2D

�
2

r
ÿ 2a 2

r 3
� a 4

r 4

��
dz 2 ; �1:3�

where we introduce the notation

D � 1ÿ 2

r
� a 2

r 2
:

Below, we also use (with a few exceptions) the notation
introduced in the original paper by Novikov and Thorne [1]
for the relativistic correction coefficients.

Finally, the inverse of the matrix g ik corresponding to the
double-contravariant tensor has the form

g ik

�
�gttgff ÿ g 2

tf�ÿ1 gff ÿgtf
ÿgtf ÿgtt
���� ���� 0

0 �grrgzz ÿ g2rz�ÿ1 gzz ÿgrz
ÿgrz ÿgrr
���� ����

��������
��������:

(1.4)

1.1.2 Circular equatorial geodesics.The expression for circular
equatorial geodesics can be conveniently found from the
extremum condition for the distance along them. Here, we
follow the presentation in [9, paragraphs 13.10 and 13.13].
Indeed, for time-like trajectories, the functional

S �
�
L ds �

�
gik

dx i

ds

dxk

ds
ds

should beminimal, which is equivalent to the Euler±Lagrange
equations for L:

d

ds

�
qL
q _x i

�
ÿ qL
qx i
� 0 ; �1:5�
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where Ui
g � dx i=ds � _x i is the four-velocity in the Boyer±

Lindquist coordinates. Because L has no manifest depen-
dence on t and f, we have the conserved quantities

gtiU
i
g � k ;

gfiU
i
g � ÿh ;

where k and h have the respective meaning of the time and
azimuthal covariant velocity components.

In explicit form, using the components gik from (1.3) at
z � 0, we find�

1ÿ 2

r

�
_t� 2a

r
_f � k ; �1:6�

2a

r
_tÿ
�
r 2 � a 2 � 2a 2

r

�
_f � ÿh : �1:7�

We temporarily assume that the motion is not necessarily
circular andUr

g 6� 0. Instead of the r-component of the Euler±
Lagrange equations, it is more convenient to use the
condition of the normalization of the four-velocity of
particles with a nonzero mass:

g ttk 2 ÿ 2g tfkh� gffh 2 � g rr�Ur�2 � 1 : �1:8�

This yields an equation for k and h,

_r 2

2
� Veff�r� � k 2 ÿ 1

2
; �1:9�

where we introduce the effective potential

Veff � ÿ 1

r
� h 2 ÿ a 2�k 2 ÿ 1�

2r 2
ÿ �hÿ ak�2

r 3
: �1:10�

The conditions for circular motion include, first, _r � 0,
and, second, �r � 0 (for the particle to stay in a circular orbit).
The latter condition is equivalent to the vanishing of the
derivative of Veff with respect to r:

1� a 2�k 2 ÿ 1� ÿ h 2

r
� 3�hÿ ak�2

r 2
� 0 : �1:11�

Equation (1.9) with _r � 0 and Eqn (1.11) allow us to
determine k and h as functions of r and then, using (1.6) and
(1.7), to find Ut

g and Uf
g .

To solve the first problem, we introduce the new variable
m � hÿ ak and, to facilitate manipulations, make the change
u � 1=r. Then Eqn (1.9) yields an equation for m:

u 2
��3uÿ 1�2 ÿ 4a 2u 3

�
m 4 ÿ 2u

��3uÿ 1��a 2uÿ 1�
ÿ 2ua 2�uÿ 1�� m 2 � �auÿ 1�2 � 0 : �1:12�

The solution of (1.12) for a stable circular prograde orbit
has the form

m � ÿ a
���
u
p ÿ 1�

u�1ÿ 3u� 2au 3=2��1=2 : �1:13�

Using (1.13) and Eqn (1.9) taken at _r � 0, we find the
constants k and h, as well as the components Ui

g:

Ut
g�Cÿ1=2 B; Uf

g ��r 3C�ÿ1=2; Ur
g�Uz

g � 0 ; �1:14�

where

B � 1� a

r 3=2
; C � 1ÿ 3

r
� 2a

r 3=2
: �1:15�

It easy to verify that the modulus of this vector is equal to
unity:

gik U
i
gU

k
g � 1 :

The angular velocity measured by the clock of an infinite
observer (who measures the coordinate time t), correspond-
ing to such motion, is

O � df
dt
� rÿ3=2Bÿ1 : �1:16�

It follows that in the Schwarzschild case, this quantity exactly
coincides with the Keplerian angular velocity.

1.1.3 Radius of the innermost (marginally) stable orbit. This is
determined by the condition that the stable circular motion is
no longer possible when the minimum of the function
Veff�r; h�rc�; k�rc�� disappears at r � rc, where rc is the radius
of a circular orbit. This is equivalent to the condition

d2Veff

dr 2

����
r�rc
� 0 ;

which leads to the quartic equation

z 4 ÿ 6z 2 � 8azÿ 3a 2 � 0 ; �1:17�

where z � r 1=2.
Using the Ferrari method (see, e.g., [10]), we write the

corresponding auxiliary cubic equation:

y 3 ÿ 12y 2 � 12�3� a 2� yÿ 64a 2 � 0 : �1:18�

The real root of Eqn (1.18) is related to the Cardano solution
to the corresponding incomplete cubic equation and is given
by

y1 � ÿ2�1ÿ a 2�1=3��1� a�1=3 � �1ÿ a�1=3�� 4 : �1:19�

Next, having y1, it is possible to use the Ferrari solution to
write the quadratic equation that gives two real roots of
(1.17):

p 2 � �����
y1
p

p� 1

2

�
ÿ 6� y1 ÿ 8a�����

y1
p

�
� 0 : �1:20�

The larger root of (1.20), p1, determines the boundary of the
stable circular motion of test particles in the equatorial plane,
for which we use the notation r � rms. Thus,

rms � p 2
1 � 3� 4a�����

y1
p ÿ

�
ÿ y 2

1

4
� 4a

�����
y1
p � 3y1

� 1=2

: �1:21�

It is easy to verify that result (1.21) coincides with the
expression presented in [11] [formula (15k)], taking into
account that the auxiliary quantities Z1;2 in [11] take the
form Z1 � 3ÿ y1=2 and Z2 � 4a=

�����
y1
p

for a5 0 in our
notation.

In the case of the Schwarzschild metric, a � 0, we recover
the well-known result that the circular motion becomes
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unstable for r < 6, i.e., at distances smaller than three
gravitational radii from the black hole. For slow rotation,
14 a > 0, we have rms � 6ÿ 4

���
6
p

a=3, and hence the zone of
stable motion shifts closer to the event horizon. In the limit
case a � 1, we find rms � 1, i.e., the marginally stable circular
orbit coincides with the gravitational radius of the extreme-
spin black hole.

During accretion, gas elements in the disk slowly
approach rms by losing their angular momentum due to the
action of viscous forces. Once the gas elements fall into the
region with r < rms, due to the instability of the circular
motion, they need not lose the angular momentum any more
to approach the black hole. This means thatmatter falls freely
inside rms, and the standard accretion disk model assumes
that rms is the inner disk radius.

1.2 Choice of the reference frame
1.2.1 Bases in general relativity. Mechanical laws formulated
in the form of vector equations can be written in the symbolic
form independent of any observer or reference frame. But to
represent some physical quantity describing a natural
phenomenon in the form of a set of numerical values, the
measurement procedure should be specified. In Newtonian
mechanics, this means that the observer introduces a
coordinate system, and then at each point of space he/she
arbitrarily constructs three basis vectors. The coordinate
system and the basis vectors can evolve in time, which is the
same at all points. A tool measuring time, together with the
coordinate grid and a vector basis, form a reference frame, in
which any physical quantity (scalar, vector, or tensor) can be
measured, i.e., can be represented by a number or a collection
of numbers.

The situation in relativistic mechanics is different: because
it is not possible to consider the time independently, it
becomes the fourth component of the space±time conti-
nuum. Therefore, the choice of the reference frame reduces
to the construction of a coordinate system and four basis
vectors defined at each space±time point. In general, this set
of basis vectors is usually referred to as a tetrad. There is no
universal observer any more; instead, a set of observers
moving along a certain family of world lines is considered. If
one of the tetrad basis vectors, conventionally corresponding
to the time direction, is tangent to these world lines at each
point, the tetrad is said to be transported by the observers.
The last statement can be easily understood because in such a
basis, the four-velocity of each observer at any time has a
nonzero projection only on the `time' basis vector; in other
words, the observers are at rest in this basis, i.e., transport it
with them.

Coordinate representation. It follows that the choice of the
coordinate system and of the tetrad are independent proce-
dures. Nevertheless, if there is a coordinate system xi, the
tetrad is frequently chosen such that each basis vector ei is
tangent to the corresponding coordinate line. Here, the
moduli of the basis vectors of these so-called coordinate
bases are chosen such that their pairwise scalar products are
equal to the corresponding metric coefficients:

�ei ek� � gik : �1:22�

Werecall that indifferential geometry (seeparagraphs3.1±
3.4 in [9]), such coordinate basis vectors are introduced as
objects isomorphic to the partial derivatives of an arbitrary

scalar function on the manifold with respect to coordinates,

ei � q
qx i

: �1:23�
Any (tangent) vector is a linear combination of the coordinate
basis vectors, and the components of this linear combination
are called contravariant components of the vector.

In addition to ei, the so-called dual basis e i is introduced
with the basis vectors defined as

�ei e j � � d j
i ; �1:24�

where d j
i is the Kronecker symbol. Condition (1.24) implies

that each basis vector of the dual basis has a unit projection
on the corresponding basis vector of the coordinate basis and
is orthogonal to all other basis vectors of the coordinate basis.

The dual coordinate basis vectors, in turn, are introduced
as objects isomorphic to the coordinate differentials,

e j � dx i : �1:25�

Next, if we use the fact that any tangent vector A can be
alternatively represented as a linear combination of dual
coordinate basis vectors, whose coefficients are referred to
as covariant vector components, we obtain the well-known
rule for lowering vector indices:

Ak � Ai�e i ek� � �Ai e
i� ek � �Aiei� ek

� Ai�ei ek� � Aigik : �1:26�
In a similar way, it is easy to show that if we introduce the
notation g ik � �e i ek�, then due to the duality of bases, the
matrix g ik is inverse to the matrix gik, and the rule for raising
vector indices holds. A similar representation in coordinate
bases can be extended to the general case of tensors.

Tetrad representation. In this and subsequent sections, we
mostly follow the exposition given in paragraph 7 of [12]. We
suppose that we now want to project the same vectors and
tensors on an arbitrary tetrad defined by the relations

e�a� � e�a� i
q
qx i

; �1:27�
where e�a� i are some functions of coordinates, and the indices
labeling the tetrad basis vectors are in parentheses.

Using duality condition (1.24), we can introduce the dual
tetrad:

e �a� � e �a�i dx i ; �1:28�

where e�a�i is the matrix inverse to e�a� i.
These matrices contain two kinds of indices: coordinate

and tetrad. The coordinate indices can be lowered or raised
using metric (1.1). We can impose an additional constraint on
the tetrad:

e�a� ie�b�i � Z�a��b� ; e �a�
i
e�b� i � Z �a��b� ; �1:29�

where

Z�a��c� Z
�c��b� � d�a�

�b� �1:30�

aremutually inverse matrices and Z�c��b� �diag�1;ÿ1;ÿ1;ÿ1�
is the Minkowski metric. In other words, we require that the

530 V V Zhuravlev Physics ±Uspekhi 58 (6)



original and dual tetrads be orthonormal in a four-dimen-
sional pseudo-Euclidean space.

Using the above relations, it is straightforward to show
that

e�a�i e�a�j � gi j ; �1:31�

and therefore the following alternative expression for the
interval squared holds:

ds 2�Z�a��b�
ÿ
e�a� i dx i

� ÿ
e�b�k dxk

��Z�a��b� e
�a�e�b� ; �1:32�

which is useful below.
We note that the indices in parentheses in the right-hand

side of (1.32) can be considered infinitesimal shifts along the
corresponding basis vectors of the tetrad; therefore, in the
introduced tetrad representation with an orthonormal tetrad,
the square of the interval takes the same form as in the
Minkowski space±time of special relativity. Similarly,
expressions (1.27) can be regarded as directional derivatives
along the tetrad basis vectors, and these have exactly the form
that the usual partial derivatives with respect to coordinates
in the coordinate basis take when changing from the
coordinate to the tetrad basis.

Using the definitions and relations given above, it is easy
to see how the tetrad components of vectors are expressed in
terms of coordinate components. Tetrad components of a
vector are

A�a� � e i�a�Ai ; A �a� � e
�a�
i A i � Z abA�b� : �1:33�

Conversely,

Ai � e
�a�
i A�a� ; Ai � e i�a�A

�a� :

Similar expressions can be written for the tensor of any
valence. For example, for a two-covariant tensor, we have

T�a��b� � e i�a�e
j
�b�Ti j � e i�a�Ti�b� ;

and conversely,

Ti j � e
�a�
i e

�b�
j T�a��b� � e

�a�
i T�a� j : �1:34�

We note in conclusion that relations (1.33) and isomorph-
ism (1.25) can be used to find contarvariant components of
the four-velocity in the tetrad representation:

U �a� � e �a�

ds
: �1:35�

This is again a unit tangent vector along the world line, but
now its components are given by small shifts along the
corresponding dual basis vectors. Using (1.33), it is easy to
find the relation between the conventional coordinate
components of the four-velocity, Ui � dx i=ds, and its tetrad
components. Covariant tetrad components are derived from
contravariant ones using the standard rule in special
relativity: lowering a spatial index is equivalent to changing
the sign of the corresponding component.

Covariant derivative in the tetrad representation.We calculate
the directional derivative along a tetrad basis vector from a
contravariant component of a vector:

A�a�;�b� � e i�b�
q
qx i

A�a� � e i�b�
q
qx i

e j�a�Aj

� e i�b�
�
e j�a�Aj; i � Ake

k
�a�; i
�
; �1:36�

where the semicolon denotes the usual covariant derivative in
the coordinate basis.

Expression (1.36) can be rewritten as

A�a�;�b� � e j�a�Aj; i e
i
�b� � e�a�k; i e

i
�b�e

k
�c�A

�c� ; �1:37�

whence

e j�a�Aj; i e
i
�b� � A�a�;�b� ÿ g�c��a��b�A

�c� ; �1:38�

where

g�a��b��c� � e�b�k; i e
i
�c�e

k
�a� �1:39�

are the so-called Ricci rotation coefficients. An important
point is that for orthonormal bases satisfying (1.29), the
coefficients g�a��b��c� are antisymmetric in the first two
indices. Indeed,

0 � �Z�b��a��; i � �e�b�k e k�a��; i � e�b� k; i e
k
�a� � e�b�ke k�a�; i

� e�b� k; i e
k
�a� � ek�b�e�a� k; i :

Comparing this relation with (1.39) proves the stated
property of the Ricci coefficients.

We finally discuss onemore useful property of coefficients
(1.39): to calculate these coefficients, only partial derivatives
of the components of the tetrad basis are needed, and
therefore the Christoffel symbols are not required. Indeed,
we consider auxiliary combinations

l�a��b��c� � e�b�i; j
�
e i�a�e

j
�c� ÿ e j

�a�e
i
�c�
�
; �1:40�

and rewrite them in the form

l�a��b��c� � e i�a�e
j
�c�
�
e�b� i; j ÿ e�b� j; i

�
: �1:41�

In the last expression, the ordinary partial derivatives can be
replaced by covariant ones, because the additional terms with
Christollel symbols are symmetric in i; j. Then expression
(1.41) is equal to the difference g�a��b��c� ÿ g�c��b��a�. But in such
a case,

g�a��b��c� �
1

2

�
l�a��b��c� � l�c��a��b� ÿ l�b��c��a�

�
; �1:42�

and, using (1.40), it is possible to calculate the Ricci rotation
coefficients by taking partial derivatives of the components of
the tetrad basis vectors.

We now consider formula (1.38). The left-hand side
represents the projection on the tetrad basis of a rank-2
covariant tensor obtained by taking the derivative of some
vector field. Therefore, this combination has the meaning of
the covariant derivative of a vector taken in a noncoordinate
basis.

Next, the right-hand side of (1.38) has exactly the same
form as the covariant derivative in a coordinate basis, with the
only difference that it involves tetrad indices (which can be
raised or lowered, including for g�a��b��c�, using theMinkowski
metric). It can be shown that the same holds for contravariant
components of a vector field and for tensor fields in general.
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Thus, because the components of a covariant derivative in
a tetrad basis have the same form as in a coordinate basis, it is
convenient to use the same notation and terminology that are
used in the coordinate basis. In particular, the Ricci rotation
coefficients are simply referred to as connection symbols in a
given basis. We emphasize once again that they should not be
confused with the Christoffel symbols, which represent
another limit case of connection coefficients in a coordinate
basis and have a different symmetry of the indices.

1.2.2 Tetrad transported by rotating observers.We construct a
tetrad basis related at each point of space±time to observers
moving around a black hole in equatorial circular orbits with
an angular velocity O. At z � 0, strictly speaking, this is the
free motion along geodesics found in Section 1.1.2. However,
for a small deviation from the equatorial plane, such a
motion, corresponding to a constant z, is possible only if
there is some external supporting force; in the case of a gas
disk, for example, this force is due to the pressure gradient.

To start the construction, we direct the time basis vector of
the tetrad along the world line under discussion. Using the
four-vector of the geodesic found in Section 1.1.2, we write it
in the form

e�t� � �Ut
g � Z0� q

qt
�Uf

g

q
qf

;

where we add a correction factor Z0�z=r� to the time
coordinate component, because the modulus of the vector
e�t� should be equal to unity away from the equatorial plane,
whereas the vector Ug itself is unitary only at z � 0. Clearly,
with this correction, e�t� would correspond to the four-
velocity of the real motion. Calculating the modulus of the
vector e�t� in metric (1.3) shows that it is equal to unity under
the condition

Z0 � ÿ
�
z

r

�2
H

2rGC 1=2
;

where we introduce the relativistic correction coefficients

G � 1ÿ 2

r
� a

r 3=2
; �1:43�

H � 1ÿ 4a

r 3=2
� 3a 2

r 2
: �1:44�

Thus, the basis vector e�t� is transported by the observer
rotating around the black hole with a frequency equal to the
f-component of e�t�, which is independent of z. This
frequency corresponds to the free circular motion in the
equatorial plane of the black hole, and rotation occurs in
planes of constant z.

We now calculate the time basis vector of the dual basis.
According to the convention for raising and lowering
coordinate indices, we have

e �t� � �Ut
ggtt �Uf

g gtf� dt� �Ut
ggft �Uf

g gff� df :

We next consider the part of metric (1.3) containing the
differentials dr and dz. It can be rewritten in the form (see
result (1.32) in Section 1.2.1):

ds 2rz � ÿ
�
e �r�
�2 ÿ �e �z��2 ;

where

e �r� � jgrrj1=2 drÿ grz

jgrrj1=2
dz ;

e �z� �
�
jgzzj ÿ grz

2

jgrrj
�1=2

dz

are the radial and vertical vectors of the dual basis. The
coordinate components of the vectors e �t�, e �r�, and e �z� satisfy
orthonormality condition (1.29), as can be easily verified by
direct substitution.

The orthonormality condition for a tetrad can now be
used to determine the fourth basis vector corresponding to the
azimuthal direction.

From three orthonormality conditions for three already
known vectors, we conclude that their consistency relation
must hold in the form

e �f�r � e �f�z � 0 ;

and the time and azimuthal components should be related as

e �f�f � ÿe �f�t
e�t�t

e�t�f
:

Finally, the normalization condition for e �f� yields a
quadratic equation for e �f�t, and the sign of the solution is
dictated by the additional requirement of the choice of a right-
hand triple of spatial vectors of the tetrad.

We thus obtain the dual tetrad basis with the leading
corrections in z=r due to out-of-equatorial-plane motion in
the form

e �t� � C ÿ1=2
�
G�

�
z

r

�2
1

2rG

�
�
D� 2a

r 3=2

�
Fÿ a

r 3=2
� a 2

r 2

���
dt

ÿ Cÿ1=2
�
r 1=2F�

�
z

r

�2
a

rG
Z1

�
df ; �1:45�

e �f� � ÿ
��

D

rC

�1=2

� 1

2

�
z

r

�2
1ÿ a=r

r 3=2
�DC�ÿ1=2

�
dt

�
�
rB

�
D

C

�1=2

� 1

2

�
z

r

�2

�
��

1ÿ a

r

�
B

�DC�1=2
ÿH

G

�
D

C

�1=2��
df ; �1:46�

e �r� � Dÿ1=2
�
1ÿ 1

2D

�
z

r

�2

Z2

�
dr

� z

r
Dÿ1=2

�
2

r
ÿ a 2

r 2

�
dz ; �1:47�

e �z� �
�
1� z 2

r 3

�
dz : �1:48�

To obtain the original basis, which we use to write
equations of motion, it suffices to calculate the inverse to the
matrix e �a�i, which yields

e�t� � Cÿ1=2
�
Bÿ

�
z

r

�2
H

2rG

�
q
qt
� �r 3C�ÿ1=2 q

qf
; �1:49�

532 V V Zhuravlev Physics ±Uspekhi 58 (6)



e�f� �
�

F

�rCD� 1=2
�O

�
z 2

r 2

��
q
qt

�
�

G

r�DC�1=2
�O

�
z 2

r 2

��
q
qf

; �1:50�

e�r� �
�
D 1=2 � 1

2

�
z

r

�2
Z2

D 1=2

�
q
qr
; �1:51�

e�z� � ÿ z

r 2

�
2ÿ a 2

r

�
q
qr
�
�
1ÿ z 2

r 3

�
q
qz
: �1:52�

The following notation for relativistic correction coefficients
is introduced in the expressions for the original and dual
bases:

F � 1ÿ 2a

r 3=2
� a 2

r 2
; �1:53�

Z1 � 3ÿ 5

r
ÿ a

r 1=2
� 3a

r 3=2
ÿ 3a 2

r 3
� a 2

r 2
� 2a 3

r 7=2
; �1:54�

Z2 � 3

r
ÿ 4

r 2
ÿ a 2

r 2

�
3ÿ 6

r
� 2a 2

r 2

�
: �1:55�

Here, we omit terms � O�z 2=r 2� in the expression for the
azimuthal vector of the original basis due to their complexity;
in addition, as we see below, these terms are not required in
the standard accretion disk model.

For the reader's convenience, we here preserve the
notation introduced in paper [1] for the coefficients B, C, D,
F,G, but use the standard style of Latin letters, which is more
familiar to the reader. In addition, the coefficient H is
equivalent to the coefficient C introduced in [8]. We also
note that two other coefficients introduced in the same paper,
A and B, are respectively equivalent to our coefficients D
and C. It can be verified that the original and dual bases
presented in [1] coincide with the bases derived here at z � 0.

Using formulas (1.45)±(1.48) and (1.35), it is easy to
deduce that solution (1.14) indeed yields U �a� � �1; 0; 0; 0� in
the equatorial plane.

Connection coefficients. Using (1.40) and then (1.42) and
knowing the matrices of the original and dual bases given
above, we can calculate the connection coefficients g�a��b��c�.

Of the 64 coefficients, 16 are equal to zero due to the anti-
symmetry of g�a��b��c� in the first two indices. For the same
reason, of the other coefficients, only half (i.e., 24) have to be
found. Because we are interested in the region near the
equatorial plane of the black hole, it makes sense to separate
these coefficients into two groups: those that are � �z=r�0 in
the leading order, and those proportional to the first power of
z=r. As mentioned in Section 1.1.1, the latter coefficients must
appear in the vertical projection of the relativistic Euler
equation, while the former emerge in other equations.

It can be shown that
(1) if there is no index (z) among the indices of g�a��b��c�,

then g�a��b��c� � �z=r�0,
(2) if only one such index is present, then g�a��b��c� � z=r,

and, finally,
(3) if two indices (z) appear in g�a��b��c�, then this coeffi-

cient is of the second order in z=r.
Indeed, we examine formula (1.40). Here, the square

brackets contain the original basis components, which are
summed with the coordinate derivatives of the dual basis

components (raising a tetrad index can only change the sign of
the component).

In case (1), �a�; �b�; �c� 6� �z�. Because the �t�, �f�, and �r�
basis vectors of the original basis have no z-component, only
terms that do not contain derivatives with respect to z of the
dual basis components and have no z-component of the dual
�r� basis vector make a nonzero contribution to g�a��b��c�. Only
in these two cases can the contribution � z=r appear, and
hence we prove statement (1).

Now, in (1.40), let �b� � �z�. Then the nonzero contribu-
tion can be due to only those terms with the z-component of
the �t�-, �f�-, and �r� basis vectors of the initial basis that are
absent. Therefore, to prove statement (2), we must consider
only the variant where �a� � �z� or �c� � �z� in (1.40). Here,
the terms containing separately either r- or z-components of
the �z� basis vector of the original basis contribute. In the first
variant, the proportionality to z=r is due to exactly the
component e r�z�, while in the second, it is due to the derivative
with respect to z of one of the dual basis components, which is
always an even function of z, as can be easily verified.

We leave it to the reader to prove statement (3).
The counting shows that there must be 9 connection

coefficients without the index �z�, and hence even functions
of z, and 12 coefficients with the index �z�, and hence odd
functions of z. The calculation shows that only four
coefficients of the first type are nonzero:

g�t��f��r� � ÿ
1

2

H

r 3=2C
; g�t��r��f� � ÿrÿ3=2 ; �1:56�

g�f��r��t� � ÿrÿ3=2 ; g�f��r��f� � ÿ
1

r

d

dr

ÿ
rD 1=2

�
: �1:57�

To compute coefficients (1.56) and (1.57), it suffices to use
bases taken without corrections in z.

In constructing the standard disk model, the following
facts are also important. First, direct calculation shows that
another five connection coefficients of this type are zero
through the correction order � �z=r�2. This is a rigorous
result, because the coefficients g�a��b��c� under discussion have
no derivatives of the basis components with respect to z, and
therefore the possible unaccounted for corrections due to
terms � �z=r�3 in e �r�z and e r�z� cannot contribute. Second,
direct calculation similarly shows that g�t��z��z� � 0 through
the order � �z=r�2.

Calculating all nonzero coefficients of the second type is a
much more cumbersome task. But as we see below, the only
coefficient of this type that is needed has the form

g�z��t��t� �
z

r 3
H

C
:

We note that all connection coefficients of the type g�a��t��t�
vanish in the equatorial plane z � 0. This is consistent with
the requirement that the four-velocity U�a� � �1; 0; 0; 0� must
satisfy the geodesic equation at z � 0:

DUa

Ds
� Ub e�b��U �a�� � Z �a��c�g�c��b��d�U

�b�U �d�

� g�a��t��t� � 0 : �1:58�

1.2.3 Relativistic hydrodynamic equations. Everywhere below,
we only use the tetrad components of vectors, tensors, and
covariant derivatives. Therefore, starting from this section,
we substitute the tetrad notation by the standard one, familiar
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when using the coordinate basis. This means that we do not
put tetrad indices in parentheses and let them be denoted by
Latin letters i; j; k, and let the connection coefficients be
denoted by G.1

The stress±energy tensor of a viscous fluid with energy
flux has the form (see, e.g., paragraph 4.3 in [13] or
paragraph 22.3 in [14])

T ik � �r� E� p�UiUk ÿ pZ ik � 2Zs ik

� zYPik ÿUiqk ÿUkq i ; �1:59�
where r, E, p, and Z and z are the respective rest-energy
density, internal energy density, pressure, and two viscosity
coefficients measured in the local comoving fluid volume; q is
the energy flux inside the fluid as measured by the local
comoving observer.

The shear tensor is

s ik � 1

2

ÿ
Ui

; j P
jk �Uk

; j P
ji
�ÿ 1

3
Uj

; j P
ik ; �1:60�

with the projection operator

Pik � Z ik ÿUiUk : �1:61�

The divergence of the four-velocity is

Y � Ui
; i : �1:62�

The relativistic Euler equation is written as

Pis T
sk

; k � 0 : �1:63�

The energy conservation law has the form

Us T
sk

; k � 0 �1:64�

and the rest-energy conservation law is expressed as

�rUk�; k � 0 : �1:65�

The covariant derivative in a noncoordinate basis is

Ai
; j � ej�Ai� � G i

kjA
k ;

while the divergence of a rank-2 contravariant tensor is

Ai j
; j � ej�Ai j� � G i

kjA
kj � G j

kjA
ik :

The energy flux vector and the shear tensor (the deforma-
tion tensor free from pure scaling) are purely space-like
objects:

Uiq
i � 0 ; Uis ik � 0 ; s i

i � 0 : �1:66�

1.3 Construction of the standard accretion disk model
1.3.1 Basic assumptions and the vertical balance equation. We
consider a disk from the standpoint of local observers
rotating around a black hole near its equatorial plane with a
relativistic Keplerian velocity. Before writing the dynamic
equations in the projection onto tetrad (1.49)±(1.52), we
discuss basic assumptions of the model and their conse-

quences. In addition to obvious assumptions about axial
symmetry and the stationarity of the flow (meaning that the
derivatives qt and qf are zero), the main hypothesis, which we
have already used, is the small disk thickness, d � h�r�=r5 1,
where h�r� is the characteristic height of the disk along the z
axis (more precisely, the disk half-thickness).

The disk symmetry with respect to the plane z � 0 implies
thatUt,Uf,Ur, q t, qf, q r, r, p, Z, z, E are even functions of z,
and Uz and qz are odd functions.

We also assume that the characteristic scale of variations
of these quantities in the radial direction is much larger than
in the vertical direction,2 that is, their ratio is greater than
� dÿ1.

Next, kinematic arguments suggest that

Uz � dUr : �1:67�
If the energy flux determined by the vector q is proportional to
the internal energy gradient E, then q t

loc � 0, and q
f
loc,

q r
loc � dqz

loc for the local comoving observer. Taking (1.67)
into account implies that the projection of q onto the four-
velocity of circular equatorial motion is also small, i.e., of the
order of � dqz

loc. From the standard Lorentz transforma-
tions, we obtain that q t, qf, q r � dqz, i.e., the energy flux
relative to the tetrad should be directed mostly normally to
the disk plane.

Now, taking all the above into account, we consider the
projection of the relativistic analog of Euler equation (1.63)
onto the basis vector ez in more detail:

Tzk
; k �UzUs T

sk
; k � 0 : �1:68�

Using the symmetry of physical quantities discussed above
and symmetry properties of the basis vectors and connection
coefficients (which become odd functions of z if they have at
least one index z), discussed in Section 1.2.2, it is easy to verify
that Eqn (1.68) is an odd function of z. Further, we see that
the first term in (1.68) separately yields the term qzp, and
other terms containing p are smaller due to the smallness of
Uz. All other terms together can always be written as
� zrf �r��1� g�r; z�� with a function g�r; z� � O�d 0�.

Thus, we arrive at the important conclusion that necessa-
rily

1

r
qp
qz
� d5 1 : �1:69�

This means that in a thin disk, p, qrp � d 2, i.e., these variables
are small relative to the dominant action of the gravitational
force in this direction. Therefore, particles of the disk must
move in trajectories close to geodesic ones. Clearly, in a
steady-state and axially symmetric flow, this can be realized
only in two cases: when the matter moves almost radially
toward the gravitating center (and the specific angular
momentum in the disk is everywhere close to zero) or when
the matter moves in almost circular orbits (and the specific
angular momentum is maximal). We note that both cases are
consistent with the general assumptions discussed above and
the result in (1.69). However, in the last case, the strict vertical
hydrostatic equilibriumholds in the disk in the first order in d;

1 If one of the symbols t;f; r; z appears among the indices, it means that the

corresponding index takes this value.

2 We note that the assumption about the velocity components in the disk

plane, Ur and Uf, should also be made such that they can substantially

change in the vertical direction only on scales � r; otherwise, terms in the

shear tensor could arise that strongly and dynamically contribute to the

vertical balance condition, which would lead to a disk totally different

from the basic case of interest here.
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in other words, (1.68) can be rewritten in the form

1

r
qp
qz
� zf �r��1� d 2 � :::� : �1:70�

When the flow is almost radial, the corrections in the
parentheses in (1.70) are not small, and their value is
determined by the contribution from the prevailing radial
motion, when, due to the change in the disk thickness at each
radius, the particles are accelerated in the z direction.

Thus, the standard disk model includes one more
independent assumption on the closeness of the fluid particle
trajectories to equatorial circular orbits around the central
black hole. Therefore, we additionally suppose that in our
reference frame,Uf,Ur � sUt with s5 1 and later we can see
how this second small parameter is related to d.

Consequently, we first write equations not only in the
leading order in d but also under the assumption that s � 0,
i.e., that the flow moves along geodesic orbits and Ui �
�1; 0; 0; 0�. Wherever needed, we then additionally evaluate
the contribution from the terms in the leading order in s.

Deformation of the velocity field. We first find the nonzero
components of the shear tensor in the leading order. The
velocity divergence vanishes:

Y � U j
; j � G j

kj U
k � G j

0j � 0 : �1:71�
We also have

Ui
; j P

jk � G i
tkZ

kk ÿ G i
tt

and, in view of the symmetry in i and k, we see that the only
nonzero components of the shear tensor are

s rf�ÿ 1

2
�Gf

tr � G r
tf� �

1

2

�
1

2

H

r 3=2C
� r 3=2

�
�3

4

D

r 3=2C
;

�1:72�

s rz � ÿ 1

2
G z
tf � O�z� : �1:73�

Equation of hydrostatic equilibrium. Substituting Ui �
�1; 0; 0; 0� in (1.68) and taking the smallness (due to the low
sound velocity in the flow) of several nonzero terms contain-
ing Z and components of q into account, we obtain

qp
qz
� rG z

tt � ÿr
z

r 3
H

C
: �1:74�

Radial direction. The radial projection of the relativistic Euler
equation with s � 0 is given by

Trk
; k � 0 ; �1:75�

and, eliminating terms � d 4 containing the connection
coefficients and components of q, we have only one nonzero
term of the order d 2, which has the form 3

ÿ� pZ rk �; k � D 1=2 qp
qr
:

Clearly, this term should be balanced by the leading terms
� s. Evidently, the contribution from

�rUrUk�; k

should be considered first, and here it can be only due to terms
containing one of the connection coefficients of zeroth order
in z and the time velocity component. There is only one such
term: 2G r

tfU
tUf � 2rÿ3=2Uf.

Hence, we reach an important conclusion that s � d 2, i.e.,
the velocity components in the disk plane are

Ur;Uf � d 2 ; �1:76�

which is used belowwhen determining the force balance in the
azimuthal direction.

1.3.2 Azimuthal direction. We consider the last projection of
the relativistic Euler equation, its component along the
azimuthal basis vector. We proceed in the same way as
above and first write terms that are present in the case s � 0.
Again, we take Ui � �1; 0; 0; 0� and see that��r� E� p�UfUk

�
; k
� 0 ;

because Gf
tt � 0 through the order � d 2 (see the discussion at

the end of Section 1.2.2). Next, the term with pressure is
absent by virtue of the axial symmetry, and terms with q i

cannot contribute to an order higher than d 4.
It remains to consider the contribution

�2Zsfk�; k�D 1=2�2Zs rf�; r��2Zsfz�; z�4ZGf
rfs

rf�ZO�d 2�

� ÿ 3

2
D 1=2

�
Z

D

r 3=2C

�
; r

� �ZG t
zf�; z

� 3Z�rD 1=2�; r
D

r 5=2C
� ZO�d 2� : �1:77�

Here, we are also dealing with terms of the second order in d 2;
therefore, it is necessary to find the leading contribution from
terms � s. Again, we consider only the prevailing part due to
the ideal fluid term:

�Zfi ÿUfUi��rUiUk�; k :

The second part, which is proportional to Uf, can be
neglected because the term in square brackets cannot
contribute to the zeroth order in d 0, because there are no
connection coefficients of the form G i

tt � d 0, as was discussed
at the end of Section 1.2.2.

As a result, we obtain

�rUfUk�; k�rGf
lkU

lUk � rG k
lkU

fUl�r�Gf
tr � Gf

rt �Ur

� ÿr Ur

r 3=2

�
1

2

H

C
ÿ 1

�
� r

Ur

2r 3=2
E

C
; �1:78�

where

E � 1ÿ 6

r
� 8a

r 3=2
ÿ 3a 2

r 2
: �1:79�

We now introduce the notation

Tn �
��h
ÿh

T rf
n dz � 2s rf

��h
ÿh

Z dz ; �1:80�

3 The order of components q i can be estimated as follows. In the stationary

case, the divergence of the energy flux must be of the order of the power

generated due to viscous dissipation, which is in turn proportional to some

scalar characterizing the degree of velocity shear and the viscosity

coefficient Z. In our case, the viscosity coefficient Z < rhcs � d 2. The

divergence is mainly due to the term qzq z. This immediately implies that

qz � d 3 and q t;f;r � d 4.
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where Tn is the vertically integrated density of the flux of the
f-component of momentum in the radial direction. Then, by
also integrating Eqns (1.77) and (1.78) over the disk thickness
and combining them into one equation, we have

qTn

qr
� 2Tn

rD

�
1ÿ 1

r

�
� SUr

2r 3=2
E

CD 1=2
� 0 ; �1:81�

where the contribution from sfz vanishes because it is an odd
function of z, andwe neglect the dependence ofUr on z, which
gives rise to a higher-order correction (see footnote 2). In
formula (1.81), we have introduced the surface density of the
disk,

S �
��h
ÿh

r dz : �1:82�

Important Eqn (1.81), with known boundary conditions
at the inner disk radius, allows calculating the profile Tn�r�
for the disk if the radial velocity is specified. We note that
the equation for Tn can also be derived from the angular
momentum conservation law, which was used in the original
paper [1] [see Eqns (5.6.3)±(5.6.6) therein].

1.3.3 Rest-energy conservation law. Radial momentum trans-
fer. To solve Eqn (1.81), the radial velocity profile should be
specified. It can be obtained from the rest-energy conserva-
tion law (1.65):

er�rUr� � ez�rUz� � G i
kirU

k � 0 : �1:83�

Clearly, the substitution of Ui � �1; 0; 0; 0� does not yield
nonzero terms up to the order � d 2 (see the discussion at the
end of Section 1.2.2). In our reference frame, this fact can be
easily understood: the circular axially symmetric motion
corresponds to zero velocity divergence. It is straightforward
to verify that the following terms� s appear in the continuity
equation:

D 1=2�rUr�; r � �rUz�; z ÿ
�rD 1=2�; r

r
rUr � 0 ; �1:84�

where the last term arises due to the contribution from
Gf
rfrU

r, and similar terms with other velocity components,
even if they appear, have an order higher than � d 4.

After integrating over z, the contribution from the second
term in (1.84) vanishes because r! 0 far from the equatorial
disk plane, and we obtain

�SUrrD 1=2�; r � 0 : �1:85�

The combination whose derivative is calculated in (1.85) is
a constant, which must be identified with the radial flux of
matter. After additionally integrating over f, we obtain

2pSUrrD 1=2 � ÿ _M ; �1:86�

where _M > 0 is the rate of matter inflow into the disk at
infinity, i.e., the mass accretion rate.

After substituting (1.86) in (1.81), we finally obtain

dTn

dr
� P1Tn � P2 � 0 ; �1:87�

where

P1 � 2

rD

�
1ÿ 1

r

�
;

P2 � ÿ
_M

4p
E

r 5=2CD
:

The solution of (1.87) with the boundary condition
Tjrms

� 0 can be written in the form

Tn � 1

F�r�
� r

rms

P2�x�F�x� dx ; �1:88�

F�r� � exp

�� r

rms

P1�x� dx
�
: �1:89�

Integral (1.89) is elementary, and as a result we obtain

Tn �
_M

4p r 2D

� r

rms

E

r 1=2C
dr : �1:90�

1.3.4 Energy balance.Here, we consider Eqn (1.64). As above,
we setUi � �1; 0; 0; 0� and find terms of the leading order in d.
As in the case of the azimuthal projection of the relativistic
Euler equation, `ideal' terms ��r� E� p�UtUk�; k and pZ 0k

; k

do not contribute here. From the shear term, we have

�2Zs tk�; k � G t
lks

lk � 2Z
��Gtfr � Gtrf� s rf �O�d 2��

� 2Z
�
4s rf �O�d 2�� :

Termswith q i contribute due to the rapid change in the energy
flux component normal to the disk:

�Utqk�; k �
qqz

qz
�O�d 4� :

Summing all terms, from the energy balance equation, we
obtain

qqz

qz
� 4Z�s rf�2 � 3

2
Trf
n

D

r 3=2C
; �1:91�

whence, after integrating over the disk thickness, we derive
the important relation

Q � 3

4

D

r 3=2C
Tn ; �1:92�

whereQ � qz�z � h� is the vertical energy flux escaping from
the disk. After specifyingQ, we can calculate the radial profile
of the effective temperature of the disk surface, because by
definitionQ � sT 4

eff. This is a universal result of the standard
accretion disk theory: Teff does not depend on the specific
nature of the dissipation of the kinetic energy of matter or on
the mechanism of thermal energy transfer toward the disk
surface, and is proportional to _M times some universal known
function of r.

Thus, we have obtained the explicit form of the viscous
stress integrated over the disk thickness Tn and the explicit
form of the radiation energy flux from its surface Q. At the
same time, we know only the combination SUr, and not each
of these variables separately. In addition, we should deter-
mine the disk half-thickness profile h�r� and the temperature,
pressure, and density distributions inside it. To do this, the
vertical disk structure should be calculated.
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1.3.5 Energy transfer equation and the vertical disk structure.
The vertical disk structure is determined by three equations.
Two of them have already been obtained above: vertical
hydrostatic balance equation (1.74) and thermal energy
generation equation (1.91).

The remaining equation is the transfer equation for the
energy dissipating in the disk. In the simplest case, the energy
transfer is due to the photon diffusion in heated matter.
Strictly speaking, we should write a relativistic analog of the
radiation heat conductivity equation, which is a variant of the
kinetic Boltzmann equation for photons when their mean free
path is much smaller than the characteristic spatial length of
the problem. This equation was relativistically generalized in
Section 2.6 in [1]. The standard transition to the diffusion
approximation yields the following equation (see expression
2.6.43 in [1]):

q i � 1

~�r
4

3
bT 3Pik

ÿ
ek�T � � akT

�
; �1:93�

where ~� is the Rosseland mean opacity of matter, T is the
temperature, b is the radiation constant, and ak � Uk; jU

j is
the four-acceleration. The discussion of Eqn (1.93) can also be
found in [13, p. 165].

As regards (1.93), we note that the four-acceleration never
exceeds the order d 2 because the four-velocity itself differs
from the geodesic value (free circular equatorial motion) only
in the second order in d. At the same time, the derivative in the
first term in parentheses in the right-hand side of (1.93) for
k � z, in contrast, raises the order in d, because T, as well as E,
varies significantly across the disk thickness. As a result, as
already discussed in Section 1.3.1, we see that q is the leading
component of the vector qz and is determined by the equation

qz � ÿ 1

3~�r
q�bT 4�

qz
; �1:94�

which is identical to the Newtonian form for a thin disk.
Equations (1.74), (1.91), and (1.94) must be supplemented

with the equation of state of matter

p�r;T � ;

the opacity law

~��r;T � ;

and the explicit form of

Z�r;T � or Trf
n �r;T � ;

depending on the type of parameterization of the turbulent
viscosity in the disk.

In addition, it is necessary to set boundary conditions at
the integration interval z 2 �0; h�. In the simplest case, we
assume that the disk has no atmosphere and

rjz�h � T jz�h � 0 :

Furthermore, the energy flow is absent in the equatorial disk
plane:

qzjz�0 � 0 :

Finally, we set

2

� h

0

Trf
n dz � Tn :

We note that the above equations and boundary condi-
tions for the vertical disk structure automatically guarantee
the validity of Eqns (1.86), (1.90), and (1.92) for the radial
disk structure.

After calculating the vertical structure, we can specify the
surface density distribution using (1.82) and then Ur using
(1.86).

1.3.6 Parameterization of turbulent viscosity and the explicit
disk structure. The estimates already carried out in [1, 15] in
accordance with the algorithm described in Section 1.3.5
show that at a sufficiently high accretion rate _M, which is
the free parameter of the problem, the radiation energy
becomes dominant in the inner parts of the disk. The
estimate of the threshold value of _M can be found, for
example, in [15] [see formula (2.18) therein]. It turns out that
the disk thickness far away from its inner radius is
independent of r, and for _M of the order of and above the
critical value _Mcr, when the disk luminosity reaches the
Eddington value in the inner parts of the disk, d > 1,
corresponding to the spherization of the flow (see expression
(7.1) and its discussion in [15]). In addition, later studies
showed that the radiation-dominated region is both thermally
unstable [16] and convectively unstable [17].

This means that for the correct description of the inner
parts of accretion disks at high accretion rates, when d
increases, terms of higher orders in d should be taken
into account. These include the radial pressure gradient
� d 2 in the radial force balance and the advection term
UrT qS=qr � d 4, which arises in the energy balance and
accounts for the radial heat transfer. The latter, in fact,
implies that the heat diffusion time in the vertical direction
is comparable to the radial advection time due to radial
transfer of matter. In other words, the main property of the
standard accretion disk model considered here is violated: the
local energy balance in the disk, when the heat generated due
to turbulent energy dissipation is locally released from the
disk surface. It was found that accounting for the new terms
also allows correctly describing the region near rms, where
Ur !1 in the standardmodel, and constructing a stationary
solution with d < 1 for _M of the order of and above _Mcr,
which is stable under thermal perturbations (so-called `slim
disks'; see [18, 19] and the references therein, and, e.g., [20]).
Later, these results were confirmed by numerical simulations
(see, e.g., [21, 22]).We add that the transition from a standard
disk to a slim disk with increasing _M in the relativistic model
around a rotating black hole should occur even earlier due to
a higher accretion efficiency (which is due to both decreasing
rms and the additional angular momentum loss from the disk
surface by radiation).

Assuming that _M5 _Mcr, we calculate the disk vertical
profile, which is to be useful in the next part of the paper, in
the simplest case where the pressure is mainly determined by
the fully ionized hydrogen plasma, i.e.,

p � 2rkBT
mp

; �1:95�

where mp is the mass of the proton, kB is the Boltzmann
constant, and the opacity is determined by Thomson
scattering, ~� � �T � 0:4 cm2 gÿ1.
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We also assume that the kinematic viscosity n is indepen-
dent of z and can be parameterized in the form

n � acsh ; �1:96�

where 0 < a < 1 is the Shakura parameter determining the
turbulent viscosity in the disk (see [15, 23]), and cs is the speed
of sound in the equatorial disk plane. Here, due to (1.95),

c 2s �
2kBTc

mp
; �1:97�

where Tc � T�z � 0�.
Equation (1.94) yields� h

0

dz q zr � ÿ 1

3�T
bT 4

����h
0

� 1

3�T
bT 4

c :

On the other hand,� h

0

dz q zr � CqQ

� h

0

r dz � 1

2
CqSQ ;

where Cq is some correction factor of the order of unity
corresponding to the difference between the escaping radia-
tion flux Q and its mean value inside the disk thickness. As a
result, we have

Tc �
�
3�T
2

Cq

b
SQ
�1=4

: �1:98�

Next, in the left-hand side of (1.74), assuming for
simplicity that the entropy is constant along z, we can divide
by r, introduce the enthalpy dw � dp=r, and, after integrat-
ing (1.74), obtain the central value of w, wc � w�z � 0�:

wc � ÿ
� h

0

dw �
� h

0

z

r 3
H

C
� h 2

2r 3
H

C
:

Hence, assuming that wc � nc 2s , where n is the polytrope
index, we obtain

c 2s �
h 2

2nr 3
H

C
: �1:99�

Finally, due to definition (1.80), parameterization (1.96),
and Eqn (1.90), we find

Tn � 3

2

D

r 3=2C
aScsh �

_M

2p
Y

r 3=2D
; �1:100�

where in the second equality we introduce the new variable

Y � �2r�ÿ1=2
� r

rms

E

r 1=2C
dr ; �1:101�

which in the Newtonian limit, far away from the inner edge of
the disk, tends to unity.

Equations (1.92), (1.97)±(1.99) are sufficient to eliminate
all unknowns except S and the free parameters _M and a from
(1.100). We thus obtain the surface density profile

S � S0aÿ4=5 _M 3=5rÿ3=5C 3=5Dÿ8=5H 2=5Y 3=5 ; �1:102�

where the dimensional constant S0 combines all relevant
physical constants and numerical coefficients. Its explicit
form and numerical value (which depends on the black hole
mass to which we normalize all quantities) can be found by
the reader.

Now, using formulas (1.97)±(1.99) and (1.102), it is
possible to derive the profile h�r�. The resulting disk aspect
ratio is

d�r� � d�r 1=20C 9=20Dÿ1=5Hÿ9=20Y 1=5 ; �1:103�

where d� is a constant that determines the characteristic disk
thickness d.

2. Relativistic twisted accretion disk

2.1 Introductory remarks
In Section 1, we described a flat disk in the equatorial plane
around a rotating black hole. Its axially symmetric structure
was evident and consistent with the symmetry of space near
the black hole. If we now relax the main assumption that the
flow of matter at all distances lies in the equatorial plane, the
question arises: what can the dynamics of this more
complicated flow, both stationary and nonstationary, be? Is
this configuration similar to a disk in any way? For thin disks
considered here, the answer to this question proves to be
positive under some restrictions.

The main reason for the deformation of the disk (for
example, an initially flat one) is that the black hole spin gives
rise to an additional off-center gravitational interaction with
the gas elements of the flow. It can be shown that far away
from the event horizon but close to the equatorial plane of the
black hole, this interaction is represented by an axially
symmetric field of force directed to the black hole spin axis
in the planes parallel to the equatorial one (see [24], chapter 3,
paragraph A). This force is called the gravitomagnetic force
and is given in this case by the expression

FGM � 4aO
r 2

q
qr
; �2:1�

where O is the Keplerian frequency and q=qr is the radial
coordinate basis vector of the cylinder coordinate system.
Clearly, this external force can change the proper angular
momentum of the disk elements (and hence deform the disk),
if these are moving away from the equatorial plane of the
black hole. Here, only the projection of the gravitomagnetic
force onto the angular momentum direction matters, which is
proportional to the sine of the angle between the angular
momentum vector and the black-hole spin axis. As we see
shortly, the restriction that allows treating the new config-
uration as a disk (both stationary and nonstationary) requires
that the gravitomagnetic force be smaller than the central
gravitational attraction force, i.e., requires the smallness of
the parameter a (a5 1). In addition, one more restriction can
be formulated for the disk to be hydrodynamically stable: the
noncomplanarity of the disk with the orbital plane, as well as
the degree of its deviation from the planar form (i.e., twist,
warp) not exceeding some small values (see [25], paragraph 7
and [5], paragraph 4.2.4).

We split a thin planar disk into rings of small widths. In
each ring, the motion of gas elements is mainly due to the
gravitational attraction force from the central body. The
characteristic time of this motion is td � Oÿ1. In addition, td
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determines the time it takes for the disk to restore the
hydrodynamic equilibrium across the ring, because the disk
aspect ratio (the ratio of the disk thickness to the radial
distance) is of the order of the ratio of the sound velocity to
the orbital velocity. This conclusion can also be arrived at by
noticing that the acceleration of a unit mass gas element is dÿ1

times greater than the vertical pressure gradient, i.e., the
gradient is exactly as small as the ratio of the vertical size of
the ring to its radius. Therefore, we can conclude that if other
forces acting on a given ring from the adjacent rings or from
the black hole lead to the dynamics with a characteristic time
tev 4 td, the hydrostatic equilibrium is maintained in the ring;
in other words, the ring remains flat, and the entire flow
preserves a disk-like shape. This is undoubtedly so in a flat
disk, because in this case equally oriented rings interact by the
viscous force acting in the azimuthal direction and the
angular momentum changes due to the inflow and outflow
of matter accreting through the ring, with both processes
occurring on the diffusion time scale tn � Oÿ1dÿ2 4 td.

We now let the disk be tilted to the equatorial plane of the
black hole by a small angle b5 1. In a flat disk, the
gravitomagnetic force contributes only to the modulus of
the acceleration of gas elements moving in circular orbits, but
now, due to a nonzero projection of this force (/ b) onto the
angular momentum of gas elements, this force makes the
orbits precess around the black-hole spin axis. For free
particles, this effect is described in detail in the second part
of the next section in terms of the difference between the
frequencies of circular and vertical motions. We also show in
what follows that the precession frequency is much smaller
than the circular frequency for a5 1 [see formula (2.12)],
which is equivalent to the condition tev 4 td for whole rings
composed of gas elements.

Equation (2.12) suggests that the precession of the rings is
differential, i.e., depends on the distance to the center. As a
result, the relative orientation of initially coaxial rings
changes, and the disk is no longer flat. However, we keep in
mind that under the condition tev 4 td, each of the rings
behaves `rigidly' in its vertical direction, which is now also a
function of r. The new configuration is similar to a twisted (or
warped) disk, i.e., a flow symmetric relative to some (now not
planar) surface, which can be called the equatorial surface of
the twisted disk. Here, the cross section of the equatorial
surface by a plane passing through the center is a circleÐ the
instantaneous shape of orbits of gas elements rotating at a
given radial distance r. The disk turns into a set of rings tilted
to the black hole equatorial plane by a constant angle b but
depending on r node lines (the line formed by the intersection
of the ring planes with the black hole equatorial plane). The
node line is now determined by the position angle g�r�
measured in the equatorial plane in the positive direction
from a fixed direction to the ascending node of a given ring.
The key point here is that the pressure gradient in the twisted
disk, directed (as in any thin disk in general) almost normal to
its warped surface, is not normal to the planes of the rings
composing the disk. Therefore, we conclude that the pressure
gradient has two projections. The main projection is coaxial
with the rotational axis of each ring. We conventionally let it
be denoted by �Hp�x, where x is the distance from the
equatorial surface of the twisted disk measured along the
direction of rotation of the ring (x reduces to z in the case of a
flat disk). We note from the beginning that �Hp�x / x due to
the hydrostatic equilibrium maintained across the ring. The
second projection of the pressure gradient, conventionally

denoted as �Hp�r, lies in the ring plane along the radial
direction connecting the disk center and a given gas element
of the ring. The ratio of these two projections is a small value
proportional to the rate of change of orientations of rings in
the disk, which in turn depends on the radial direction chosen
in the given ring plane. From purely geometrical considera-
tions, we rigorously show in what follows that for a disk with
b � const, �Hp�r=�Hp�x / b dg=dr cosc, where c is the angle
measured in the azimuthal direction for a given ring from its
ascending node to the given gas element. We note that the
normal to the twisted disk surface is orthogonal to the ring
plane only at two diametrically opposite pointsÐwhere its
plane intersects the planes of the adjacent rings. At b � const,
these points are characterized byc � �p=2. At the same time,
at the other pair of points with c � 0, p, the value �Hp�r
reaches a positive (negative) maximum.

Thus, in the case of a flat disk, the dynamics in the radial
direction is controlled in the leading order in d5 1 by the
gravitation force and the corrections � d 2 are neglected, but
in a twisted disk, the radial projection of the pressure gradient
starts additionally contributing to the radial balance. This
addition, on the one hand, depends on the degree of the twist,
and on the other hand, increases proportionally to the
distance x from the equatorial disk surface. Because it also
depends harmonically on the azimuthal direction, the gas
elements (for x 6� 0) are subjected to periodic disturbance by
this force with the orbital period, and their orbits become
ellipses with a small eccentricity. As is well known, the
eigenfrequency of small oscillations of free particles in
eccentric orbits is equal to the epicyclic frequency �. Because
the pressure gradient projection considered here excites
exactly such oscillations, the radial profile of the epicyclic
frequency ��r� is an important characteristic that determines
the shape of both stationary and nonstationary twisted
configurations. In the next section, we derive the required
relativistic profile ��r� for equatorial circular orbits in the
Kerr metric [see Eqn (2.8)]. We note from the very beginning
that in the special case of Newtonian gravity, � � O, and
hence the action of the external exciting force on gas elements
with the same frequency results in a resonance: the perturbed
motion amplitude, characterized by perturbation of the
orbital velocity v, must increase without a bound. This
increase, however, is always limited by turbulent viscosity in
the disk. Indeed, because the exciting force amplitude / x, so
is the amplitude v. But this would mean the presence of a
vertical velocity shear qxv in each ring. Together with the
vertical density gradient in the disk (and hence the vertical
gradient of the dynamic viscosity), this gives rise to a volume
viscous force that damps the driving of individual layers of
each disk rings by the resonance force. We note that near the
black hole, where the frequency � deviates from O, the
amplitude v remains bounded even in the absence of viscous
forces. This allows the existence of low-viscosity stationary
twisted disks around black holes, in which b�r� takes an
oscillatory form (see [25]).

Thus, we see that the twist of the disk caused by the
gravitomagnetic force necessarily results in a perturbation of
the circular motion of gas elements in the disk rings. The
velocity field v of this perturbation depends on r (in addition
to its being proportional to x, as explained above) and is
determined by the current shape of the disk. By virtue of the
continuity of the flow, this gives rise to density inhomogene-
ities outside the disk equatorial surface, r1 / x. Because
�Hp�r / cosc, these inhomogeneities take opposite signs at
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the diametrically opposite points of any given ring. But this
implies that the ring is subjected to the total torque of the
central gravitational force acting on the density excesses
outside the equatorial plane of the ring (i.e., outside x � 0).
We let Tg denote this torque. Because the disk is thin and the
gravitational acceleration along the ring axis is itself / x, the
corresponding component of the gravitational force, and Tg

as well, is quadratic in x. In addition, we recall that the torque
Tg is proportional to the small warp magnitude, Tg/b dg=dr.
Thus, we arrive at the conclusion that the dynamics of the
twisted disk rings is controlled byTg, together with the torque
due to the gravitomagnetic force discussed above in this
introductory section. We note that in the case b � const
considered here, �Hp�r and, correspondingly, r1 take the
maximum absolute value (but with the opposite sign) at
c � 0; p, i.e., at the node line of each ring.4 But this implies
that Tg lies in the plane made by the angular momentum of
each ring and the black-hole spin axis. By virtue of the
symmetry of the problem, the total contribution to Tg from
other azimuths does not alter its direction. Therefore,
immediately after the gravitomagnetic force turns the
imaginary tilted plane disk into a twisted configuration with
b � const, the gravitational force acting on the matter of the
disk located asymmetrically relative to the surface x � 0 tends
to change the tilt angle of the rings: either to align them with
the equatorial plane of the black hole or, conversely, to
displace them from it. On the other hand, once b becomes
dependent on r, the maximum of the absolute values of �Hp�r
are shifted from the node line of each ring to some new c,
which gives rise to a component in Tg that also contributes to
the precession motion of the disk rings, as the gravitomag-
netic torque does.

The dynamics of twisted disks sketched above is compli-
cated by the presence of nonzero viscosity in the disk. First of
all, each ring of the disk is subjected to the action of the
viscous force arising due to the difference between the
direction of the tangential velocity of the ring and that of the
adjacent rings. This difference is maximal in the directions
where the ring planes intersect, i.e., exactly where �Hp�r
vanishes. In the above example of the configuration with
b � const, this corresponds to c � �p=2, i.e., perpendicular
to the node line of the rings. The viscous force, being
proportional to the difference in tangential velocities, is
directed at these points perpendicular to the ring plane and
has different signs on different sides of the node line.
Therefore, the corresponding torque Tn is perpendicular to
the plane made by the ring angular momentum and the black-
hole spin axis. In other words, the viscous interaction between
the disk rings leads only to their precession around the black
hole spin.We also note that the viscous torque is proportional
to the difference between the tangential velocities of adjacent
rings, Tn / b dg=dr, and, due to the viscosity coefficient,
Tn / x 2. It is important to note that as soon as the profile
b�r� is formed due to the gravitational torque Tg, Tn also
causes the alignment/misalignment of the ring with the
equatorial plane of the black hole. This happens for the
same reasons by which Tg also starts contributing to the
precession motion, as discussed above.

In addition to giving rise to Tn, the viscosity in a twisted
disk, as in a flat accretion disk, leads to the radial diffusion

transfer of the angular momentum component parallel to the
equatorial plane of the black hole (which is nonzero exactly
for a tilted/twisted disk) toward the disk center due to simple
transport of the accreting matter, and toward its periphery
due to the corresponding angular momentum outflow. In the
case of a relativistic disk, an additional loss of this angular
momentum component occurs due to the thermal energy
outflow by radiation from the disk surface (see Eqn (C6)
in [5]).

All forces participating in the dynamics of twisted disks
appear in the so-called `twist' equationÐ the principal
equation of the twisted disk theory. This equation is derived
and analyzed in what follows.

2.1.1 Weakly perturbed circular equatorial motion: epicyclic
frequency and the frequency of vertical oscillations. In a twisted
disk, the motion of matter outside the equatorial plane of the
Kerr metric is assumed; this motion is not necessarily circular
in the projection onto that plane. Therefore, we first analyze
the properties of free particles moving in orbits slightly
different from circular ones.

We first assume that particles move exactly in the
equatorial plane but in slightly noncircular orbits. The
problem can be solved using relativistic hydrodynamic
equations with zero pressure and by assuming that there is a
small addition to the purely circular velocity. Then, instead of
Eqns (1.63) and (1.64), it is better to use the original equations
in the form

Tik
; k � 0 ; �2:2�

where in the considered case of freemotion,Tik � rUiUk and
r � const. Under the last assumption, the velocity field, as
follows from rest-energy conservation law (1.65), is diver-
gence-free, and Eqn (2.2) is equivalent to the equation

Ui
; kU

k � 0 : �2:3�

From the four-velocity field, we now segregate a small
addition to the main circular equatorial motion and let v i

denote it. The unperturbed motion corresponds to rest in the
projection onto tetrad (1.49)±(1.52) used to construct the flat
accretion disk model, i.e., is given by the four-velocity
Ui

0 � f1; 0; 0; 0g. Substituting the sum Ui
0 � vi in (2.3), we

obtain linear equations for small perturbations of the four-
velocity vi, which is assumed to be a function of t only:

v i; kU
k
0 �Ui

0; kv
k � 0 : �2:4�

Taking into account that Ui
0; k � G i

tk for i � 1; 2, we obtain
the system of equations

v r
;t � G r

tfv
f � Cÿ1=2B

dv r

dt
ÿ 2rÿ3=2vf � 0 ; �2:5�

vf
; t � Gf

trv
r � Cÿ1=2B

dvf

dt
� rÿ3=2

�
1ÿ 1

2

H

C

�
v r � 0 :

�2:6�

It follows that small perturbations of the four-velocity
components in the equatorial plane of the rotating black
hole oscillate in time. For example, v r satisfies the equation

d2v r

dt 2
� 2C

r 3B 2

�
1ÿ H

2C

�
v r � 0 ; �2:7�

4 To make the description as rigorous as possible, it is also important to

add that the noted coincidence of the azimuthal location of maxima of

�Hp�r and r1 occurs only when the action of viscosity on the gas elements

of the ring is neglected.
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which implies that the square of the frequency of these
oscillations, which is the epicyclic frequency by definition,
has the form

� 2 � rÿ3Bÿ2�2CÿH �

� rÿ3
�
1� a

r 3=2

�ÿ2�
1ÿ 6

r
� 8a

r 3=2
ÿ 3a 2

r 2

�
: �2:8�

A somewhat different derivation of � can be found in the
appendix in [26]. It is important to note that (2.8) contains a
derivative with respect to the coordinate time, and therefore
the epicyclic frequency is determined by the clock of an
infinitely remote observer, similarly to circular frequency
(1.16) introduced above. By comparing Eqn (1.17), which
defines the location of the innermost stable circular equator-
ial orbit in the Kerr metric, rms, with (2.8), we infer that
� 2�rms� � 0. For r < rms, the epicyclic frequency becomes
imaginary, and Eqn (2.7) has exponentially growing solu-
tions. This must be so because the free circular motion
around a rotating black hole becomes unstable in this
region. In Section 1.1.3, this result was obtained from the
analysis of the form of the effective centrifugal potential in
which a test particle moves in an equatorial circular orbit.
Nevertheless, we see that rms can be determined alterna-
tively from the calculation of the profile � 2�r� in the Kerr
metric.

It is well known that for Newtonian motion, so-called
Keplerian degeneration occurs when � � O for a noncircular
motion, which causes nonrelativistic orbits to be closed. But
this symmetry is broken for relativistic free motion, and the
epicyclic frequency � differs from O already near a nonrotat-
ing (a � 0) black hole, where its square is

� 2 � rÿ3
�
1ÿ 6

r

�
� O 2

�
1ÿ 6

r

�
< O 2 : �2:9�

The difference between the epicyclic and circular frequencies
results in the well-known effect of the precession of the major
axis of an elliptical orbit. Far away from the horizon of a
Schwarzschild black hole, i.e., for r4 1, the frequency of the
orbit rotation, called the Einstein precession frequency, is
Op � 3=r 5=2.

We now suppose that we rotate together with the test
particle at some radius. When considering the problem in the
projection onto tetrad (1.49)±(1.52), this particle remains at
rest. We now impart a small velocity to it in the direction
perpendicular to the equatorial plane. Equation (1.74) of
hydrostatic equilibrium for a flat disk implies that in our
reference frame, the particle, being in freemotion, is subjected
to acceleration that is proportional to z and tends to return it
to the position z � 0. As a result, the test particle harmoni-
cally oscillates with a frequency whose square is

O l
v

2 � H

r 3C
; �2:10�

where the superscript l reminds us that the frequency is
measured in the reference frame comoving with the particle
in its main circular equatorial motion. To re-express this
frequency as measured by the clock of an infinite observer, as
has been done for both circular and epicyclic frequencies, the
frequency O l

v must be divided by the time dilation factor
(comparing the proper time of the particle and the time at
infinity), i.e., by the t-component of four-velocity (1.14). Then

the square of the frequency of vertical oscillations is

O 2
v � rÿ3Bÿ2H � rÿ3

�
1� a

r 3=2

�ÿ2�
1ÿ 4a

r 3=2
� 3a 2

r 2

�
;

�2:11�

which coincides, for example, with the expression presented in
[27] (see also [28]). Equation (2.11) implies that Ov � O
around a nonrotating black hole. This means that the vertical
and circular motions have the same period, and the total
motion of the particle is again the circular motion in a closed
orbit whose plane, however, is now slightly tilted to the initial
equatorial plane. The situation changes for a 6� 0, because for
Ov 6� O, the orbit is not closed anymore, and the orbital plane
starts precessing around the spin axis of the black hole. The
frequency of the orbital precession is equal to the difference
between the circular and vertical frequencies. For a slowly
rotating black hole with a5 1, the precession frequency of a
slightly tilted orbit is

OLT � Oÿ Ov � r 3=2
�
1ÿ a

r 3=2

�
ÿ r 3=2

�
1ÿ 3a

r 3=2

�
� 2a

r 3
5O : �2:12�

This is simply the angular velocity of frame dragging by the
rotating black hole [see Eqn (1.2)] in the limit a5 1. The
frequency OLT is also referred to as the Lense±Thirring
frequency.

In the most general case, where the test particle deviates
from circular motion simultaneously in the vertical and
horizontal directions, the particle motion in space can be
described by a slightly elliptical orbit, with both plane and
apse line turning with an angular velocity respectively
proportional to the difference between the circular and
vertical frequency and the difference between the circular
and epicyclic frequency. For a5 1, the precession of the
orbital plane then occurs on a timescale much longer than the
dynamical time, tLT 4 td, where tLT � Oÿ1LT (see the discussion
in the preceding section).

2.2 Choice of the reference frame
2.2.1 Themetric.Taking the general conclusions in Section 2.1
into account, we consider slowly rotating black holes, a5 1.
In this case, the linear expansion of the Kerr metric in the
parameter a is sufficient. Then formula (1.1) takes the form

ds 2 �
�
1ÿ 2

R

�
dt 2 ÿ

�
1ÿ 2

R

�ÿ1
dR 2

ÿ R 2�dy 2 � sin2 y df 2� � 4
a

R
sin2 y df dt : �2:13�

Metric (2.13) is identical to that of a nonrotating black hole
written in Schwarzschild coordinates, except for one non-
diagonal term responsible for the Lense±Thirring precession.

Our main purpose in this section is to introduce the
relativistic reference frame that follows the disk twist. The
symmetry of the problem implies that the equations ofmotion
should have the simplest form in such a frame. As in a flat
disk, it is convenient to use some orthonormal noncoordinate
basis. For this basis to follow the disk shape, its two spatial
basis vector should be tangent to the disk symmetry plane. At
each spatial point, we take the basis vectors of the `flat' basis,
which are determined, say, by the equatorial plane of the
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black hole, and turn them by the angles b and g defining the
disk shape. This is done in the simplest way by using a
Cartesian coordinate system with the z axis parallel to the
black hole spin. However, we should first understand which
four-dimensional basis (whose dual tetrad must transform
metric (2.13) into the Minkowski metric) in the flat-space
limit would produce the spatial part described by a Cartesian
coordinate system.

This can be done by changing the radial variable in (2.13),
namely, by passing from R to the so-called `isotropic' radial
coordinate RI:

R � RI

�
1� 1

2RI

�2

: �2:14�

Substituting (2.14) in (2.13) yields

ds 2 �
�
1ÿ 1=�2RI�
1� 1=�2RI�

�2

dt 2 ÿ
�
1� 1

2RI

�4

� �dR 2
I � R 2

I dy
2 � R 2

I sin
2 y df 2�

� 4
a sin2 y

RI�1� 1=�2RI��2
dtdf ; �2:15�

where the second term represents the elementary spherical
volume. Now, it is easy to pass to the Cartesian coordinates
by the change fx � RI cosf sin y, y � RI sinf sin y, z �
RI cos yg. Because R 2

I sin
2 y df� x dyÿ y dx, we have

ds 2 � K 2
1 dt

2 � 2aK1K3�x dyÿ y dx� dt
ÿ K 2

2 �dx 2 � dy 2 � dz 2� ; �2:16�
where

K1 � 1ÿ 1=�2RI�
1� 1=�2RI� ; K2 �

�
1� 1

2RI

�2

;

K3 � 2

R 3
I

1

1ÿ 1=�2RI�2
; �2:17�

which shows that K1;2;3 are functions of RI��x 2�y 2�z 2�1=2
only.

Metric (2.16) generates the dual basis

e t � K1 dt� aK3�x dyÿ y dx� ; ex � K2 dx ;

e y � K2 dy ; e z � K2 dz : �2:18�
We note that basis (2.18) corresponds to observers at rest

in the Schwarzschild coordinates, because their world lines
defined by the condition Ui�e i=ds�f1; 0; 0; 0g correspond
to the equalities dx � dy � dz � 0. Their identical clocks are
synchronized in such a way that in equal time intervals
determined by the vector e t, light travels an equal distance
in any direction defined by a combination of the e x; y; z. If the
observers used the coordinate time t, they would discover, for
example, that the light signal in the azimuthal direction
prograde with the black hole spin travels a larger distance
than in the opposite (retrograde) direction. This follows from
the frame-dragging effect of a rotating black hole and is
equivalent to the well-known tilt of light cones in the
azimuthal direction. Finally, we note that another choice of
the orthonormal basis is possible in principle, which also
compensates the space-dragging effect. Such a basis is called

the frame of locally nonrotating observers, launched in the
azimuthal direction with an angular velocity equal to (1.2);
mathematically, this corresponds to the correction of the
azimuthal basis vector instead of the time one (see [29]).

Below, we need to rotate the spatial part of (2.18) so as to
obtain the dual twisted basis and then the original basis,
which, as we recall, is needed to write the projection of the
hydrodynamic equation. For this, we first introduce twisted
cylindrical coordinates.

2.2.2 Twisted coordinates. We define twisted cylindrical
coordinates ft; r; c; xg such that the condition x � 0 deter-
mines a coordinate plane coincident with the equatorial plane
of a twisted disk. Here, t, r, c, and x are the respective new
time variable and twisted analogs of the radial, azimuthal and
vertical cylindrical coordinates.5 These coordinates were first
introduced in [30, 31]. At each fixed r � const, the angle c is
measured in the positive direction from the ascending node of
the circle x � 0 crossing the equatorial plane of the black hole.
The relation between ft; r; c ; xg and ft; x; y ; zg can be
obtained by a sequence of rotations at each radial distance
by the angles b�r; t� and g�r; t�.

We take the radius vector with coordinates

t
r cosc
r sinc

x

264
375 ; �2:19�

where three spatial Cartesian coordinates are defined in a
frame with the z axis tilted by the angle b�r; t� toward the
black hole spin and the x axis lying in the black hole
equatorial plane and rotated through the angle g�r� relative
to some direction common to all r.

We next perform consecutive rotations of this coordinate
system through the angle b�r; t� about its x axis in the negative
direction and then through the angle g�r; t� about its z axis in
the negative direction. After these two rotations, this
coordinate system transforms into a `flat' Cartesian system
common to all r, with the xy plane coinciding with the
equatorial plane of the black hole. The new coordinates of
the radius vector are then obtained by multiplying (2.19) first
by the matrix

A1�b� �
1 0 0 0
0 1 0 0
0 0 cos b ÿ sin b
0 0 sin b cos b

264
375 ; �2:20�

and then by the matrix

A2�g� �
1 0 0 0
0 cos g ÿ sin g 0
0 sin g cos g 0
0 0 0 1

264
375 : �2:21�

As a result, we obtain the following relation between the
twisted cylindrical and `flat' Cartesian coordinates taken in
the linear approximation in small b:

t � t ;

x � r cos g coscÿ sin g�r sincÿ xb� ;
y � r sin g cosc� cos g�r sincÿ xb� ; �2:22�
z � rb sinc� x :

5 Here and hereafter, r denotes the twisted radial coordinate.
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2.2.3 Tetrad transported by the twist-following observers. We
now pass from `flat' basis (2.18) to the twisted one by rotating
its spatial basis vectors by the twisting angles at each spatial
point. First, we need to perform the rotation strictly opposite
to what we did in Section 2.2.2. This means that we should
take basis (2.18) as a column and first multiply it by thematrix
A2�ÿg� and then by thematrixA1�ÿb�. After that, because we
wish to obtain the basis corresponding to the (twisted)
cylindrical coordinate system, it is necessary to additionally
`advance' the three spatial basis vectors by a further
azimuthal angle c, which is achieved by additional multi-
plication of the basis by the matrix A2�ÿc�.

As a result, we obtain the twisted dual basis that contains
some linear combinations of the `flat' coordinate basis
vectors, fdt; dx; dy; dzg. It remains to express it as linear
combinations of coordinate basis vectors of the twisted
coordinate frame, fdt; dr; dc; dxg. For this, it suffices to
take differentials of the coordinate transformation [given by
(2.22) in the linear approximation in b] and to substitute them
in the twisted dual basis obtained after the rotations. It can be
verified that in the approximation linear in b and a, we have

et � �K1 ÿ arxK3qjU � dt� axK3qj�Zÿ rW � dr
� arK3�rÿ xZ� djÿ arK3qjZ dx ; �2:23�

er � ÿxK2U dt� K2�1ÿ xW � dr ; �2:24�

ej � ÿxK2qjU dtÿ xK2qjW dr� rK2 dj ; �2:25�

ex � rK2U dt� rK2W dr� K2 dx ; �2:26�

where we introduce the new azimuthal variable j �
c� g�r; t� and pass to partial derivatives with respect to the
corresponding new coordinates.

We also introduce new variables characterizing the disk
geometry:

C1 � b cos g ; C2 � b sin g ; �2:27�

and from now on use them instead of the angles b and g.
Additionally,

Z � b sinc � C1 sinjÿC2 cosj ; U � _Z ; W � Z 0 ;
�2:28�

where partial derivatives with respect to t and r are denoted
by the dot and the prime.

It follows that for b � g � 0 and after passing to the
Cartesian coordinates, basis (2.23)±(2.26) is transformed into
the flat basis (2.18).

As discussed above, observers transporting basis (2.18)
are at rest in the Schwarzschild coordinates. On the contrary,
observers corresponding to basis (2.23)±(2.26) move in space
by following the changing shape of the twisted disk (in the
nonstationary dynamics).

As we have seen in Section 1, the original basis onto which
hydrodynamic equations are projected is obtained by invert-
ing the dual basis matrix. Using (2.23)±(2.26), in the
approximation linear in b and a, we have

et � 1

K1

�
qt � xU qr � x

r
qjU qj ÿ rU qx

�
; �2:29�

er � 1

K2

�
ÿ ax

K3

K1
qjZ qt � �1� xW � qr

� x
r
qjW qj ÿ rW qx

�
; �2:30�

ej � 1

K2

�
ÿ a

K3

K1
�rÿ xZ� qt ÿ ax

K3

K1
rU qr

�
�
1

r
ÿ ax

K3

K1
qjU

�
qj � ar

K3

K1
rU qx

�
; �2:31�

ex � 1

K2

�
ar

K3

K1
qjZ qt � qx

�
: �2:32�

With the original and dual bases now available, using the
algorithm presented in Section 1.2.1, we can calculate the
connection coefficients. This very cumbersome but straight-
forward procedure yields the following nonzero connection
coefficients in the linear approximation in b and a:

Gtrt � K 01
K1K2

; Gtrj � K3

K 2
2

�
1ÿ 1

2
�rÿ xZ �K4

�
;

Gtrx�ÿa K3

K 2
2

qjZ
�
1ÿ 1

2r
�r 2 � x 2�K4

�
; Gtjr � ÿGtrj ;

Gtjx � a
K3

K 2
2

�
Z� x

2r
�rÿ xZ�K4

�
; Gtxt � x

r

K 01
K1K2

;

Gtxr � ÿGtrx ; Gtxj � ÿGtjx ;

Grjt � x
r

1

K1
qjUÿ Gtrj ; Grjr � x

r

1

K2
qjW ;

�2:33�

Grjj � �rK2�0
rK 2

2

ÿ ax
K3

K1K2
qjU ; Grxt � U

K1
ÿ Gtrx;

Grxr � W

K2
ÿ x

r

K 02
K 2

2

; Grxj � ÿar K3

K1K2
U ;

Grxx � K 02
K 2

2

; Gjxt � 1

K1
qjUÿ Gtjx ;

Gjxr � 1

K2
qjW ; Gjxj�ÿ x

r

K 02
K 2

2

ÿ ar
K3

K1K2
qjU ;

where K4 � �K3=K1��K1=K3�0. The other nonzero Gi j k, as
usual, can be obtained by taking their antisymmetry in the
first two indices into account.

It follows that basis (2.29)±(2.32), together with connec-
tion coefficients (2.33), is the sum of two parts: the main one
that persists at b � 0 and a small additional one proportional
to b. In what follows, we conventionally let B0 and B1 denote
these parts.

2.3 System of twist equations
2.3.1 Projection of dynamical equations onto the twisted basis
for a thin disk.
Separation of equations into two systems describing a flat disk
and a twisted disk. We take the relativistic hydrodynamic
equations in the original form

Tik
; k � 0 ; �2:34�

where the stress±energy tensor and its components are
presented in Section 1.2.3. Equations (2.34) should now be
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projected onto twisted basis (2.29)±(2.32). To perform this,
we assume that b5 1. In other words, mathematically we
regard the twist of the disk as a small perturbation of its
`ground' state, i.e., of the model of a flat disk, also referred to
as the background. It is important that the appearance of a
twist gives rise to new terms in the equations not only due to
the bending of the basis but also due to the appearance of
additional perturbations of physical quantities themselves
that enter the stress±energy tensor, including the density,
pressure, and four-velocity.

For a twisted disk, instead of (2.34), we can writeÿ�T0
ik � T1

ik�; k
�
0
� ÿ�T0

ik � T1
ik�; k

�
1
� 0 ; �2:35�

where T0
ik corresponds to the background state and T1

ik is a
small Eulerian perturbation of the stress±energy tensor. The
indices 0 and 1 that follow the notation of the covariant
derivative mean that the derivative is taken in the bases B0

and B1.
The action of the covariant derivative with the index 0,

evidently, yields 0, because these are equations for the
background:ÿ

T0
ik

; k

�
0
� 0 : �2:36�

In the linear approximation in b, we find the twist equationsÿ
T1

ik
; k

�
0
� ÿT0

ik
; k

�
1
� 0 : �2:37�

We assume that in a twisted disk, the four-velocity,
pressure, rest-mass energy density, internal energy, viscosity
coefficient, and energy flux density, defined in accordance
with their standard meaning (see Section 1.2.3), are given by

Ui�Ui
0 � v i ; p � p0 � p1 ; r � r0 � r1 ; E � E0 � E1 ;

Z � Z0 � Z1 ; qi � qi0 � qi1;

where the indices 0 and 1 denote respective quantities related
to the background and perturbations; v i are perturbations of
the four-velocity. 6

Thus, Tik
0 is the stress±energy tensor that contains only

unperturbed values in accordance with definition (1.59), and
its perturbation has the form

Tik
1 � w1U

i
0U

k
0 � w0�v iUk

0 �Ui
0v

k� ÿ p1Z ik � 2Z1s
ik
0

� 2Z0s
ik
1 ÿUi

0q
k
1 ÿUk

0 q
i
1 ÿ v iq k

0 ÿ v kq i
0 ; �2:38�

where w0 � r0 � E0 � p0 is the background enthalpy and
w1 � r1 � p1 � E1 is its perturbation.

In addition, s ik
0 is the shear tensor that contains only

unperturbed quantities in accordance with definition (1.60),
and s ik

1 is its perturbed part of the form

s ik
1 �

1

2

��v i
; j�0Pjk

0 � �v k; j�0P ji
0

�ÿ 1

3
�v j

; j�0Pik
0

� 1

2

��U0
i
; j�0P jk

1 � �U0
k
; j�0P ji

1

�ÿ 1

3
�U0

j
; j�0Pik

1

� 1

2

��U0
i
; j�1P jk

0 � �U0
k
; j�1P ji

0

�ÿ 1

3
�U0

j
; j�1Pik

0 ; �2:39�

where Pik
0 is the projection tensor that contains only

unperturbed quantities in accordance with definition (1.61),
and its perturbation is written as Pik

1 � ÿUi
0v

k ÿUk
0 v

i.
Everywhere below, we omit the index 0 for the unper-

turbed variables. In addition, the viscous part of the stress±
energy tensor in the disk is marked with nwherever necessary:
Tik
n � 2Zs ik.

Additional relations used to write the equations. The relations
given below are valid through terms of the order / d 2, which
is sufficient for the theory of twisted disks in the leading order
in the small parameter d. In deriving these relations, such a
simplification enables us to assume that in the background
solution, onlyU t andUj are nonzero, whileUr / d 2, andUr

can be temporarily set equal to zero.
We first note a relation between the components U t and

Uj to be used below,

�U t�2 � �Uj�2 � 1 ; �2:40�

which follows from the expression for the norm of the four-
velocity in an orthonormal basis. Constraint (2.40) is also
useful in the differential form:

U t dU t � Uj dUj : �2:41�

Next, because the normalization of the four-velocity is
also valid in the twisted disk, and the four-velocity perturba-
tions are small, in the linear approximation we have

�U t � v t�2 ÿ �Uj � vj�2

� �U t�2 � 2U tv t ÿ �Uj�2 ÿ 2Ujvj � 1 ;

and hence, with (2.40), v i is `orthogonal' to Ui:

U tv t � Ujvj : �2:42�

Finally, from the condition that s ik is space-like, we have

s rtU t � s rjUj ;

and thus, in the basis B0 used in this section, in the flat disk
model, not only Trj

n but also Trt
n is nonzero in the order in d

that is of interest to us here:

Trt
n �

Uj

U t Trj
n : �2:43�

We note that in basis (1.49)±(1.52) comoving with the
azimuthal motion, only the component Trj

n was nonzero
[see (1.72)].

Equation of free azimuthal motion.The quantities correspond-
ing to the background model and entering twist equations
(2.37) should be obtained separately from Eqns (2.36). For
this, it suffices to use the results in Section 1 taking only the
transition from basis (1.49)±(1.52) to the basis B0 into
account.

Nevertheless, when deriving the twist equations, it is also
necessary to use some of equations (2.36) written exactly in
the basis B0. We mean the r- and x-projections of these
equations in the leading order in the small disk thickness,
which, as we know, describe its azimuthal rotation in the
equatorial plane of the black hole and its vertical hydrostatic
equilibrium. We emphasize that these relations are valid for

6 To shorten the equations, we omit the term with the second viscosity z:
using the analysis given below, it can be shown that this term does not

contribute to the final equations in the leading order in the small

parameters of the problem.
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both stationary and nonstationary accretion flows for any
viscosity parameterization, as well as for any specific vertical
and radial structure of the flow. Only the condition d5 1 is
important.

At the first stage of deriving the twist equation, we need
only the r-projection of (2.36). Setting Tik � rUiUk, we
obtain Trk

; k � 0, which yields

K 01
K1
�U t�2 � a

K3

K2
�2ÿ rK4�U tUj ÿ �rK2�0

rK2
�Uj�2 � 0 :

�2:44�

Exactly this combination (2.44) is used in the derivation;
however, it can be verified that together with (2.40) in the
approximation linear in a, it gives the solution

Uj � �rS ÿ 3�ÿ1=2ÿ1ÿ ar
ÿ1=2
S �rS ÿ 3�ÿ1� ; �2:45�

where we have passed to the Schwarzschild radial coordinate
rS that is equivalent to r that we used in Section 1 in the
expression forUj

g [see formula (1.14)]. It is easy to verify that
Uj

g � Uj=rS, as must be the case with the transition from the
coordinate basis to B0 taken into account.

`Gauge' condition of the twisted frame. The principal kine-
matic constraint for the twisted reference frame requires a
constant vertical position of fluid particles:

dx
dt
� 0 ; �2:46�

which is provided by fast establishment of hydrostatic
equilibrium across the disk compared with the dynamical
time of the twist change, as discussed in Section 2.1. However,
as was already noted in [32], an important point is that this
does not mean that the projection of the four-velocity of the
fluid onto ex is also zero, because our basis is noncoordinate
and its basis vectors are not tangent to coordinate lines.

By definition,

v x � e x

ds
:

Using (2.26), we have

v x � rK2U
dt
ds
� rK2W

dr

ds
;

we should substitute dt=ds and dr=ds in this relation in the
zeroth order in b, in other words, in the form of quantities
corresponding to the flat disk dynamics. Expressions for e t,
ej, and e r at b � 0 give

dt
ds
� 1

K1

�
U t ÿ ar 2K3

dj
ds

�
;

dr

ds
� Ur

K2
;

dj
ds
� Uj

rK2
;

�2:47�

where by definition Ui � e i=ds. As a result, we obtain

v x � rU tK
K2

K1
U� rUrW ; �2:48�

where

K � 1ÿ ar
K3

K2

Uj

U t :

In (2.48), the velocity components U t and Ur should be
taken from the corresponding background solution for a
flat disk.

Explicit form of the system of equations for a twisted disk.
Now, using (2.40)±(2.48), wewrite Eqns (2.37) in explicit form
by keeping only the terms of the leading order in the two small
parameters d and u � td=tev

7. Here, we take into account that
quantities of `thermal' origin in the background solution are
small, i.e., p, e, Z/d 2r, and q x/d 3r, q r;j/d 4 (see Section 1).

We postpone discussing the effects of the fluid nonideality
for a while. We note that this not only corresponds to the
vanishing of terms with a viscosity coefficient and energy flow
density or their perturbations but also means the absence of
contributions / Ur. To select the leading-order terms in the
ideal fluid approximation, we start with considering second
terms in the t-, r-, andj-projections of (2.37). It turns out that
such terms are proportional to db here, and in the r-projection
of (2.37), this contribution is due to the projection of the
vertical pressure gradient onto the orbital plane of motion of
matter in the twisted disk (see the analysis in Section 2.1,
where this quantity was denoted by �Hp�r). In addition, the
t- and j-projections of (2.37) involve terms / dÿ1ub, which
should also be kept. On the other hand, the first terms in the
t-, r-, and j-projections of (2.37) give rise to terms containing
Eulerian velocity perturbations v t; r;j, as well as the Eulerian
rest-mass energy density perturbation r1. We hence conclude
that

v t; r;j / max fd; dÿ1ug b; r1 / max fd; dÿ1ug rb :
�2:49�

In addition, for reasons that become clear below, we
temporarily keep partial derivatives of v i and r1 with respect
to time, despite their being uÿ1 times smaller that the
quantities themselves. Finally, the first terms of the t- and
j-projections of (2.37) also contain terms with the combina-
tion qxrv x, whose amplitudes are restricted by the order
/ max fd; dÿ1ug b by Eqn (2.48).

Now, using result (2.49), it is easy to select the leading
terms entering the t-, r-, andj-projections of (2.37) due to the
fluid nonideality. The most troublesome here is the contribu-
tion due to the shear tensor perturbations, 2Zs ik

1 , which
appears in Tik

1 [see (2.38) and (2.39)]. However, most of the
terms from this contribution contain Z / d 2 and v i / db
simultaneously; therefore, it is clear that only the terms in
which the derivative with respect to x (lowering the order in d)
occurs twice must be kept. This fact strongly reduces the
number of `viscous' terms to be kept. Besides, by similar
considerations, the final expressions does not contain terms
with q, q1, and Z1. Finally, we stress once again that in
addition to the purely `viscous' terms mentioned above, the
contribution due to the radial advection that appears in the
background solution with nonzero viscosity should not be
forgotten.We are concerned with the terms that can appear in
the `nonviscous' part of the stress±energy tensor [see the first
term in (1.59)] due to the nonzero value of Ur / d 2.

Taking all the above into account and using relations
derived in three preceding sections, we obtain the t-, r-, and

7 As we discussed above, the smallness of td=tev is necessary to ensure that

the accretion flow outside the equatorial plane of the black hole can be

regarded as a `disk'. In turn, this is jointly ensured by the smallness of both

d and td=tLT 5 1 (see Section 2.1.1).
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j-projections of (2.37) in the form
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where

K � 1ÿ ar
K3

K2

Uj

U t ;

and F t; r;j
n is the total contribution due to nonzero viscous

forces and the radial advection of matter in the background
solution / Ur. Explicitly,

F t
n �

Uj
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where
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rK2

�0
:

We note that Trx
n and Tjx

n have the meaning of perturba-
tions of the viscous stress tensor. In these expressions, the
terms / b contributing to the shear tensor perturbations
appear due to the twisted basis. Conversely, Trj

n relates to
the background. Nevertheless, for brevity, we use the same
notation with the index n for these two quantities. Finally, we
assume in (2.50)±(2.54) that in the relativistic coefficients K1,
K2, and K3, the argument RI is replaced by r, because

R 2
I � r 2 � x 2 and accounting for the dependence on x here

always gives rise to a small correction / d 2 only.
It remains to write the explicit form of the x-projection

of (2.37). We start with the contribution of terms in the ideal
fluid approximation, and first rearrange the first term in
(2.37). The leading-order terms in d here are, in particular,
rvj and r1, but additionally multiplied by x. This means that
their amplitudes are restricted by the order max fd2; ug b.
Moreover, v x now enters the term Ujrqjv x, which also
implies an increase in the order of smallness by d compared
to (2.50)±(2.52) (it can be seen that v x enters formulas (2.50)
and (2.52) in combination with qxr). In addition, of all terms
of a `thermal' origin, we must now keep the term with qxp1,
because it is also of the order d 2 due to p1 � d 2r1 / rd 3b.

Turning now to the second term in the x-projection of
(2.37), we write all terms through the order max fd 2; ug b.
From similar considerations, the terms due to the fluid
nonideality (including the `advective' terms proportional to
Ur) are also kept here, with their smallness increased by the
coefficient d compared to what we had in (2.50)±(2.52).

We thus obtain the equation
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where
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and T
rj
adv � rUjUr. We do not provide the explicit form of

T xx
n here because it is not required in the final form of the twist

equations.
Everywhere in (2.55) and (2.56) except in the second term

in square brackets in the right-hand side of (2.55), the
argument RI in the relativistic coefficients K1, K2, and K3 is
replaced by r. The mentioned term is an exception because
this term alone has the zeroth order in the small parameters d
and u in Eqn (2.55). But because we have kept the terms
/ max fd 2; ug in (2.55), in the term under discussion it is
necessary to take corrections / d 2 into account due to the
dependence of the relativistic coefficients K2 and K3 on x. We
did not do that for the reason discussed in the next paragraph.

2.3.2 Completing the derivation of twist equations. We have
written the twist equations in the leading orders in small
parameters d and u. All corrections linear in the Kerr
parameter a were taken into account. If we temporarily set
a � 0 and consider Eqn (2.55), we see that on the one hand, it
contains terms proportional to the rate of change of the disk
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twist, / U, and on the other hand, it has terms containing
perturbations of the physical quantities of the order / d 2.
Thus, we can say that only due to the internal forces does a
thin twisted disk evolve on a long timescale such that u � d 2.
It then becomes totally clear that Eqn (2.50)±(2.52) are
restricted by the order / d, and Eqn (2.55) is restricted by
the order / d 2.

At the same time, when the parameter a is nonzero, a
`large' term of the zeroth order in d and / aZ arises in the
right-hand side of (2.55). This term describes the gravitomag-
netic interaction of the rotating black hole with the tilted/
twisted disk. In order that all terms in (2.55) be balanced, we
must assume that a � d 2. But it then becomes clear that all
additional corrections� a in Eqns (2.50)±(2.52) have the next
order in d and can be omitted. The same relates to all terms
/ ad 2 in Eqn (2.55), including the correction / d 2 due to the
dependence of the relativistic coefficients on RI in the
gravitomagnetic term itself.

In fact, this means that when considering the dynamics of
a twisted thin accretion disk near a rotating black hole, it
suffices to use the background model, i.e., the corresponding
flat disk in the Schwarzschild metric with a � 0. The
assumption of the slow black hole rotation itself was needed
because otherwise the accretion flow (including the nonsta-
tionary one) could not be regarded as a disk, since the vertical
hydrostatic equilibrium there would be violated (see Sec-
tion 2.1). Of course, these conclusions pertain to only slightly
tilted/twisted and geometrically thin disks with b5 1 and
d5 1.

In what follows, we therefore set a � 0 in all terms except
the gravitomagnetic one. This significantly simplifies the
calculations that are required for obtaining the twist equa-
tions in the final form.We first analyze Eqns (2.50) and (2.52).
It is convenient to consider their combinations that contain
either _r or _vj.

Eliminating _vj at a � 0, we obtain the equation

Ujqjr1 �
1

�U t�2 rqjvj �U t
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2

q
qr

�
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jx
n ÿ rWqxTrj
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where we have omitted the term _r1, which is of the next order
in d compared to the other terms. In the Newtonian limit
r!1, Eqn (2.57) reduces to the continuity equation for
perturbations.

Next, eliminating _r1 at a � 0,8 we obtain the equation
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r
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In the Newtonian limit, (2.58) reduces to the azimuthal
component of the Navier±Stokes equation for perturbations.

Finally, (2.51) with a � 0 takes the form
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r
qjv r ÿ 2
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r
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qxp
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In the Newtonian limit, (2.59) reduces to the radial compo-
nent of the Navier±Stokes equation for perturbations.

It is important to explain why we have kept terms with _v r

and _vj in Eqns (2.58) and (2.59) although they are of the next
order in d. As mentioned in Section 2.1, in the Newtonian
limit, the epicyclic frequency becomes equal to the Keplerian
circular frequency, which results in a resonance growth of the
amplitude of velocity perturbations of gas elements in the disk
under the action of the radial projection of the vertical
pressure gradient �Hp�r, which is limited only by the
viscosity. Mathematically expressed, in the limit of an
inviscid Keplerian disk, Eqn (2.58) yields in the leading
order in the parameter u (with the terms / _vj omitted) such
a relation between v r and vj that the sum of the second and
third terms in (2.59) vanishes. But because there is a term/ db
in the right-hand side of (2.59), it follows that _v r (and hence
_vj as well) acquires the first order in d in the considered case.
Either viscosity or relativistic corrections eliminate the
Keplerian resonance, and the amplitudes of _v r and _vj

decrease again to the third order in d.
Now, from Eqn (2.55), we need to derive the so-called

twist equation that plays the principal role in the twisted disk
theory. For this, we need to explicitly determine qxp=r, which
is done in the next section. Although the Schwarzschild
approximation is sufficient, we also take linear corrections
in a into account. This is required below in obtaining an
additional expression for the Lense±Thirring frequency in
terms of the relativistic coefficients used in the twisted basis.

Equation of the vertical hydrostatic equilibrium. We write the
x-projection of Eqn (2.36) in the basis B0 in the leading order
in d, as we did in Section 1 using basis (1.49)±(1.52) [see
Eqn (1.74)]. Taking into account that the four-velocity of the
flow is fU t; 0; Uj; 0g in the leading order in d, we obtain the
equation

qxp
r
� x

r
�Uj�2

�
K 02
K2
ÿ
�
U t

Uj

�2

� ar
K3K4

K2

U t

Uj

�
; �2:60�

where U t and Uj satisfy normalization condition (2.40) and
geodesic equation (2.44). With this in mind, we arrive at the
final form of the hydrostatic equilibrium equation

qxp
r
� ÿ x

r

�Uj�2
r

�
1ÿ 2ar

K3

K2

U t

Uj

�
; �2:61�

where the Schwarzschild profiles ofU t andUj are used in the
term with the parameter a.

It can be verified that with the substitution x! z=K2,
Eqn (2.61) is equivalent to (1.74) in the linear approximation
in a. Here, we should only take into account that rS � K2r,
where rS is the Schwarzschild coordinate, equivalent to the
coordinate r in (1.74).

Twist equation.Our goal is to rewrite (2.55) in divergent form.
Without the gravitomagnetic term, Eqn (2.55), in which we
also set a � 0, must respect the conservation law of the
angular momentum projection of the twisted disk onto the
equatorial plane of the black hole (the conservation of the
disk angular momentum projection onto the black hole spin
in our problem, linear in b, follows from equations for the
background, because the corrections due to the small tilt are
proportional to 1ÿ cos b � b 2), which reflects the spherical
symmetry of the Schwarzschild metric.8 a � 0 also in the expression for Tjx

n .
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This requires eliminating vj and r1 from the left-hand
side of (2.55). Therefore, we use Eqns (2.57)±(2.59) with
_v r � _vj � 0 for our purposes, because we do not deal with
resonance combinations of v r and vj that vanish in the
leading order in u in the Keplerian inviscid limit [see the
comment on Eqns (2.58) and (2.59) above].

First, in the right-hand side of (2.57), we rewrite the term
with qjW through v r and vj using (2.59) and (2.61) with
a � 0. In the resulting expression for r1, we replace v

j using
(2.58). Here, the derivative with respect toj can be eliminated
using the harmonic dependence on j [see (2.28)]. In other
words, qjj � ÿ1. Substituting the obtained expressions for
r1 and vj in (2.55), integrating over x, and performing
integration by parts wherever necessary using the fact that
the corresponding surface terms vanish as r! 0, we arrive at
the compact equation
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jrqjv r � r 2K1K
3
2T

rx�	 ;
�2:62�

where, as usual, S � � r dx is the surface density of the disk
and the bar over Trj means that it is integrated over x. In the
appendix of [5], it is shown that (2.62) can be used to obtain
the angular momentum conservation for the twisted disk.

Equations (2.58), (2.59), and (2.62) represent a closed
system of equations describing the dynamics of twisted
configurations as long as the corresponding model back-
ground is specified. Unknown variables in this system
include the velocity perturbations v r and vj and the quantity
Z characterizing the disk geometry. We emphasize that in
deriving these equations, we essentially used only three main
assumptions: a5 1, d5 1, and b5 1. This means that the
equations describe the dynamics of any geometrically thin
accretion flow (disk) with any parameterization of viscosity
and any radial and vertical structure in both the stationary
and nonstationary cases. In the second case, we mean the
nonstationary background: the equations determine not only
the dynamics of twisted perturbations propagating in a
stationary flat disk but also the dynamics of twisted rings/
tori, when the evolution of the geometrical shape occurs in
parallel with its expansion in the radial direction due to
turbulent viscosity, which also results in the evolution of the
background itself.

Once again about the characteristic frequencies of the problem.
In Section 2.1.1, we already obtained relativistic expressions
for the characteristic frequencies of the problem. These
include the circular and epicyclic frequencies of free equator-
ial motion, as well as the frequency of vertical oscillations and
the precession frequency of tilted orbits. Here, we wish to
obtain expressions for these frequencies, but now in terms of
the values used above to construct the theory of twisted disks,
i.e. in the basis B0. These expressions are needed in writing the
twist equations in a more compact form.

The circular frequency of the free equatorial motion as
measured by the clock of an infinitely remote observer, which
we already presented in Eqn (1.16), can be obtained simply by
dividing dj=ds by dt=ds given in (2.47). We obtain

O � K1

KK2

Uj

rU t : �2:63�

Using (2.45) and (2.40), and also remembering that rS � rK2,
we verify that (2.63) coincides with (1.16) in the linear
approximation in a.

We now consider small vertical deviations from the
circular equatorial motion. We discussed in Section 2.1.1
that the frequency of vertical oscillations measured by an
infinitely remote observer, Ov, is the locally measured
frequency Ol divided by the t-component of the four-velocity
of circular motion, Ut

g. The frequency l explicitly enters the
equation of hydrostatic equilibrium [see Eqn (1.74) or
equivalent equation (2.61) with the substitution x! z=K2].
Using relations (2.47), we expressUt

g � dt=ds in terms ofU t:

Ut
g � KKÿ11 U t ;

whence

Ol � Ov
KU t

K1
� Uj

rK2

Ov

O
; �2:64�

where the final expression was obtained using (2.63). But
then, from a comparison of (2.64) and (2.61), we see that

Ov � O
�
1ÿ ar

K3

K2

U t

Uj

�
; �2:65�

where the Schwarzschild profiles for U t and Uj are used in
the term with the parameter a. Using (2.12), we now obtain
the Lense±Thirring frequency

OLT � a
K1K3

K 2
2

: �2:66�

It is sufficient for our purposes to know the epicyclic
frequency in the Schwarzschild case with a � 0. This expres-
sion can be most easily derived directly from the twist
equations, more precisely, from that part that describes the
dynamics in the plane of disk rings, i.e., from (2.58) and
(2.59). Setting the `viscous' terms and radial projection of the
pressure gradient in the right-hand side of (2.59) equal to zero,
as well as omitting the dependence of v r and vj on j, we
obtain equations for Eulerian perturbations that describe a
free motion of gas elements slightly deviating from the
circular motion. Clearly, these equations are equivalent to
(2.5) and (2.6), which were written in bases (1.49)±(1.52).
From these equations, we obtain the equation for v r:
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K1K
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1
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qrUj
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�Uj�2

�
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where the expression before v r is equal to � 2. It can be
rewritten in a more compact form

� 2 � 2
K 01�K1U
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K 2

2U
t�Uj�2 �2:68�

to ensure that it coincides with (2.9), considering that the
radial Schwarzschild coordinate rS � rK2 enters the last
equation.

Finally, for convenience, we introduce another quantity
with the dimension of frequency that appears in our problem.
In the Schwarzschild case a � 0,

~O � K 01
K2

1

U tUj �
rS ÿ 3

r 2S �rS ÿ 2�1=2
; �2:69�

which tends to the Keplerian value in the Newtonian limit.

548 V V Zhuravlev Physics ±Uspekhi 58 (6)



Using (2.63), (2.68), and (2.69) allows us to write
Eqns (2.58) and (2.59) in a more compact form. Lense±
Thirring frequency (2.66), evidently, enters the gravitomag-
netic term in (2.62). However, we deal with this rewriting in
the next section when considering a specific background
model.

2.3.3 Twist equations in the particular case of a stationary
vertically isothermal a -disc. We now consider the form the
twist equations take in the specific background of a stationary
a-disk, which we discussed in Section 1. This does not mean,
however, that only stationary twisted solutions are to be
considered. In other words, the equations that we obtain are
also applicable to arbitrary nonstationary dynamics of the
corresponding twisted disk. For example, they enable us to
calculate the evolution of the shape of an (infinite) initially
flat disk momentarily tilted to the equatorial plane of a
rotating black hole. The initial stage of the evolution of such
a disk was qualitatively described in Section 2.1. In addition,
these equations describe the wave-like (for a disk with
sufficiently small a < d; see also [33]) or diffusion-like (for a
disk with sufficiently large a > d; see also [34]) dynamics of
some twisted perturbation imposed on the disk lying initially
in the equatorial plane of the black hole.

Explicit form of the required background profiles. The twist
equations contain the quantity �Trj

n (as well as �Z) related
to the corresponding flat disk model. We could obtain the
explicit form of these quantities by integrating the t- and
j-projections of Eqn (2.36). But it is simpler to use the
results in Section 1, where we have already obtained this
quantity, denoted by Tn there [see Eqn (1.90)]. We should
only take into account that now we are working in another
basis than that used for the flat disk, and therefore the
transition from Tn to �Trj

n should be specified. First, using
the orthogonality of the shear tensor and hence of viscous
stress tensor (1.66), we see that only one component of the
viscous stress tensor, Trj

n
0, is nonzero in basis (1.49)±(1.52),

because the four-velocity there has only a nonzero time
component up to the terms / d 2. The prime here marks
basis (1.49)±(1.52). Further, the (orthonormal) bases are
different only in that the observers associated with basis
(1.49)±(1.52) move in the azimuthal direction with the
velocity of the free equatorial circular motion, whereas the
basis B0 corresponds to observers at rest. Therefore, the
transformations of vectors and tensors must be equivalent
to the usual Lorentz transformations. Using [35] (see
exercise 1, paragraph 6 there), we see that Trj

n � U tTrj
n
0,

where U t is the Lorentz factor of azimuthal motion.
Finally, we must additionally take into account that the
integration over x differs from that over z by the coefficient
K2. As a result, we obtain

�Trj
n �

U t

K2
Tn : �2:70�

We note that it is possible to pass from Trj
n
0 to Trj

n using
relation (1.34) by writing it for two bases, equating the
right-hand sides, and then multiplying one of the sides of
the obtained equalities by matrices inverse to the basis
matrices there. Here, we should only take into account
that in the basis B0, the radial coordinate was changed in
(2.14), i.e., that rS � rK2 in the notation in this part of the
paper.

Next, in the case a � 0, which is sufficient here, it is
easy to express Tn in terms of elementary functions. Indeed,
the integral in (1.90) can be taken by the substitution
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For �Trj, we then use (2.70) to finally obtain
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As it must be, L � 0 at rS � 6. We note that L � Y�a � 0�,
where Y was defined in (1.101).

On the other hand, the expression for s rj in (1.72), in our
case a � 0 in the basis B0, can be rewritten in the form
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where, as usual, we use relations (2.47). Then
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As in Section 1.3.6, equating expressions (2.71) and (2.73),
we obtain
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In the Newtonian limit, far away from the inner edge of the
disk, Eqn (2.74) gives the well-known result �Z � _M=�3p�.

We assume that the kinematic viscosity is proportional to
the characteristic disk half-thickness times the sound velocity
in the disk:

n � acshp ; �2:75�

where hp is the proper characteristic half-thickness of the disk,
which in our coordinate system is hproper � K2h, and a is the
Shakura parameter, which is assumed to be constant. Because
(2.61) implies that cs �

���������
P=r

p � Ujh=r, we finally determine
a from the equality

n � aK2U
jh 2

r
: �2:76�

Using (2.74) and (2.76), we obtain the relation
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To findUr in the advective term in (2.62), we use the rest-
energy conservation law in the basis B0 for the stationary
disk. Again, we use result (1.86). Recalling the transition to
the isotropic radial coordinate, the relation between the
coordinate and physical velocities (1.47) and (2.47), and the
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difference in the definitions of S, we obtain

ÿ
_M

2p
� SK1K

2
2 rU

r : �2:78�

Then Ur can be derived from (2.78) and (2.77) as

Ur � ÿ 3a
2

d 2

L
K 2

1U
t�Uj�2

��������
K2r

p
: �2:79�

Finally, we need to know the profile d�r�.We note that this
quantity is invariant under the transition between the bases
(1.49)±(1.52) andB0, since the change from hp to h and from rS
to r is scaled with the same coefficient K2.

In a gas-pressure-dominated disk with the Thomson
scattering opacity, it follows from (1.103) with a � 0 that

d�r� � d�K
1=2
1 K

1=20
2 �U t�ÿ9=10L 1=5r 1=20 : �2:80�

To derive a simpler form of the twist equations, we need to
specify the vertical profile of the rest-energy density. Here, we
use its simplest form in an isothermal disk:

r � rc exp
�
ÿ x 2

2h 2

�
; �2:81�

where rc�r� is the equatorial density.

Transition to complex amplitudes. In the case of an isothermal
disk, the velocity perturbations v r and vj taken in the form

vj�x�A1 sinj�A2 cosj�; v r�x�B1 sinj�B2 cosj�
�2:82�

satisfy Eqns (2.58) and (2.59) if n does not change with the
height, and the amplitudesA1,A2, B1, andB2 are functions of
r and t. Indeed, in this case, all `thermal' terms are / x, and
the dependence on x with ansatz (2.82) is identically satisfied
in the considered equations.

We introduce the complex amplitudes

A � A2 � iA1 ; B � B2 � iB1 ;

W � C1 � iC2 � b exp �ig� : �2:83�
By composing two combinations, (2.58)� i qj(2.58) and
(2.59)� i qj(2.59), we see that all terms in these combinations
are / exp �ÿij�. In particular, the terms containing W and
qjW pass into the terms respectively containing
ÿiW 0 exp �ÿij� andW 0 exp �ÿij�.

As a result, we obtain the complex equations

_Aÿ �iÿ a�OA� �
2

2~O
B � ÿ 3

2
iaK1�U t�2UjOW 0 ; �2:84�

_Bÿ �iÿ a�OBÿ 2~OA � ÿ�i� a�UjOW 0 ; �2:85�

where we have used Eqn (2.76) as well as expressions for
frequencies (2.63), (2.68), and (2.69) obtained in Section 2.3.2.

In a similar way, by using (2.82) and (2.83) and composing
the combination (2.62)� i qj(2.62), we derive an equation for
complex amplitudes. In the right-hand side of this equation,
the integration over x should be performed under the
derivative with respect to r. For an isothermal disk with
density distribution (2.81), the equality

�
rx 2 dx � Sh 2 holds.

Hence, the derivative with respect to r acts on terms
proportional to Sh 2 or �Z. Instead of the combinations
mentioned above, we substitute Eqns (2.77) and (2.74) there
and group common constant factors before the derivative
with respect to r. Additionally, instead of Ur and �Trj, we
substitute expressions (2.79) and (2.71) in the left-hand side of
the discussed equation and then divide the equation byS. The
obtained equation contains _M and S only in the combination
_M=S, which we express through d 2 and other known
quantities using (2.77). Also using the expression for Lense±
Thirring frequency (2.66), we finally arrive at the equation

_Wÿ iOLTW� 3

2
ad 2 K 2

1

K2
Uj
�
U t ÿ K1�rK2�1=2 Uj

L

�
W 0

� d 2K 3
1U

j

2r 1=2K
3=2
2 L

q
qr

�
r 3=2K

1=2
2

L

K 2
1U

tUj

��i�a�B� aUjW 0�� :
�2:86�

Equations (2.84)±(2.86) form a closed system of equations
for A, B, and W as functions of r and t. In the weak gravity
limit, they reduce to Eqns (30), (31), and (33) in [36].

2.4 Stationary twisted disk
2.4.1Main equation and boundary condition.We now consider
stationary solutions of the system of equations (2.84)±(2.86).
The main goal of this section is to calculate the shape of a
stationary twisted disk.

We set _A � _B � _W � 0. After eliminating A from (2.84),
(2.85), we obtain�

1� � 2

�iÿ a�2 O 2

�
�iÿ a�OB

�
�
�i� a�UjOÿ 3ia

iÿ a
K1�U t�2Uj ~O

�
W 0 ; �2:87�

whence we express B through W 0 and substitute it in
Eqn (2.86). We thus obtain the equation

K1

r
1=2
S L

d

drS

�
r
3=2
S L

K1U t f
��a; rS� dW

drS

�

ÿ 3aU t�1ÿ Lÿ1� dW

drS
� 4ia

d 2K 3
1 r

3
SU

j
W � 0 ; �2:88�

where the asterisk denotes complex conjugation and

f �a; rS� � �1� a 2 ÿ 3iaK 2
1 �

rS�iÿ a�
arS�a� 2i� ÿ 6

� a : �2:89�

We note that Eqn (2.88) was written after passing to the
Schwarzschild radial coordinate rS. In what follows, we wish
to consider only the case a > 0, i.e., a prograde disk. It can be
seen that the problem has two free parameters. First of all,
this is the combination ~d�d�=

�����jajp
. Clearly, ~d ranges from 0

to1 and characterizes the relative role of the hydrodynamic
and gravitomagnetic forces acting on the disk rings. Second,
(2.88) contains the disk viscosity parameter 0 < a < 1.
Equation (2.88) in the rigorous Newtonian limit with
nonzero viscosity reproduces the corresponding equation
(2.10) from [37] and, additionally, with post-Newtonian
corrections, reproduces Eqn (33) from [25], which was
verified in [5] (see paragraph 4.1 therein).
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The coefficients of Eqn (2.88) have a singular point at the
inner edge of the disk at rS � �rS � 6, where L vanishes. The
regularity of the solution at �rS must yield a condition for the
function W. Using this condition as the initial one, we can
integrate (2.88) from �rS to infinity and obtain the shape of the
stationary twisted disk. We expand Eqn (2.88) in a series in
the small parameter x0 � rS ÿ �rS 5 1. In practice, to do this,
all quantities that take nonzero values at �rS must be set
exactly equal to these values and the function L must be
expanded to the leading order in x0. From (2.72), we also
find

L � x 2
0

72
; �2:90�

whence we see that another quantity in (2.88) that vanishes at
the inner disk edge, d, can be written as

d � dmsx
2E
0 ;

where E is the power-law exponent L in Eqn (2.80). Accord-
ingly, dms is also given by Eqn (2.80), which is taken at �rS and
into which we now substitute the coefficient 72ÿ1 from (2.90)
instead of L.

After that, it is easy to obtain the equation valid for
x0 5 1,

d

dx0

�
x 2
0

dW

dx0

�
� C1x

2ÿ4E
0 W� C2

dW

dx0
� 0 ; �2:91�

where

C1 � ÿ 2i

f �a; rS�
U t

Uj

OLT

K 3
1 rSd

2
ms

and

C2 � ÿ 216a
f �a; rS�

�U t�2
rS

are taken at �rS. We see that for any finite viscosity, the last
term in (2.91) becomes dominant sufficiently close to the disk
edge; therefore, the boundary condition can be straightfor-
wardly written as

dW

dx0

����
�rS

� 0 : �2:92�

On the other hand, from (2.91) with a � 0, we obtain a
simpler equation whose solution is a Bessel function:

W � Cx
ÿ1=2
0 J1=�2ÿ4E��z� ; �2:93�

where

z �
������
C1

p x 1ÿ2E
0

1ÿ 2E
: �2:94�

As x0 ! 0, (2.93) tends to a nonzero constant but with a zero
derivative with respect to x0. Therefore, in this case, we return
to condition (2.92).

Due to the linearity of the problem, it suffices to take an
arbitrary nonzero value ofW in �rS, to set the first derivative of
W in �rS equal to zero, and with these boundary conditions to

integrate (2.88) up to infinity. The modulus and phase of W
give the profiles b�rS� and g�rS� for a stationary twisted disk.
In what follows, we implicitly normalize the profile b at
infinity to unity.

2.4.2 Disk with a marginally small viscosity. We discuss the
disk with a very low viscosity separately. Clearly, it is possible
to analytically treat the accretion disk by formally setting
a! 0, if simultaneously _M! 0. In such a disk, Ur ! 0;
however, it then has real profiles of S and h.

In addition, to obtain an analytic solution, we consider the
case ~d5 1; in other words, we assume a sufficiently thin disk
around a rapidly rotating black hole.

Setting a � 0 in (2.88) yields

d

drS

�
b

d

drS
W

�
� lW � 0 ; �2:95�

where

b � r
5=2
S L

K1U t ; l � 24aL

d 2K 4
1U

jr
5=2
S

: �2:96�

The coefficients in (2.95) take real values; therefore, there are
real solutions of this equation. This means that in the absence
of viscosity in the stationary twisted disk, g � const, which
can be set equal to zero by the corresponding choice of the
reference frame. Therefore, the variable W is identical to the
angle b in this section.

The form of the disk near its inner edge. In the foregoing, we
have already presented the solution near the inner edge of the
inviscid disk [see Eqn (2.93)]. The constant C1 in this case has
the explicit form

C1 � 24aU t

r 5SK
3
1U

jd 2
ms

; �2:97�

and is taken at rS � �rS.
Using the known approximation for the Bessel function of

a small argument, we obtain a relation between the constantC
in (2.93) and the value ofW at �rS,W��rS� �W0:

C � G
�

3ÿ 4E
2�1ÿ 2E�

�� ����
C
p

1

2�1ÿ 2E�
�ÿ1=2�1ÿ2E�

W0 ; �2:98�

where G�x� is the gamma function.
In addition, we need the asymptotic form of (2.93) for

z4 1. Clearly, z can be large even for x5 1 because
������
C1

p �
~dÿ1 4 1. Hence, for z4 1, we obtain

W � C

��������
2

pxz

r
cos

�
zÿ p

2

1ÿ E
1ÿ 2E

�
: �2:99�

Shape of the disk at long distances.We consider Eqn (2.88) for
rS 4 1 and a! 0. Importantly, we cannot set all variables in
(2.88) to their Newtonian values and have the viscosity
simultaneously vanish. This already follows from the fact
that then f �a;R� ! 1=�2a� ! 1. Physically, this reflects the
fact that, as mentioned above, in the absence of viscosity in
the strictly Newtonian potential, a Keplerian resonance
occurs when the circular and epicyclic frequencies coincide,
and perturbations in the twisted disk grow infinitely due to
the action of the radial projection of the vertical pressure
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gradient. Therefore, a stationary twist is impossible in this
case. Taking the next-order term in the expansion of f �a; rS�
in small rÿ1S into account, we obtain

f �a; rS� � 1

2a
ÿ
1� 3i=�arS�

� : �2:100�

As a! 0, f �a; rS� now remains finite at any finite rS.
Nevertheless, it makes the leading contribution due to
relativistic effects, and all other variables in (2.88) can now
be set equal to their Newtonian values U t � 1, Uj � r

ÿ1=2
S ,

L � 1, and K1 � 1. Moreover, we neglect the weak depen-
dence of d on rS far from the black hole and set d � d�.

After that, by introducing the new independent variable
x1 � r

ÿ1=2
S 5 1, we obtain the equation

x1
d2

dx 2
1

Wÿ 2
d

dx1
W� 96~d

ÿ2
x 4
1W � 0 : �2:101�

The solution of (2.101) can again be expressed in terms of a
Bessel function:

W � x
3=2
1

ÿ
A1Jÿ3=5�z1� � A2J3=5�z1�

�
; �2:102�

where

z1 � 8

5

���
6
p

~d
ÿ1
x
5=2
1 ; �2:103�

and A1 and A2 are constants.
When rS is so large that z1 5 1, the first and second terms

in (2.102), multiplied by x
3=2
1 , respectively tend to a nonzero

constant and to zero. This allows expressing the constant A1

in terms the value ofW at infinity, W1:

W1 �
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4
���
6
p
�3=5 ~d 3=5

G�2=5� A1 : �2:104�

In the opposite case z1 4 1, i.e., closer to the black hole,
we obtain another asymptotic form:

W �
��������������
5~d

2p
�����
24
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s
r
ÿ1=8
S

�
A1 cos

�
z1 � p

20

�
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�
z1 ÿ p

20

��
: �2:105�

WKB solution for the shape of the disk.Everywhere in the disk,
asymptotic solutions (2.99) and (2.105) can bematched with a
WKB solution of Eqn (2.95). Indeed, because we are
considering the case ~d5 1, the ratio of l and b in (2.95),
~l � l=b, is large at all rS such that z and z1 are large.

The WKB solution has the form

W � C3

�lb�1=4
cos

�� rS

�rS

���
~l

p
drS � fWKBJ

�
; �2:106�

where the constantsC3 andfWKBJ should be chosen such that
(2.106) is smoothly matched with formula (2.99) in the
corresponding region. It can be verified that this yields

fWKBJ � ÿ
p
2

1ÿ E
1ÿ 2E

�2:107�

and
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1ÿ 2E
pK1U t

r
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where we assume thatK1 andU
t are taken at rS � �rS � 6, and

L � x 2=72 near �rS.
Next, in the limit rS !1, we can set l and b before the

cosine in (2.106) equal to their Newtonian values. In addition,
the integral in (2.106) can be represented as
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Solution (2.109) must be smoothly matched with expression
(2.105) in the corresponding region, which yields the con-
stants A1 and A3. It can be verified that they are

A1 �
������
2p
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r
C3 cos

�
I� fWKBJ ÿ

p
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�
cosÿ1
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�
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p
20

�
cosÿ1

p
10

:

�2:110�

Thus, Eqns (2.93), (2.106), and (2.102), jointly with
coefficients (2.108), (2.110) and phase (2.107), determine the
shape of an inviscid stationary relativistic twisted disk at all
distances in the range from rS � �rS to rS � 1.

Resonance solutions in the low-viscosity disk. We note that
Eqns (2.98), (2.108), (2.110), and (2.104) yield a relation
between W0 andW1,

W1 � Ctot�~d�W0 ; �2:111�

where the explicit form of Ctot�~d� follows from the formulas.
In particular, as follows from (2.104) and (2.110), Ctot�~d� /
cos �I� fWKBJ ÿ p=20�.

We hence conclude that for some discrete set of ~d for
which cos �I� fWKBJ ÿ p=20� � 0,W1 � 0, butW0 6� 0.

From Eqns (2.96), it is possible to obtain the integral I in
the form I � ~dÿ1~I, where ~I does not depend on ~d, allowing us
to write the explicit form of the singular values of ~d:

~dk �
~I

p=2
ÿ
11=10� �1ÿ E�=�1ÿ 2E� � 2k

� ; �2:112�

where k is an integer number.
The values ~dk correspond to such a balance between the

external gravitomagnetic force and the internal pressure
gradient in the disk that leads to the disk twisting even if
the matter flowing into the disk at infinity moves in the
equatorial plane of the black hole. We note that the solution
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in the form of a flat disk lying entirely in the black hole
equatorial plane, of course, also exists for these ~dk. This
nonuniqueness of the solution disappears for any small
viscosity in the disk, for which W1 � 0 always implies
W0 � 0. For small a5 1, the disk `feels' these `resonance'
solutions, and its inner parts deviate significantly from the
equatorial plane of the black hole, even when the outer parts
of the disk lie almost in the equatorial plane. Figure 1 shows
the curve corresponding to analytic solution (2.111), as well
as several curves for a viscous twisted disk obtained by
integrating the original equation (2.88). We see that already
for a � 10ÿ3, the discussed resonances are almost entirely
suppressed.

2.4.3 Disk behavior on the plane of parameters a and ~d . In
conclusion, we present the full study of regimes of behavior of
a stationary twisted relativistic disc near a rotating black hole.
It is convenient to show the results of numerical integration of
Eqn (2.88) on the plane of free parameters of the problem, ~d
and a. The first parameter varies in the range 10ÿ3 < ~d < 10,
and the second parameter in the range 0 < a < 1. As follows
from Fig. 2, at small ~d, i.e., when the gravitomagnetic force
exceeds the internal forces in a twisted disk, it either lies in the
equatorial plane of the black hole, i.e., b0=b1 ! 0, or,
conversely, the tilt of its rings strongly increases in the inner
parts of the disk, with oscillations of b�rS� along the radial
coordinate.We note that for small viscosity, these oscillations
become so strong that the corresponding gradient of the tilt
angle, b 0, gives rise to supersonic perturbations of the velocity
components v r and vj at heights of the order of the disk
thickness, x � h. This, in turn, must lead to the generation of
various hydrodynamic instabilities and sound waves, which
cause additional disk heating (and hence also an increase in
~d), as well as the growth of a. These processes should partially
suppress the oscillations of b discussed above.

An alignment of the disk into the equatorial plane of the
black hole occurs at sufficiently high viscosity, when the
condition a > ~d is satisfied with a large margin, and is
referred to as the Bardeen±Petterson effect [38]. It can be
seen from Fig. 2 that this effect occurs only in sufficiently

viscous and thin disks. But already for ~d � a, the ratio b0=b1
becomes of the order of unity, which means the absence of
disk alignment. At the same time, the oscillations of b
disappear. Figure 3 shows the profiles of b�rS� with
b0=b1 � 1 for several ~d. It is seen that for not very small ~d,
the twisted disk has a sufficiently smooth shape, which
suggests the possibility of the existence of such configura-
tions in nature. We note that b behaves nonmonotonically: it
first decreases and then increases with rS. This can have
important implications both for the disk structure itself and
for its observational manifestations. For example, the hot
inner regions of such a disk should illuminate its outer parts
muchmore strongly than in the case of a flat disk. Clearly, this
is due to the disk inner parts being tilted with respect to the
outer parts.

In the region where ~d is of the order of or greater than
unity, the action of the gravitomagnetic force becomes
insignificant, and the disk is weakly twisted. In Fig. 2, the
area to the right of the dashed line is where b�rS� deviates
from b1 by less than 10%. It is also worth noting that for
~d > 0:1, the Bardeen±Petterson effect is completely absent
at any a.
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Figure 1.Ratio of the tilt angle of the inner disk edge to the tilt at infinity,

b0=b1, as a function of the parameter ~d. The solid curve shows the

numerical solution of Eqn (2.88) with a � 0, the dotted curve represents

the analytic dependence Cÿ1tot �~d�, where Ctot is given by Eqn (2.111). The

dashed, dashed-dotted, and dashed-dotted-dashed curves are respectively

obtained by numerical integration of Eqn (2.88) with a � 10ÿ4, 10ÿ3, and
10ÿ2.
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Figure 2. Contours of constant ratio b0=b1 on the parameter plane �~d; a�.
The numbers show the value of b0=b1 for each curve. The dashed curve in

the right part of the figure separates the region where the change in b with

rS is more than 10%of b1 (to the left) from the region where the disk twist

is insignificant and b deviates by less than 10% from b1 (to the right).
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Figure 3. The dependence of b on rS along the curve in Fig. 2 for which

b0=b1 � 1. ~d takes the respective values 10ÿ3, 10ÿ2, 10ÿ1, and 1 for the

solid, dashed, dashed-dotted, and dashed-doted-dashed curves.
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3. Conclusion

We have presented a detailed technical derivation of the
governing equations for the evolution of the shape of a
relativistic twisted disk, as well as for perturbations of the
velocity and density inside it. Only three simplifying assump-
tions have been used: the smallness of the disk aspect ratio
d5 1, the slowness of the black hole rotation a5 1, and the
smallness of the disk ring tilt to the equatorial plane of the
black hole, b5 1. This allowed us to formulate Eqns (2.58),
(2.59), and (2.62) for three variables describing Eulerian
perturbations of the azimuthal velocity, v r and vj, and the
geometrical shape of the diskZ. In general, the dependence of
v r and vj on the twisted coordinates r, x, and t, and the
dependence of Z on r and t should be found. In accordance
with Eqn (2.28), all these variables depend harmonically on
the azimuthal coordinate. The governing equations contain
the profiles of the background solution, representing an
accretion disk with a similar radial and vertical structure but
lying in the equatorial plane of the black hole. We note once
again that not only the twisted disk but also the background
itself can be nonstationary, because only one assumption
d5 1 was used in deriving the system of equations (2.58),
(2.50), and (2.62) for the background. Therefore, the twisted
equations also enable the study of the evolution of tilted/
twisted gaseous tori/rings near rotating black holes during
their expansion in the radial direction, in other words, the
evolution of nonstationary accretion due to turbulent
viscosity.

In the particular case of a stationary, vertically isothermal
background with the a-parameterization of the viscosity, the
twisted equations have been reduced to simpler equations
(2.84), (2.85), and (2.86) for the complex amplitudes A and B
describing the velocity perturbations and W describing the
disk geometry, which depend only on r and t. Here. the
solution for a flat relativistic disk, which was presented in
detail in Section 1, was used. The corresponding stationary
problem can be described by a second-order linear differential
equation for W [see Eqn (2.88)]. The analytic integration of
this equation for a formally inviscid disk with ~d5 1 enabled
us to find the singular resonance solutions for a discrete set of
~dk, which in fact correspond to an instability of a flat nontilted
disk, when it can acquire a twisted shape near the black hole,
even with its outer part lying in the equatorial plane of the
black hole. This instability, however, rapidly disappears
already for a � 10ÿ3, and for a > ~d with ~d < 0:1, numerical
calculations show the Bardeen±Petterson effect. At the same
time, already for a � ~d, the alignment of the inner parts of the
disk in the equatorial plane of the black hole is absent, and for
~d5 0:1, smooth but nonmonotonic profiles b�r� appear (see
Fig. 3), which suggests their stability under perturbations and
the possibility of their realization in nature. The last effect is
confirmed by the first numerical simulations of tilted thin
relativistic accretion disks with d � a � a � 0:1 carried out in
recent papers [39, 40]. In these papers, a comparison with the
semi-analytic model based on the solution of the system of
equations (2.58), (2.59), (2.62) was also done for a slightly
tilted vertically barotropic torus.

Observational confirmations of the existence of twisted
accretion disks around rotating black holes have just started
emerging. Apparently, one of the most direct pieces of
evidence of their existence is the observation of maser
sources at subparsec scales in the disk around a supermassive
black hole in the nucleus of NGC 4258 [41, 42]. The

subsequent modeling in [43, 44] showed that the disk twist in
this case can be due to the Bardeen±Petterson effect. In recent
paper [45], observations of jets in the nucleus of NGC 4298
were used to independently estimate the Kerr black hole
parameter a � 0:7 and, in a similar model, to calculate the
radius of the disk aligned into the equatorial plane of the
black hole in agreement with observations. Additional but
more indirect arguments favoring the presence of twisted
disks in galactic nuclei were obtained, for example, in [46, 47],
where the observed profiles of the X-ray iron line Ka were
calculated for different accretion disk models. It was con-
cluded that in many cases, the observed line profile can be
more easily explained in the model of a twisted disk than in
the model of a flat disk, but, for example, with specific radial
intensity distribution. In [48], a similar modeling of hydrogen
Balmer lines was performed, which should arise due to the
heating of the outer parts of a twisted disk by hard emission
from its inner parts, which have amuch greater tilt than in the
case of a flat disk. The presence of twisted disks is also
suspected in binary stellar systems with black holes. For
example, this can be the case with two microquasars,
GROJ1655-40 and V4641 Sgr, in which the tilt of jets relative
to the orbital plane was discovered.

As mentioned above, Eqns (2.58), (2.59), and (2.62) also
describe the nonstationary dynamics of a torus tilted to the
equatorial plane of a black hole. If d > a, the action of the
gravitomagnetic force must lead to a solid-body precession of
the torus, because in this case the twist waves propagating at
almost the speed of sound smear out the dependence of g on r
due to the Lense±Thirring effect. Similar nonstationary
models are invoked to explain the variability of Balmer line
profiles, as well as the precession of jets in active nuclei (see,
e.g., [51]). In many papers, the precessing tori are used to
explain low-frequency quasiperiodic oscillations in X-ray
binary systems (see, e.g., [52]). Of special interest is the
modeling of observational appearances of a tilted accretion
disk around the black hole in the center of our Galaxy [53].

The theory of relativistic twisted disks presented here can
also be successfully applied both to constructing self-consis-
tent models of individual objects and to making further
theoretical predictions of the dynamics of accretion flows
around rotating black holes.
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