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Abstract. In the given paper, recent results on the development
of physical mechanisms and theoretical models of direct laser
surface nanostructuring are reviewed. Attention is paid to
nanosecond lasers, as they are cheaper and simpler in use
than pico- and femtosecond lasers, which is important for the
development of further applications. The formation of so-
called ‘nonresonant’ structures, whose period is not directly
related to the laser radiation wavelength, is considered. Na-
nostructuring mechanisms for a number of surface modifica-
tion processes with and without melting are studied.
Corresponding experimental illustrations of nanostructures
are given for various materials — polymers, metals, cera-
mics, and diamond films.

Keywords: nanostructuring, laser, surface, melting, vapori-
zation, displacement, thermal stress

1. Introduction

Laser irradiation of solids can form surface nanostructures
which largely determine the physical properties of the surface
and are of great interest for materials science, physico-
chemical mechanics, and solid-state physics. Surface nanos-
tructures find many applications in various fields of physics
and engineering:

e in electronics and electrical engineering, optics and
spectroscopy, and solar power engineering for optimizing
electron emission characteristics and the electrical, thermal,
radiative and absorbing properties of the materials;
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e in the chemical industry to induce the catalytic proper-
ties of materials and control surface wettability;

e in the automotive, aerospace, defense, and atomic
industries to improve the durability of ceramic and metal
materials and devices which operate under extreme corrosion
conditions, and to improve the performance of reactive and
diesel engines by nanostructuring their walls and decreasing
the friction between the contacting parts;

e in stomatology and orthopedics to improve the bio-
compatibility of implant coatings and prostheses with living
tissues;

e in the hydrogen power industry to increase the power of
fuel cells by nanostructuring the surface of the electrodes used
in them.

Therefore, of great interest is the problem of developing
physical fundamentals for new nanostructuring methods.
These methods allow the formation of reliefs with character-
istic periods of less than 1 um on the surface of such materials
as refractory superhard ceramics, diamond films, metals and
alloys, polymers, and biomaterials.

Despite individual cases of successful physical interpreta-
tions of the data obtained, the state of the art was very
confusing until recently. Noticeable progress can be observed
over recent years. General dependences, which control the
real structure formation, are starting to be clarified [1-5]. At
the current stage, one needs both the accumulation of the
experimental experience on the study of the mechanisms and
processes of nanostructuring and the development of new
theories which would explain these mechanisms [6].

In order to obtain a surface nanostructure with specific
periods under laser irradiation, one needs to spatially
modulate the intensity distribution of the incident radiation.
Usually, for these purposes one uses either masks as templates
that are projected onto the surface [7] or surface screening
from the incident radiation by micro- and nanoparticles [8—
10], or the interference effect between two or more laser
beams at the surface or in the bulk [11-13]. The combination
of alaser beam and a cantilever of an atomic force microscope
can also be applied [14-16], allowing consequently inducing
material relief changes in a number of nano-sized surface
regions. Unlike electron and ion beam nanostructuring
methods (see, for example, papers [17, 18]), laser nanostruc-
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turing does not need the sample and the energy source to be
placed in a special vacuum chamber. Moreover, it is not
necessary to provide radiation safety for personal [19, 20].

In this article, we consider surface nanostructuring by
a single laser beam without employing any masks or an
auxiliary atomic-force microscope cantilever, namely, so-
called direct laser nanostructuring [21, 22]. This method is
assumed to be much easier and more flexible, because using a
single laser beam of a small size allows achieving high
interaction locality, which corresponds to the size of the
beam and its scanning step along the surface. Moreover, the
scanning of the surface with a laser beam of a high pulse
repetition rate makes it possible to process extended surfaces
within the boundaries of any form with a high spatial
resolution. In this article, we discuss the possibility of
forming surface nanostructures by nanosecond lasers and
present the results of studies into the physical mechanisms
and on the development of theoretical models for direct laser
nanostructuring.

Structures that are formed in the course of laser infusion
of solids can be of various morphologies; however, there are
some general structural peculiarities, among which are the
following:

(1) the transformation of any region in the initial phase
into a new phase macroscopically changes the shape of this
region, which results in appearing the specific relief at the
sample flat surface. The parameters of the macroscopic
deformation are specific for each type of transformations;

(2) there is a specific tendency of the crystals formed
towards an ordered arrangement.

2. Nanostructure formation at solid surfaces
under the relaxation of temperature stresses
caused by laser heating

The deformation process for a solid-state material under
sufficiently high stress is accompanied by residual strain
which is caused by inelastic effects and transformations of the
crystal defect structure. The stress relaxation can be localized
due to the formation of domains with the new structure
(relaxation domains) within the old excited structure [2]. This
is associated with a collective behavior of the excited atoms
interacting with each other, which causes the relaxation
process to be nonlinear. The action of high mechanical strains
induced by a laser beam can macroscopically lead to the
excitation of a large number of atoms. In the unexcited state,
the atom makes thermally activated random jumps between
the lattice sites. Being averaged over a macroscopically small
time interval (Debye time), the atomic position can be
associated with a quite specific lattice site, so in this sense the
atom is localized. In the excited state, the atom travels during
the Debye time distances on the order of the lattice parameter,
so its position, being averaged over the macroscopically small
time interval, cannot be associated with a specific lattice site.
Such an excited state can relax through the formation of
centers of a new unexcited structure — relaxation domains.

Depending on the external action conditions and on the
deformation rate, the relaxation domains can be groups of
atoms or vacancies, which form, for example, clusters,
dislocation loops, and micropores, as well as dislocation and
disclination groups, microcracks, etc. Generally, a domain
size distribution should be established. We will consider the
relaxation process which is realized through the formation of
domains of the same size.

Thermodynamic functions can be obtained by building a
relevant ensemble which represents the system in the none-
quilibrium state. L I Mandelshtam and M A Leontovich [23,
24] realized this idea by including an auxiliary field, which
would turn the thermodynamic state into an equilibrium one,
without changing its inhomogeneity. The thermodynamic
potential @ in this case has the form

N] N2
d¢:—SdT+ZAkdak+Zxkdék7 (1
% %

where S is the entropy in the nonequilibrium state; a; are
external parameters determining the state of the body; A4y are
generalized forces conjugate to the parameters ai; &, are
internal parameters characterizing the state of the body under
specific values of the external parameters @, and the
temperature T; x; are parameters that define the external
field in which the nonequilibrium system discussed would be
in an equilibrium state, and N; and N, are the numbers of
internal and external parameters, respectively.

The meaning of the nonequilibrium entropy and none-
quilibrium thermodynamic potential lies in the following: the
nonequilibrium state of the body is determined by setting the
temperature and external and internal parameters (in the
equilibrium state, internal parameters are functions of the
temperature and external parameters). At the same time, one
can choose the external field, such that the given none-
quilibrium state of the body, defined by the given internal
parameters, would become the equilibrium one.

The instantaneous value of the nonequilibrium entropy —
that is, the entropy characterized by the specific values of
external and internal parameters, is by definition equal to the
entropy of the equilibrium state characterized by the specified
values of the state parameters in this external field. The
thermodynamic potential of the nonequilibrium state is
defined as the thermodynamic potential of the state in such
an external field, without which this nonequilibrium state
would be the equilibrium one. If one uses this definition, the
instantaneous values of the nonequilibrium entropy and the
thermodynamic potential satisfy relation (1) and other
known statements, such as a decrease in the thermodynamic
potential under isothermal processes proceeding without
doing work, and an increase in the entropy under adiabatic
processes.

The nonequilibrium state of an elastically strained solid
body is defined by the temperature 7, strain gy or stress o
tensors, and by the set of auxiliary internal state parameters
1//53), npf), zp( characterizing the degree of system’s state
departure from the equilibrium state for the specified T’ and

&ix- In this case, the number of state internal parameters 1// & %) is
such that, together with 7'and &, they fully define the state of
the system. The parameters 5‘3 are second-rank tensors. We
will call them relaxation tensors. )

The rate of the change of the relaxation tensor lpi(k") can be
obtained from the equation wherein the rate of the process
linearly depends on the thermodynamic force:
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where @ is the thermodynamic potential of a unit volume of
the deformed solld body, and h; ,nf) are material constants.

The parameters hlk, “6) are such that the quantity Q, which
characterizes the decrease in the thermodynamic potential per
unit time under fixed temperature and strain, is negative.
Stationary states are sustainable in this type of equations and
can take various spatial forms [25].

In order to analyze the behavior of the deformed solid,
one needs to obtain the expression for the thermodynamic
potential @ as an explicit function of T, gy, and 1//”‘: .
Assuming the temperature to be fixed and quantities &, 1//”‘(“)
to be small, we will take advantage of a series expansion of @
up to the fourth-order terms. Since the thermodynamic
potential is a scalar quantity, every term in the expansion
should also be a scalar:
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where A, Bikim> Cikim, ... €tc. are material constants. Here
and further, the summation sign for the same subscripts will
be omitted, and for the same superscripts will be kept.

In the equilibrium state and under constant ¢y, the
potential @ takes minimum value and is a function of only
volume ¢;. Taking this into account, we can rewrite expansion
(3) in the following way:

k B
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where k is the bulk modulus.

In order to simplify expressions (2) and (4), one needs to
introduce ‘normal coordinates’, similar to the case of describ-
ing oscillations in complicated systems. In other words, we
need to introduce such new variables which would be linear
combinations of the old variables t//i(k“), so that each of
e uations (2) and (4) would contain only one of the variables
l//l-k . By performing a linear transformatlon [26] of the
variables y,”, we will choose such new zp i P that the positive
quadratic forms in expressions (2) and (4) would take the form
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while for an isotropic solid material, one obtains

3 3
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Equations (5) and (6) govern the behavior of the strained
solid body in the course of stress relaxation.

In order to determine the constants which are present in
equation (5), let us eharacterlze the whole spectrum of
relaxation parameters l// & Dby one variable. For this pur-
pose, we choose the residual strain 80( t) and introduce a
mesoscopic relaxation parameter that determines the field of
the relaxation process:

k
¢ =3 (ef +¢1) +ZD<‘“)
o

1
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where Vj is the volume over which &) (r, 1) is averaged. This
means that the system considered —a solid material under
deformation—can be represented as three simultaneously
coexisting phases: a relaxation field described by the para-
meter ¢, (r,t); a stress field oy (r,t) corresponding to the
external load, and relaxation domains with concentration n.

The time dependences of ¢, (r, ), n(r,t) and gy (r, ) are
described by a set of nonlinear differential equations:

P = —KQy +gin,

A= —yn+ PirTik ’ (7)
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Here v, v, k, g1, g2, g3 are material constants. The quantity
ao(r,t) is determined by the amount of the external load
applied and corresponds to the residual strains left after
relaxation. The first terms on the right-hand side of
equations (7) describe, respectively, the damping of the
relaxation process, the decay of the formed relaxation
domains, and the strain relaxation in the linear approxima-
tion, when there is no interaction between them. The second
terms in all the equations are responsible for appearing the
nonlinearity in the relaxation process. In the first equation, it
is related to the relaxation field generation due to the
formation of the relaxation domains; in the second one, it
takes into account the influence of the relaxation field ¢, (r, 1)
and stress field oy (r,f) on the origin of the relaxation
domains, and in the third one it stands for the influence of
the relaxation field and relaxation domains on the rate of the
stress relaxation.

The rate of the relaxation field change is significantly
smaller than the rates of the atomic relaxation processes,
which are characterized by the constants y and v. This allows
one to use the adiabatic elimination of fast variables in
equations (7). As a result, we obtain relaxation equation (5)
with specific constants:

l/» =4 Pk — B q)lk ’
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The above-described approach does not take into account
possible spatial fluctuations of the relaxation parameter,
which become more important as the external load and the
temperature grow. With these fluctuations taken into con-
sideration, the kinetic equation for the relaxation parameter
will have the form

(2) = A(P[k - B(pi + DA(pik : (8)

Here, D is the atom diffusion coefficient in the region heated.
With the diffusion dispersion taken into account, equation (8)
will transform into the generalized Ginzburg—Landau equa-
tion [27].

For gy < (g27/g1) k, equation (8) has one sustainable
solution: ¢(r, ) = 0. If the critical value is excessed, oo =
o. = (g27/g1) K, new ‘coherent’ states of the system with a
spatial periodicity can be realized. The period of such
structures is given by

3D

2o 8 v

gy — O¢

Let us now estimate the step of the periodic structure
forming on the silicon surface under the action of the laser
pulse. We will assume that the residual stresses gy =
10°N m™2, kxy~v~g ~10°s7! (as the ones that
determine the frequency of the atomic transition from one
equilibrium state to another), g, ~ g3 ~ 101 N m~2 is the
stresses in the relaxation domains, and D ~ 108 cm?s~! is
the atomic diffusion coefficient in the heated region of the
crystal. In this case, the period will be L ~ 3 um. As gy
increases, which corresponds to harder laser irradiation, the
period of the structures being formed has to be determined
mostly by the diffusion coefficient D and the rate of stress
relaxation. In this case, nanostructures with a period of
L ~ 50—100 nm will be produced.

At the end of this section, it should be noted that
throughout the discussion the bulk case was considered. It
was also assumed that the formation of periodical structures
in the thin subsurface layer leads to the appearance of
corresponding structures at the surface.

Summing up, the approach considered allows explaining
the formation of nanostructures in solid materials under the
irradiation by a strong laser pulse. The mechanism considered

Figure 1. Atomic-force microscopy image of a structure at the surface of
zirconium dioxide after irradiation by an ArF laser with a wavelength of
193 nm and energy fluence of 0.14 J cm™2,

can be implemented under conditions which eliminate the
melting of the surface and evaporation in the course of laser
infusion of solids.

Figure 1 depicts a structure formed at the surface of
zirconium dioxide (fianite) after laser irradiation [28, 29].
The atomic-force microscopy image shows the surface of a
zirconium dioxide plate under irradiation by an excimer
nanosecond ArF laser with a wavelength of 193 nm and a
fluence per laser pulse of 0.14 J cm~2. The relief analysis
allows determining the parameters of the macrodeformation
accompanying the structure formation.

3. Nanostructure formation
during pulsed-laser-induced solid surface melting

The irradiation of a solid surface by a laser pulse with the
specific power Q and duration 7 can lead to the melting of the
surface layer. Further nucleation of a crystal phase from the
melt can be of a fluctuation or spontaneous character,
depending on the supercooling degree. In this case, a super-
cooled state of the melt can arise due to the high rate of the
heat transfer to the bulk of the solid phase, so a significant
temperature drop can form on the interface between liquid
and solid.

Fluctuation nucleation occurs under weak supersatura-
tion (supercooling), when the size of the critical nucleus
significantly exceeds the lattice constant. The rate of a new
phase formation in the classical Zeldovich—Frenkel nuclea-
tion theory is determined by the number of critical nuclei that
form in the unit volume per unit time [30]. Spontaneous
nucleation takes place under significantly high cooling rates,
for which the corresponding time that it takes to reach the
supercooled state is significantly smaller than the fluctuation
nucleation time.

If a crystal phase nucleus consisting of n atoms is formed
from the melt, the change of thermodynamic potential is
expressed as

AD(n) = (1 — ) (m +ny) +4mra,

where u; and p, are chemical potentials of the atoms in the
solid and Iliquid phases, respectively, n=n;+ ns,
ny = 4nr3/3a3 is the number of atoms inside the nucleation
center of the crystal phase, ny = 4nr?/a? is the number of
atoms at the surface of the nucleation center of the crystal
phase, a is the elementary cell size, r is the radius of the
nucleation center of the crystal phase, and ¢ is the surface
tension coefficient. The critical size of the new phase,

r* =2[oa’(u, — uy)~" — a], can be obtained from the equa-
tion 0A®/0r =0. For low supercooling degree, when
oa’(p, — up)~' —a > 1, the nucleation shows a fluctuation

character. The new phase in this case forms from a critical
nucleus, whose size r* significantly exceeds the lattice
constant (Fig. 2, curve ). The existence of a subcritical
region allows considering a metastable state and, conse-
quently, introducing an equilibrium distribution function
under supercooling conditions.

During spontaneous nucleation, which takes place under
strong supercooling, when ca’(u; — uz)fl — a < 1, the criti-
cal radius of the new phase nucleation center does not exceed
the atomic size. In this case, the initial phase can be considered
to be absolutely unstable. It follows that the thermodynamic
potential A®@(n) = (yy — 1;)(n1+ns) smoothly decreases as r
increases (curve 2 in Fig. 2). There is no need to introduce here
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Tiy is the initial temperature. Subscript 1 corresponds to the
Ad(r) I liquid phase, and subscript 2 to the solid phase. The
coordinate x is measured from the surface. The latent heat
of the transition H is supplied through the liquid phase and is

absorbed at the moving front of the phase transition:

I r oT d oT:
zl(a—‘) =Hp?y+i2(a—2) (14)
X/ L= ! AR
2 In order to simplify the problem, we will replace boundary
condition (12) with the following one:

Figure 2. Free energy of the system versus the sizes of the formed crystal
phase nucleation centers: /— fluctuation nucleation, and 2— sponta-
neous nucleation.

the parameter o, since the bulk change of the thermodynamic
potential exceeds the surface one for any size of the new phase
nucleation centers.

It should also be noted that the surface energy in the case
of the liquid—gas interface is expressed in the form
E = —(1/2) zeaans. Here, z is the coordination number, and
ean 18 the potential energy of the interaction between the two
closest molecules in the liquid. The interaction energy
between surface molecules of a liquid with gas molecules can
be neglected due to the relatively small gas density. In the case
of solid phase formation (B atoms) from the liquid one, the
surface energy is given by

1
E'= N |ZEAB — 5 Z(SAA + SBB)

and E' < E, because the potential interaction energy eap < 0.
Therefore, the surface tension coefficient of the liquid—solid
interface is significantly smaller than that for the liquid—gas
system. This means that spontaneous nucleation is more
likely to take place under liquid—solid phase transitions than
under liquid—gas ones.

Let a heat flux with density ¢(x, ) fall on the surface of a
solid approximated by a half-space. The power carried by the
flux is such that a solid-liquid phase transition takes place.
The temperature fields in liquid [T (x, #)] and solid [T>(x, ?)]
phases are described by heat conduction equations with
corresponding boundary conditions:

3T, 10T,
axz _a_] ot ’ 0<x<y(t)7 (9)
3T, 10T,

- 9 10
o —w o y(t) < x < oo, (10)

Tz(x,O) = TZ(OO, t) = Tin, (11)

aQ(l‘) 0T
=) 12
ot 0x Ix=0’ ( )
I |x:y(t) = T2|x:y(r) =Tu, (13)

where y(7) is the coordinate of the moving boundary of the
phase transition, a = 1/cp, A, ¢ are, respectively, thermal
diffusivity, thermal conductivity, and heat capacity of the
metal unit volume, p is the material density, Q(¢) is the
absorbed energy per unit surface area in time ¢ < 1, 7 is the
pulse duration, Ti; is the phase transition temperature, and

T1(0,t) = To = T1(0,7) > Ty, (15)
where Ty is the temperature of the melted metal at the surface,
which can be obtained from the heat balance equation

»(z

)
0(x) = Hpy(v) +j Cop(Ty — T d

0
00

¥(@)
+J Clp(TI—Tu)dx—l—J Cop(Tr—Tin)dx. (16)

0 »(@)

It is possible to correctly formulate the problem by
equations (9)—(13), with Eqn (12) being replaced by Eqn (15),
if the temperature of the sample surface reaches the phase
transition temperature,

T(to) = Ty, (17)
in a time ¢y < 7 and, during the further process for #) < t < 7,
the liquid phase temperature changes insignificantly:

T(T) — T[r
— <1 18

T. (18)
The limitations put on the radiation characteristics due to
conditions (17) and (18) will be discussed below.

The solutions of equations (9), (10) with boundary
conditions (11), (13), (15) have the form

T) erf (u//2ar)

erf (B/v2ar) ’

To =Ty — (T — T) erfe (u/v/2ar)

erfc (B/v/2az)

Ty =To+ (T —
(19)

where u = x/v/2t, y(t) = f/+/2t, and B is some constant.
Availing oneself of expressions (19) and taking the integrals
in the thermal balance equation (16), after appropriate
transformations we obtain

o(r)
NG

[en () ()] )

forlen (£ et )

To =Ty + { ~ V2 Hpp = 2Cp(Tys — Tin)

The quantity 8, which characterizes the speed of phase
boundary motion, can be found from equation (14). Assum-
ing a; = a, and substituting Eqns (19) and (20) into Eqn (14),



460 V Yu Khomich, V A Shmakov

Physics— Uspekhi 58 (5)

we arrive at a transcendent equation for f:

a
ZCP(Tlr - T )\/;

= {\/EHpﬁ{exp <§—;> - 2} + QET) }erfc \/% .

(1)

Solving equation (14) allows calculating the melting depth for
various materials under their irradiation by laser pulses with
various durations and power.

After the laser pulse infusion ends, the liquid phase starts
the transition into the solid phase. The cooling rate in our case
will be maximum if, first, the amount of heat absorbed by the
solid phase during the pulse action is small in comparison
with the energy spent on the formation of the liquid layer and,
second, the liquid phase superheating turns out to be weak:
(To — Tyy)/ Ty < 1. The requirement that liquid phase super-
heating be small can be fulfilled under specified laser energy
fluence for sufficiently short pulses, so that the melting depth
is small. For example, in the case of Cu at Q(¢) = 0.5 J cm ™
and 1=10"%s, the depth of the melted layer is /=
B2t ~ 0.2 um, and the superheating degree of the liquid
phaseis (Ty — Ty)/ Ty ~ 0.1.

In order to determine the cooling rate, the problem of
melted layer cooling through the heat transfer to the bulk of
the solid phase needs to be solved. In this case, the initial
temperature distribution is described by expressions (19) for
the instant of time when the pulse ends. If the melting depth is
small and the liquid phase superheating degree fulfills the
condition

TO_Ttr

<1,
Tu

then the temperature of the liquid can be assumed constant
and equal to Ti;. We will approximate the nonstationary
temperature distribution as

x—p(t
T(x,t):TtrYi/()

TOEEOR x>b(t), t>0, (22)
T(x,n) = o(n) (1 - ‘an))’ x>0. (23)

In order to simplify the calculations, we will put T, = 0.
Here, b(t) and y(¢) are the laws of motion for temperature
boundaries 7= T\, and T = Tj, = 0. The time 5 is measured
from the instant ¢, when the temperature boundary 7 = Ty,
reaches the surface, so 7 is the solution of the equation
b(t1) = 0; ¢(n) is the law for the surface temperature change
for t>1, and ¥(n) characterizes the motion of the
temperature boundary 7= 0 for ¢ > ;.

The functions y(¢), b(¢), ¢(n), ¥(n) can be found by
applying the variational method (Bio principle) based on
introducing the vector field H(x, y, z, f) into heat conduction
equation [31]. Vector field H(x, y, z, 1), known as the thermal
displacement, is defined by the equation

: 0
H= <&) H(xay7za[)7

where H is the vector representing the local heat flux
density.

The energy conservation law and the heat conduction
equation have, respectively, the form

¢T'=—divH,

grad T+ G)H:o.

By introducing  generalized coordinates H=
H(q1,92,...,qu,Xx,y,2,1), we obtain a set of differential
equations for the unknown ¢;:

where V' is the heat potential
1
V=5 J cT*dv,
D is the dissipative function
1 [(H?
D==|(=—)dVv
2 [(F )
and Q; is the generalized external force

Q,:—JTa—HndS
0q;

After applying the variational principle, we arrive at

ar\ 2
y(z):ﬁ\/ﬂﬂw%a[(wr%) —1]7 (24)
128 215at\'/?
b([):ﬁ\/z‘_maKIJrT;) —1}7 (25)

@ (n)
B 80an
=T {1 +/3\/27+a+(87/215)m(zlsﬁ\/ﬂ/(lzsa)ﬂ)]’ 26)

‘P(n)—{{ﬁ\/Z_r+oc+28%a<721152ﬁf+

2 1/2
1)} + 80a11} ,

(27)

where o = /Tt exp [ f2/(2a)] erfc [ B/(2a)].

Crystallization is caused by the appearance and growth of
crystal structure nuclei in the melt. The growth rate of the
nucleus of a crystal is expressed as [32]

dr U Au
E—vodexp(—kB—T) [1 —exp(—kB—T)] s

where vy is the Debye atomic oscillation frequency in the
supercooled liquid, U is the activation energy for the atom
displacement, kg T'is the thermal energy, dis the characteristic
size per atom, Au is the difference between the atomic
chemical potentials in the supercooled liquid at the tempera-
ture 7 and at the phase transition temperature Ty:
Ap=h(Ty — T)/Ty, and h is the heat of phase transition
per atom.

The characteristic time of nuclei growth is determined as
the time after which the sizes of the new phase nucleation
centers barely change. In this time, the temperature averaged

(28)
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over the thickness of the melted layer becomes equal to
Ty — Ao, where Ay is the supercooling degree under which a
new phase nucleus growth actually stops. Therefore, the
characteristic time 7y can be found from the equation

J T(x,70)dx
pv2e

where /27 is the thickness of the melted layer.

In order to determine 7, from equation (29), we need to
know, besides the temperature distribution specified by
formulas (22)—(27), the value of supercooling degree A,. It
follows from equation (28) that nucleus growth actually takes
place when supercooling 4y < Ti;. Under stronger super-
cooling, the growth of the new phase nucleation centers
stops. The mobility of the atoms in the supercooled liquid,
described by the quantity exp (—U/kgT), starts to play an
important role here. The average cooling rate of the melt is
expressed as ¢ = 4g/t, and the change in the temperature
averaged over the thickness of the layer takes the form
T(t) = Ty — et.

By integrating relation (28) and taking into account the
fact that (T, — 7(¢))/Tw =¢t/T <1 and h~0.1U, we
obtain the size of the crystal phase nucleus in the supercooled
liquid:

r(t) = vod exp (—

=Ty — 4o, (29)

U \ kgT2
kB Ttr Ue

y h Cexn [~ Uet n U ex et(U+ h)
Urh P\ k12 ) U TP |k T

Uet
~ R{l — exp (— —kBth )} ,
r

 vod exp [~ U/ (kg Ty)] ks T3 h
N eU(U+ h) '

(30)

where

R

The size r(¢) of the crystal nucleus tends to its limit value R
in the relaxation time 19 = kg ler /€U, which, according to the
initial definition, is the characteristic time of this process. On
the other hand, the characteristic time is connected with the
cooling rate by the relation 79 = Ay/e, where 4y is the
supercooling degree, which is included in equation (29);
therefore, one has Ay = kBler/U. We can now obtain 71,
from equation (29) and then determine the corresponding
cooling rate and the limit size of the new phase nucleus.

It should be noted that the surface energy is neglected
in equation (28), because for high cooling rates,
&> 10° grad s~!, the characteristic value of the critical
nucleus size r = [26/(Au) m] d> turns out to be on the order
of the interatomic distance [here, (Ax) m = [ Au(t) dt/to and
oV is the free surface energy per unit area, and V is the
volume]. If the cooling rate is high, the bulk change in the
thermodynamic potential exceeds that of the surface for any
nucleus size.

nm
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1000 =

500

0 500

1000

1500 nm

Figure 3. Atomic force microscopy of a stainless steel surface relief after its
irradiation by an ArF laser with the wavelength of 193 nm and energy
fluence in the spot center of around 4 J cm~2 (20 pulses with repetition rate
2 Hz).

In this way, one can calculate the cooling rates and the
characteristic sizes of the nuclei that are formed during the
cooling of the melted layer [33, 34]. If aluminum is irradiated
by a laser pulse with the duration T ~ 10~% s, nanostructures
with the period of 50— 100 nm will form at the metal surface
after the solidification of the melted region if the absorbed
laser pulse energy Q~0.41J] cm™2. For the energy
0 ~ 4.4 ] cm~? and pulse length 7 ~ 107° s, the size of the
nanostructures grows up to 500 nm. In the case of the
irradiation of a copper surface, in order to obtain nano-
structures 50— 100 nm in size, it is required that O ~ 1 J cm >
and 7~ 107%s. Laser pulse energy Q~61J cm2 and
7/ 107% s are necessary to obtain 100—500-nm structures
on a silver plate. In accordance with the calculated results, the
amount of energy that needs to be absorbed during a pulse
with 7 =~ 10~% s for obtaining nanostructures with a size of up
to ~ 100 nm at the surfaces of various materials is indicated
in Table 1.

Figure 3 shows an image of a stainless steel surface in the
melting region after the nanosecond radiation infusion with a
wavelength of 193 nm. A relief in the form of pits with a
diameter of 25—40 nm and a depth of around 40 nm can be
seen.

4. Nanostructure formation kinetics at solid
surfaces during their laser-induced melting

In Section 3, we estimated and obtained the characteristic
sizes of the crystal phase nucleation centers that form
during the cooling of a melted surface layer. Let us now
determine the size distribution function of the formed
nucleation centers under the conditions of spontaneous
nucleation [35, 36].

Table 1. Energies absorbed during laser pulse irradiation with length © ~ 10~® s as needed for the formation of nanostructures with sizes of up to

~ 100 nm at the surfaces of various materials.

Material Al Cu

Ag Mo Si3N4

0.44-0.74 1.02-1.88

0,Jcm™?

0.72-1.31

0.76-1.33 1.26-2.4 0.6-1.0
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In order to derive the kinetic equation for the size
distribution function z(n,t) of the nuclei, we will consider
the phase space comprising only one axis—an axis of the
sizes of new phase centers. There are three points on an axis in
this space, which stand for the new phase nucleation centers
consisting of n — 1, n, and n + 1 atoms, respectively. We will
derive an equation that will allow us to find the distribution
function z(n, 1) of these centers over n. If P, (n) and P_(n) are,
respectively, the probabilities of an atom attachment and
detachment from the region occupied by the new phase per
unit time, then four processes are possible:

(1) Z(l’l, t) P,(I’Z); (2) Z(”? t) P+(}’l, Z);

B)zin—=1,)P (n—1); @ z(n+1,1) P_(n+1).

The first and the second processes determine the number
of new phase centers transferred from point z to points n — 1
and n+ 1 in the time ds. The two others determine the
number of new phase centers which occur at the point 7 in
the time dz due to leaving other points. Therefore, the desired
equation may be written down as

dz(n, 1) _
= = == ) [P () + P (n)]

+zn—1L0)Pi(n—1)+zm+1,0) P_(n+1). (31)
The fact that P.(n) does not depend on z and there are no
integral terms in equation (31) restricts the consideration by
the initial stage of the process. If we assume n > 1 (which
means that we are considering new phase centers which have a
specific structure and therefore consist of a significant
number of atoms), then after writing down the series
expansion of the functions on the right-hand side of equation
(31) up to the 2nd-order infinitesimal, we arrive at

2
D (Pl + ()]

+ 6% [z(n, 1) (P-(n) — Py(n))] . (32)

In our case, the probability is defined as [37]

%BT - A(D(n)) — Py(1+¢), (33)

Py(n) = Pyexp <:t
where ¢ = 1/(2kgT) dA®(n)/dn.

By substituting Eqn (33) into Eqn (32), after some
transformation we obtain

0z(n, 1)

Vv EexX — }’l2/3 a—zz !
a P T RT(0) an? " kgT(1)

x % ( dAjz(") z(n, z))} .

Here, v is the Debye frequency, U is the activation energy for
the atomic displacement, and 7(¢) is the time-dependent
temperature of the system. Equation (34) is valid under the
assumption that the growth happens only due to the joining
of single atoms in an activated way over the potential barrier.
The driving force of the process under the conditions of
spontaneous nucleation is expressed as

dAd(n) _ Ty~ T()
dn TO ’

(34)

where / is the phase transition enthalpy per atom, and T is
the melting temperature.

At the initial instant of time there are no nuclei in the
system. Therefore, one has

2(n,0) = 2N3(n — 1), (35)

where N is the number of particles per unit volume, and
d(n — 1) is the delta function defined in the following way:

[76(n—1)dn=1/2. Due to the fact that nucleus growth

takes place only for #n > 1, the flux in the size space atn = 1is
(az(n7 1)y h Ty—T(1)

A natural condition consists in the absence of very large new

formations:

assumed to be zero:
— t =0. 36
o D) (36)

2(00,1) = 0. (37)

The set of equations (34)—(37) is closed and the time
dependence of the temperature in it is a known function;
however, an exact solution of this system unlikely exists. We
will take advantage of an approximate solution method and
estimate the characteristic time of the process, after which the
nucleus size change can be neglected.

The rate of the change in the nucleation center radius can
be written down in the form of expression (28):

g— e _L l_e _ﬂ
o P\ T T P\ T kT |

Here, a is the elementary cell size, and Au = h(Ty — T')/To is
the difference between the atomic chemical potentials in the
supercooled liquid for T(x,f) and T;. We will put the
temperature of the metal to be zero before the beginning of
the laser pulse infusion. The temperature distribution after
the pulse action can be obtained using the Bio variational
principle [see expressions (22)—(27)]. In the linear approxima-
tion T(7) = T, — et, where the cooling rate ¢ is known. Using
the approximation

(38)

(To—et) ™ = Ty (1 + atTy )

and taking into account the fact that &7, ! < 1, expression
(38) can be rewritten as follows:

g ~ vacx — L €X — Vet
ot - P kg Ty P kBTg

— exp (—ﬁ(h—l—U))}

By integrating Eqn (39), we obtain the time dependence of the

nucleus size:
ox Uet
PU k12

(39)

2
r(t) =vaexp (— v )kBTO[ h

kB T() eU h+U B
U te
The radius of the nucleus of a crystal during the cooling of the
melt with the rate ¢ tends to its limiting value
U \ keTg h
kB T() eU h+U

ro /& vaexp <
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with the relaxation time 1 = kg7 /(¢U), for U > h. Thus, for
e=(10°—10%)°C s7!, kgT/U =~ 0.1, and Ty = 103°C, the
characteristic time of the process will be 79 = (1076 —1074) s.

We can linearize equations (27), (29) by averaging the
corresponding coefficients of the distribution function z(n, t)
derivatives. The diffusion coefficient D=vexp (—U/kg T) n*/3
in the size space depends on two independent variables n and
t; therefore, the averaged value is given by

_ _ U\,
(D) = <vexp < kBT> n >

y [ U 1 (™
=— | exp(——)dr —| »**dn

70 Jo p( kBT> noJo

3U \ (ksT? h \°

_ 3 _ 0 _ _
=v exp( kBTO)( U h+U) 0,6 [1 —exp (—1)],

with ny = rg /a®, and tj being the characteristic time after
which one can neglect the change in the nucleus size. The
average value of the driving force equals

To—T(l) . he . h _
<h kT2 >* kBTg@* 2w

After linearization, the set of equations (34)—(37) will take
the form

oz 9’z Oz

oo o’ (40)
z(n,0) =2No(n— 1), (41)
(2—;—012) 71:0, (42)
z(00,1) =0, (43)

where t = (D)t.
By applying the Laplace transformation L(z) = ¢(n,s)
[38] to the set of equations (40)—(43), we obtain

d? d
W(f_ad—(lf—s(p—&—ZNé(n—l):(L (44)
(/)(OO»S) =0, (45)
de )
—~ g =0. (46)
(d}’l n=1

The solution of the homogeneous equation

d%e do —0
dn2 " Yan 0?7

assumes the form

@ = crexp (kin) + caexp (kan) ,

where k15 = /2 + \/a2/4 + 5. The unknown functions
2NO(n—1)
e

2NO(n —1
(,'2(}’1) _ kz(_ kl )

exp (—k;)+ 4,

exp (—k2) + B,

where 0(n — 1) is the theta-function:

0, n<l,
G(n—l):J 5(n—1)dn = % n=1,
- 1, n>1,

can be found by the method of the variation of constants from
the equations

de de

&P (kin) +d_n2 exp (kon) =0,
de de .
ki d_nl exp (kin) + ky d_}12 exp (kon) = —2Né(n—1).

Constants 4 and B are determined by boundary condi-
tions (45) and (46):
+ kl — o
kz — o ’

2Nexp (—kp) N
A= B=
’ ky — ki
As a result, the solution to equation (44) under conditions
(45) and (46) will be expressed as follows:

ky — Kk

_ 2Nexp [ki(n—1)]

o(n,s) = s [0(n—1) —1]
2Nexp [ky(n—1)] o ki—a
kz —kl |:9(I’l l) 2(/(2 —O():|

By applying the inverse Laplace transformation L~ [p(n, 5)],
we find the nucleus size distribution function

fx(n—l){ 1 p{_oﬁ _(n_1)2]

z(n,7)=Nexp 5 Nz 7" "
o (n—1) /T n—1
— 5 €Xp—— erfc(T—i- Zﬁ)} (47)

The derived distribution function, being an approximate
solution to the set of equations (39)—(42), is defined for

kg T?

0<t<(D)tg=(D 0

< (D) 10 <>sU
l<n<n *i vexp | — v kBT02 h ’
0T 3 VP T ke ) eU ht U

If the statistical average nucleus size

[ z(n, t)ndn
) ="—m——
J* zdn

is slightly less than the asymptotic size ny, then n can be
assumed to change from 1 to 400, which holds true either at
initial stages of the process or at high cooling rates,
&> 108 grad s7!. For large t (t > a~2), by using the asymp-
totic representation of erfc (x) ~ exp (—x?2)/(y/nx), the dis-
tribution function can be written down in the form

z(n, 1) =~ Nexp [(oc/2) n—n*/(4) dz/(‘”)]
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Figure 4. Asymptotic distribution functions for the size of the new phase
nuclei, f=z/N (for t=1¢(D)), obtained for the cooling rates of
(a)e=10"°Cs~!,and (b) e = 10° °Cs~!.

Here, the function exp [an/2 —n?/(47)] has a sharp max-
imum at n = at, but ¢(n,t) changes slowly. Therefore, the
extremum of the distribution function z(n, ) is situated at the
point n = (h) = at. The statistical average size of new phase

nuclei depends on the cooling rate as &3, because

t=(D)tg e

Figure 4 plots asymptotic distribution functions for the
nucleus size, f=z/N (for © = 19(D)), obtained atr various
cooling rates with the following values of the parameters:
U=1eV, h/U=0.1, kgTy=0.1eV, v=102s"!, and
¢, =307 (mol K)~!. For the cooling rate ¢~ 107 °C s~!
(Fig. 4a), the average size of the nuclei is r ~ 10 nm. As the
cooling rate decreases to 10°°C s~! (Fig. 4b), the size
distribution function displaces to the right and the nucleus
maximum size resides around 100 nm. If ¢ = 10°°C s~ !, the
statistical average nucleus size reaches 500 nm. When the
cooling rate is further decreased, a fine-grained crystal
structure at the micrometer level is formed. However, it
should be noted that the cooling rate estimation was made
without taking into account the evaporation and thermal
radiation from the melt surface.

5. Conclusion

The development of physical fundamentals for new simple
nanostructuring methods (creating surface reliefs with char-
acteristic periods of less than 1 um on such materials as
superhard refractory ceramics, quartz, Teflon, silicon, and
polymers) is of great practical interest at the present time.
Therefore, it is important to understand the mechanisms and
main factors that control the process.

This article presents the experimental and theoretical
results obtained by the authors on direct laser nanostructur-
ing of various materials by excimer nanosecond laser pulses.
We have analyzed the formation of structures under laser
irradiation, the period of which is not connected directly to
the radiation wavelength. Direct laser nanostructuring mod-
els are being developed for a wide range of technological
materials (metals, ceramics) and various surface modification
processes—in the presence of surface layer melting and
without it.
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