
Abstract. Experimental and theoretical research on neutral
excitations in a two-dimensional electron gas in a strong mag-
netic field is reviewed. Methods for calculating excitation en-
ergies in the strong-field limit for integer and noninteger filling
factors are considered. The effects of impurities and of the
nonideality of the two-dimensional system on the excitation
spectrum are examined. Experimental results that have been
obtained by themethod of inelastic light scattering and that lend
support to the current theoretical views are presented. We also
discuss possible avenues of future experimental and theoretical
work.
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1. Introduction

Magnetoexcitons are neutral collective excitations that occur
in a two-dimensional electronic system (2DES) in a transverse
external magnetic field. The work done at the dawn of the
physics of low-dimensional systems [1, 2] laid a theoretical
foundation for the theory of magnetoexcitons. As time went
on and higher-quality objects became available for study, this
work received experimental confirmation, which in turn
stimulated further theoretical advances. Both these first [1, 2]
and subsequent [3, 4] studies used the strong magnetic field

approximation to determine the magnetoexciton energy,
reducing the multiparticle problem of excitations in a strongly
interacting electronic system to a two-particle scheme.

There are a number of exact solutions for the dispersion of
magnetoexcitons with relatively small integer filling factors,
when the spin or orbital quantum number of the electronic
system changes by unity. However, the complete spectrum of
magnetoexcitons in an electronic system even with a single
filled Landau spin sublevel has been calculated only partially.
Calculating the energies of all possible excitations is a major
theoretical problem. Correspondingly, an increase in the
number of filled Landau levels greatly complicates the
problem of 2DES excitations.

Allowing for dimensional effects, for the fact that only
finite magnetic fields can be reached, and for the presence of a
random potential in real two-dimensional systems greatly
complicates the analysis; these factors are often crucial when
comparing theory and experiment. Finally, even a small
deviation of the filling factor from an integer value seems to
alter the ground state of the electronic system so much that
the theoretical approaches developed for calculating excita-
tions for integer filling factors lose their validity.

In this review, we attempt to trace the recent development
of our understanding of magnetoexcitons in two-dimensional
systems, to link new theoretical ideas with our results
obtained from inelastic light scattering experiments, and to
identify the problems to be addressed to further develop the
theory of magnetoexcitons.

2. Theory of magnetoexcitons
in a two-dimensional electron gas.
First-order perturbation theory.
Hartree±Fock approximation.
Single-mode approximation

According to Kohn's theory [5], the cyclotron resonance
energy of a translationally invariant electronic system is
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independent of the Coulomb interaction. It follows that if the
system is excited by changing the orbital quantum number by
unity (magnetoplasmon, MP), then, for the zero momentum
q � 0, the excitation energy is equal to the cyclotron
resonance energy of a noninteracting electronic system. A
similar statement applies to spin excitons, excitations inwhich
the spin quantum number changes by unity while the orbital
quantum number remains unchanged, which occur in electro-
nic systems invariant under the action of a group of spin state
rotations (Larmor's theorem). As a consequence, the energy
of a zero-momentum exciton is equal to the Zeeman energy.
Both above statements are exact, i.e., both hold indepen-
dently of the value of the filling factor and of the relation
between the Coulomb and cyclotron energies.

If the Landau level filling factors have integer values, then,
in the strong magnetic field limit, the exciton and magnetoex-
citon energies for a nonzero q can be calculated by the
perturbation theory in the ratio of the Coulomb energy at
the interparticle distance to the cyclotron energy, Ec=�hoc 5 1
(here, Ec � e 2=elB, lB is the magnetic energy, oc � eB=m �c,
m � is the effective electron mass, and e is the dielectric
constant).

Collective excitations in a 2DES in a magnetic field were
first treated theoretically [1] by modeling the magnetoexciton
as a pair of charged particles, an electron and a hole, with the
electron promoted to an unfilled electronic state, the hole
remaining in its initial state, and the interaction of the
electron with the hole and all other electrons being the
Coulomb one. The study derived dispersion relations for the
magnetoexciton and the spin exciton for the integer filling
factor n � 1. For small momenta, qlB 5 1, the magnetoplas-
mon and the spin exciton have the respective linear and
quadratic dispersion

EMP�q� � �hoc � e 2

2elB
qlB ;

Es�q� � gmBB�
e 2

4elB
�qlB�2 ;

where g is the electron g-factor and mB is the Bohr magneton.
Similar results were obtained in [2] for a two-dimensional

system with electrons in the conduction band and holes in the
valence band.

A more detailed analysis of the magnetoexciton spectrum
using the diagram formalism [3] and (equivalently) the time-
dependent Hartree±Fock (TDHF) approximation [4] for
excitations led to the same results.

Importantly, the problem of magnetoexcition energy
admits an exact solution only for integer-filled states for
which the ground state of the system is nondegenerate. In
general, themagnetoexciton energy can be written in the form

En; n 0 �q� � �hocdn� gmBBdSz � DEn; n 0 �q� ;

which includes contributions from the change in the orbital
quantumnumber (Landau level index of the electron, n), from
the change in the Zeeman energy due to electron spin flip, and
from the Coulomb interaction, DEn; n 0 � Ec. The last con-
tribution determines the excitation dispersion as a function of
the generalized momentum (an integral of motion) given by

q�
�
ÿ i�h�HH1 � HH2� ÿ e

c
�A2 ÿ A1�

�
ÿ e

c
B� �r2 ÿ r1�; �1�

where the indices 1 and 2 respectively refer to the negative and
positive-charge particles, A1;2 are the magnetic field vector
potentials, and r1;2 are the radius vectors of the particles. The
effective electron-to-hole distance is proportional to the
generalized momentum hDri � l 2B q� ẑ, where ẑ is the vector
normal to the surface.

As noticed in Refs [3, 4], collective excitations in a two-
dimensional electron gas can be considered two-dimensional
only for transitions from a filled to the next Landau level (the
orbital quantum number change dn � 1, dS � 0) or for spin-
flip transitions with dn � 0, dS � 1. In the case of no
impurities and T � 0, magnetoexcitations and spin excitons
have an infinite lifetime, because there are no other excited
2DES states with the same momentum and spin. For
cyclotron spin-flip excitations (CSFEs), dn � 1 and dS � 1,
and for dn > 1 transitions, the two-particle approximation
breaks down.

It should be remembered that a magnetic exciton can also
undergo decays into other excitations as long as the energy,
wave vector, spin projection, and orbital momentum are
conserved. The interaction with other 2DES excitations
affects not only the lifetime but also the dispersion relations
of magnetiexcitons. We should therefore recognize that in a
2DES, a multiexciton complex exists whose energy can be
determined in the framework of the two-exciton approxima-
tion. The traditional theory of magnetoexcitons usually
neglects two-exciton corrections [3, 4, 6].

For an even filling factor, different-spin 2DES states are
filled equally. The ground state has the total spin S � 0,
whereas excitations with dn � 1 can be classified as singlet
and triplet; we note that the singlet magnetoexciton is a Kohn
magnetoplasmon, a synphase combination of two dSz � 0
transitions. The components of triplet excitations are spin-
split and form combined spin-flip excitations across the
cyclotron gap. For odd filling factors, i.e., when two spin
states are filled differently, the singlet±triplet classification is
not appropriate. In this case, there are two types of
magnetoplasmon excitations for dn � 1: synphase (Kohn
type) and antiphase; combined spin-flip cyclotron excita-
tions are also possible.

The Hamiltonian of a two-dimensional electronic system
in a magnetic field has the form

Ĥ �
X�

n� 1

2

�
ocâ

�
snkâsnk � Ĥint ;

where â�snk and âsnk are the electron creation and annihilation
operators for the nth Landau level, k labels degenerate states
within one Landau level, and s is the spin. In the Landau
gauge, the electron wave functions in the one-particle
approximation have the form

fn; k�Nÿ1=2 exp �iky� exp
�
ÿ �x� kl 2B�2

2l 2B

�
Hn

�
x� kl 2

lB

�
(N is the normalization coefficient and Hn are the Hermite
polynomials). The interaction Hamiltonian in a magnetic
field is determined by the matrix elements of the Coulomb
interaction V�r1 ÿ r2� between these functions. The Hartree±
Fock approximation introduces corresponding creation
operators for excitations with amomentum q along the y axis,

Q̂�Y �q� � Q̂�nmss 0 �q� �
X
k

â�s 0;m; k�qâs; n; k ; �2�
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and the corresponding equation for the energy,

Q̂�Y �q�

�
ĤQ̂Y 0 �q�

��ÿ o�q� Î � 0 : �3�

In the diagram formalism, the charge- and spin-density
response functions wss 0 �q;o� can be written in terms of the
Green's function of an electron in a magnetic field Ga�o�,
where a � na; sa are the Landau level and spin indices, and in
terms of the vertex partGab�k; k 0; q;o�, which is the sumof the
ladder and loop diagrams (Fig. 1); we note that the Green's
function incorporates exchange-interaction corrections. In
the first-order perturbation theory, the Coulomb interaction
contribution to the excitation energy consists of the following
three terms, corresponding to the diagrams shown in Fig. 1:

(1) a constant (momentum- and excitation energy-inde-
pendent) term that represents the exchange self-energy
difference between the excited electron and the hole at the
Landau level from which the electron was removed, Sn 0 ÿ Sn;

(2) the direct electron±hole Coulomb interaction, which
depends on the excitation momentum (the second term in the
diagram equation for the vertex part G corresponding to the
inclusion of ladder diagrams);

(3) an `annihilation' term, which is included in the
random phase approximation (RPA) and which is the last
term in the diagrammatic equation for G. This term occurs
only for charge density excitations (involving no change in the
spin of the system).

We note that the formalism under discussion extends to
the case of several exciton branches (the governing equation
becomes a matrix equation).

Figure 2 borrowed fromRef. [3] reproduces spin wave and
magnetoplasmon dispersion curves for the filling factor 1 and
for the filling factors 1 and 2. We note the minimum
(commonly called a roton minimum) in the magnetoplasmon
dispersion.

If the filling factor is noninteger, then, neglecting the
interaction, the ground state of the system is degenerate. In
that case, no rigorous treatment of 2DES excitations exists.
Excitation spectra are calculated with the TDHF approxima-
tion [7± 9], which assumes a uniform electron distribution (all
configurations are of equal probability and do not correlate),
and with the generalized single-mode approximation
(GSMA) [6, 10, 11], in which electron±electron correlations
are included using a pairwise correlation function. For an
arbitrary filling, the structural factor is not known but can be
obtained from numerical calculations for a number of
Laughlin incompressible states, n � 1=3; 1=5::: [12, 13].

In this review, we concentrate on single-exciton excita-
tions, because the work reviewed uses inelastic light scattering
as a key experimental tool. To make the picture more
complete, however, we also note a number of studies that
consider finite-density systems of interacting magntoexcitons
and explore the nonideality and the phase diagram as well as
the magnetoexciton condensate as the ground state [14±16].

3. Cyclotron spin-flip excitations
in a quantum Hall ferromagnet.
The effect of the geometric form factor
on the Coulomb interaction

In this section, we examine the spectrum of magnetoexcitons
inHall ferromagnets, i.e., in even integer filling states inwhich
the electronic system has a nonzero spin polarization. We
review experimental cyclotron spin flip excitation (CSPE)

w =

G = +e�

+ +G = e�
Figure 1. Charge density response function wss�q;o� in the strong

magnetic field approximation. Gab�k; k 0; q;o� is the vertex part and

Ga�o� is the one-particle Green's function. Thin lines with arrows: one-

particle Green's functions for noninteracting particles: wavy lines:

unscreened Coulomb interaction.
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studies using inelastic light scattering and examine how the
exchange interaction contributes to this type of excitation,
depending on the parameters of a two-dimensional electronic
system. The results obtained are compared with perturbative
calculations.

For a state with one filled spin Landau sublevel (n � 1,
S � Sz � N0=2, where N0 is the degree of degeneracy of the
spin Landau sublevel), the lowest-energy neutral excitation of
the 2DES is a spin exciton (SE), a spin-flip excitation within
the lowest Landau level. Spin excitons vary from collective in
the long-wavelength limit to single-particle in the short-
wavelength limit (qlB !1). In the latter case, a spin exciton
is a pair that contains a reversed-spin electron infinitely
separated from a ground state hole and whose creation
requires an energy equal to the sum of the Zeeman and
exchange energies. The exchange contribution to the spin
exciton energy increases the effective spin gap, ESE�1� �
EZ ÿ S0, where EZ is the Zeeman energy and S0 < 0 is the
exchange energy of an electron in the ground state. A suitable
quantity to characterize the spin gap is the exchange-
enhanced g-factor

g � � ESE�1�
mBB dSz

� gÿ
���� S0

mBB dSz

���� : �4�

One of the direct methods to measure the exchange-
enhanced g-factor is activation transport. It has been shown
by magnetotransport and magnetocapacitance techniques
that for n � 1, the activation gap depends nearly linearly on
the magnetic field, i.e., the exchange-enhanced g-factor of
electrons has a weakmagnetic field dependence [17±20], while
the energy scale of the exchange-enhanced spin splitting
should be equal to that of the Coulomb interaction,
EC � e 2=elB �

����
B
p

[1]. Moreover, the absolute value of the
splitting turns out to be much less than the theoretical
prediction. The obvious inconsistency between the experi-
mental and theoretical results has triggered interest in seeking
an alternative approach to the exchange interaction in a Hall
ferromagnetic state.

Information on the interaction can be extracted from
data on the energy of long-wavelength collective excitations.
As already noted, the energy of long-wavelength magneto-
plasmons and that of spin excitons do not contain a
contribution from the electron±electron interaction (the
Kohn±Larmor theorem). Such symmetry constraints are
irrelevant for combined excitations involving a simulta-
neous change in the spin and orbital quantum numbers of
the 2DES (see Fig. 3 for a schematic of excitations). Hence,
the energy of a cyclotron spin-flip exciton (dn � 1, dSz � ÿ1)
can be written as the sum of the cyclotron, Zeeman, and
Coulomb energies:

ECSFE�q� � �hoc �
��gmBB��� D�q;B� : �5�

The term D�q;B� determines the CSFE dispersion and is
equal to the difference in the energy of the multiparticle
Coulomb interaction between electrons in the ground and
excited states. Contributing to this energy are the term
ÿS0, which is associated with the decrease in the energy
exchange with electrons at the zeroth Landau level, and the
term E 10

v �q�, the binding energy of the magnetoexciton
consisting of an electron excited to the first Landau level
and a hole at the zeroth Landau level. In the Hartree±Fock
approximation, the explicit expressions for these energy

contributions are

S0�B� � ÿ
�1
0

kdk

2p
v�k� exp

�
ÿ k 2l 2B

2

�
; �6�

E 10
v �q;B� � ÿ

�1
0

kdk

2p
v�k�

�
1ÿ k 2l 2B

2

�
� J0�kql 2B� exp

�
ÿ k 2l 2B

2

�
; �7�

where J0�x� is the Bessel function and v�k� � 2pe 2=ek is the
Fourier component of the Coulomb potential. When calcu-
lated for an ideal two-dimensional system in the limit q � 0,
these expressions are related by E 10

v �0;B� � S0=2. We there-
fore conclude that the magnetoexciton binding energy E 10

v �0�
in a CSFE is only a partial compensation of the exchange
energy loss due to a change in the spin quantumnumber of the
2DES; and that the resulting contribution D�0;B� �
ÿS0�B� � E 10

v �0;B� to the energy of a long-wavelength
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Figure 3. (a) Inelastic light scattering spectra at 8.5 T (n � 1) for quantum

wells 20 nm and 25 nm in width (MP is a magnetoplasmon and CSFE is a

cyclotron spin-flip magnetoexciton). Shown above the spectra are excita-

tion schemes. Inset: the CSFE Coulomb energy D�0;B� for B � 7:6 T

obtained from an experiment for three wells of different widths (solid

triangles) and calculated by the Hartree±Fock method (dashed line).

Panels (b) and (c) plot the Raman shift (RS) dispersion in the long-

wavelength limit for the cyclotron spin-flip exciton (b) and magnetoplas-

mon (c).
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CSFE is positive. We also note that this excitation is virtually
dispersionless up to momenta q � 1=lB.

Experimentally, long-wavelength cyclotron excitations of
a two-dimensional electronic system in a n � 1 Hall ferro-
magnetic state were studied using inelastic light scattering
from a series of GaAs/AlGaAs heterostructures containing
single quantum wells of different widths and with widely
different electron concentrations. The experiments studied
the variation of the cyclotron excitation energy as a function
of parameters such as the concentration of the two-dimen-
sional electron gas (or equivalently, the value of the transverse
magnetic field at n � 1), the quantum well width, and the
excitation momentum.

Figure 3a shows typical inelastic light scattering spectra
close to the cyclotron energy for n � 1. The leftmost and
rightmost thin lines correspond toMP and cyclotron spin-flip
excitations. The broad spectral lines between the MP and
CSFE are due to the excitation of barrier impurity complexes
and are discussed in Section 6. Under the experimental
conditions in Fig. 3, the Zeeman energy is 0.21 meV, and its
contribution to the CSFE energy is small compared to the
remaining terms in expression (5). Therefore, the exchange
contribution to the CSFE energy is nearly equal to the CSFE
energy shift from �hoc. In the experimentally accessible
momentum range, the MP has a linear dispersion, while the
CSFE is nearly dispersionless (Figs 3b, c).

As can be seen from a comparison of two spectra in
Fig. 3a, obtained for the same magnetic field strength but for
quantum wells of different widths, the exchange contributes
differently to the CSFE. The decrease in D�0;B� with
increasing the width occurs because the nonlocality of the
electron wave function in the direction perpendicular to the
plane of the two-dimensional channel exerts influence on the
Coulomb interaction. For small B (l=lB 5 1, where l is the
effective width of the quantumwell), the Coulomb interaction
is nearly two-dimensional. In large magnetic fields for which
the effective width of the electron wave functions in the
direction of growth is comparable to the characteristic
electron±electron separation in the plane (l=lB > 1), their
interaction softens (see inset in Fig. 4a).

Hence, the effect of the quantum well width on the
Coulomb interaction scale should manifest itself in the
magnetic field dependences of the exchange contribution to
the CSFE energy for samples with quantum wells of different
widths. Figure 4 shows the measured magnetic field depen-
dences D�0;B� for quantum wells with the width 20, 25, and
30 nm. We can see that for large magnetic fields, wide
quantum wells show a marked decrease in the exchange
energy.

The measured changes in the CSFE energy as a function
of the magnetic field (see Fig. 4) and the quantum well width
(Fig. 3a) agree well with predictions from the Hartree±Fock
approximation, including the correction of the Coulomb
interaction for a finite quantum well width, when the Fourier
component of the Coulomb potential ismodified by introduc-
ing the geometrical form factor

v�q� � 2pe 2

eq
F�q� :

The form factor depends on the well width and is defined by
the expression

F�q��
�1
0

dz

�1
0

dz 0
��c�z���2��c�z 0���2 exp ÿÿ qjzÿ z 0j� ; �8�

where the components of the electron wave functionsc�z� are
found by self-consistently solving the one-dimensional
Schr�odinger and Poisson equations.

The good agreement between the measured dependence
D�0;B� and that calculated by the Hartree±Fock approxima-
tion allows using these data to estimate the exchange-
enhanced g-factor in a Hall ferromagnet. To do this, the
data on D�0;B� should be converted into the magnetic field
dependence jS0�B�j using the theoretical curves forS0�B� and
E 10
v �0;B� calculated including geometrical factors (dashed

lines in Fig. 4). Following this, Eqn (4) is used to obtain the
magnetic field dependence of g ��B� (shown by unfilled
symbols in Fig. 5b).

In low magnetic fields, the exchange-enhanced g-factor
reaches huge values jg �j � 60, an order of magnitude greater
than those obtained from activation transport measurements
(Fig. 5b). The differences among experiments can be
accounted for by the influence of the random potential in a
2DES on the measurement results. Transport experiments
measure the minimum value of the activation gap as an
integral property over the entire sample, and a random
potential can narrow the activation gap locally. In contrast,
the formation of a long-wavelength CFSE involves only those
regions in the sample where ferromagnetic order is not
destroyed by a random potential. In these regions, the
exchange energy reaches its realmaximum, and, importantly,
a sufficient condition for a long-wavelength CSFE to form is
unperturbed ferromagnetic order on the scale of a few
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magnetic lengths (the size of the long-wavelength magnetoex-
citon).

Thus, the study of the CSFE energy in the n � 1 state of
the Hall ferromagnet helped to determine the exchange
energy scale in the examined system and verify the first-
order perturbation theory in rs as a means to calculate the
multiparticle contribution to the energy of long-wavelength
collective excitations.

In [21], an experimental and theoretical study of cyclotron
spin-flip excitons in a n � 3 Hall ferromagnet was conducted.
In this case, the electron system is partially spin-polarized
(both spin components are filled on the zeroth Landau level
and one of them on the first) and unlike the n � 1 Hall
ferromagnet, the spectrum of cyclotron excitations contains
two pairs of Coulomb-coupled magnetoexcitonic branches
that correspond to charge-density (DSz � 0) and spin-density
(DSz � ÿ1) excitations.

Figure 6a is a schematic of two magnetoexcitonic pairs.
Each of the magnetoexcitons comprising a bound pair has an
identical set of quantum numbers and corresponds to a
cyclotron transition of an electron from the lowest or
second-lowest Landau level, such that two charge density
excitations form a synphase magnetoplasmon (MP) and an
antiphase plasmon (AP), and similarly, the spin-flip excita-
tions split into a synphase and antiphase cyclotron spin-flip
excitons (SF1 and SF2). A detailed discussion of the proper-
ties of the new branch of antiphase plasmons is postponed
until Section 4, but some differences between the bound
CSFE branches and the case of unit filling should be
mentioned here. The excitation energies are determined by
the Hartree±Fock method from the secular equation, whose
solutions can be written as

E 12
dSz
�q� � E1�q��E2�q�

2
�

��������������������������������������������������������� E1�q�ÿE2�q�
2

�2

�D12�q�2
s

;

�9�

where E1�q� and E2�q� are the energies of single noninteract-
ing cyclotron spin-flip excitons that include the cyclotron
Zeeman and exchange Coulomb contributions, totally similar
to expression (5) but including wave functions of different
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Landau levels. The energy D12�q� gives rise to the Coulomb
coupling between the twomagnetoexciton branches. We note
that this quantity also has a scale D12 � EC in the long-
wavelength limit. As a consequence, the dispersion branches
of two cyclotron spin-flip excitations repel each other, and the
exchange Coulomb contribution to the energy of the exciton
SF2 exceeds its counterpart for a CSFE in the n � 1 Hall
ferromagnet at the same field strengths (Fig. 6c).

As in the case n � 1, reasonable agreement can be seen
between the predicted and measured values of the SF1 and
SF2 energies (Fig. 6b) if the interaction potential is width-
corrected. Data obtained for two-dimensional systems with
different electron concentrations show, in agreement with the
calculations in [21], that the exchange Coulomb contribution
to the energy of cyclotron spin-flip excitons increases as a sub-
square-root of the magnetic field

It follows from the results discussed in this section, first of
all, that electron±electron correlations in a two-dimensional
system can show up in the energy of long-wavelength
collective excitations involving changes in both the orbital
and spin quantum numbers of the system. The method of
inelastic light scattering provides a tool to measure the
exchange interaction in Hall ferromagnet states with integer
filling factors. It is shown that they can be well described
perturbatively in the one-exciton approximation. The calcu-
lated energies of cyclotron spin-flip excitons coincide with
those measured experimentally if the finite quantum well
width is taken into account. The Coulomb exchange correc-
tions to the CSFE energy have a scale comparable to the
exchange energy of electrons on Landau spin sublevels,
� e 2=elB.

4. Magnetoexcitons and quantum
magnetoplasmons. Essential role
of the second-order perturbation theory

In this section, we examine the key properties of magnetoex-
citons and magnetoplasmons. For spin-nonpolarized states,
we show that some of these properties require using the
second-order perturbation theory.

In the ground-state 2DESwith the filling factor n � 2, two
spin sublevels of the zeroth Landau level are filled and the
total spin is zero. The lowest-energy states are cyclotron
excitations that involve a change by 1 in the orbital quantum
number. Magnetoexcitons with dn � 1 differ in the spin dS
and the spin projection on the magnetic field direction, dSz.
Zero spin occurs for a Kohn magnetoplasmon, which is a
synphase oscillation of 2DES spin subsystems with the
cyclotron frequency (Fig. 7).

Also possible are three excitations that have spin one,
dS � 1, and which differ in the spin projection on the
magnetic field direction, dSz � ÿ1; 0; 1 (spin triplet). The
central (dSz � 0) triplet component (cyclotron spin wave,
CSW) represents an antiphase oscillation of the spin sub-
system at the cyclotron frequency. Using the first-order
perturbation theory in the Coulomb-to-cyclotron energy
ratio, the Coulomb contribution to the energy of any CSFE
component is zero. But because the triplet excitations are not
subject to symmetry constraints similar to those in the Kohn
theorem, a nonzero Coulomb correction to their energies can
be expected to appear for q � 0. As we show in what follows,
they arise only in second-order perturbative calculations and
have the effect of significantly reducing the energy of
cyclotron spin-flip excitations.

Inelastic light scattering was used in [22] to study
cyclotron spin-flip excitations at even integer filling factors,
n � 2, 4, 6. The observed spectra exhibited three lines with
the splitting corresponding to the Zeeman energy EZ.
Interestingly, the position of the triplet center turned out to
be red-shifted relative to the cyclotron resonance energy (see
the inset in Fig. 8). Measurements of this excitation in
different magnetic fields but at a fixed filling factor n � 2
have shown that the amount of the shift is virtually constant
over a wide range of fields (see Fig. 8)

An analytic calculation of second-order corrections to the
collective excitation energies was conducted in the exciton
representation in the limit of small rs [23]. Instead of the
electron creation operators that produce one-electron states
when acting on the ground state, the exciton representation
involves exciton operators whose action on the ground state
gives a basis of exciton states [24±30]. The major advantage
here is that in the basis of exciton states, the Coulomb
interaction is partially diagonalized, and only the nondiago-
nal part is treated as a perturbation. As a result, even the
zeroth-order approximation produces a q-dependent Cou-
lomb correction to the excitation energy, and the spectrum of
the exciton state is nongenerate.
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The cyclotron excitation energy for the filling factor n � 2
and zero momentum is expressed analytically as

DECSW
n�2 �0�

� ÿ
X1
n�2

2ÿ 22ÿn

n�n 2 ÿ 1� n!

�1
0

dq q 2n�3V 2�q� exp �ÿq 2� �10�

in units of 2RyGaAs � r 2s �hoc � 11:34 meV [23]. In an ideal
two-dimensional system, DECSW

n�2 �0� � �ln 2ÿ 1�=2, which is
1.74 meV in energy units. Including the finite-width correc-
tion, the numerical value measured for the experimental
conditions in Fig. 8 is DE � ÿ0:47 meV, in reasonable
agreement with experiment.

Antiphase plasmon excitations, which we mentioned in
Section 3 and which exist for odd filling factors, allow a
similar treatment. For example, for n � 3, the zeroth Landau
level and the lowest-spin sublevel of the first Landau level are
fully occupied in the ground state. The excitation spectrum
with dn � 1 exhibits two coupled cyclotron magneotexcitons
with dSz � 0, which form aKohnmagnetoplasmon (MP) and
an antiphase plasmon (AP) (see the diagram in Fig. 9).
Independently of the filling, the Kohn magnetoplasmon has
a linear long-wavelength dispersion due to plasma correc-
tions. The antiphase plasmon has a structure similar to the
cyclotron spin wave with even filling factors; however, at
n � 3, theAP is a charge density, not a spin density, excitation.

In Ref. [31], inelastic light scattering was used to study
cyclotron excitations at even and odd integer filling factors.
The properties of the classical magnetoplasma mode are a
matter of common knowledge and there are a variety of
experimental methods to study them. As regards the anti-
phase excitations AP and CSW, their experimental study
became possible only with the use of inelastic light scattering
[22, 32, 33]. These excitations are irrelevant to the absorption
of electromagnetic radiation and, therefore, have not been
detected previously by the cyclotron resonance method.

Observations have been reported [34, 35] of excitations
near the roton minimum for transitions from one Landau
level to the next one for n5 1 in GaAs quantum wells. The
experiments used the inelastic light scattering method, for
which the accessible range of excitation wave vectors is
k � 105 cmÿ1, to be compared with significantly larger
values k � 106 cmÿ1 at which the roton minimum exists.
Similar studies of excitations near the roton minimum were
carried out for the filling factor 1/3 in Ref. [36], where the

nonconservation of the wave vector was ascribed to the
impurity-induced broadening of Landau levels.

In Ref. [37], the excitation spectrum was investigated in
the regime of the fractional quantumHall effect for the filling
factor 1/3 and large wave vectors near the roton minimum.
With themethod chosen to study such excitations (which used
surface acoustic waves of different wavelengths to modulate
the dielectric constant and employed optical methods to
detect resonance absorption), the entire dispersion curve
could be obtained. The presence of a short-range potential
enables [34, 35] detecting excitations near the rotonminimum,
but it is not possible to derive the wave vector dependence on
the energy. The results of the experiment in [37] were found to
compare well with the theoretical roton dispersion obtained
by the composite fermion method [38], indicating that the
nonuniformity scale exceeds the magnetic length.

Inelastic light scattering methods, as well as other optical
methods, are only useful for excitations with small momenta.
In this limit, the fundamental Kohn magnetoplasma mode is
classical and does not show quantum effects. In contrast, even
for small momenta, the odd-n AP mode and even-n CSW are
quantum excitations that have no classical analogs and which
fundamentally require the presence of two spin subsystems.

Inelastic light scattering spectra for antiphase excitations
are presented in Fig. 10, where two spectral features can be
seen below the cyclotron resonance energy: a single line and a
characteristic spin triplet at even and odd filing factors. It is
noteworthy that although excitations with even and odd
filling factors are of different natures (different spin excita-
tions), the absolute value of the shift decreases with increasing
the filling factor and falls on the same empirical curve
DECSW;AP � 1=n (Fig. 11).

For both even and odd filling factors, the first-order
perturbation theory gives zero for the Coulomb contribution
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to the energy of antiphase excitations AP and CSW. In both
cases, however, the second-order corrections are negative,
have a similar structure, and are independent of the magnetic
field.

In the simplest cases n � 2 and n � 3, it proved possible to
rigorously include all second-order Coulomb corrections for
both types of antiphase excitations. The results obtained in
the exciton representation for the Coulomb contributions to
the AP energy with n � 3 are given in [31]. The resulting
Coulomb contribution to the energy of the antiphase mode is
given by (in units of 2Ry)

DEAP
n�3�0� � ÿ

3

2

�1
0

q dqV 2�q�G�q� ; �11�

whereG�q� is the result of summation of an infinite series with
diagrams of the second order in the Coulomb interaction.

In the limit of an ideal two-dimensional system, the
second-order correction (in rs) to the antiphase mode energy
is DE AP

n�3�0� � ÿ0:1044 in units of Ry for excitons, which is
about 1.18meV. The inclusion of the finite well width through
the geometrical form factor gives a good agreement with
experiment, even though the parameter rs cannot always be
considered small under the experimental conditions (see the
inset in Fig. 11a).

Thus, in the second-order perturbation theory, the energy
of an antiphase magnetoplasmon and that of a cyclotron spin
wave acquire negative Coulomb corrections at the zero
momentum. The absolute values of the corrections are
independent of the magnetic field, and their ratio is consis-
tent with the empirical dependence DEn�0� / 1=n. To give an
example, the predicted shifts for filling factors 3 and 2 are in
the ratio 0:68 � 2=3.

To summarize this section, we note the major results.
Collective excitations exist whose energies at the zero
momentum are determined by second-order Coulomb correc-
tions. For even filling factors, these are cyclotron spin-flip
excitations, which have three spin-split components and a
negative multiparticle contribution, which shifts their energy
to below the cyclotron energy. For odd filling factors n5 3,
the collective excitations exhibit an antiphase plasmon in their
spectra, which is of a quantum nature (hence, its other name,
quantum plasmon), because its existence is fundamentally

due to the existence of electron spin and because its energy is
determined by the electron Rydberg constant. A theoretical
approach is developed that includes the multiparticle con-
tribution to the energy of these excitations in the second-order
perturbation theory in the parameter rs. The energy calcu-
lated taking the finite well width into account agrees well with
the obtained experimental data.

5. Two-mode approximation.
Effect of two-exciton corrections

This section is concerned with cyclotron spin-flip excitons in
the fractional quantumHall effect (QHE) regime for n � 1=3.
We discuss various theoretical approaches to describing this
excitation and show that the inclusion ofmultiparticle exciton
corrections is crucial for understanding its structure.

As in the case n � 1, electron spins at n � 1=3 are aligned
with themagnetic field, and there is an energy gap between the
ground and excited states of the electron system. Therefore,
the systemwith n � 1=3 is also aHall ferromagnet. By analogy
with two ferromagnetic states, the spectra of cyclotron
excitations can be expected to be similar and the exchange
interaction to manifest itself in the energy of a long-
wavelength cyclotron spin-flip exciton.

The first observation of a n � 1=3 CSFE was made in
Ref. [39] using the inelastic light scattering method. We note
that in the fractional QHE (FQHE) regime, the manifesta-
tions of this excitation in inelastic light scattering spectra
have only been reported for high-quality GaAs/AlGaAs
heterostructures with 2DESs with a record high mobility
� �7ÿ10��106 cm2 Vÿ1 sÿ1. Figure 12 shows the filling
factor dependence of the MP and CSFE collective excita-
tions for a fixed magnetic field B � 9 T. For n � 1=3 and
n � 1, the CSFE energy has local maxima, indicating that the
maximum contribution comes from the exchange interaction
energy. In the neighborhood of the n � 1=3 FQHE state, a
CSFE spectral line is observed in the filling factor interval
n 2 0:25ÿ0:41. At the boundary of this range, the excitation
energy reduces by about a half. From the experimental data
for samples with different electron concentrations, the
magnetic field dependence of the exchange contribution to
the CSFE energy is obtained (see Fig. 13).
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The measured results were compared with existing
theoretical models. By treating the 2DES in the Hartree±
Fock approximation [3, 6, 40], the theoretical expression for
the exchange contribution to the CSFE energy at D�0;B� can
be extended to the case of an arbitrary filling factor n < 1,

DHF
n �0;B� � n D�0;B� : �12�

In reality, however, there is a very significant difference
between theoretical and experimental results. Moreover, the
correspondence cannot be improved by using a generalized
single-mode approximation including electron±electron cor-
relations in the 2DES ground state [6]: indeed, this even
lowers the CSFE energy compared to the Hartree±Fock
approximation. Hence, both versions of the single-mode
approximation greatly underestimate the exchange contribu-
tion to the CSFE energy.

One attempt to remedy this involved a theoretical
approach that included multiexciton corrections to the
structure of the Raman CSFE excitation and whose idea
was that any collective excitation in a two-dimensional system
has its own set of quantum numbers that are related to the
change of the Landau level index, to the change of the electron
spin projection, and to the generalized momentum
jdn; dSz; qi. For combined excitations with a set of quantum
numbers such that jdnj � jdSzj5 2, the basis of excited states
must be augmented by superpositions of multiexciton states
with the same total set dn, dSz, and q. The corresponding
possible double-exciton states are pairs consisting of a
magnetoplasmon jdn � 1, dSz � 0; qÿ ki and a spin exciton
jdn � 0; dSz � ÿ1; ki. With these double-exciton corrections,
the structure of the CSFE is transformed as

jCSFEiq ) jCSFEiq �
X
k

c�k�jSEikjMPiqÿk ; �13�

with c�k� being a weight function. It turns out that if the
weight function is chosen properly in a self-consistent fashion
[41], this mixed state can be an eigenstate of the system
Hamiltonian.

For a CSFE, the sought eigenvalue corresponds to the
excitation energy that matches the experimental data much
better than the single-mode approximation Ð a fact that
highlights the significance of the multiexciton contribution to
the structure of the cyclotron spin-flip exciton at n � 1=3.
Similar double-exciton corrections also occur for the n � 1
QHE state [41, 42], but these do not contribute so much
(about 5±7%) to the CSFE energy in the same range of the
magnetic field. This correction scale is within the experi-
mental error.

The double-mode approximation has been considered
neglecting correlations in the n � 1=3 2DES ground state. It
would be more realisticÐbut seems as yet impossibleÐ to
apply this approach to a multielectron system including
Laughlin correlations. Also left out of account are other
quantum-number-preserving multiexciton combinations.
Because charge-density waves within the lowest Landau
level (magnetophonons) have spin and orbital quantum
numbers zero, an arbitrary number of such excitations can
formally be added. However, even without considering them,
the above analysis shows the importance of multiexciton
corrections for the filling factor n � 1=3.

6. Nonideality effects in a two-dimensional
electron system. Localized magnetoexcitons
(excited states of Dÿ-complexes)

Closely related to the theme under review is the problem of
electron±impurity Dÿ-complexes in a strong magnetic field.
ADÿ-complex is a state that binds two-dimensional electrons
and a positively charged impurity, which resides either in a
quantum well (in the plane of electron motion) or in the
barrier. Because the impurity potential violates the transla-
tional symmetry of the system, the excitation spectrum of the
complex should be affected by the presence of the Coulomb
interaction energy, even in the case of a purely cyclotron or a
purely spin excitation.

Of particular interest are barrier Dÿ-complexes, in which
electrons in the quantumwell are spatially separated from the
positive charge in the barrier [43]. This interest comes from
the fact that charged impurities can be greatly reduced in
concentration (to a level of � 108 cmÿ2) directly in the well
itself, and hence the influence of well-type Dÿ-complexes on
the properties of the two-dimensional electron gas is usually
neglected. Those positively charged impurities in the AlGaAs
quantum well barrier that are close to the two-dimensional
plane are nearly two orders of magnitude larger in number,
and they determine the optical and transport properties of a
low-density (� 1010 cmÿ2) two-dimensional electron gas.
Related to the same impurities is the problem of `localized
trions' or D0X-complexes, states that consist of two electrons
and a valence hole in a quantum well bound on the positive
charge of the ionized impurity in the barrier [44].

The central challenge facing the experimental study of
barrier Dÿ-complexes is locating the ionized donor in the
quantum well barrier. The way to do this is via the analysis of
the energy of the cyclotron and intralevel excitations of
Dÿ-complexes, which is in turn determined by the Coulomb
interaction between the electrons in the well and the positively
charged impurity in the barrier.
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The authors of [45, 46] were the first to show that the
electronic excitations of barrier Dÿ-complexes are active in
inelastic light scattering. The inelastic light scattering cross
section from the excitations of barrier Dÿ-complexes may
greatly exceed that from the collective excitations in 2DESs.
This is the reason why those lines in inelastic light scattering
spectra that are due to excitations in barrier Dÿ-complexes
can be more intense than the lines of plasma and spin
excitations, even if the density of the complexes is orders of
magnitude less than that of the two-dimensional electron gas.

Inelastic light scattering spectra from the cyclotron
excitations of barrier Dÿ-complexes in GaAs/AlGaAs quan-
tum wells with high-mobility 2DESs are shown in Fig. 14 for
the filling factor 1. Located between the lines of the collective
excitationsMP andCSFE are additional spectral features, the
spin-split line S and the singular line T�. In Ref. [46], these
were identified as the cyclotron excitations of the singlet and
triplet states of barrier Dÿ-complexes and it was shown that,
unlike the CFSE energies, the Coulomb contribution to their
energies is virtually independent of the well width (see Fig. 14)
and scales with the magnetic field exactly as � ����

B
p

for the
fixed filling factor n � 1 (Fig. 15).

This behavior is typical of the energy contribution from
the direct Coulomb interaction between an excited electron
and free electrons in accordance with the theory in [47, 48].
Also, it is shown that the excitations S and T� are
dispersionless, as the excitations of localized complexes are
expected to be. The established properties of cyclotron-
excited impurity complexes, while revealing the features of
the multiparticle energy contribution, say nothing about the
position of the ionized donors.

The last question was answered by studying the spectra
of intralevel excitations in Dÿ-complexes. In Ref. [49],
excitations in interface Dÿ-complexes and in high-quality

GaAs=AlGaAs quantum wells were discovered and investi-
gated using inelastic light scattering. In particular, the
energies of bound states were measured and calculated for
barrier complexes. Analysis of the experimental and calcu-
lated data showed that the observed excitations are due to
transitions between the states of interface Dÿ-complexes in
which two electrons localized in the quantum well are bound
with a charged impurity at the interface.

The spectra of low-energy (< 2 meV) inelastic light
scattering from a low-density (� 1010 cmÿ2) two-dimen-
sional electronic system are shown in Fig. 16 for some
transverse magnetic field values. The lowest-energy line
(SW) corresponds to inelastic light scattering processes that
create a spin wave (SW), i.e., a long-wavelength spin exciton
(SE). Line T corresponds to the intralevel excitation of
interface Dÿ-complexes. Its energy depends on the normal
component of the magnetic field and has a contribution from
the Zeeman splitting proportional to the total magnitude of
the magnetic field. As the electron concentration increases,
line T shifts toward the violet side of the spectrum and widens
and then, at a certain critical concentration (4� 1010 cmÿ2),
disappears from the spectrum (Fig. 17). The increase in the
excitation energy with concentration is due to the increase in
the Coulomb interaction between the excited electron and the
free-electron environment around the Dÿ-complex, similar to
what occurs for cyclotron excitations in well-type [50, 51] and
barrier-type [46] Dÿ-complexes.

In the excitation spectrum models of Dÿ-complexes,
the localizing influence of a charge impurity is usually
treated as a weak perturbation of the Hamiltonian of free
electrons in a magnetic field [43, 52, 53]. In a strong
magnetic field, the energies of Dÿ-complexes of different
momenta can be found by treating the Coulomb interac-
tion V�r� � V�r1;Z � � V�r2;Z � as a perturbation (here,
r � r1 ÿ r2, and r1 and r2 are the two-dimensional electron
coordinates). The interaction between charged particles is
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calculated by taking the nonlocal nature of the wave
functions of quasi-two-dimensional electrons in the z
direction into account; the ionized donor (with positive
charge 1) is at a distance Z from the electron layer, and its
position in the plane is at the origin.

The wave function of a pair of electrons depends on their
spin state, because the total wave function of two fermions
must be antisymmetric. For the spin singlet, the total orbital
momentum is M � 0, and the coordinate part of the wave
function is symmetric and is constructed from the one-particle
wave functionscm�r;j� of the electrons on the zeroth Landau
level,

CS � C0 � c0�r1;j1�c0�r2;j2� :

For the spin triplet, the total orbital momentum of the
pair isM � m1 �m2 � 1, and the coordinate part of the wave
function is symmetric and has the form

CT � C1 � 1���
2
p ÿ

c0�r1;j1�c1�r2;j2�

ÿ c1�r1;j1�c0�r2;j2�
�
:

We let EDm�Z � denote the interaction energy of an
electron of momentum m and a positively charged donor
(D); then the perturbation theory gives

EDm�Z � �


cm�r;j�jV�r;Z �jcm�r;j�

�
;

and the interaction energy of the electrons is given by

EI;M �


CM�r;j�jV�r�jCM�r;j�

�
:

Using the above results, the experimentally observed
singlet±triplet energy difference can be calculated as

ES ÿ ET � EI0 ÿ EI1 � ED1�Z � ÿ ED0�Z � � EZ ;

where EZ � gmBB is the one-particle Zeeman energy.
In the magnetic field range 3 < B < 15 T in about 20 nm

quantum wells, the ground state of the barrier Dÿ-complex is
a spin triplet with the total momentumM � 1 (1T ) (Fig. 18).

By varying the Z coordinate of the ionized donor in the
quantum well barrier, good agreement can be obtained
between the measured and calculated results, especially if
the positive charge is placed at the quantum-well±barrier
heterointerface. Moving the impurity by a mere 10 A

�
away

from the heterointerface increases the excitation energy
estimate by 30% relative to the experimental values. This
suggests that the ionized donor is located directly at the
interface between the quantum well and the barrier, pre-
sumably due to the diffusion of bulk impurities in the AlGaAs
barrier during epitaxial growth (diffusion is markedly slowed
down on the lattice defects of the GaAs/AlGaAs heterointer-
face and, moreover, impurities accumulate because the
growth process ceases as molecular-beam epitaxy proceeds
on the well±barrier interface).

An analysis of the line intensities of inelastic light
scattering suggests that the concentration of ionized donors
at the heterointerface should be at least an order ofmagnitude
larger than the average concentration of ionized donors in the
quantum well barrier. A change in the symmetry of the
ground state is predicted theoretically and observed experi-
mentally, but because the perturbation theory works poorly
in this magnetic field range, the predicted and measured
values of the critical magnetic field differ by 1 T. In lower
magnetic fields, the excitation 0S! 1T is possible, which is
also observed experimentally (see Fig. 18).
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7. Problems and prospects.
Slightly off-integer filling of Landau levels

While the discussion above shows that most of the excitations
of a 2DES can be described with the existing approaches,
fundamental questions remain concerning the excitation
spectrum of a 2DSE. In particular, no success has been
achieved in applying the existing theory to describing the
spectrum of magnetoexcitons for a filling factor slightly
deviating from an odd integer. The primary reason for this is
the lack of knowledge about the nature of the ground state.
The ground state is commonly considered to be a ferromagnet
with charge defects in the form of additional opposite-spin
electrons or ground-state holes, which is an acceptable model
if the 2DES energy is large compared to the exchange energy

In GaAs/AlGaAS quantum wells, the ratio of the
exchange energy to the Zeeman energy can be as large as a
few hundred, with the result that for small deviations of the
filling factor from odd integer values, the formation of
topological ground-state spin textures, skyrmions [54±57],
would be the most energetically favorable way to change the
charge. The skyrmions smoothly deform the ferromagnetic
order, thus forming a vortex-like spin configuration. How
many electron spins are involved in this process is determined
by the competition between the Coulomb energy and the

Zeeman energy g. As g! 0, the size of the skyrmion l is given
by �

l
lB

�3

�
�
9p 2

28

��
lB
eaB

�ÿ
gj ln gj�ÿ1 ;

where lB is the magnetic length and aB is the Bohr radius. If
the size is proportional to gÿ1=3, then the number of skyrm-
ion-forming flipped electron spins is

K � l 2

l 2B
� gÿ2=3 :

For small g, a skyrmion has the charge e, and the number of
skyrmions and their total spin both tend to infinity. For the
realisticÐ intermediateÐvalues of g, the skyrmion-forming
flipped spins are few (0±4 for GaAs), invalidating the classical
theory used for describing skyrmions [54, 56]. This fact
stimulated the development of the theory of spin-texture
quasiparticles (STQs) with several flipped spins [56]. Quan-
tum calculations using the exact diagonalization for a finite
number of particles, the Hartree±Fock method, and the
variational method yield results identical to those obtained
classically. When in the ground state, skyrmions can form a
crystal lattice.

While the theory of a skyrmion crystal was first developed
for two-dimensional electronic systems [58], the first experi-
mental evidence of the formation of a skyrmion crystal lattice
came from the study of thin films of the three-dimensional
ferromagnet MnSi and similar compounds [59, 60]. There is
no convincing evidence, however, of the existence of skyrm-
ion crystals in a two-dimensional Hall ferromagnet with
charged defects; indeed the entire theory of STQs in two-
dimensional electronic systems is in doubt.

The spin polarization of an electronic system near the
filling factor 1 is fully reproduced near the filling factor n � 3,
where the existence of STQs is questionable, even for the zero
Zeeman energy [61, 62]. The effective number of flipped
electrons determined from recent optical studies of spin
polarization in two-dimensional systems [64] does not agree
with the previous experimental data, nor with the theoretical
values determined by the relation between the Zeeman and
exchange energies.

A recent study [65] showed that physical objects similar to
STQsÐspin texturesÐexist in the limit of the zero number
of flipped spins. The same study suggests, based on inelastic
light scattering measurements of spin excitation spectra, that
a Hall ferromagnet with charge defects due to a deficiency or
an excess of the electron density can have a spin-texture liquid
as its ground state, whose existence was first considered in
Ref. [66].

Irrespective of the value ofK, new gap branches appear in
the spectrum (Figs 19, 20) due to the collective precession of
the electron spin in the field created by spin textures. The new
excitation branches behave as if they were cyclotron excita-
tions in a certain fictitious field proportional to the density of
spin textures. Accordingly, the collective spin excitations have
their `effective mass' determined by the polarization of the
electronic system and by the exchange interaction. The energy
of the `spin-cyclotron' modes tends to zero as n! 1, and the
`cyclotron' frequency separating the spin `Landau' levels
associated with the fictitious field is given by [66]

�ho 0c �
2Es �1ÿ n�

n
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for n5 1, where Es � 1=4Ex is the formation energy of a
classical skyrmion and Ex �

��������
p=2

p
e 2=elB is the exchange

energy on the zeroth Landau level of electrons. When the
number of skyrmions is large, �ho 0c 4 kBT, the energy of spin-
cyclotron modes for small momenta qn

ÿ1=2
s 5 1 (ns is the

density of spin textures) is approximately equal to the spin-
cyclotron frequency �ho 0c. A surprising (and not yet under-

stood) experimental result in Ref. [65] is that spin-cyclotron
modes interact with spin excitons, producing hybrid modes at
nonzero momenta in the process (see Fig. 19).

In high-quality GaAs/AlGaAs quantum wells, the effec-
tive number of flipped spins is small, and hence a consistent
description of the ground state requires that the entire range
of K be considered, starting from the well-developed limit
K � 0. It was assumed that in the K � 0 ground state,
individual holes act as spin defects. Whether they form a
crystal lattice remains an open question, but anyway the
ground state would have to be a collinear ferromagnet whose
Goldstone mode is a spin exciton. However, the presence of
an experimentally observed new spinmodewith a lower-than-
Zeeman energy and a position varying continuously with the
filling factor suggests that the ground state of a noninteger
filling two-dimensional system is a short-range ordered
noncollinear ferromagnet (the observed mode is not a Gold-
stone one) which, parenthetically, forms even if the formation
of skyrmions is not energetically favorable. The new broken-
symmetry state supports an additional spin excitation branch
and is not of a skyrmion type.

8. Conclusion

Presented in this paper is a review of the various theoretical
and experimental aspects of the physics ofmagnetoexcitons in
two-dimensional electronic systems. A detailed analysis is
given of a wide class of excitations occurring at integer filling
factors, such as quantum magnetoplasma modes, cyclotron
spin-flip excitons, and spin excitons. The paper also presents
experimental results on excitations that occur when the filling
factor deviates from integers and whose nature is still to be
explained theoretically. The positions of impurity centers in
the spectrum of spin excitations are determined. Clearly, the
excitations that we have reviewed and which take the spin and
orbital degrees of freedom into account do not exhaust all the
excitations that are possible in two-dimensional electronic
systems. There is also a wide class of two-dimensional objects,
graphene being an example, in which the presence of
additional degrees of freedomÐvalleys, layers, and symme-
trically connected electron and hole bandsÐproduces a host
of additional excitations. These, however, are beyond our
present scope.
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