
Abstract. The translationally invariant polaron theory of Tu-
lub, which does not involve Pekar's ansatz (believed to provide
an asymptotically exact solution in the strong-coupling limit)
and fundamentally produces a lower-energy polaron than when
using the ansatz, is discussed in detail. For the bipolaron, the
theory yields the best values for bonding energy and for critical
stability parameters. A variety of physical implications of the
existence of translationally invariant polarons and bipolarons
are discussed.
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1. Introduction. Pekar's ansatz

The polaron theory is known to be one of the first theories
describing the particle±quantum-field interaction. Its various
aspects are dealt with in many books and review articles [1±
10]. Being nonrelativistic, the theory does not contain
divergences; for over 60 years, it has provided a platform for
testing methods of quantum field theory. Although the exact
solution of the polaron problem remains to be found, it is
believed that the main properties of the polaron ground state
are known fairly well, first and foremost in the limit cases of
weak and strong coupling. The solution in the weak-coupling

limit was proposed by FroÈ hlich [11] and in the strong-
coupling limit by Pekar [1, 12]. The polaron ground state
energy E0 in the weak-coupling limit was found with a high
accuracy in Refs [13, 14]:

E0 � ÿ�a� 0:0159196220a 2� 0:000806070048a 3� . . .��ho0 ;

�1:1�

where �ho0 is the optical phonon energy and a is the electron±
phonon coupling constant.

The solution in the opposite (strong-coupling) limit was
found by Pekar under the assumption that the wave function
C of the electron� field system has the form

C�r; q1; . . . ; qi; . . .� � c�r�F�q1; . . . ; qi; . . .� ; �1:2�

where c�r� is the electron wave function, depending on the
electron coordinates alone, and F is the field wave function,
depending solely on the field coordinates. Pekar himself
regarded ansatz (1.2) as an approximate solution (see his
fundamental monograph [1]). The pioneering work of
Bogoliubov and Tyablikov [15, 16] demonstrated that the
use of ansatz (1.2) (for the split coordinates introduced in [15,
16]) in a consistent translationally invariant theory gives the
same results for the polaron ground state energy as in the
semiclassical Pekar theory [1, 12]. The ground state energy
was determined with a high accuracy using relation (1.2) in
Refs [17, 18]:

E0 � �ÿ0:108513a 2 ÿ 2:836��ho0 : �1:3�

The view of Pekar's ansatz (1.2) as an exact solution of the
strong-coupling polaron problem became generally accepted
after the publication of Ref. [19], in which asymptotic form
(1.3) was rigorously proved by integration over trajectories,
i.e., without using ansatz (1.2) (see also review [20]).
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Many attempts to improve the strong-coupling theory
[21±26] weremade before the publication of Ref. [19]. A cause
of dissatisfaction with Pekar's ansatz was the translational
invariance of the initial polaron Hamiltonian. The use of the
ansatz for the wave function c�r� in (1.2) leads to a localized
solution, which means that the electron is trapped in a
localized polarized well created by itself. In other words, this
solution lacks the symmetry of the initial Hamiltonian.
Electron self-trapping in the localized polaron well leads to
spontaneous symmetry breaking of the system. The approach
chosen to restore the initial symmetry was based on the use of
a degenerate state with broken symmetry. Because the
position of the center of the polaron well r0 in a homo-
geneous and isotropic medium does not affect anything, an
initially localized solution can be extended to all positions of
the polaron potential well by choosing the wave function in
the form of a linear combination over all well positions.

This approach was most consistently realized in Ref. [24].
The wave function (an eigenfunction of the total momentum)
was taken as a superposition of plane waves corresponding to
the total momentum times the wave functions derived from
(1.2) under the action of the translation operator. In other
words, the superposition was taken over all positions of the
polaron well r0.

The main result in Ref. [24] is that the computation of the
polaron ground state energy with such a delocalized wave
function yields the same value as the calculation with
localized function (1.2). The polaron mass value previously
obtained by Landau and Pekar [27] was reproduced in [24]
based on the assumption of motion of localized state (1.2) in a
medium. The results in Ref. [24] greatly contributed to the
resolution of the contradiction between the requirements of
delocalization of a translationally invariant wave function
and localization of the wave function of a self-trapped state.

This approach cannot be regarded as fully satisfactory
despite its success, because it retains a number of controver-
sies ensuing from the use of the semiclassical description.
Indeed, the superposition reported in Ref. [24], on the one
hand, determines the localized polaron position, but on the
other hand makes it possible to measure this position without
altering the state and discover a localized polaron well with
the trapped electron. The cause of this paradox is the
classicality of the polaron well in the strong-coupling limit,
with the result that the total momentum operator commutes
with the polaron well position r0.

1 This defect was corrected
by means of approaches in which the quantity r0, which is by
no means an auxiliary degree of freedom, was considered as
such with additional constraints imposed on the function
r0�r; q1; . . . ; qi; . . .�. Issues related to the solution of the
problem of introducing collective coordinates are discussed
in Ref. [30].

Because the results of introducing collective coordinates
in the polaron theory by various methods are debatable, it
seems appropriate to present rigorous data concerning the

translationally invariant theory without recourse to the
notion of collective coordinates. The objective of this review
is to describe an approach applicable in the strong-coupling
limit and not using Pekar's ansatz.

The solution with such properties for a strongly coupled
polaron was first found in the work of Tulub [31, 32].
However, the importance of these publications remained
unnoticed for almost half a century because the test wave
function for evaluation of the ground state was chosen
incorrectly in [32]. As a result, the ground state energy
E0 � ÿ0:105a 2�ho0 obtained in Ref. [32] was higher than
that in (1.3). The optimal choice of the wave function was
reported quite recently in Ref. [33]. It implies a polaron
ground state energy lower than (1.3), E0 � ÿ0:125720a 2�ho0,
which means the inapplicability of the adiabatic approxima-
tion, which forms the basis of solid state physics, in the case of
the polaron.

The present review describes the main features of the
translationally invariant (TI) polaron theory. In Section 2,
Heisenberg's canonical transformation is used to introduce
the coordinate-free Pekar±FroÈ hlich Hamiltonian underlying
the translationally invariant description, while the Lee±Low±
Pines transformation is used to reproduce the weak-coupling
limit.

Section 3 deals with the general translationally invariant
Tulub theory that holds for any values of the electron±
phonon interaction constant. The paramount importance of
Tulub's approach necessitates a more detailed description
than in the original work [32] to enable the reader to
reproduce and verify the presented results. A general
expression for the TI polaron energy at an arbitrary bonding
force is reported.

Section 4 considers the limit weak-coupling case. It is
shown that the general expression for the polaron energy
presented in Section 3 reproduces the weak-coupling limit
with high accuracy.

Section 5 concerns the limit case of strong coupling. It
demonstrates that the polaron ground state energy is lower in
this case than that estimated based on Pekar's ansatz.

The translationally invariant theory is generalized to the
case of the bipolaron in Section 6. The bipolaron ground state
energy is shown to be much lower than that obtained by the
best variational calculations using Pekar's ansatz. The results
are used to explain high-temperature superconductivity based
on TI bipolarons.

An alternative derivation of the TI polaron and bipolaron
energies is proposed in Section 7. It describes an approach
allowing an explicit calculation of wave functions for
polarons and bipolarons. The results presented in this
section indicate that the wave functions thus found describe
delocalized states at all values of the electron±phonon
coupling constant. This means that Pekar's ansatz is not
satisfied in the strong-coupling limit, and no transition to the
self-trapped (i.e., localized) state with broken symmetry
occurs.

The results obtained radically modify the notion of
polarons and bipolarons in general, casting doubt on the
concept of autolocalized states in condensed systems. The
main results of the recent discussion on the completeness of
Tulub's theory are reported in Section 8.

Section 9 deals with certain problems related to the
existence of translationally invariant polarons and bipolar-
ons and its practical implications, with special reference to
their superconducting properties.

1 The nature of the arising difficulties was fairly well perceived at the dawn

of quantum mechanics by its founders. For example, Bethe noted in [28]

that a correct quantum mechanical description of field±particle interac-

tions requires quantization of this field, i.e., quantum field theory: ``the

fact is quantization of mechanical parameters (coordinates and momenta)

implies quantization of their respective fields. Otherwise, as shown by

Bohr and Rosenfeld [29], a thought experiment can be suggested that

consists of simultaneous measurement of the particle coordinate and

momentum from the observation of the field it creates, thereby violating

Heisenberg's uncertainty principle.''

296 V D Lakhno Physics ±Uspekhi 58 (3)



Section 10 is focused on some fundamental unsolved
problems of the strong-coupling theory.

In Appendices 1±3, we collect proofs of certain important
assertions underlying our approach.

2. Coordinate-free Hamiltonian. Weak coupling

We proceed from the Pekar±FroÈ hlich Hamiltonian

H � ÿ �h 2

2m
Dr �

X
k

Vk

�
ak exp �ikr� � a�k exp �ÿikr��

�
X
k

�ho0
ka
�
k ak ; �2:1�

where a�k and ak are creation and annihilation operators of
field quanta with the energy �ho0

k � �ho0, m is the electron
effective mass, and Vk is a function of the wave vector k.

Hamiltonian (2.1) is interesting to study because unlike
many model Hamiltonians considered in condensed matter
theory, Pekar±FroÈ hlich Hamiltonian (2.1) asymptotically
accurately describes the long-wavelength limit of a nonrelati-
vistic electron in a continuous polar medium.

Electron coordinates can be eliminated from (2.1) by
means of a Heisenberg transformation [34]:

S1 � exp

�
i

�h

�
Pÿ

X
k

�hka�k ak

�
r

�
; �2:2�

where P is the total momentum of the system. Acting with S1

on the field operators yields

Sÿ11 akS1 � ak exp �ÿikr� ; Sÿ11 a�k S1 � a�k exp �ikr� :

Accordingly, the transformed Hamiltonian ~H � Sÿ11 HS1

takes the form

~H � 1

2m

�
Pÿ

X
k

�hka�k ak

�2

�
X
k

Vk�ak � a�k �

�
X
k

�ho0
ka
�
k ak : �2:3�

Hamiltonian (2.3) does not contain electron coordinates;
therefore, the solution of the polaron problem based on
(2.3) is translationally invariant. To study the ground state
of (2.3), Lee, Low, and Pines [35] used the test wave function

jCiLLP � S2j0i ; �2:4�

where

S2 � exp

�X
k

fk�a�k ÿ ak�
�
; �2:5�

fk are variational parameters having the meaning of the
displacement of field operators from their equilibrium
positions, and j0i is the vacuum wave function. To find fk,
we minimize the energy E � h0jSÿ12

~HS2j0i, which at P � 0
gives

E � 2
X
k

fkVk � �h 2

2m

�X
k

k f 2
k

�2
�
X
k

�h 2k 2

2m
f 2
k �

X
k

�ho0
k f

2
k ;

�2:6�
fk � ÿ Vk

�ho0
k � �h 2k 2=�2m� : �2:7�

For an ionic crystal,

Vk � e

k

��������������
2p�ho0

~eV

r
� �ho0

ku 1=2

�
4pa
V

�1=2

;
�2:8�

u �
�
2mo0

�h

�1=2

; a � 1

2

e 2u

�ho0~e
; ~eÿ1 � eÿ11 ÿ eÿ10 ;

where e is the electron charge, e1 and e0 are high-
frequency and static dielectric permittivities, and a is the
electron±phonon coupling constant. Substituting (2.8) in
(2.6) and (2.7) yields the ground state energy E � ÿa�ho0,
i.e., the energy of the weak-coupling polaron in the first
order in a.

The problem of transition to the case of strong coupling in
coordinate-free Hamiltonian (2.3) was solved based on the
general translationally invariant theory proposed by Tulub in
Ref. [32]. The main features of this theory are described in
Section 3.

3. Coordinate-free Hamiltonian.
The general case.

The general translationally invariant theory was constructed
in Refs [31, 32] using the canonical transformation of
Hamiltonian (2.3) by the operator S2 in (2.5), leading to a
shift of field operators:

Sÿ12 akS2 � ak � fk ; Sÿ12 a�k S2 � a�k � fk : �3:1�

The result of the transformation of the Hamiltonian
~~H� Sÿ12

~HS2 is

~~H� H0 �H1 ; �3:2�

where

H0 � P 2

2m
� 2

X
k

Vk fk �
X
k

�
�ho0

k ÿ
�hkP

m

�
f 2
k

� 1

2m

�X
k

k f 2
k

�2

�H0 ; �3:3�

H0 �
X
k

�hoka
�
k ak

� 1

2m

X
k; k 0

kk0 fk fk 0 �akak 0 � a�k a
�
k 0 � a�k ak 0 � a�k 0ak� ; �3:4�

�hok � �ho0
k ÿ

�hkP

m
� �h 2k 2

2m
� �hk

m

X
k 0

�hk0 f 2
k 0 : �3:5�

TheHamiltonianH1 contains linear, cubic, and quartic terms
in creation/annihilation operators. With the properly chosen
wave function diagonalizing the quadratic form in (3.4), the
expectation value of H1 vanishes (see Appendix 1). In what
follows, we set �h � 1, o0 � 1, m � 1, and P � 0.

To reduceH0 to the diagonal form, we set

qk � 1��������
2ok

p �ak � a�k � ; pk � ÿi
�������
ok

2

r
�ak ÿ a�k � ;

�3:6�
zk � k fk

��������
2ok

p
:
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With (3.6) taken into account, expression (3.4) takes the form

H0 � 1

2

X
k

�p�k pk � o2
kq
�
k qk� �

1

2

�X
k

zkqk

�2

ÿ 1

2

X
k

ok :

�3:7�
The equation ofmotion for the operator qk follows from (3.7):

�qk � o2
kqk � ÿzk

X
k 0

zk 0qk 0 : �3:8�

We seek a solution of system (3.8) in the form

qk�t� �
X
k 0

Okk 0xk 0 �t� ; xk�t� � x 0
k exp �inkt� : �3:9�

This gives the following set of equations for the matrix Okk 0 :

�n 2k 0 ÿ o2
k�Okk 0 � zk

X
k 00

zk 00Ok 00k 0 : �3:10�

We consider the determinant of this system obtained by
replacing the eigenvalues n 2k in (3.10) by a quantity s that
may differ from n 2k . The determinant of such a system has the
form

det
���sÿ o2

k�dkk 0 ÿ zkzk 0
�� �Y

k

�sÿ n 2k � : �3:11�

On the other hand, in accordance with Wentzel's work [36],2

det
���sÿ o2

k�dkk 0 ÿ zkzk 0
�� �Y

k

�sÿ o2
k�
�
1ÿ 1

3

X
k 0

z 2k 0

sÿ o2
k 0

�3

:

�3:12�

It is convenient to introduce

D�s� �

Y
k

�sÿ n 2k �Y
k

�sÿ o2
k�
: �3:13�

It follows from (3.11) and (3.12) that

D�s� �
�
1ÿ 1

3

X
k

z 2k
sÿ o2

k

�3

: �3:14�

It also follows from (3.11) and (3.12) that the field frequencies
nk renormalized by interaction are determined by the
equation

D�n 2k � � 0 : �3:15�

The change in the system energy DE due to the electron±field
interaction is expressed as

DE � 1

2

X
k

�nk ÿ ok� : �3:16�

To express DE in terms of D�s�, we use the Wentzel approach
[36]. Following [36], we write the identityX

k

ÿ
f �n 2k � ÿ f �o2

k�
�

� 1

2pi

�
C

ds f �s�
X
k

�
1

sÿ n 2k
ÿ 1

sÿ o2
k

�

� 1

2pi

�
C

ds f �s� d

ds
lnD�s� � ÿ 1

2pi

�
C

ds f 0�s� lnD�s� ;
�3:17�

where integration is performed along the contour shown in
Fig. 1.

Setting f �s� � ��
s
p

, we obtain

DE � 1

2

X
k

�nk ÿ ok� � ÿ 1

8pi

�
C

ds��
s
p lnD�s� : �3:18�

Passing from summation to integration in (3.14) using the
relationX

k

� 1

�2p�3
�
d3k ;

with expression (3.14) for zk, we obtain

D�s� � D 3�s� ; D�s� � 1ÿ 2

3�2p�3
�
k 2 f 2

k o2
k

sÿ o2
k

d3k �3:19�

in the continuum case. For the total electron energy, we then
have

E � DE� 2
X
k

Vk fk �
X
k

f 2
k o0

k : �3:20�

These results are universal and hold for various polaron
models, i.e., for any functions Vk and o0

k. In Sections 4
and 5, we discuss the limit cases of weak and strong coupling
that follow from general expression (3.20). We note that in
accordance with [31], expression (3.20) at P 6� 0 takes the
form

E � P 2

2m
� DE�P� � 2

X
k

Vk fk �
X
k

f 2
k o0

k ;

DE�P� � ÿ 1

8pi

�
C

ds��
s
p ln

Y3
i�1

Di�s� ;

Di�s� � 1ÿ
X
k

�z ik�2
sÿ o2

k

;2 In [36], zk is a scalar but not a vector function; therefore, there is no `cube'

in (3.12). A generalization to the vector case can be found in [31].

s plane

o2
1 n21 n22o2

2

Figure 1. Contour C.
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where z ik is the ith component of the vector zk. In this case, the
functions fk, ok, and zk should be regarded as depending on
both jkj and kP.

4. Weak-coupling limit in the Tulub theory

The quantities fk in the expression for the total energy E in
(3.20) must be found from the minimum condition
dE=d fk � 0, which leads to an integral equation for fk:

fk � ÿ Vk

1� k 2=2mk
; mÿ1k � ok

2pi

�
C

ds��
s
p 1

�sÿ o2
k�D�s�

: �4:1�

In the case of weak coupling, a! 0 and Eqns (4.1) can be
solved in the framework of the perturbation theory. In the
first approximation as a! 0, D�s� � 1, and the following
expression for mÿ1k is obtained:

mÿ1k �
ok

2pi

�
C

ds��
s
p 1

sÿ o2
k

� 1 : �4:2�

Accordingly, for fk from (4.1), we have

fk � ÿ Vk

1� k 2=2
: �4:3�

For the quantity DE entering the total energy, we then obtain

DE � ÿ 3

8pi

�
C

ds��
s
p lnD�s� ;

�4:4�
lnD�s� � ÿ 2

3�2p�3
�
k 2f 2

k ok

sÿ o2
k

d3k :

Calculating the integrals in (4.4) with (4.3) taken into account
gives DE � �a=2��ho0. Calculating the remaining terms in
(3.20), we obtain the first term of the polaron total energy
expansion in the coupling constant a, E � ÿa�ho0.

The authors of Refs [31, 37, 38] developed a general
scheme for calculating the next terms of the expansion with
respect to a. Specifically, they obtained the following
expressions for the self-energy and the effective mass of the
polaron [38]:

E � ÿ�a� 0:01592a 2��ho0 ;
�4:5�

m � �
�
1� a

6
� 0:02362a 2

�
m :

Thus, up to O�a 3� terms, the expression for the polaron
energy calculated based on the Tulub approach using the
perturbation theory coincides with the results of exact
calculation (1.1) (see Section 7).

5. Strong coupling

The case of strong coupling is much more complicated. To
elucidate the character of the solution in the strong-coupling
region, we first consider analytic properties of the function
D�s�. For this, we represent D�s� in the form

D�s� � D�1� � sÿ 1

3p2

�1
0

k 4f 2
k ok dk

�o2
k ÿ 1��o2

k ÿ s� ; �5:1�

where

D�1� � 1�Q � 1� 1

3p2

�1
0

k 4f 2
k ok

o2
k ÿ 1

dk �5:2�

is the value of D�s� at s � 1. It also follows from (3.19) that

D�s� � 1ÿ 1

3p2

�1
0

okk
4f 2

k

sÿ o2
k

dk : �5:3�

The functionD�s�, as a function of the complex variable s, has
the following properties: (1)D�s� has a cut along the real axis
from s � 1 to s � 1 and has no other singularities,
(2) D ��s� � D�s ��, (3) sD�s� increases not slower than s as
s!1. These properties allow representing the function
��sÿ1�D�s��ÿ1 in the form (see Appendix 2)

1

�sÿ 1�D�s� �
1

2pi

�
C�r

ds 0

�s 0 ÿ s��s 0 ÿ 1�D�s 0� : �5:4�

The integration contour C� r is shown in Fig. 2.
The integrand in (5.4) has a pole at s 0 � 1 and a cut from

s 0 � 1 to s 0 � 1. Integrating (5.4) along the upper and lower
sides of the cut gives integral equation (3.18) for Dÿ1�s�:
1

D�s� �
1

1�Q
� sÿ 1

3p2

�1
0

k 4f 2
k ok dk

�sÿ o2
k��o2

k ÿ 1���D�o2
k�
��2 : �5:5�

By integration by parts, expression (3.18) for DE can be
represented in the form

DE � 1

2p2

�1
0

dk k 4f 2
k ok

1

2pi

�
C

��
s
p

�sÿ o2
k�2

1

D�s� ds : �5:6�

It follows from (5.5) and (5.6) that

DE � 1

2p2

�1
0

k 4f 2
k dk

2�1�Q�

� 1

12p4

�1
0

�1
0

k 4f 2
k p 4f 2

p op

�
okop � ok�ok� op� � 1

�
�ok � op�2�o2

p ÿ 1���D�o2
p�
��2 dp dk :

�5:7�

Equation (4.1) for mÿ1k can be represented in accordance with
(5.5) as

mÿ1k �
1

1�Q
� 1

3p2

�1
0

p 4f 2
p �okop � 1� dp

�o2
p ÿ 1��ok � op�

��D�o2
p�
��2 : �5:8�

s plane

C
r

1

Figure 2. Contour C� r.
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Equations (4.1) and (5.8) for fk and the polaron energy in
(3.20) and (5.7) are very complicated, and solving them
exactly is hardly possible. The direct variational principle
was used in Ref. [32] to approximately calculate the energy E
in (3.20) and (5.7). The Gaussian function

fk � ÿVk exp

�
ÿ k 2

2a 2

�
; �5:9�

where a is a variable parameter, was taken as a test function
in the case of strong coupling a4 1. Substituting (5.9) in
(3.19) yields the real and imaginary parts of D�s� (see
Appendix 3)

ReD�o2
k� � 1� lv�y� ; ImD�o2

k� �
k 3f 2

k

6p
;

v�y� � 1ÿ y exp �ÿy 2�
� y

0

exp �t 2� dt

ÿ y exp �y 2�
�1
y

exp �ÿt 2� dt ; �5:10�

l � 4aa

3
������
2p
p ; y � k

a
:

In the strong-coupling limit �a4 1�, the expression for the
energy E defined by (3.20) with (5.7) taken into account
assumes the form

E � 3

16
a 2

�
1� q

�
1

l

��
ÿ aa���

p
p
�
2ÿ 1���

2
p
�
; �5:11�

q

�
1

l

�
� 2���

p
p
�1
0

exp �ÿy 2�ÿ1ÿ O�y�� dyÿ
1=l� v�y��2 � py 2 exp �ÿ2y 2�=4

; �5:12�

O�y� � 2y 2

�
�1� 2y 2�y exp �y 2�

�1
y

exp �ÿt 2� dtÿ y 2

�
:

As l!1, the integral in (5.12) has a maximum at y 4 � 3l=4
if the function fk is chosen in form (5.9); however, this feature
is absent when the actual boundedness of the region of
integration over y is taken into account (see Section 8).

The calculation of (5.12) in Ref. [32] was based on the
assumption that 1=l � 0 in the strong-coupling limit.
Numerical integration yielded q�0� � 5:75, whence

E � ÿ0:105a 2�ho0 �5:13�

was found by varying the energy E in (5.11) with respect to a.
A comparison of (5.13) and (1.3) shows that the E in (5.13) at
a!1 is higher than its exact value (1.3) in the Pekar theory.
For this reason, it has been believed until recently that the
Tulub theory gives no new results for the polaron.

This opinion changed drastically after the publication of
Ref. [33], where it was shown that for minimizing energy
(3.20), the choice of the test function in form (5.9) was far
from optimal, because it failed to satisfy virial relations. It
was shown in [33] that the optimal choice of fk must contain
the factor

���
2
p

in front of the exponential in (5.9). Minimizing
energy (3.20) with the optimal test function leads to

E � ÿ0:125720a 2�ho0 : �5:14�

This is a fundamental result indicating first and foremost that
Pekar's ansatz does not give an exact solution. Although
(5.14) refers to a concrete case of the Pekar±FroÈ hlich
Hamiltonian with Vk given by (2.8), the conceptual conclu-

sion must hold for all types of autolocalized states. Of special
interest is the case of bipolarons due to their potentially
important role in superconductivity.

6. Translationally invariant bipolarons

Much attention has been given recently to bipolarons in
connection with attempts to explain the phenomenon of
superconductivity based on the Bose condensation mechan-
ism in a bipolaron gas. In this context, it is important to study
conditions for stability of bipolaron states. The theory of
large-radius bipolarons, considered to be the leading candi-
date for the role of charged bosons forming the Bose±Einstein
condensate with pairing in real space, is expounded in reviews
[7, 8, 39].

The study of the formation of a stable two-electron state
in a crystal, or a bipolaron, typically implies finding the
pairwise interaction of two polarons as a function of the
distance between them [8]. The range of the existence of a
large-radius bipolaron is bounded in terms of the coupling
constant a by a rather large value ac; the bound bipolar state is
nonexistent at a < ac. Because the requirement for large ac
may not be satisfied in high-temperature superconductors, a
number of papers have been devoted to studying the
contribution of other types of interaction and pairing
symmetries [40, 41].

In what follows, we confine ourselves to considering the
Pekar±FroÈ hlich electron±phonon interaction, because this
approach can be generalized to interactions of other types.
It is of special importance in view of the recently obtained
strong indications that the electron±phonon interaction in
high-temperature superconductors is strong [42±44]. Other
arguments suggest that the weak screening of high-frequency
optical phonons makes the description of strong electron±
phonon interactions in high-temperature superconductors
via the long-range FroÈ hlich interaction [45] more reasonable
than their description in the framework of contact interaction
in the Holstein polaron model [46].

Before the publication of Refs [47±49], the lowest energies
of bipolaron states determined by the electron±phonon
interaction were obtained for a < 8 in [50±52] and for a > 8
in [52±55]. Attempts to find a translationally invariant
solution of the bipolaron problem using variational meth-
ods, e.g., by means of direct variation of the wave function of
a two-electron system [39, 56, 57], led to higher values of the
ground-state bipolaron energy than those calculated with the
use of the wave function lacking translational invariance [51,
52, 55, 58]. Results obtained for bipolarons in Refs [47±49]
using the translationally invariant approach are presented
below.

We proceed from the Pekar±FroÈ hlichHamiltonian for the
bipolaron [8],

H � ÿ �h 2

2m
Dr1 ÿ

�h 2

2m
Dr2 �

X
k

�ho0
ka
�
k ak �U

ÿjr1 ÿ r2j
�

�
X
k

�
Vk exp �ikr1�ak � Vk exp �ikr2�ak � h:c:

�
;
�6:1�

U
ÿjr1 ÿ r2j

� � e 2

e1jr1 ÿ r2j ;

where r1 and r2 are the coordinates of the first and second
electrons, U describes Coulomb repulsion between electrons,
and h.c. are Hermitian conjugate terms.
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In the center-of-mass system, Hamiltonian (6.1) takes the
form

H � ÿ �h 2

2Me
DR ÿ �h 2

2me
Dr �U�r� �

X
k

�ho0
ka
�
k ak

�
X
k

2Vk cos
kr

2

�
ak exp �ikR� � h:c:

�
; �6:2�

R � r1 � r2
2

; r � r1 ÿ r2 ; Me � 2m ; me �
m

2
:

In what follows, we set �h � 1, o0
k � 1, and Me � 1 (accord-

ingly, me � 1=4).
The center-of-mass coordinates can be eliminated from

Hamiltonian (6.2) by the Heisenberg canonical transforma-
tion

S1 � exp

�
ÿi
X
k

ka�k ak

�
R ;

~H � Sÿ11 HS1 � ÿ2Dr �U�r� �
X
k

a�k ak

�
X
k

2Vk cos
kr

2
�ak � a�k � �

1

2

�X
k

ka�k ak

�2

: �6:3�

It follows from formula (6.3) that the exact solution of the
bipolaron problem depends on the translationally invariant
wave function c�r� containing only relative coordinates r.

Averaging ~H over c�r� yields the Hamiltonian

�H � 1

2

�X
k

ka�k ak

�2

�
X
k

a�k ak�
X
k

�Vk�ak� a�k � � �T� �U ;

�Vk � 2Vk

�
c
���� cos kr2

����c� ;
�6:4�

�U � 
c��U�r���c� ; �T � ÿ2hcjDrjci :

This Hamiltonian differs fromHamiltonian (2.3) in thatVk in
the latter is substituted by �Vk and constants �T and �U are
added. Repeating the derivation described in Section 3, we
obtain the bipolaron energy in the form

Ebp � DE� 2
X
k

�Vk fk �
X
k

f 2
k � �T� �U ; �6:5�

where DE is defined in (5.7). Relation (6.5) can be used to
derive an equation for the bipolaron energy by varying Ebp

with respect to fk and c. Because solving the equations thus
obtained is quite difficult, the real bipolaron energy is
determined by the direct variational method with [49]

fk � ÿN �Vk exp

�
ÿ k 2

2m

�
;

�6:6�

c�r� �
�

2

p` 2

�3=4

exp

�
ÿ r 2

` 2

�
;

where N, m, and ` are the variational parameters. At N � 1,
expression (6.6) reproduces the results in Ref. [47] and at
N � 1 and m!1, the results in [48].

Substituting (6.6) in the expression for the total energy
after minimization with respect to N yields the equation

E�x; y; Z� � F�x; y; Z�a 2 ;
�6:7�

F�x; y; Z� � 6

x 2
� 20:25

x 2 � 16y
ÿ 16

�������������������
x 2 � 16y

p���
p
p �x 2 � 8y� �

4
��������
2=p

p
x�1ÿ Z� :

Here, x and y are the variable parameters, x � `a, y � a 2=m;
Z � e1=e0. We let Fmin denote the minimal value of the
function F of x and y. Figure 3 shows the dependence of
Fmin on Z and Fig. 4 illustrates the dependences of xmin and
ymin on Z.

It follows from Fig. 3 that Emin�Z � 0� � ÿ0:440636a 2 is
the lowest bipolaron ground state energy of all values
previously obtained by the variational method. The hor-
izontal lines in Fig. 3 correspond to energies E1 � ÿ0:217a 2

and E2 � ÿ0:2515a 2, where E1 � 2Ep1 , Ep1 is Pekar's
polaron ground state energy (1.3), E2 � 2Ep2 , and Ep2 is the
ground state energy of translationally invariant polaron
(5.14). The intersections of these lines with the Emin�Z� curve
give critical values of the parameters Z � Zc1 � 0:3325 and
Z � Zc2 � 0:289. A bipolaron decays into two translationally
invariant polarons at Z > Zc2 and into Pekar's polarons at
Z > Zc1 . The values of minimizing parameters xmin and ymin

for the above Z values are xmin�0� � 5:87561, ymin�0� �
2:58537, xmin�0:289� � 8:16266, ymin�0:289��3:68098, and
xmin�0:3325��8:88739, ymin�0:3325�� 4:03682.

The critical value of the electron±phonon coupling
constant a for the formation of a TI bipolaron found from a

ÿ0.1

Fmin

ÿ0.2

ÿ0.3

ÿ0.4
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Z

Figure 3. Function Fmin�Z�.
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Figure 4. Functions xmin�Z� and ymin�Z�.
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comparison of expressions for the energies in the weak-
coupling limit (twice the weak-coupling polaron energy
E � ÿ2a�ho0) and in the strong-coupling limit (E �
ÿ0:440636a 2�ho0) is ac � 4:54 (the lowest of the estimates
obtained by the variational method). The last value is
conventional. Hamiltonian (6.4) coincides with single-elec-
tron Hamiltonian (2.3) in terms of structure. Therefore,
according to [20], the bipolaron energy is an analytic
function of a as in the case of the polaron. Hence, the
polaron energy has no singularities at the point a � ac, and
the bipolaron state exists over the entire range of the
parameters a and Z, 0 < a <1 and 0 < Z < 1ÿ 1=2

���
2
p

, at
which E < 0.

To elucidate the existence of the value ac at which the
bipolaron state can be split into individual polarons, calcula-
tions at an intermediate coupling strength are needed.
According to one of the possible scenarios, the bipolaron
energy for certain Z values is lower than that of each of the two
individual polarons at any a values, which means that the
bipolaron state always exists. We note that the virial theorem
is fulfilled with a high degree of accuracy for the obtained
ground state.

The origin of high-temperature superconductivity
(HTSC) and its relation to the formation of bipolaron states
have been considered in numerous articles and reviews [7, 8,
59, 60], where the existence of HTSC was explained by Bose
condensation of the bipolaron gas. The Bose condensation
temperatureT0 � 3:31�h 2n

2=3
0 =�kBmbp�, supposed to equal the

critical temperature Tc of the superconducting transition at
mbp � 10m, varies over a wide range from T0 � 3 K at
n � 1018 cmÿ3 to T0 � 300 K at n � 1021 cmÿ3, depending
on the bipolaron concentration n0. In the latter case, the
bipolaron concentration is so high that the bipolaron
composite character has to manifest itself, as in the case of
Cooper pairs; specifically, bipolarons cease to behave as
separate particles and decay into polarons as their concentra-
tion increases further. In accordance with (6.6), the character-
istic size of the bipolaron state ` in dimensional units is
`corr � �h 2~ex�Z�=�me 2�, where `corr has the meaning of the
correlation length, and the dependence x�Z� is shown inFig. 4.
It follows fromFig. 4 that x changes only insignificantly, from
x�Z � 0� � 6 to x�Z � 0:289� � 8, over the entire range of Z in
which the bipolaron state remains stable.

This means that the critical concentration at which the
composite character of bipolarons becomes noticeable is of
the order of nc � 1021 cmÿ3, even at Z � Zc. This result
suggests the possibility of the existence of a bipolaron HTSC
mechanism in copper oxides.

7. Ground state functional.
The Tulub ansatz

The quadratic form in (3.4) can be diagonalized using the
Bogoliubov±Tyablikov transformation [61]. We let ak denote
operators of physical particles in terms of which H0 is a
diagonal operator.

The quadratic form is diagonalized by means of the
transformation

ak �
X
k 0

M1kk 0ak 0 �
X
k 0

M �
2kk 0a

�
k 0 ;

�7:1�
a�k �

X
k 0

M �
1kk 0a

�
k 0 �

X
k 0

M2kk 0ak 0 ;

with the following relations satisfied:

�ak; a�k 0 � � �ak; a�k 0 � � dkk 0 ; �H0; a�k � � oka�k : �7:2�

It follows from the properties of unitary transformation
(7.1) that

M2M
�
1 �M �

1M
T
2 ; �7:3�

�M�
1 �ÿ1 �M1 ÿM �

2 �M �
1 �ÿ1M2 :

The transformation of operators inverse to (7.1), with the use
of (7.3), has the form

ak �
X
k 0

M�1kk 0ak 0 ÿ
X
k 0

M �
2kk 0a

�
k 0 ; �7:4�

a�k �
X
k 0

M1kk 0a
�
k 0 ÿ

X
k 0

M2kk 0ak 0 :

According to [31, 32], the matricesM1 andM2 are

�M1; 2�kk 0 �
1

2
�okok 0 �ÿ1=2�ok � ok 0 �

�
�
d�kÿ k 0� � �kk 0� fk fk 0 2�okok 0 �1=2

�o2
k 0 ÿ o2

k � ie�D��o2
k�
�
; �7:5�

D��o2
p� � 1� 1

3p2

�1
0

f 2
k k 4ok

o2
k ÿ o2

p � ie
dk :

The upper sign in the right-hand side of (7.5) is for M1, and
the lower sign is forM2. Diagnolization of the quadratic form
in (3.4) leads to

H0 � DE�
X
k

nka
�
k ak : �7:6�

The ground state functional L0j0i is chosen from the
condition

akL0j0i � 0 : �7:7�
To find the explicit form of the functional L0, it is

convenient to use the Fock representation [62, 63] establish-
ing a correspondence between the operator a�k and a certain c-
number �ak and between operators ak and d=d�ak. Then
condition (7.7) becomes [taking (7.4) into account]�X

k 0
M �

1kk 0
d

d�ak 0
ÿ
X
k 0

M �
2kk 0 �ak 0

�
Lj0i � 0 : �7:8�

Direct substitution in (7.8) gives the solution of this equation

L0 � C exp

�
1

2

X
k; k 0

a�k Akk 0 a
�
k 0

�
; �7:9�

where C is a constant. Here, it is enough to return from a�k to
�ak in (7.9). The matrix A satisfies the relations

A �M �
2 �M �

1 �ÿ1 ; A � AT : �7:10�

Thus, the ground state energy corresponding to the functional
L0 is

h0jL�0H0L0j0i � DE : �7:11�

As shown in Appendix 1, h0jL�0 H1L0j0i � 0.
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It follows from (7.9), (2.2), and (2.5) that the wave
function of the polaron ground state jcip has the form

jcip � C exp

�
ÿ i

�h

X
k

�hka�k akr
�
exp

�X
k

fk�a�k ÿ ak�
�
L0j0i :
�7:12�

Accordingly, the bipolaron wave function jcibp is expressed,
taking (5.3), (5.4) into account, as

jcibp � Cc�r� exp
�
ÿ i

�h

X
k

�hka�k akR

�

� exp

�X
k

fk�a�k ÿ ak�
�
L0j0i : �7:13�

It follows from (7.12) and (7.13) that the polaron and
bipolaron wave functions are delocalized across the entire
space and cannot be represented in the form of ansatz (1.2).

It also follows from (7.12) and (7.13) that the attempts of
Lee, Low, and Pines [35] to evaluate the polaron ground state
energy over the entire range of a variations failed because of
an unsuccessful choice of test function (2.4), which lacked a
factor corresponding to functional L0.

However, it should be emphasized that even a radical
improvement of the test function by the introduction of a
factor L0 allowing us to consider both strong and weak
coupling cases in the Lee±Low±Pines functions does not
produce an exact result. The fact that Tulub's function is an
ansatz comes from its properties:

h0jL�0 H1L0j0i� 0 ; E � h0jL�0 H0L0j0i ; H0L0j0i� EL0j0i :
�7:14�

Being an ansatz, the Tulub solution solves the polaron
problem in a certain class of functions with the structure
L0j0i. That Tulub's ansatz is not an exact solution of the
problem follows from the fact that the use of expression (3.20)
alone to calculate energy, e.g., in the weak-coupling case,
gives the result [31]

E � ÿaÿ 1

6

�
1

2
ÿ 4

3p

�
a 2 :

To obtain the exact value of the coefficient at a 2 in the
expansion of the energy as a power series in a, Eqn (1.1), it is
necessary to take the contribution of theHamiltonianH1 into
account in accordance with the perturbation theory [38].

Delocalization of wave functions (7.12) and (7.13) has
many important implications, which are discussed in
Section 9.

8. Discussion of the completeness
of the Tulub theory

The authors of Refs [64, 65] raised the question of the
completeness of the Tulub theory [31, 32]. Their objections
were based on the work of Porsch and RoÈ seler [37]
reproducing the results of the Tulub theory. In the last
section of their article, Porsch and RoÈ seler considered
possible consequences of replacing the infinite integration
limit with a finite one in the Tulub theory, followed by a
transition back to the infinite limit. Surprisingly, it turned out
that simultaneously with the cut-off in the integration over

phonon wave vectors in the functional of total polaron
energy, that functional needs to be supplemented by a term
dEPR that makes a nonzero contribution as the upper limit
tends to infinity [37, 65]. Based on this result, the authors of
Refs [64, 65] concluded that Tulub disregarded this addition,
which makes his theory incomplete.

To resolve this paradox, we consider the function D�s�
defined by formula (3.14) [or (3.19) in the continuum case].
According to (3.14) and (3.19), the zeros of these functions
make a contribution to the `polaron recoil' energy DE defined
by (3.16); in accordance with (3.15), they are found from the
equation

1 � 2

3

X
k

k 2f 2
k ok

sÿ o2
k

: �8:1�

If there is no cutoff in the sum in the right-hand side of (8.1),
the solution gives a spectrum of s values determined by
frequencies nki lying between the neighboring values of oki

and oki�1 for all wave vectors ki. These frequencies determine
the recoil energy

DE � 1

2

X
ki

�nki ÿ oki� : �8:2�

We next discuss what happens to the contribution of the
frequencies nki to DE in the region of wave vectors k where fk
tends to zero but never exactly vanishes. It follows from (8.1)
that solutions of Eqn (8.1) tend to oki as fk ! 0: nki ! oki .
Accordingly, the contribution to DE in the region of wave
vectors where fk ! 0 must also tend to zero.

Specifically, introducing a certain k 0 such that fk values in
the region k > k 0 are small leads to the expression

DE � 1

2

X
ki 4 k 0

�nki ÿ oki� ; �8:3�

containing no additional terms. This corresponds to fixing an
upper limit k 0 in the Tulub functional, with no additional
terms appearing.

For example, to study the minimum of Tulub's functional
(3.20), (5.7), we choose the test function fk without a cutoff, in
the form [49]

fk � ÿVk exp

�
ÿ k 2

2a 2�k�
�
;

�8:4�
a�k� � a

2

�
1� tanh

�
kb ÿ k

a

��
;

where a is a parameter of Tulub's test function (5.9), kb
satisfies the condition a5 kb 5 koc, and koc � a

����������
3l=44

p
is the

value of the wave vector at which Tulub's integral (5.12) has a
maximum [32, 66]; in this case, the use of (8.4) in the a!1
limit gives the following expression for the integral q�1=l�:

q

�
1

l

�
� 5:75� 6

�
a

kb

�3

exp

�
ÿ k 2

b

a 2

�
: �8:5�

The second term in the right-hand side of (8.5) vanishes as
kb=a!1, which leads, as expected, to Tulub's result
q�1=l� � 5:75.

However, Eqn (8.1) has a singularity. It has an isolated
solution nk 0 differing from the frequencyok 0 by a finite value,
even for the continuum spectrum at fk � 0 if k > k 0. This
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isolated solution leads to an additional contribution to DE,

DE � 1

2

X
ki<k 0

�nki ÿ oki� � dEPR ;

�8:6�
dEPR � 3

2
�nk 0 ÿ ok 0� ;

where nk 0 has the meaning of `plasma frequency' [37]. In other
words, there is no continuous transition here from the case
where fk ! 0 at k > k 0 to the case where fk � 0 at k > k 0.
Direct calculation [67] of the contribution made by the term
with the `plasma frequency' dEPR to (8.6) shows that the
Porsch±RoÈ seler theory does not turn into the Tulub theory,
even as k 0 !1.

In the Tulub theory, we choose those fk that lead to a
minimum of the total polaron energy functional. Specifically,
the choice of the test function in form (8.4) guarantees the
absence of a contribution of the `plasma frequency' to the
total energy; for practical purposes, it is possible to choose the
cut-off fk without introducing any additional terms into
Tulub's functional [66, 67].

To summarize, the critical remarks in [64, 65] were shown
to be invalid both in Refs [66, 67] and in Ref. [49] cited above.
At present, the Tulub theory and the data obtained using it
[33, 47±49] are regarded as certain.

9. Implications of the existence of translationally
invariant polarons and bipolarons

The available data indicate that the ground state of a TI
polaron is a delocalized state of the electron±phonon system:
the probability of finding an electron is the same at any spatial
point. The explicit form of the ground state wave function is
presented in Section 7. Both the electron density and
amplitudes of phonon modes corresponding to the frequen-
cies nqi renormalized by interaction are delocalized.

Importantly, according to (3.15), the renormalized pho-
non frequencies nqi in the case of TI polarons have the energy
higher than nonrenormalized frequencies of optical phonons,
i.e., they are higher than renormalized frequencies of polarons
with spontaneously broken symmetry [68]. This gives hope to
discover such phononmodes in Raman scattering and optical
absorption experiments. If a polaron (bipolaron) is bound at
a Coulomb center, i.e., forms an F-center (F 0-center), all
renormalized local phonon frequencieson are lower in energy
than the optical phonon frequencyo0 [68]. This fact facilitates
experimental verification of the presence of delocalized TI
phonon modes nqi > o0.

The translationally invariant theory does not contain the
concept of a `polaron potential well' (a well formed by local
phonons [68]) in which an electron is localized, i.e., a self-
trapped state. Therefore, the induced polaron charge for a TI
polaron is zero. The absence of a localized `phonon coat' for a
TI polaron suggests that its effective mass is not significantly
different from the effective electron mass. The energy of the
TI polaron ground state is lower than that of Pekar's polaron;
it is defined by formula (5.14), while Pekar's polaron energy is
given by (1.3).

This means that the polaron zero total momentum is
associated with an energy gap between the TI polaron state
and the Pekar state, i.e., a state with broken translational
invariance. The TI polaron is a structureless particle (see
Ref. [68] for the results of a structural survey of Pekar's
polaron).

According to the TI polaron theory, the terms `large-
radius polaron' (LRP) and `small-radius polaron' (SRP) are
arbitrary, because the electron state is delocalized with
respect to the crystal. The difference between the LRP and
SRP in the TI theory lies in the fact that the inequality
kchara < p is satisfied for the LRP and the inequality
kchara > p holds for the SRP (where a is the lattice constant
and kchar is the characteristic value of phonon wave vectors
making the leading contribution to the polaron energy). This
inference holds not only for the Pekar±FroÈ hlich polaron but
also for the whole class of polarons in which the coupling
constant is unrelated to the electron wave vector, as in the
case of the Holstein polaron. These criteria may not be
satisfied for the class of polarons with the coupling constant
depending on the electron wave vector (as in the Su±
Schrieffer±Heeger model [69]).

The above features of TI polarons account for their
physical properties being qualitatively different from those
of Pekar's polarons. In the presence of minor local defects in a
crystal, TI polarons remain in a delocalized state. For
example, delocalized polaron states give rise to F-centers in
an ionic crystal, with vacancies only at a certain critical value
e0c of the static dielectric constant. For e0 > e0c, the crystal
contains delocalized TI polarons and free vacancies. At
e0 � e0c, a transition occurs from the delocalized state to the
vacancy-associated localized state (wave function collapse).
Such a behavior of TI polarons is qualitatively different from
that of Pekar's polarons, which localize at vacancies at any e0
values. This explains, in particular, the absence of absorption
(i.e., structure) by a free Pekar polaron, because a TI polaron
is then realized.Absorption occurs only after the formation of
a bound Pekar polaron, i.e., an F-center. These observations
are confirmed by recent publications concerning Holstein
polarons [70±72]. We generalized the above approach to the
case of the Holstein polaron in Ref. [73].

We note that only a physical interpretation of free strong-
coupling polarons needs modification. The overwhelming
majority of the data on strong-coupling polaron physics
refer to Pekar-type polaron states bound at lattice vacancies
or defects and do not need any correction.

Taking translational invariance into account in the case of
polarons slightly affects the assessment of the ground state
which, however, does throw new light on its properties. As
Tulub showed in the part of his work devoted to TI polaron
scattering, increasing the electron±phonon coupling constant
to a certain critical value results in the disappearance of
polaron scattering on optical phonons [32].

This means that polarons become superconducting at
coupling constants above a critical value. Although scatter-
ing on optical phonons is the principal mechanism of electron
scattering in ionic crystals [74], it may seem that the
contribution of acoustic phonons should also be taken into
consideration. However, it follows in general from the energy
and momentum conservation laws that the scattering of TI
polarons on acoustic phonons is possible only if their velocity
is higher than the speed of sound [75].

The energy of TI bipolarons is much higher than that of
polarons, which has important physical implications. Speci-
fically, TI bipolarons remain in a delocalized state if a crystal
has small local defects. For example, the formation of F 0-
centers by delocalized bipolaron states in an ionic crystal with
vacancies occurs only at a certain critical value e0c1 of the
static dielectric constant. For e0 > e0c1 , the crystal contains
delocalized TI bipolarons and free vacancies. At e0 � e0c1 ,
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transition occurs from the delocalized state to the vacancy-
associated localized state, i.e., to the F 0-center. Such a
behavior of TI bipolarons is qualitatively different from that
of Pekar-type bipolarons with spontaneously broken symme-
try [8] localized at vacancies at any e0 values.

The fundamental difference of TI bipolarons from
bipolarons with spontaneously broken symmetry is that
the former are inseparable, while the latter are separable;
the interaction between electrons and polarization in the
case of bipolarons with spontaneously broken symmetry has
the form F�r1; r2� � F�r1� � F�r2�. At jr1 ÿ r2j4R, where R
is the bipolaron radius, the equation for a bipolaron splits
into two decoupled polaron equations. This fact allows the
bipolaron state with spontaneously broken symmetry to be
interpreted as the bound state of two polarons [8]. In the
case of TI bipolarons, F�r1; r2� � F�r1 ÿ r2�. Splitting the
interaction functional for a bipolaron into interaction
functionals of individual polarons is impossible, regardless
of jr1 ÿ r2j values, and the notion of TI bipolarons as
composite states becomes invalid. This inference is consis-
tent with the modern concept of the impossibility of
dividing a quantum mechanical system into independent
subsystems [76].

TI bipolarons delocalized at P � 0, where P is the total
bipolaron momentum, are separated by an energy gap from
bipolaron states with broken translational invariance
described by a localized wave function. Similar to polarons,
TI bipolarons become superconducting when the coupling
constant exceeds a certain critical value. Explaining high-
temperature superconductivity in terms of the bipolaron
mechanism of Bose condensation is known to encounter
difficulties arising from the large mass of bipolarons and,
consequently, the low temperature of Bose condensation. The
possibility of the smallness of TI bipolaron mass resolves the
problem.

We emphasize that the aforementioned properties of TI
bipolarons impart superconducting features to them even in
the absence of Bose condensation, while the high bonding
energy of bipolarons makes such a superconductivity sce-
nario realistic, even in strongly defective crystals.

10. Conclusion

Presently, there are no doubts about the Tulub theory or
quantitative data obtained using it. This quantum field theory
is nonperturbative and can be used to reproduce not only
strong and weak coupling limits but also an intermediate
coupling regime.

Integration over trajectories [77] is considered to be one of
the most effective methods to calculate polarons and
bipolarons within this bonding force range. This approach is
not translationally invariant without proper modification,
because the main contribution to energy levels in this
framework comes from classical solutions (i.e., extrema of
the exponential of the classical action entering the integral
over trajectories). Due to translational invariance, such
solutions are not isolated stationary points but belong to a
continuum family of classical solutions resulting from the
action of the translation operator on the initial classical
solution. This makes the stationary phase approximation
inapplicable to translationally invariant systems.

Approaches to the restoration of translational invariance
in quantum field theory based on the introduction of
collective coordinates into functional integral [78] have not

been used so far in the polaron theory. Not surprisingly,
integration over trajectories yields a result coinciding with the
results of the semiclassical theory of the strong-coupling
polaron [79].

It has recently been proposed to use the quantum Monte
Carlo method as a powerful calculation tool for the polaron
theory [80, 81]. However, this tool itself cannot reproduce the
results of Tulub's ansatz without the modification mentioned
in preceding paragraphs. At the same time, verification of
Tulub's ansatz in the strong-coupling limit by the diagram-
matic Monte Carlo method is precluded by the necessity to
calculate very high-order diagrams.

To summarize, Pekar's ansatz (1.2) is a baseline assump-
tion regarding the form of the solution, confirmed by
numerous calculations and evidence. It has been universally
accepted during the more than 80-year history of polaron
theory (starting from Landau's note [82]) that ansatz (1.2) is
an asymptotically exact solution of the polaron problem in
the strong-coupling limit.

Tulub's ansatz (see Section 7) is another assumption on
the form of the solution, whose structure is determined by the
form of the function L0j0i. The Tulub solution in the
framework of this assumption is also asymptotically exact.
Tulub's ansatz should be preferred from the variational
standpoint, because the Tulub solution gives a lower energy
value for polarons.

It follows from the above that the polaron theory is far
from complete. Great effort is needed in the framework of
Tulub's ansatz to revise many concepts (e.g., superconductiv-
ity) and claims of condensed matter physics. Extension of the
scope of application of Tulub's ansatz to other aspects of
quantum field theory may lead to a radical reconsideration of
many previously obtained results currently believed to be
unquestionable, and vice versa. For example, the insepar-
ability of the bipolaron state in the polaron model of quarks
[83] (with the role of phonons played by the gluon field in [83])
fairly well explains their confinement. It was shown in
Ref. [73] that the TI theory does not need to resort to the
Higgs mechanism of spontaneous symmetry breaking to
estimate the mass of elementary particles.
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11. Appendices

Appendix 1
The Hamiltonian H1 in (3.2) has the form

H1 �
X
k

�Vk � fk�hok��ak � a�k �

�
X
k; k 0

kk 0

m
fk 0 �a�k akak 0 � a�k a

�
k 0ak�

� 1

2m

X
k; k 0

kk 0a�k a�k 0akak 0 ; �A1:1�

where �hok is given by expression (3.5). Let the operatorH1 act
on the functional L0 in (7.9). Then h0jL�0 H1L0j0i � 0.
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Indeed, the action of L0 on the terms of the Hamiltonian H1

that include an odd number of operators (the first and the
second terms of H1) always contains their odd number, and
the expectation values of these terms vanish.

We consider the expectation value of the last term inH1:�
0

����L�0 X
k; k 0

kk 0a�k a
�
k 0akak 0L0

����0� : �A1:2�

The function h0jL�0 a�k a�k 0akak 0L0j0i is the norm of the vector
akak 0L0j0i, positive definite at all k and k 0. The substitution
k! ÿk in (A1.2) changes the sign of the entire expression,
and (A1.2) vanishes. Hence, h0jL�0 H1L0j0i � 0.

Appendix 2
We show that Eqns (5.4) and (5.5) follow from (5.1) and (5.2).
We first note that the analytic properties of D�s� reported in
Ref. [32] follow directly from (3.19). Indeed, a pole of D�s�
can lie only on the real axis, because the equation

1� 1

3p2

�1
0

okk
4f 2

k �o2
k ÿ s0 � ie�

�o2
k ÿ s0�2 � e 2

dk � 0 �A2:1�

can be satisfied only at e � 0 due to the positive definiteness of
okk

4f 2
k in (3.19). Moreover, D�s� is a monotonically

increasing function of s because D 0�s� > 0 at s < 1 and D�s�
becomes unity as s0 !1. Therefore, D�s� cannot have zeros
for ÿ1 < s0 < 1 and the function �sÿ 1�D�s� can be
represented in the form

1

�sÿ 1�D�s� �
1

2pi

�
C�r

ds 0

�s 0 ÿ s��s 0 ÿ 1�D�s 0� : �A2:2�

The contour of integration in Cauchy's integral (A2.2) is
shown in Fig. 2. The integrand in (A.2.2) has the plus sign at
s 0 � 1 and contains a cut from s 0 � 1 to s 0 ! 1. Integration
in (A2.2) along the upper and lower sides of the cut yields
integral equation (5.5).

Appendix 3
We calculate DE in (5.7) with the use of test function (5.9).

The real part of D�o2
p� in (5.7) can be found using

Sokhotsky's formula,

1

o2
k ÿ o2

p ÿ ie
� P 1

o2
k ÿ o2

p

� ipd�o2
k ÿ o2

p� ;

ReD�o2
p� � 1� 1

3p2

�1
0

f 2
k k 4P ok

o2
k ÿ o2

p

dk :

It is convenient to represent ReD in the form

ReD � 1� I1 � I2 ;

I1 � 1

3p2

�1
0

f 2
k k 4 dk

ok � op
;

I2 � P
o2

p

3p2

�1
0

f 2
k k 4 dk

�ok ÿ op��ok � op� :

Substituting fk in form (5.9) in these expressions yields

I1 � 8a

3
���
2
p

p

�1
0

exp

�
ÿ k 2

a 2

�
dk ÿ 8a�p 2� 4�

3
���
2
p

p

�1
0

exp �ÿk 2=a 2�
k 2 � p 2 � 4

dk :

Setting k=a � ~k, in the strong-coupling limit �a!1�we find

I1 � 8aa

3
���
2
p

p

� ���
p
p
2
ÿ p

2
~p exp �~p 2�

�
1ÿ 2���

p
p
� ~p

0

exp �ÿt 2� dt
��

:

Accordingly,

I2 � P 4aop

3p
���
2
p
�1
0

exp �ÿk 2=a 2�k 2 dk

�ok ÿ op��ok � op� :

The last integral can be represented as the sum

I2 � I20 � I21 ;

where

I20 � 16aop

3p
���
2
p

�
1ÿ op ÿ 1

p 2 � 2

��1
0

exp �ÿk 2=a 2�
k 2 � p 2 � 4

dk ;

I21 � 16aop�op ÿ 1�
3p

���
2
p �p 2 � 2� P

�1
0

exp �ÿk 2=a 2�
k 2 ÿ p 2

dk :

For the integrals entering I20 and I21, we have�1
0

exp �ÿk 2=a 2�
k 2 � p 2 � 4

dk

� 1

a

�
1ÿ 2���

p
p
� ~p

0

exp �ÿt 2� dt
�
p
2

exp �~p 2�
~p

;

P
�1
0

exp �ÿk 2=a 2�
k 2 ÿ p 2

dk � ÿ
���
p
p
a

exp �ÿ~p 2�
~p

� ~p

0

exp �t 2� dt :

As a result,

I2 � 2

3

aa~p���
2
p exp �~p 2�

�
1ÿ 2���

p
p
� ~p

0

exp �ÿt 2� dt
�

ÿ 4aa~p

3
������
2p
p exp �ÿ~p 2�

� ~p

0

exp �t 2� dt :

Finally,

ReD � 1� 4aa

3
������
2p
p

�
1ÿ ~p exp �~p 2�

�1
~p

exp �ÿt 2� dt

ÿ ~p exp �ÿ~p 2�
� ~p

0

exp �t 2� dt
�
:

This result reproduces the quantity given by formula (5.10).
The imaginary part ImD found with the help of Sokhotsky's
formula is

ImD � 1

3p

�1
0

f 2
k k 4okd�o2

k ÿ o2
p� dk �

1

6p
f 2
p p 3 :

As a result, we express jD�o2
k�j as

jDj2 � �ReD�2 � �ImD�2

� 2

9
a 2a 2

(
exp �ÿ2~p 2� ~p 2 � 8

2p

�
1ÿ ~p

�1
~p

exp �ÿt 2� dt

ÿ ~p exp �ÿ~p 2�
� ~p

0

exp �t 2� dt
�2)

:
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The first term in formula (5.7) is easy to calculate as

1

4p2

�1
0

k 4f 2
k

1�Q
dk � 3

16
a 2 :

In calculating the second term in (5.7), we segregate the
integral

Ip �
�1
0

exp

�
ÿ k 2

a 2

�
k 2
ÿ
okop � ok�ok � op� � 1

�
�ok � op�2

dk :

As a!1, we have

Ip � a 3

���
p
p
4

�
1ÿ ~p 3 exp �~p 2�

�
�1

~p

exp �ÿt 2� dt �2� 4~p 2� � 2~p 4

�
� a 3

���
p
p
4

ÿ
1ÿ O�~p�� ;

where

O�~p� � 2~p

�
�1� 2~p 2� ~p exp �~p 2�

�1
~p

exp �ÿt 2� dtÿ ~p 2

�
;

which corresponds to the expression for O�y� in (5.12).
As a result, the following expression for the second term in

the right-hand side of (5.7) is obtained:

1

12p4
4pa���
2
p

�1
0

Ip p
4f 2

p

op

�o2
p ÿ 1���D�o2

p�
��2 dp :

As a!1, the last expression takes the form

a 2a 4

3p
���
p
p
�1
0

ÿ
1ÿ O�~p�� exp �ÿ~p 2���D�o2

~p�
��2 d~p � 3

16
a 2q ;

where q � q�0� is given by (5.12). Finally, for DE in (5.7), we
have

DE � 3

16
a 2�1� q� ;

which corresponds to the first term in the right-hand side of
(5.11).
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