
Abstract. The semiclassical theory of light scattering by a dilute
gas Bose±Einstein condensate is examined, with special atten-
tion paid to the key role of the momentum recoil imparted to
atoms by photons, a phenomenon that disturbs the interferential
quenching of superradiant scattering.

Keywords: Rayleigh scattering, superradiant scattering,
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1. Introduction

One of the fundamental problems in optics centers around
understanding the scattering of light from an atomic medium.
Early work on this subject included the classical electrody-
namics treatment by J Rayleigh [1] and similar subsequent
analyses, with some improvements, by L I Mandelstam [2]
andM Smoluchowski [3]. The discovery of Raman scattering
stimulated the development of the quantum-mechanical
description of the light scattering process [4]. It was only
quantum electrodynamics [5] that provided an adequate
explanation of the phenomenon.

Interest in the optical properties of the Bose±Einstein
condensate (BEC) was intensified by the discovery that the
condensate can be prepared by laser evaporative cooling in a
dilute atomic Bose gas, an achievement which directly
confirmed the prediction by Einstein [6] and has brought its
authors, E Cornell, W Ketterle, and C Wieman, the Nobel

Prize in Physics 2001 (seeNobel Lectures [7, 8] and reviews [9±
14]). In an important development shortly afterwards, the
Ketterle team studied light scattering off a BEC [15] and
found it to be different from ordinary Rayleigh scattering,
possibly due to a weakness of relaxation processes and to the
condensate retaining its quantum phasememory. This type of
scattering is akin to Dicke's superradiance effect [16] and has
therefore come to be known as `superradiant' scattering.

It should be noted that light scattering from a BEC is one
of the few examples of how superradiance can be implemen-
ted experimentally. A major factor in superradiant scattering
is that the atoms are acted upon by scattered (secondary)
radiation, leading to a considerable enhancement of the
effect. Because of the inherently cooperative nature of
superradiant scattering (the coherence of the atomic states is
envisaged), its intensity turns out to be proportional to the
square of the total number of particles in the condensate. An
essential feature of superradiant scattering from a BEC is the
formation of coherent atomic waves, a phenomenon that was
tentatively interpreted as the realization of a `one-atom laser'
[17].

There were afterwards other experiments that observed
superradiant scattering off a dilute BEC [18±24]. In Ref. [15],
the dynamics of coherent atomic waves (atom `clouds')
propagating along an irradiating light wave were studied.
Experiment [18] demonstrated that decreasing the mismatch
between the pumping and resonance frequencies of the
atomic transition also leads to the appearance of atom clouds
propagating opposite to the direction of the incident radia-
tion (with an asymmetry in density distribution between the
forward and backward propagating clouds). Other experi-
mental developments include the precise measurement of the
recoil momentum acquired by a BEC atom upon photon
scattering [19], the study of light scattering off a BEC in the
two-frequency pumping regime [20], and the investigation of
how the sign of the mismatch affects the dynamics of the
process [21±24].

There has been quite extensive recent literature [25±54]
(including our work [29±37, 40±44, 50±54]) on the theoretical
interpretation of the above-mentioned experiments based on
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previous work on the theory of superradiance in normal
media ([55±57]; see also monograph [58]).

In this paper, we summarize previous results, provide an
improved version of the semiclassical theory of light scatter-
ing from a BEC, and draw attention to the fact that BEC
atoms experience a momentum recoil upon photon scattering
[54]Ð the key effect that determining the superradiant nature
of scattering.

The paper outline is as follows. We begin in Section 2 by
reminding the reader of the general quantum-electrodynamic
formulation of the problem of Raman scattering from a
BEC.

The semiclassical approach to the theory of superradiant
scattering off a BEC is presented in Section 3, whose main
point is the fundamental role of momentum recoil processes
that determine the scattering intensity and the lower limit of
the superradiant pulse duration.

Section 4 discusses a one-dimensional model of the super-
radiant reflection from a BEC. The results of the solution to
theMaxwell±Schr�odinger equations for this case illustrate the
properties of superradiant scattering described above.

We conclude by analyzing and discussing the results
obtained in Section 5.

2. Linear Rayleigh scattering

Let us first refresh the standard quantum-electrodynamical
approach to explaining Rayleigh light scattering based on the
Wigner±Weisskopf theory.

We begin by considering the scattering of light by a single
atom. The excitation of the atom is caused by the incident
classical field, and the subsequent transition of the atom to
the ground state and the appearance of scattered radiation are
accounted for by the influence of the quantized electromag-
netic field. We will assume the incident field to be weak and
will calculate the scattering probability in the second-order
perturbation theory (first order in the interaction with the
incident field, and first order in the interaction with the
vacuum of the quantized electromagnetic field).

Wemodel the atom as a two-level electron±nucleus system
whose ground (excited) state has the wave function ja (jb)
and eigenvalue Ea (Eb); the excited energy level is assumed to
have a radiative width G=2. We also introduce the wave
functions of the translational motion of the atom (de Broglie
waves):

cp�r; t� �
1����
V
p exp

�
i�prÿ ept�

�
; �1�

where r is the atomic center-of-mass radius vector, p is the
atomic wave vector, ep � �hp 2=�2M� is the kinetic energy of
the atom (in frequency units,M is the atomic mass), and V is
the volume of the system. Thus, the basis states of the single
atom are as follows:

ca; p � jacp ;

cb; p 0 � jbcp 0 :
�2�

Taking the atom to be initially in the ground stateca; 0, the
second-order time-dependent perturbation theory yields the
following result for the probability per unit time (or more
precisely, for the spectral probability density) that the
scattering of the incident field of frequency o0 and wave

vector k0 will cause the emission of a photon of frequency o
and wave vector k [5]:

W�k0; k� � jnj2juj2 �hÿ4

�o0 ÿ oba�2 � G 2=4
pd�o0 ÿ oÿ ek0ÿk� ; �3�

where oba � �Eb ÿ Ea�=�h is the resonant frequency of the
atomic transition, and n and u are the interaction matrix
elements between the atom and the incident and quantized
electromagnetic fields:

n � 
b; k0jd̂ E0ja; 0
�
;

u � 
a; k0 ÿ k; fkgjd̂ Êkjb; k0; f0g
�
:

�4�

Here, d̂ is the dipole moment operator of the atom, E0 is the
electric vector of the incident plane wave of wave vector k0,
and Êk is the electric field strength operator corresponding to
a radiation oscillator of wave vector k. The curly brackets
denote the states of the quantized electromagnetic field: f0g is
the vacuum state, fkg is a state with a single photon of wave
vector k. Further, we have



a; k0 ÿ k; fkgjd̂ Êkjb; k0; f0g

� � idba

�������������
2p�hck

L3

r
sin# ; �5�

where dba is the magnitude of the matrix element of the
transition dipole moment dba, # is the angle between this
vector and the wave vector k, L3 is the quantization volume,
and the d function on the right-hand side of Eqn (3) expresses
the conservation of energy: the frequency of the photon
scattered in the direction of the vector k is defined as
o � o0 ÿ ekÿk0 .

The scattering intensity dI into a solid angle dO in a given
direction is obtained by additionally multiplying probability
(3) by the magnitude of the quantum �ho and by the `number
of final states' of the field, namely

k 2 dkdO

�2p=L�3 �
L3o 2 do dO

�2pc�3 ; �6�

and then integrating over frequency to give

dI � �1=4p�jdbaE0j2jdbaj2 �hÿ2o 4
0 c
ÿ3 sin2 # dO

�o0 ÿ oba�2 � G 2=4
: �7�

Using an expression for the radiation constant, G �
�4o 3

bajdbaj2�=3�hc 3, Eqn (7) can be rewritten as

dI � 3

8
jdbaE0j2 �hÿ1o0 sin

2 #
G=2p

�o0 ÿ oba�2�G 2=4
dO : �8�

The extension of this relation to the case of a BEC of an
ideal gas of N bosonic atoms is obtained by replacing one-
particlematrixelementsbymultiparticleones inexpression(3).
The term `bosonic atom' refers to an atom with an integer
total (electron±nucleus) spin. Because of the indistinguishable
nature of particles (atoms) and due to the Bose±Einstein
statistics, this reduces to multiplying the matrix element n by����
N
p

. The matrix element u remains unchanged in value. As a
result, the scattering probability from a BEC differs by a
factor of N from the single-particle case. The scattering
intensity so obtained is in agreement with classical theory:
the light scattering intensity from a system of atoms is equal to
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the sum of scattering intensities from all the atoms. In the
classical case, this is explained by the presence of density
fluctuations. We see that we obtain the same results when
treating an ideal gas BEC in a consistent quantum-mechan-
ical framework without explicitly invoking the concepts of
high-precision atomic localization and of density fluctua-
tions.

3. Semiclassical theory of superradiant
scattering

The only processes allowed in our quantum-mechanical
treatment of Rayleigh scattering are the single excitation of
the atom by an incident field and its subsequent transition to
the ground electronic state. In this picture, the atom acquires
a translational momentum, i.e., its state of translational
motion becomes different from the original one. When in
this new state, the atom can again be excited by the external
field, a fact that has been neglected above in the discussion in
Section 2 (as was the influence exerted on the atom by the
scattered light). These effects can, in principle, be considered
in the quantum-electrodynamic approachÐbut at the cost of
considerable computational effort. A simpler alternative is
the semiclassical approach which has been widely used in the
theory of superradiance. In our case, the semiclassical
approach (which could as well be called semi-quantum)
simply means that the radiation field and the scattering field
are treated as classical, whereas the evolution of the atomic
state is described quantum mechanically. The reason for the
appearance of a scattered wave is then a quantum fluctuation
of the atomic polarization [58, 59].

For the case of an ideal gas BEC, the discussion belowwill
consider the influences of the field on different atoms as
independent of each other and will construct the BEC wave
function as the product of the identical wave functions of the
individual atoms. Because the scattering field produced also
exerts an influence on the atoms, it can be argued that the
atoms interact with each other through the mediation of the
radiation field. However, if the number of atoms is suffi-
ciently large, the scattering field can, as far as its influence on
an individual atom is concerned, be considered as an
`external' field, allowing the use of the model of a self-
consistent radiation field. Importantly, we will assume that
all the atoms reside in the same state and will again retain the
wave function as the product of the individual atomic wave
functions.

Suppose a dilute gas BEC is exposed to the external field

E0 exp �ÿio0t� ik0r� � c:c: �9�

with the wave vector k0, k0 � o0=c, detuned from the
resonance by D � o0 ÿ oba.

Similar to the discussion above, each atom will be
considered as a two-level electronic system possessing transla-
tional degrees of freedom.

Consider a scattered wave propagating along the wave
vector k, k � k0:

Ek�x; t� exp �ÿio0t� ikr� � c:c: �10�

For simplicity, both waves are assumed to be polarized
perpendicular to the plane of the vectors k0, k.

It is further assumed that the atomic system (a dilute gas
BEC in our case) is much larger in size than the radiation

wavelength and that the scattered amplitude varies slowly in
time and with the spatial coordinate x along the scattering
direction (the approximation of a slowly varying ampli-
tude).

If the atom resides in its ground state, the incident field
will promote it to the excited electronic state with momen-
tum �hk0 and then return it. The scattering field transfers the
atom from this excited state to the ground state of
momentum �hk0 ÿ �hk. Then, the incident field can cause the
atom to make a transition from this state to an excited
electronic state with momentum 2�hk0 ÿ �hk, etc. Our discus-
sion will also include the excitation of atoms by the scattered
field and the emission stimulated by the incident field. Thus,
the basis set of atomic states for the problem of interest has
the form

fs; n; n 0 �
1����
V
p exp

�
i�k0nÿ kn 0� r�js ; �11�

where the indices n and n 0 can be either positive or negative,
n 0 � n, nÿ 1 (notice that for n 0 � n, s � a, and for
n 0 � nÿ 1, s � b).

The solution for the atomic wave function is sought in the
form

c �
X

n�0;�2; ...
anfa; n; n � exp �ÿio0t� bn�1fb; n�1; n ; �12�

where an�x; t� and bn�1�x; t� (n � 0;�2;�4; . . .) vary with
time and with the spatial coordinate along the scattering
direction. Notice that the exponential separated out in
Eqn (12) contains the incident, not the resonant, frequency
of the electronic transition.

The scattered field is created by a system ability to be
polarized, which we will calculate as the expectation value of
the polarization operator

P̂�r� �
XN
i�1

d̂i d�rÿ ri� : �13�

Here, d̂i is the dipole moment operator of the i-th atom. The
amplitude of the polarization wave with wave vector k can
then be written out in the form

Pk � N0d
X

n�0;�2; ...
�anbnÿ1 ; �14�

where d (assumed, for simplicity, to be real) is the matrix
element of the dipole moment transition between the ground
and excited electronic states, and N0 is the concentration of
atoms.

FromMaxwell's equations, or, more precisely, from their
consequence, the inhomogeneous wave equation

H 2Eÿ 1

c 2
q 2E

qt 2
� 4p

c 2
q 2P

qt 2
; �15�

it follows in the slowly-varying-amplitude approximation
that

Ek�x; t� � i2pk0

�x
0

Pk�x 0; t 0� dx 0 ; �16�

where t 0 � tÿ �xÿ x 0�=c is the retarded time.
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In the representation used, the Schr�odinger equation for a
single atom can be written out as

i
qan
qt
� ÿ �F0bn�1 ÿ �Fbnÿ1 � en; nan ;

i
qbn�1
qt
� ÿF0an ÿ Fan�2 �

�
en�1; n ÿ Dÿ i

G
2

�
bn�1 ;

�17�

whereF0 � dE0=�h,F � dEk=�h,G is the radiative rate constant
of the excited state, and en; n 0 are the frequency shifts
associated with the atom translational kinetic energy:

en; n 0 � �h�nk0 ÿ n 0k�2
2M

: �18�

The term with the radiative rate constant in the second of
equations (17) essentially describes spontaneous radiation in
arbitrary directions.

If it is assumed that jDj is sufficiently large to ensure that
jD bn�1j4jqbb�1=qtj, then, neglecting fast oscillations at
frequency jDj, the amplitudes bn�1 corresponding to the
atomic excited electronic states can be expressed in the
adiabatic approximation in terms of the amplitudes of the
ground electronic states. Then, the system of equations (17)
becomes

i
qan
qt
� ÿ �F0bn�1 ÿ �Fbnÿ1 � en; nan ;

bn�1 � 1

en�1; n ÿ Dÿ iG=2
�F0an � Fan�2� :

�19�

Assuming further that jDj4 en�1; n, G, we obtain

i
qan
qt
� 1

D

�� �F0F0� �FF � an� �F0Fan�2 � �FF0anÿ2
	�en; nan :

�20�

Now, the matrix of the `reduced' Hamiltonian in
Schr�odinger equation (20) can be written down as

Hn;m� 1

D

�� �F0F0 � �FF � dm; n� �F0Fdm; n�2 � �FF0dm; nÿ2
	

� en; ndn;m : �21�
It should be noted that the hermiticity of this matrix ensures
that the population normalization condition holds for the
states corresponding to the ground electronic state with
different translational momenta.

In the approximation used here (with the excited electro-
nic states being adiabatically eliminated), polarization ampli-
tude (14) is written out as

Pk � ÿN0d

D

X
n�0�2; ...

�F0�ananÿ2 � F�anan� ; �22�

so that the polarization operator matrix takes the form

Pn;m � ÿN0d

D
�F0dm; nÿ2 � Fdn;m� : �23�

For the initial condition a0�x; 0� � 1, using Eqn (19) for
jDj4 en�1; n;G, we find that b1 � ÿF0=D, i.e., we have the
effective population of the excited state `1,0'. The scattering is
initiated by the transition induced by the quantized electro-

magnetic field from this state to the state `1,1'. When treated
semiclassically, this transition is described as a fluctuation of
the dipole moment of an atom resided in an excited state (see
Refs [58, 59]). Assuming the individual atomic dipole
moments to be statistically independent, the polarization
dispersion is the sum of the dispersions of all atomic dipole
moments. Then, the dimensionless amplitude of the fluctua-
tion polarization per one atom is estimated as

�a2b1 � 1����
N
p

�
ÿ F0

D

�
; �24�

implying a nonzero initial state imposed in the form

a2�x; 0� � 1����
N
p ; �25�

with N being the total number of atoms in the system.
We now proceed to show that, neglecting the recoil energy

and radiation relaxation in the Schr�odinger equation, the
polarization amplitude of the scattered wave does not vary
with time and retains its initial value (24), i.e., one has

q
qt

X
n�0;�2; ...

�anbnÿ1 � 0 : �26�

This follows from the fact that, setting en; n 0 � 0 in this case,
the matrix of Hamiltonian (21) commutes with the matrix of
the polarization amplitude operator (23). This, of course, can
also be seen by directly calculating the derivative written
above.

Thus, neglecting recoil energies results in destructive
interference developing between the polarization amplitudes,
and superradiance-enhanced scattering does not materialize.

Including the recoil energy in the Schr�odinger equation
will lead to a phase shift in the polarization amplitudes and to
the appearance of superradiant scattering with an intensity
proportional to the square of the number of BEC atoms.
Clearly, the time scale to observe a noticeable phase shift due
to recoil energies is on the order of eÿ1n; n 0 , setting a lower
threshold for the incident pulse duration at which the
superradiant scattering can be observed. Notice that this
estimate is valid only for a sufficiently large detuning, when
eliminating excited states [see Eqn (19)] is a justifiable
approximation.

Let us now estimate the modulation frequency of the
individual terms in the polarization expression (14), i.e., the
�anbnÿ1 amplitudes. In the approximation of eliminated
excited state we have

�anbnÿ1 � ÿ 1

D
�F0�ananÿ2 � F�anan� : �27�

It should be noted that the matrix of the corresponding
operator has only two nonzero elements. Further, as before,
we will neglect recoil energies and take F0 and F to be time-
independent. Then, calculating the second derivative of this
amplitude using the double commutator with the Hamilto-
nian yields (see Appendix)

q 2

qt 2
�anbnÿ1 � ÿ

�
2jF0F j

D

�2

�anbnÿ1 : �28�

The approximate nature of this equation is due to neglecting
the contribution from the adjacent partial polarization
amplitudes on the right-hand side.
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From equation (28), the partial polarization amplitudes
are estimated to have the oscillation frequency

Omod � 2

����F0F

D

���� : �29�

Oscillations at frequency Omod can be interpreted as Rabi
oscillations of the scattering field for the atom `dressed' by the
incident field. We have shown above that, neglecting the
recoil energies, these oscillations of different partial polariza-
tion amplitudes mutually cancel out. But they should appear
if the recoil energies are considered.

4. Superradiant reflection
(one-dimensional model)

Let us now consider the problem of superradiant light
scattering off a BEC in one dimension. Let the incident wave
propagate along an oblong sample of length L. We will
consider only forward and backward scattering; sideward
light scattering will be ignored. All field and atomic
characteristics will formally be taken as uniform over any
cross section perpendicular to the incident wave direction.
Backward scattering (or backscattering) can be interpreted as
`bulk superradiant reflection'.

Now, the approach outlined above can be applied by
considering the forward scattering and backscattering with
respective amplitudes F� and Fÿ. In accordance with
equation (16), we have (neglecting retardation)

F��x; t� � d

�h

�
E0 � i2pk0N0d

X
n�0;�2; ...

�x
0

dx 0 �an�x 0; t�

� bn�1�x 0; t�
�
;

Fÿ�x; t� � d

�h

�
i2pk0N0d

X
n�0;�2; ...

�L
x

dx 0 �an�x 0; t�
�30�

� bnÿ1�x 0; t�
�
:

Choosing the `superradiance time' tR as the time unit, i.e.

tÿ1R � 2p
d 2

�h
k0N0L � 3

8p
GN0l

2L ; �31�

and the sample length L as the length unit, field (30)
amplitude becomes

F��x; t� � F 0 � i

�x
0

X
n�0;�2; ...

�an�x 0; t� bn�1�x 0; t� dx 0 ;

Fÿ�x; t� � i

�1
x

X
n�0;�2; ...

�an�x 0; t� bnÿ1�x 0; t� dx 0 ;
�32�

where F0 is the field amplitude of the incident waveE0, also in
units of tÿ1R �h=d. Schr�odinger equation (17) then takes the
form

i
qan
qt
� ÿ �F�bn�1 ÿ �Fÿbnÿ1 � enan ; �33a�

i
qbn�1
qt
� ÿF�an ÿ Fÿan�2 �

�
en�1 ÿ Dÿ i

G
2

�
bn�1 :

�33b�

Here, en is the kinetic energy of an atomwithmomentum n�hk0
(as expressed in terms of our frequency unit tÿ1R : en �
n 2�hk 2

0 tR=�2M�); the same unit is invoked for writing down
the detuning D and radiative rate constant G.

The excited electronic states are eliminated through the
substitutions

bn�1 � 1

en�1 ÿ Dÿ iG=2
�F�an � Fÿan�2� ;

bnÿ1 � 1

enÿ1 ÿ Dÿ iG=2
�F�anÿ2 � Fÿan� :

�34�

When numerically solving the system of Schr�odinger±
Maxwell equations, the key parameters involved were taken
to be of the same order as in experiment [18], in which the
BEC sample studied consisted of about two million
rubidium atoms and measured about 200 mm in length and
15 mm across. Other parameters used were: the intensity of
the pumping laser beam, about 63 mW cmÿ2; the dipole
moment of the optical transition, d � 2� 10ÿ29 K m; the
corresponding wavelength, l � 780 nm; the frequency shift
e1 � 4:7� 104 sÿ1; the duration of the longer pulse,
Tp � 800 ms, and the detuning, D � ÿ4400 MHz. For such
experimental conditions, our time scale is tR � 10ÿ10 s and,
correspondingly, the key parameters involved were taken to
be (in our units): F 0 � 6� 10ÿ3, Tp � 1:8� 107, D � ÿ1:5,
e1 � 1:25� 10ÿ6, and G � 4� 10ÿ3. We utilized the relations
a0�0� � �1ÿ a 2

2 �0��1=2, a2�0� � 10ÿ3 as nonzero initial condi-
tions to impose on the atomic states to effectively account for
the quantum polarization fluctuations for a given number of
atoms (106) in the condensate.

Let us first estimate the accuracy of eliminating excited
electronic states. For this purpose, we obtain the solutions of
the system of Maxwell±Schr�odinger equations with and
without this approximation. As can be seen from Fig. 1,
which presents the results for systems (32), (33) and (32),
(33a), and (34) for the initial stage of scattering, the inclusion
of excited states leads to the appearance of fast field-
amplitude oscillations at a frequency of � jDj. As time goes
on, however, these oscillations damp out relatively quickly,
implying justification for eliminating excited states. It is this
approximation which was applied to calculate the results
presented in the remainder of this paper.

Now, let us illustrate how the momentum recoil effects
influence the intensity of the superradiant scattering.

130
t

1.0

jF��x � 1�j=F 0

�jFÿ�x � 0�j=F 0� � 50

0.5
0

1

2

1 0

2 0

Figure 1. Amplitude F� dynamics of the fields as obtained for the initial

pulse stage when eliminating (dashed lines 1 0, 2 0) and without eliminating

(solid lines 1, 2) excited states for the following values of the dimensionless

parameters involved: F 0 � 6� 10ÿ3, D � ÿ1:5, e1 � 1:25� 10ÿ6, G �
4� 10ÿ3, and a2�x; t � 0� � 10ÿ3.
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Figure 2 demonstrates the calculated evolution of the
reflected and transmitted fields. It is seen that the reflected
field amplitudes jFÿ�x � 0�j at the output are relatively large
when calculated including frequency shifts (Fig. 2a, line 2) and
that neglecting these shifts results in a considerable suppres-
sion of reflection (Fig. 2b, line 2; note the scale factor of 100).
This fact is in complete agreement with the interference
quenching effect described in Section 3 and, incidentally,
initially discovered by the present authors when numerically
solving the system of Maxwell±Schr�odinger equations.

Neglecting recoil energies, the time variation of the
reflected amplitude is slow compared with the initial value
F 0=�D ����

N
p � equal to the amplitude of ordinary Rayleigh

scattering (more precisely, as seen from a comparison with
Eqn (8), to the Rayleigh scattering amplitude divided by the
Fresnel number S=�lL�, where S is the cross section area; for
the experimental data considered, the Fresnel number is on
the order of unity). The reason for the monotonic decrease in
scattering intensity is spontaneous relaxation (G 6� 0).

Thus, we conclude that the superradiant enhancement of
reflection occurs because of a phase mismatch in scattering
events, which is due to recoil processes. Notice also that over
times an order of magnitude shorter than the inverse of the
recoil frequency shift Ð a situation in which phase mismatch
is insignificant Ð no superradiant enhancement of scattering
(reflection) appears. This imposes a duration restriction on
the excitation pulse at which superradiant scattering can
appear: the excitation duration should not be less, in order of
magnitude, than the inverse of the recoil frequency shift.

Figure 3 illustrates the time variation of the populations
of atomic clouds that move parallel and antiparallel to the
incident field direction, the populations being defined as

Sn �
�1
0

dx
��an�x���2 : �35�

Given the assumed incident field intensities, the dominant
process in the system is the formation of an atomic cloud with
n � 2, and the phase shift e2 actually occurs. Then, the
destruction time of interference quenching is determined by
eÿ12 . For example, this value is on the order of 10ÿ4 s for
sodium, in accordance with Eqn (18).

It is seen that the atomic states with negative momenta
(n � ÿ2, ÿ4) exhibit negligible populations (as have the
statesÐnot shown in the figure Ð with progressively more
negative n). Advanced development occurs for the atomic
state with n � 2, but as the momentum develops, the
population of the n � 4 state also becomes noticeable.

The oscillatory nature of the reflected field must also
manifest itself in its spectrum, which can be defined as

Fÿ�o� �
���� �Tp

0

dt exp �iot�Fÿ�x � 0; t�
����2 : �36�

Figure 4 shows the spectrum obtained from the reflected field
dynamics. The spectrum is shifted towards the red relative to
the incident field spectrum, as it should in accordancewith the
energy conservation law. The shift byÿ4e1 corresponds to the
Raman transition n � 0! n � 2, in which an atom acquires
a kinetic energy 4e1 as a result of recoil. Corresponding to the
Raman transition n � 2! n � 4 is the spectral shift by
ÿ12e1, and the splitting of this spectral component into a
doublet is possibly due to the modulation of the polarization
amplitude at a frequency given by Eqn (29). At the same time,
the spectrum in the region near the frequency o � ÿ4e1 has a
complex structure, possibly due to the considerable inter-

1

0

1

2

t

jF��x � 1�j=F 0

�jFÿ�x � 0�j=F 0� � 5

Tp

a

jF��x � 1�j=F 0

�jFÿ�x � 0�j=F 0� � 100

1

0

1

2

t Tp

b

Figure 2.Amplitude F� dynamics of the fields as obtained including (a) and excluding (b) frequency shifts en. Pumping pulse duration is Tp � 1:8� 107;

the remaining parameters are the same as in the caption to Fig. 1.

1
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Sn
S0

S2

Sÿ2 � 10

Sÿ4 � 103
S4

t Tp

Figure 3. Population Sn dynamics of atomic states with translational

momenta �hk0n, n � 0;�2;�4. Line S0 illustrates the depletion of the BEC

ground state.
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ference �anbnÿ1 between individual partial polarization ampli-
tudes.

Plotted in Fig. 5 is the spatial distribution of the reflected
field amplitude. The distribution shows the nonuniformity
which develops in time in a nontrivial way, indicating an
anomaly in the behavior of the reflected wave group velocity
in the BEC.

The group velocity may be estimated from the displace-
ment velocity of the maximum in the spatial distribution of
the field amplitude over the sample, yielding a value on the
order of 1 m sÿ1.

5. Conclusions

Applying Maxwell's electrodynamics to explaining the
physical nature of light scattering reveals that in a homo-
geneous medium of atoms at rest scattering is impossible due
to the destructive interference of the secondary radiation (see,
for example, Ref. [60]). Taking into account the motion of
atoms and the Doppler effect, Rayleigh proposed to explain

the phenomenon of light scattering. If, however, the number
of atoms is sufficiently large, then interference quenching will
still manifest itself and so, again, no scattering will occur.
Mandelstam [2] and Smoluchowski [3], who noticed this
point, suggested a way out by introducing interference-
destroying density fluctuations, an idea which led to the now
well-known result that the scattering intensity by a quasiho-
mogeneous medium is equal to the sum of scattering
intensities by each atom independently.

Light scattering off a BEC occurs in a spatially homo-
geneous medium, and in explaining it quantum-mechanically
there is no need to additionally introduce density fluctua-
tions, because they are involved naturally in a consistent
quantum-mechanical description of the state of the scattering
medium. The virtual excitation of atoms proceeds due to the
incident field action. The initiating factor for the `secondary'
radiation is the interaction with a vacuum of the electro-
magnetic field or, in other words, quantum polarization
fluctuations. This is sufficient for the occurrence of conven-
tional Rayleigh scattering. However, the evolution of super-
radiant scattering strongly depends on the multiple excita-
tions of atoms by both the incident and scattered fields.
Under the condition of conserved phase memory (relaxation
collisions have little influence), the partial polarizations due
to transitions of different multiplicities add up. If the total
medium polarization is nonzero, the light scattering will be of
a superradiant nature, with intensity proportional to the atom
number squared.

Early theoretical work [25, 26] on superradiant scattering
focused on the quantum-electrodynamical treatment of the
phenomenon observed, but soon the semiclassical approach
was recognized as a more efficient method [27±30] which
permitted a detailed comparison with experiment using the
solutions to the system of Maxwell±Schr�odinger equations.
Along these lines, we were able to avoid some of the
approximations invoked in previous studies (for example,
the mean field approximation) and to obtain realistic
estimates for the intensity of coherent atomic waves due to
light scattering [31, 32, 42±44, 51, 52]. In particular, the
above-mentioned asymmetry in the density distribution of
atomic clouds was given an explanation.

The applicability of the approximation of eliminated
excited states is discussed in Refs [61, 62]. The approach
taken in the present paper to justify the use of this
approximation consists in comparing the results obtained
from the Maxwell±Schr�odinger equations with or without it;
see the solutions of Eqns (32), (33a), (34 ) and the solutions of
Eqns (32), (33), respectively (Fig. 1).

Discussing the improved version of the semiclassical
superradiant scattering theory which uses the solution to the
system ofMaxwell±Schr�odinger equations, we were led to the
following conclusion. Neglecting the recoil frequency shift in
atomic electronic transitions results in the interferential
quenching of partial polarizations (see Section 3), leaving us
only with a conventional incoherent Rayleigh scattering,
whose intensity is proportional to the number of atoms.
This result can be considered as an indirect analogy of the
interferential quenching of the Rayleigh light scattering in a
homogeneous medium. Because the recoil frequency shift can
exert its influence only over times not shorter than the reverse
of the shift, it follows that superradiant scattering should also
manifest itself over times longer than this value. This last fact
determines the phase mismatch time of polarization waves
that arise in a BEC when atoms undergo multiple excitation

Fÿ � 107 Fÿ � 5� 103 F0

ÿ20e1 ÿ16e1 ÿ12e1 ÿ8e1 ÿ4e1 0 o

Figure 4. Comparison of the reflected (Fÿ�o�) versus incident (F 0�o�)
field spectra.

1
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3

2

0.12

jF
ÿ j
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Figure 5. How the amplitudes jFÿ�x�j of the reflected field vary with

coordinate at the first maximum, the first minimum, and the second

maximum jFÿ�x � 0�j (Fig. 2. line 2) (lines 1, 2, and 3, respectively).
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under the action of the incident light field. It follows then that
for the incident pulse to undergo superradiant scattering, its
duration cannot be less to an order of magnitude than the
inverse of the recoil frequency shift.

Two other noteworthy results of this work are the
scattering spectrum for the one-dimensional BEC model (see
Section 4) and an estimate of the group velocity of a scattered
wave, whose value turned out to be about 1.0 m sÿ1, in
agreement with the experimental value [63] found from the
study of light flux enhancement in a BEC.

Interest in the theoretical interpretation of superradiant
scattering still persists, as exemplified by the discussion of the
adiabatic elimination of excited atomic states [21, 61, 62]. One
of the questions still to be resolved is how the sign of the
detuning affects the scattering intensity [21±24, 64]. This
effect is due to the interatomic interaction and requires for
its description to go from the Maxwell±Schr�odinger equa-
tions to the system of Maxwell±Gross±Pitaevskii equations
that opens interesting prospects for the study of the problem.

6. Appendix

It is indeed the case that neglecting the recoil energy,
Hamiltonian (21) consists (up to factors) of an identity
matrix and two other matrices which are obtained from it by
moving the diagonal to the right and to the left, and which we
will call, for brevity, a left and a right unit matrices. A matrix
which is a multiple of the unit matrix may be neglected, when
calculating the commutator.

The following four rules are now to be kept in mind:
(a) multiplying a given matrix on the left by the left identity
matrix shifts each element of the given matrix by one step
downward; (b) multiplying on the right by the left identity
matrix shifts each element of the given matrix by one step to
the left; (c) multiplying on the right by the right identity
matrix shifts each element of the given matrix by one step to
the right, and (d) finally, multiplying on the left by the right
identity matrix shifts each element of the given matrix by one
step upwards. Therefore, calculating the second-order com-
mutator produces a quadrupled initial matrix, in addition to
matrices whose elements are shifted by two steps relative to
the initial matrix. Neglecting the shifted matrices and taking
into account the values of the coefficients of the matrices in
Eqn (21), we arrive at Eqn (28).
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