
Abstract. Stochastic instability and its associated turbulent
diffusion models are reviewed, with particular attention given
to the problem of obtaining estimates and scaling laws that
characterize correlation effects and increments. Specific mod-
els considered include the quasilinear Kazantsev approxima-
tion, stochasticity in a system of convective cells, the
Kadomtsev±Pogutse scaling, percolation models, and the Ro-
chester±Rosenbluth balance. The primary goal is to highlight
the importance of determining the functional dependence of the
stochastic instability increments and transport coefficients on
turbulent pulsation amplitudes and other key parameters
(characteristic pulsation frequencies, drift velocities, spectral
energy flow, etc.) describing the systems under discussion.

Keywords: stochastic instability, turbulent transport, diffusion
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1. Introduction

Stochastic instability is a physical mechanism of utmost
importance, which is tightly linked to such phenomena as
dynamical chaos, decay of correlations, and mixing [1±6].
Boltzmann, seeking a mechanistic substantiation for irrever-
sibility, already used descriptive representations featuring a
spreading `drop' of phase fluid, the increase in whose
`coarse-grained' phase volume should have served as an
apparent analogy to the increase in the entropy of the
system as it evolves to equilibrium [7]. Regrettably, these
ideas of Boltzmann's remained `in the shadows' for a long
time, while the attention of physicists was attracted by
computational possibilities opened up in connection with
the method of nonequilibrium system analysis proposed by
Gibbs [8].

Substantial progress in studying fundamental processes
of nonequilibrium system dynamics was achieved only after
the appearance of Bogoliubov's work [9]. We note, however,
that this contribution was preceded by the work of
Leontovich [10], Hopf [11], Khinchin [12, 13], and Krylov
[14]. Krylov's work [1, 14] for the first time offered an
intuitive interpretation of the phenomenon of stochastic
instability. The first paper by Bogoliubov devoted to
questions of statistical physics also appeared in co-author-
ship with Krylov [15]. We note that the effect of mixing
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associated with stochastic instability was well known. For
example, Borel's lectures given in the early 1920s [16]
proposed an illustrative scheme for the evolution of a phase
volume element modeling the motion of an ensemble of free
particles in a region confined by rigid walls. In accordance
with Boltzmann's ideas, this simple example demonstrated
strong distortions of the phase volume element. Never-
theless, the link between the phenomenon of mixing and
the effects of instability of phase trajectories evaded
attention for the following decade and a half.

The work by Krylov and Bogoliubov launched a broad
discussion on the fundamental aspects of irreversibility [17±
20]. Here, it is important to mention the paper by Davydov
[17], whose other work on physical kinetics [21, 22] won
recognition already in the late 1930s±early 1940s. These
debates were particularly heated due to the need to
construct fundamentally novel kinetic models of high-
temperature plasmas [23±26]. At that time, in the frame-
work of the kinetic approach, the processes of mixing and
related correlation effects were taken into account indirectly,
through the use of a diffusive term in velocity space [21] or
by a qualitative consideration of the effects of particle
confinement by plasma waves [27, 28].

A different situation evolved in the theory of turbulence.
Here, the correlation method became one of the main tools
and mixing processes were studied in relation to atmospheric
and oceanographic research. For the purposes of this review,
it is important to mention that, in fact, simultaneously with
the publication of Krylov's work, research was launched on
stochastic instability, concerned with anomalous diffusion in
turbulent flows [31±34]. In the work by Batchelor [31]
published in 1952, we find a clear understanding of the
importance of exponential stretching of fluid elements in a
turbulent flow. It is interesting to note that in the domestic
scientific literature, the name Batchelor is commonly asso-
ciated with his work on theKolmogorov spectra in turbulence
and, certainly, his book [35]. But without a doubt, Batchelor's
recognition of the significance of stochastic instability as a
key physical mechanism underpinning the evolution of
Lagrange particle trajectories in a turbulent flow contributed
quite substantially to turbulence theory.

The effects of stochastic instability and mixing were put
on a firm mathematical basis in studies by Kolmogorov [36,
37] who, using ideas from probability theory and methods of
information theory, introduced the notion of entropy based
on the characteristic properties of dynamic system trajec-
tories. The formalism created by Kolmogorov for systems
that preserve a measure (Hamiltonian systems) was elabo-
rated further in the work by Sinai [38±40] and later in papers
by D V Anosov, V A Rokhlin, L A Bunimovich, R L Dob-
rushin, and others. The results of these studies played an
important role in substantiating the fundamental principles
of nonequilibrium statistical mechanics and establishing
stochastic dynamics as a bridge between deterministic and
statistical theories [41±45].

Sinai's mathematically rigorous result, which is important
for the purposes of this review, can be schematically
represented as an estimate of the rate of entropy growth
based on the exponential instability effect. A characteristic
feature of chaotic motion is its high sensitivity to small
variations in initial conditions. In chaotic systems, two
initially close phase trajectories on average diverge from
each other according to an exponential law, whereas they
diverge linearly for regular motions. Formally, we can write

the exponential dependence as

l�t� � l0 exp

�
t

tK

�
; �1�

where l0 is the initial distance between points in the phase
space and t is time. The quantity hK � 1=tK was called the
Kolmogorov±Sinai entropy [4, 5]:

hK � lim
l0!0; t!1

�
1

t
ln

l�t�
l0

�
: �2�

It is well known that in the framework of classical mechanics,
the phase droplet evolves in accordance with the Liouville
theorem such that its volume is preserved: DG0 � DG�t� [2±7].
However, the topological structure of a droplet undergoes
substantial changes (Fig. 1). In fact, the `indentation' of the
hypersurface bounding the phase volume constantly
increases, leading to an increase in the coarse-grained phase
volume hDG�t�i because of stochastic instability. The Liou-
ville theorem is not applicable to the coarse-grained phase
volume, and just hDG�t�i is used in the Boltzmann definition
of entropy. The model of evolution for the coarse-grained
phase volume also has an exponential character,


DG�t�� � DG0 exp

�
t

tK

�
; �3�

and the Boltzmann expression for the entropy growth allows
a linear form S�t� / ln �hDG�t�i� / hKt. The divergence of
neighboring trajectories (the positivity of the Lyapunov
exponents) leads to a substantial distortion of phase space
elements, which is the mechanism of mixing. Stochastic
instability is a necessary condition for the realization of a
scenario describing the evolution of systems with mixing [4±6,
56, 57].

The importance of mixing effects was already recognized
during the time of broad discussions on problems of
ergodicity [58±60]. The mechanism of mixing, as a key one
for the emergence of irreversibility, was already invoked
repeatedly by Ehrenfest for a qualitative analysis of the
Boltzmann phase drop spreading. As concerns the descrip-
tion of irreversibility effects, the condition of mixing is
stronger than the condition of ergodicity, and insures the
equality of time and phase means. Extensive literature is
available today on general questions of the statistical
description of dynamical systems [2, 4±6, 56±58, 61, 62], and

t1
t2 4 t1

Figure 1.The evolution of a phase droplet. The dashed line shows a coarse-

grained phase volume.

March 2015 Stochastic instability and turbulent transport. Characteristic scales, increments, and diffusion coefécients 253



we therefore touch these questions here only briefly. We show
in what follows that despite the seemingly special character of
the problems related to the description of turbulent diffusion,
the results from this area are needed to explain fundamental
questions from transport theory [63±65].

Ideas about the influence of stochastic instability on
transport processes evolved in the context of different
physical problems. In 1959, Chirikov [66] proposed an
original method to analyze stochastization in Hamiltonian
systems containing separatrices. This approach was applied
in a nontrivial way to the description of the effects of mixing
in the velocity space in studies of weak plasma turbulence [67,
68]. In this case, a package of waves and their interaction with
particles had already been considered. A trigger mechanism
for the build-up of a stochastic layer is furnished here by the
Landau damping, which supplies the required effect of
`modulation'. We note that it took nearly 20 years to move
from problems of quasilinear diffusion [67] to models of
transport under conditions of structured turbulence [69].
Indeed, only in 1979 was it proposed to use the splitting of
separatrices in a system of convective cells as a mechanism
capable of forming mesoscale (percolation) vortex structures
in two-dimensional turbulence.Moreover, a rigorous analysis
of transport in a system of regular vortex cells was carried out
only in 1986 in Ref. [70], while the percolation models
mentioned above started to be actively used only in the early
1990s [71±74].

Currently, the exponential divergence of streamlines
(phase trajectories) has become one of most important
elements of stochastic dynamics [3±5], while accounting for
increments of stochastic instability was instrumental in
explaining the diversity of transport regimes of charged
particles in a stochastic magnetic field [69, 75]. The phenom-
ena of anomalous transport in two-dimensional flows
containing separatrices [76±84] are also a subject of active
research.

On the other hand, exploration of relative diffusion of
tracers under conditions of oceanic and atmospheric quasi-
two-dimensional turbulence convincingly prove the correct-
ness of Batchelor's ideas on the importance of the hierarchy of
spatial and temporal scales in describing different stages of
turbulent transport [34, 85±91]. In the framework of the
already classical Bogoliubov hierarchy of time scales, the
characteristic relaxation time in the velocity space is much
shorter than the system relaxation time in the configurational
space. This can easily be explained if we take into account that
macroscopic quantities do not change in particle collisions,
and collisions only redistribute these quantities between the
particles. When considering questions of turbulent diffusion,
we also need to distinguish the characteristic time scales
pertaining to stochastic instability, processes of reconnection
of field or stream lines, and diffusive decorrelation of particles
located in the region of turbulence [92±95].

In this review, we pay special attention to the methods
that are directly related to computations of turbulent
transport coefficients in both hydrodynamical and plasma
flows. This allows us to focus on questions of obtaining
scalings that are widely used in the analysis of realistic flows
and numerical experiments [96±99]. It is particularly impor-
tant in this respect to determine the character of the
dependence of transport coefficients on the amplitude of
turbulent pulsations. In problems of fluid dynamics, this is
the dependence on velocity pulsations, whereas in problems
dealing with the description of transport in stochastic

electromagnetic fields, this is the influence of perturbations
in magnetic or electric fields. These questions are reflected
insufficiently well in the existing review literature dealing with
research on dynamical stochasticity.

2. Mixing effects
and the characteristic Kubo and Peclet numbers

On the physical level of rigor, stochastic instability was first
explored by Krylov in his thesis ``Mixing processes in phase
space'' [14] defended in Leningrad in July 1941. The
expression for the instability increment was obtained by
Krylov by considering a gas of elastic spheres [1, 14, 56, 100,
101].We very briefly discuss the estimates that allow exposing
those aspects of the `mixing' process which are common to
physical kinetics and turbulence.

We assume that the thermal velocity of a molecule VT

acquires a perturbationV 0 such that its trajectory follows the
dashed line in Fig. 2, deflecting by a small angle j0 � V 0=VT

from the original, unperturbed trajectory. It is easy to see that
upon the next collision, this angle increases by the factor lc=r�
and, after the Nth collision, attains a magnitude of the order
of

j�N� / j0

�
lc
r�

�N

; �4�

where lc is the mean free path between the particle collisions,
lc / 1=�nr 2� �, n is the concentration of particles, and r� is the
radius of scattering centers. In view of the obvious relation
VTt � Nlc, we obtain that the scattering angle increases
exponentially,

j�t� � j0 exp

�
N ln

lc
r�

�
� j0 exp

�
t

ts

�
; �5�

where the instability increment gs and the corresponding
characteristic time ts are

gs �
1

ts
� VT

lc
ln

lc
r�
; �6�

lc
2r�

Figure 2. Exponential instability in a system of scattering disks: r� is the
characteristic disk radius and lc is themean distance between the scattering

centers.
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where gs is simultaneously the Kolmogorov±Sinai entropy [4,
5]. Here, 1=t0 � VT=lc is the characteristic inverse time scale.
It follows from these estimates that even for a very small
initial perturbation j0 5 1, j rapidly reaches values of the
order of unity. In this manner, the motion of a molecule in a
gas turns out to be extremely sensitive to initial perturbations.

The model proposed by Krylov was only the first step in
the analytic investigation of scattering processes based on
ideas of stochastic instability. The next important step was
research on billiards performed by Sinai [41, 42]. In
particular, the simplest planar Sinai billiard is a square with
a circular inner wall (Fig. 3). The proof of themixing property
and the existence of the Kolmogorov±Sinai entropy can be
found in numerous mathematical publications [41±55]. For
the sake of illustration, we present only schematics of
billiard models of other types (Figs 4 and 5). A special role
in billiard systems is delegated to determining the mean free
path and distribution functions. Because these problems
mostly pertain to models of physical kinetics and not to
questions related to turbulent transport, we direct the reader
to the vast literature dealing with models of physical
kinetics [43±55].

Numerous studies have proved the universality of
formula (6) for ts, with Km � lc=r� being the parameter of
the multiplicative map (mapping parameter) considered
above [102]. Indeed, in the framework of a simple discrete
model, we can consider the evolution of a phase element dx0
in the form

dxN�t� � KN
m dx0 � dx0 exp

ÿ
N�t� lnKm

�
; �7�

whereN is the number of iterations, dx0 is the initial size of the
phase element, and dxN is the size of the phase element afterN
iterations. Accordingly, for the increment of stochastic
instability, we obtain

gs �
N�t�
t

lnKm � 1

t0
lnKm : �8�

It is straightforward to propose a hydrodynamical
interpretation of this map and of the parameter Km by
considering the deformation of a fluid element in a chaotic
velocity fieldwith the scaleV0. LetL� be the characteristic size
of the fluid element and o be the characteristic frequency of
velocity variations. These parameters allow considering the

deformation of the fluid element in the characteristic time t0
(Fig. 6),

L1 � L�
dL
l
� L�

V0

ol
; �9�

where l is the characteristic spatial scale of the velocity field.
Then the evolution of L�t� at times larger than ts is described
by the formula

L�t� � L�

�
V0

ol

�t=t0

� L� exp
�
t

t0
lnKu

�
� L� exp

�
t

ts

�
:

�10�

R

Figure 3. Sinai billiard. The trajectory of a particle reflected by the disk

wall. R is the radius of the scattering disk.

Figure 4. Bunimovich billiard. An ensemble of trajectories followed by a

system of particles undergoing scattering.

Figure 5. `Caterpillar' billiard. The exponential divergence of scattered

particles.

L�

V0

dL � V0=o

Figure 6. Deformation of a fluid element in a random flow with a

characteristic initial velocity scale V0. L� is the characteristic initial scale,
dL is the scale of transverse deformation, and o is the characteristic

frequency.
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In our case, the role of the mapping parameter is taken by the
Kubo number Ku characterizing the intensity of turbulence,

Ku �V0� � V0

ol
: �11�

From the standpoint of the description of passive tracer
transport by a vortex flow, the parameter Ku �V0� allows
comparing the particle path length with the size of eddies. The
characteristic time of stochastic instability in the case of
streamline chaos is given by

ts � 1

gs
� t0

lnKu
� t0

ln
�
V0=�ol�

� : �12�

The possibility of considering the increment of stochastic
instability in terms of the Kubo number turns out to be of
immense importance for describing turbulent transport. In
fact, the task of a researcher reduces to finding the functional
dependence of the characteristic time t0 on the model
parameters. In this simplest model, we assume that the sizes
of all eddy features of the turbulent flow are integer multiples
of l. In such amonoscale approximation, a natural estimate is
t0 / l=V0.

It is necessary to consider the impact of effects caused by
molecular diffusion on the development of stochastic
instability. In the simplest formulation, the problem reduces
to describing the fluid element evolution under the action of
a chaotic velocity field with a characteristic spatial scale L0

and a velocity scale V0. In the framework of the monoscale
model used here, the velocity gradient and the increment of
stochastic instability are given by V0=L0. Under the action of
chaotic advection, a patch made of scalar particles elongates
and deforms as shown in Fig. 7. For a stationary incom-
pressible flow, the elongation of the patch accompanied by
the reduction in the width of its `tentacles' proceeds
exponentially. The evolution of the small characteristic
scale of the `tentacles' can be estimated with the help of the
formula

D�t� � L0 exp �ÿgst� : �13�

In the presence of molecular (seed) diffusion, the scalar
density gradients smooth out with time. The characteristic
diffusive time td is determined by the expression

gd � tÿ1d � D0

D2
mix

: �14�

Here, D0 is the coefficient of seed (molecular) diffusion. It is
straightforward to estimate the minimum spatial scale of
tentacles Dmix evolving in the process of mixing by resorting
to the balance of characteristic time scales. Equating the
diffusive increment to that of stochastic instability, gs � tÿ1d ,
we obtain

D0

D2
mix�tmix�

� V0

L0
: �15�

It is now easy to obtain the scaling law for the dissipative scale
in terms of the Peclet number Pe � V0l=D0, which is an
analogue of the Reynolds number for problems of turbulent
diffusion,

Dmix�Pe� /
������������
L0D0

V0

r
� L0�����

Pe
p : �16�

Here, it is assumed that the Peclet number is large, Pe4 1
(well-developed turbulence). The characteristic mixing time
in the monoscale case is now written as

L0�����
Pe
p � L0 exp �ÿgstmix� : �17�

By elementary manipulations, we arrive at the scaling

tmix�Pe� / ln Pe

gs�V0� �
L0

V0
ln Pe : �18�

We see that the dependence on the coefficient ofmolecular
diffusion is rather weak, but in strong turbulence, Pe > 100,
the characteristic time scales of the problem can differ by
more than an order of magnitude, tmix 4 ts � 1=gs. In this
simplest model, we discarded the effects related to the
Kolmogorov cascade, rearrangement of the flow topology,
and others. Nevertheless, even an estimate that simple turns
out to be adequate, for example, when dealing with the
currently relevant tasks of reagent mixing in micro-channels
[103, 104].

We note that in geophysical fluid dynamics, the effects of
mixing of Lagrangian trajectories and processes of turbulent
transport related to these phenomena were already attracting
attention in the 1940s. Such effects were discovered by Ertel
[29], Eckart [30], and Welander [105], yet a clear under-
standing of the nature of these phenomena was lacking. In
this review, we address the methods of deriving scaling laws
for characteristic time scales and the coefficient of turbulent
diffusion in problems where the main decorrelation mechan-
ism is associated with stochastic instability.

3. Stochastic instability and relative diffusion

The paper by Batchelor [31] mentioned in the Introduction is
devoted to the effect of homogeneous isotropic turbulence on
the stretching of material lines and surfaces. The result
derived in Ref. [31] for the elongation of a material element
dL�t0� in a turbulent field,

dL�t� � dL�t0� exp
�
tÿ t0
ts

�
; �19�

has allowed improving the already established views on
turbulent diffusion. Here, ts is the characteristic time of

a

b

t � 0 t1 4 0 t2 4 t1

Figure 7. (a) Change in the shape of a volume occupied by a tracer as a

result of turbulent diffusion. (b) A schematic shape of the distribution of

tracer concentration along a straight line intersecting this volume.
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instability development. However, the idea of the exponential
divergence of two initially close scalar particles (passive
tracer) in a turbulent flow was explicitly formulated only in
review [106], which summarized the first results of turbulent
transport studies relying on the Kolmogorov model of
homogeneous isotropic turbulence. One of the main pro-
blems here is a detailed description of relative diffusion [34,
85, 87]. The actual point is a qualitatively new type of
diffusion discovered by Richardson [107] in 1926. Instead of
exploring diffusion from a fixed source, the question about a
spreading particle cloud (Fig. 8) was formulated. An analysis
of experimental results led to the following expression for the
coefficient of relative diffusion for two selected particles in the
field of atmospheric turbulence:

DR / 1

6

d

dt



l 2R�t�

� � CR



l 2R�t�

�2=3
: �20�

Here, lR is the distance between the two particles located at
points x1�t� and x2�t�, lR�t� � x2�t� ÿ x1�t�, and the constant
CR, introduced by Richardson, is estimated as CR �
0:2 cm2=3 sÿ1 [34]. Dependence (20) expresses the accelerated
character of the particle relative motion. Expression (20) can
be written in a simplified way as a superdiffusive scaling
l 2R�t� / t 3. This result is nontrivial because it strongly differs
not only from the diffusive scaling


x 2�t�� � R 2�t� / t ; �21�

but also from the ballistic one, R / t. The lack of proper
understanding of physical mechanisms behind turbulent
transport called for a substantial modification of views on
correlation effects. At first glance, the decay of correlations
can only double the turbulent diffusion coefficient DT:


l 2R�t�
� � 
x 2

1 �t�
�� 
x 2

2 �t�
� � 2



x 2
1 �t�

� � 2�2DT�t : �22�

The scaling proposed by Richardson agrees well with
observational data in a very broad range of parameters
(102ÿ106 cm) [34]. We note that the magnitude of the relative
diffusion coefficient is substantially larger than the molecular
diffusivity. For example, in the atmosphere, DR �
104ÿ105 m2 sÿ1, whereas the molecular diffusion coefficient
isD0 � 1 m2 sÿ1. In fact, expression (22) reflects the nonlocal
character of transport effects under conditions of atmo-
spheric turbulence, when the distance between diffusing
particles evolves essentially under the action of eddies with
sizes comparable to the distance separating these particles.

Richardson realized very clearly that the process of
relative diffusion of two particles in a turbulent flow that he
considered fundamentally differs from classical particle

diffusion. Moreover, Richardson stressed the significance of
this new phenomenon by considering the law discovered by
him not as an empirical dependence, where the power-law
exponent is known only approximately, but as a fundamental
law. Just for that reason, the fractional exponent appearing in
his scaling DR / hl 2Ri2=3 was not replaced by an approximate
estimate [107]. Further theoretical development confirmed
the strength of Richardson's vision, for this scaling finds its
explanation in the framework of the theory of homogeneous
isotropic turbulence [34, 35, 85, 108, 109]. Kolmogorov and
Obukhov have shown in [108, 109] that if the energy
dissipation rate eK is the only dimensional characteristic of
the field of homogeneous turbulence in a broad range of
scales l, then a possibility emerges of building a phenomen-
ological model of turbulence by considering a cascade process
of energy transfer from large to small eddies. In the frame-
work of this approach, we can write the scaling for the
diffusion coefficient relying on the dimensional character of
the quantity eK � �L2=T 3� and using the local spatial eddy
scale l � l�k�: k � 1=l�k� � �1=L�. Then, performing elemen-
tary computations, we can derive a dimensional scaling for
the Richardson relative diffusion coefficient:

DR�l � �
�
L2

T

�
� e 1=3K

k 2=3

k 2
� e 1=3K

1

k 4=3
� e 1=3K l 4=3 : �23�

Owing to the relative simplicity of experiments, data on
the relative diffusion allow obtaining numerous estimates.
Obukhov used the value eK � 5 cm2 sÿ3 for atmospheric
turbulence, assuming, according to Brunt [110], that only 2%
of solar energy is transformed into the kinetic energy of air
masses. This enabled Obukhov to derive the estimate for the
coefficient in the Richardson formula [11, 112]. Additionally,
the explanation of the Richardson relative diffusion law is
closely connected to the turbulent energy spectrum E�k�,
because it relies on the turbulent cascade phenomenology.
Indeed, dimensional estimates allow directly linking the
relative displacement of two particles in a turbulent flow to
the expression for the energy spectrum,

DR�l � / V�l �l / l
������������
E�k�k

p ���
k/1=l

; �24�

which in the case of the classical Kolmogorov spectrum
E�k� / kÿ5=3 immediately leads to the Richardson scaling
DR / l 4=3 and the formula relating the velocity scale to the
size of a `carrier' eddy, V�l � / �eKl �1=3.

For the purposes of this review, it is important that in the
region of viscous scales (small l ), we can use a linear
dependence that arises as the asymptotic form of the
Kolmogorov scaling V�l � / l 1=3jl!0 / l. The modified law
for the relative diffusion takes the form DR�l � / V�l �l /
const l 2 predicted by Batchelor, because we now have the
differential equation

d

dt



l 2�t�� � const



l 2�t�� ; �25�

whose exponential solution describes the relative diffusion in
the range of scales where viscosity effects are essential,

l 2�t� � l 20 exp

�
t

t0

�
: �26�

Here, l0 is the initial distance between particles in the
dissipation range.

Figure 8. Evolution of a scalar cloud in the field of turbulence. The arrows

show pulsations of velocity that mix the scalar (tracer).
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In the framework of the Kolmogorov phenomenological
approach, in the range of small spatial scales, the main flow
parameters should depend only on the viscosity nf � �L2=T �
and the spectral energy flux eK � �L2=T 3�. Combinations
with dimensions of length and time can be composed from
these quantities in a unique way. Then the spatial scale
limiting the exponential `divergence' of particles corresponds
to the Kolmogorov dissipation scale

ln �
�
n 3f
eK

�1=4

4 l0 : �27�

The characteristic time scale related to the process of
dissipation is tn � �nf=eK�1=2. In the range of scales l4 ln,
the exponential regime is replaced by the Richardson law.
However, between them (in an intermediate range of scales), a
transitional quasi-ballistic regime is realized [34],

DR�t� / �l�eK�2=3t : �28�

The exponential character of particle divergence in a
turbulent flow is manifested not only in considering averaged
flow characteristics. Observations of the evolution of scalar
particle patches in eddy flows allow regarding stochastic
instability as a fundamental mechanism of mixing, which, in
turn, plays an important role in problems of the substantia-
tion of statistical mechanics. In Sections 4±15, we concentrate
on questions pertaining to the derivation of concrete scalings
for the increment of stochastic instability and its influence on
turbulent transport processes.

4. Quasilinear estimates
and the Kazantsev increment

The formulas derived by Batchelor for the exponential
stretching of a fluid element rely explicitly on the correspond-
ing instability increment gs. Naturally, an important tasks is
then to determine gs and learn about its dependence on
physical parameters characterizing the turbulent flow. In
this respect, we mention Ref. [113], where a formula is
derived that allows estimating gs based on the characteristics
of the mean squared vorticity of the flow

g 2s �

�rotV�2� : �29�

Result (29) is thoroughly discussed in the monograph by
Monin and Yaglom [34, Vol. 2]. Recognizing the `loose'
character of this definition for well-developed turbulent
flows, the authors of Ref. [34] propose a purely dimensional
estimate of the increment, relying on the key parameters of
the Kolmogorov model, the spectral energy flux eK and the
viscosity nf:

gs �
������
eK
nf

r
�
" ���������������

m2

s3
s

m2

r #
: �30�

Moreover, it is rigorously proved in [114, 115] that asympto-
tically

g 2s �t�
���
t!1
! 0 : �31�

Wemention that simultaneously with the book byMonin
andYaglom, an important work byKazantsev [116] appeared
dealing with amplification of the magnetic field in a conduct-

ing turbulent medium. We note that the approach proposed
in Ref. [116] was repeatedly discussed by Zel'dovich in the
context of the turbulent dynamo problem [117±119]. For us,
however, it is important that the derivation of an expression
for the increment of exponential divergence was implicitly
proposed in Ref. [116] based on the idea of the specific
correlation (delta-correlation) of velocities in a model
turbulent flow [34, 85]. We briefly discuss the derivation of
this formula, because, in hindsight, it was the first time that a
correct scaling was obtained for the stochastic instability
increment in a developed turbulent flow in the absence of
large-scale coherent structures.

Following the ideas of Richardson and Taylor, Kazantsev
considered the relative distance q�t� � r1 ÿ r2 between two
particles in a turbulent flow using a simple estimate for the
turbulent diffusion [120]:

DT �
�1
0



V�t�V�0�� dt / V 2

0 t ; �32�

where V�t� is the velocity of a Lagrangian particle, V0 is the
amplitude of turbulent pulsations, and t is the characteristic
correlation time. Then, from the formal expression for the
evolution of r 2, it follows that

d

dt
�r1 ÿ r2�2 � d

dt
�r1 � r2�2 ÿ 2

d

dt
�r1r2�

� 4

3
V 2

0 tÿ 2
d

dt
�r1r2� : �33�

It is well known that the mean square value hexpAi for
Gaussian distributions is given by

hexpAi � exp
A 2

2
: �34�

If r is a random Gaussian quantity, then, considering the
expression for the evolution of the mean square relative
distance q between the particles, we find

d

dt
hr 2i � 8

3
t
��

1ÿ exp

�
ÿ k 2hr 2i

2

��
E�k� dk ; �35�

where we use the definition of the turbulent energy spectrum
in the stationary form

V 2

2
�
�
E�k� dk �36�

and the condition that the velocity field can be represented as
~V�k; t� � U�k�d�t�. Considering the initial stage of the
`divergence' evolution of initially close particles, in the limit
r 2k 2 5 1, we obtain

d

dt
hr 2i � 4

3
hr 2i

�
E�k�k 2 dk : �37�

In fact, this is an equation for exponential divergence,

d

dt
hr 2i � gshr 2i ; �38�

where the increment of stochastic instability is given by the
quasilinear scaling (quadratic in velocity)

gs � V 2
0 k

2t � V 2
0

l2
t / 1

t
Ku2 : �39�
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It is assumed here that the characteristic size of eddies can be
estimated as l / 1=k.

In considering transport coefficients, the increment of
stochastic instability can be regarded as one possible approx-
imation of the effective correlation time. Present-day experi-
ments point out that the form of the dependence of turbulent
diffusion differs essentially from that predicted in quasilinear
approximations under conditions of strong turbulence [121±
128],

Ku � V0

lo
5 1 ; Pe � V0l

D0
5 1 : �40�

Scaling estimates demonstrate similarity in the character
of the dependence of the diffusion coefficient and the
corresponding correlation time on the amplitude of turbu-
lent velocity pulsations. In strongly turbulent regimes, this
dependence becomes substantially softer (Fig. 9). This
provides a solid argument to believe that the dependence of
the stochastic instability increment also deviates from the
quasilinear dependence obtained by Kazantsev. We consider
this question in detail in Sections 7±11 devoted to the
transport of scalar particles and the transport of electrons in
a stochastic magnetic field.

5. Criticism of the quasilinear approach

Contemporary research of the transport coefficients in
strongly turbulent hydrodynamical flows and analyses of
anomalous regimes of diffusion in strongly magnetized
plasmas clearly point out the necessity of accounting for the
effect of coherent vortex structures [122±128]. An important
criterion here is the Kubo number introduced in Section 2.
For Ku5 1, we are dealing with more complex decorrelation
effects than in the classical Taylor approach [120], where the
turbulent velocity pulsations are represented by equations of
motion in the Lagrangian form

V�t� � dr�r0; t�
dt

; �41�

and the diffusion coefficient is directly related to the
Lagrangian velocity autocorrelation function

DT �
�1
0



V�0�V�t�� dt : �42�

This approach facilitated effective solutions of weak turbu-
lence problems (quasilinear theory) in which the estimate of
the turbulent diffusion coefficient took the form of scaling,
and the scale of velocity fluctuations V0 and characteristic
correlation time t were introduced: DT / V 2

0 t. Such an
approach assumes that the velocity fluctuations are short-
correlated. This is obviously a serious drawback in the case
where the velocity field contains large-scale vortex structures
or zonal currents. However, it offered a way to incorporate
the amplitudes of turbulent pulsations.

Molecular (seed) diffusion affects the correlation effects
substantially. Corrsin [32] was among the first to propose a
concrete model including the effects of molecular diffusion in
the correlation analysis. He recognized that the definition of
the correlation function proposed by Taylor [120] is based on
the Lagrangian velocities V�x0; t�, but their measurement
encounters serious difficulties. For this reason, the Eulerian
representation of the correlation function is frequently used,
involving the correlations of velocity at points separated by a
distance l:

CE�l; t� �


u�x0;T � u�x0 � l;T� t�� :

In this representation, the formula for the correlation
function is more convenient for carrying out experiments.
We can also express the Lagrangian correlation function in
terms of the Eulerian velocity,

C�t� � 
u�x0;T � uÿx�x0;T� t�;T� t
��
;

where u�x0;T � is the Eulerian velocity at the point x0 and T is
time.However, a unique relation between the Lagrangian and
Eulerian correlation functions is absent. Indeed, in the
expression for the Eulerian correlation function, the Lagran-
gian connection between points x0 and x0 � l is absent. Here,
l is merely `some' arbitrary displacement.

Corrsin proposed a nontrivial approximating formula by
expressing the Lagrangian correlation function by randomiz-
ing the Eulerian correlation function with some probability
distribution r�x; t�:

C�t� �
�1
ÿ1

r�l; t�CE�l; t� dl :

An even more important contribution was the idea of the
diffusive nature of the shift l, because Corrsin took r�l; t� to
be a classical solution of the diffusion equation in three-
dimensional space (the Gaussian distribution),

r�l; t� � 1

�4pD0t�3=2
exp

�
ÿ l2

4D0t

�
:

This formula includes the coefficient of molecular diffusion
D0. As a consequence, it becomes possible to consider both
turbulent transport and molecular diffusion. Eventually, the
integral expression becomes

C�t� �
�1
ÿ1

CE�l; t�
�4pD0t�3=2

exp

�
ÿ l2

4D0t

�
dl :

From this new standpoint, l is simultaneously a spatial scale
and a diffusive displacement. In fact, instead of the formal
averaging of the form


V
ÿ
x�0��Vÿx�t��� � �1

ÿ1



V�0�V�y� dÿyÿ x�t��� dy ;

Deff(Ku)

Deff / Ku2 Ku4 1

Ku � 1 Ku

Structured
turbulence

Figure 9. Dependence of effective diffusion coefficient on the Kubo

number. Deff is the effective turbulent diffusion coefficient and Ku is the

Kubo number characterizing the intensity of turbulent pulsations.
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the factorization (`the independence hypothesis')

V�0�V�y� dÿyÿ x�t��� � 
V�0�V�x��
dÿyÿ x�t���

has been used. Moreover, to describe the correlation of
trajectories, Corrsin used the Gaussian distribution


d
ÿ
yÿ x�t��� � r�y; t� :

In plasma problems, where diffusion is considered in the
velocity space, we arrive at an expression analogous to the
Taylor formula, but in terms of the electric field fluctuations
dE [121±124],

DV /
�

e

me

�2

�dE �2t ; �43�

where e and me are the charge and mass of the electron. The
specifics of plasma problems formulated in the early 1960s
was related to the description of interaction between waves
and particles based on the view of Landau damping as the
mechanism providing stochastic behavior. In the time that
followed, the use of the short-range correlation approxima-
tion met with difficulties in describing strongly turbulent
plasma states [129, 130].

In reality, it had already become clear at the end of the
1960s that quasilinear estimates fail to reflect the real
character of transport in conditions of strong plasma or
hydrodynamic turbulence [122±128]. Among numerous
causes of this disparity, the failure to take the effects
connected with exponential divergence into account was
noted. In particular, in a short article [131], van Kampen
criticized the Taylor formula for the turbulent diffusion
coefficient and questioned the validity of the results of the
linear response theory by Kubo [61, 68].

Indeed, the classical Kubo±Green theory gives a rigorous
relation between the transport coefficients and correlation
functions in the integral form

D �
�1
0

C�t� dt : �44�

Such an approach can be directly linked to the Langevin
representation of fluctuations, and the classical results by
Einstein can be interpreted in terms of fluctuation±dissipa-
tion relations. A simple example of such a relation is offered
by the formula kBT=�mbt� � D, which connects the Langevin
`friction' coefficient bt with the system temperature and
diffusion coefficient.

Considering transport problems on the basis of linear
response theory allows using a well-developed and rather
general approach of nonequilibrium thermodynamics. In the
presence of small perturbations of the field a�r; t� in time and
space, the system evolution is described by the system of
Onsager equations [68]

qa�r; t�
qt

� ÿHJ�r; t� ; �45�

J�r; t� � LJ v�r; t� ; �46�
v�r; t� � ÿHa�r; t� ; �47�

where J�r; t� is the flux, v�r; t� is the thermodynamic `force',
and LJ is the corresponding transport coefficient, which is

represented by theKubo±Green correlation expression that is
traditional for thermodynamics,

LJ � const

�1
0



J�0� J�t�� dt : �48�

As we have seen, in the case of turbulent diffusion of scalar
particles, the relevant expression is written in terms of the
velocity autocorrelation function.

It is nevertheless important to remember that the linear
response theory formulated in the statistical mechanics
framework does not assume substantial deviations from the
equilibrium. This leads to serious problems in describing
turbulence. The aspect pertaining to stochastic instability
was clearly formulated by van Kampen [31]. In considering
the evolution of dynamical system perturbations dxi�t�, the
Kubo±Green theory resorts to the Taylor series expansion,
which allows connecting perturbed and unperturbed quan-
tities,

dxi�t� �
X
j

qxi�t�
qxj�0� dxj�0� �O

ÿ
dr 2�0�� ; �49�

where dr � fdxig. But in turbulent flows, the factor
qxi�t�=qxj�0� initially grows exponentially with time because
of stochastic instability [114, 115]. In the case of turbulent
particle transport, this is vividly demonstrated by even
simpler single-vortex models. For example, Novikov [132]
considered `spiraling' of the tracer spot by a vortex and
demonstrated the importance of exponential stretching
effects for describing the evolution of a scalar (Fig. 10).

It follows from these remarks that the applicability region
for expressions based on linear estimates should be quite
limited. Nevertheless, the applications of linear theory and
related Kubo±Green formulas for the transport coefficient
are rather successful in a wide range of parameters [68]. The
main reason for this success stems from considering transport
phenomena using the concept of self-averaging, because the
values measured by us are the results of averaging over
ensembles of trajectories. From this perspective, stochastic
instability represents an important decorrelation mechanism
providing the `mixing' needed for self-averaging. Indeed,
observing a single particle cannot provide information on
the ensemble behavior.

Van Kampen's criticism of the linear response theory
played an important role by simulating the treatment of
stochastic instability effects on the basis of approaches
differing essentially from the quasilinear one. These ideas
were efficiently realized in the analysis of various turbulent
transport models involving stochastic layers, large-scale
vortex structures, or reconnection processes as their impor-
tant ingredients.

6. Lagrangian turbulence
and Arnold±Beltrami±Childers flows

An intuitive perception of turbulence identifies a turbulent
flow with chaos in time or space. Nevertheless, if a Eulerian
field is regular and has a simple analytic form, this in no
way excludes the presence of stochasticity for the Lagran-
gian trajectories of fluid particles, and, as a consequence,
the Lagrangian velocities can be stochastic as well. Surpris-
ingly enough, this fact was perceived only in the mid-1960s
by Arnold [133, 134] who, working on problems of
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dynamical system theory, paid attention to the three-
dimensional stationary velocity field expressible in elemen-
tary functions:

Vx � A sin z� C cos y ; �50�
Vy � B sin x� A cos z ; �51�
Vz � C sin y� B cos x : �52�

Numerical modeling carried out by HeÂ non [135] demon-
strated that Lagrangian trajectories of fluid particles in the
field of the ABC flow (thus dubbed after Arnold, Beltrami,
and Childers) can undoubtedly be considered stochastic [76,
78, 80, 85]. We note that for incompressible flows similar to
the ABC model, in which divV � 0, the system dynamics is
conservative (Hamiltonian), whereas, formally, the ABC
flows satisfy the Beltrami condition rotV � aVV, where aV
is a constant equal to unity for the ABC flows.

Indeed, the ABC system of three equations can be written
in a form close to the Hamiltonian one,

dx

dz
� 1

K

qH�x; y; z�
qy

; �53�

dy

dz
� ÿ 1

K

qH�x; y; z�
qx

; �54�

where the potentials K�x; y� and H�x; y; z� are
K�x; y� � C sin y� B cos x ; �55�

H�x; y; z� � K�x; y� � A�y sin zÿ x cos z� : �56�

Introducing a new variable p and using the nonlinear
transformation

y � y�p; x� ;
�57�

p �
� y

0

K�x; y 0� dy 0 � By cos x� C�1ÿ cos y� ;

we arrive at Hamilton equations for the ABC flows of the
canonical form

dx

dz
� qH�p; x; z�

qp
; �58�

dp

dz
� ÿ qH�p; x; z�

qx
; �59�

where the Hamiltonian function is

H�p; x; z� � C sin y� B cos x� A�y sin zÿ x cos z� : �60�

The investigation of exponential instability started when
HeÂ non [135], prompted byArnold, demonstrated exponential
divergence of close trajectories, also in the case of equal
coefficients A � B � C:

l�z� / l0 exp �gzz� : �61�

Here, l0 is the initial distance and gz is the exponential
instability increment.

At first glance, the emergence of chaos in Lagrangian
trajectories (chaotic advection) in a flow whose Eulerian
equations describe a regular velocity distribution seems
surprising. But we note that it is well known in the theory
of dynamical systems that for a system of three ordinary
differential equations similar to the Lagrangian equations
above, the cases where it is nonintegrable, leading to chaotic
dynamics, are not an exception [2±6]. Chaotic behavior
arises even for fairly simple functional dependences in the
right-hand sides of these equations [136]. In agreement with
that, the Lagrangian trajectories in a three-dimensional
space may demonstrate chaotic flows, albeit independent of
time.

Arnold [133] was the first to clearly point out a special
feature of Beltrami flows in which the vorticity and velocity
vectors are always parallel: the vector product of velocity and
vorticity, being the gradient of the Bernoulli integral in an
ideal (inviscid) flow, is everywhere zero,

L � V� rotV � 0 : �62�

Condition (62) lifts the constraints on Lagrangian trajec-
tories, which, in this case, are `allowed' to move not only
along two-dimensional surfaces (invariant tori). The free
walk of particles in some flow domain is here a manifestation
of the nonintegrability of the advection equations.

Indeed, in accordance with the Kolmogorov±Arnold±
Moser theory (KAM), we are dealing with a nonintegrable

t � 0

t � 10

t � 1

t � 20

t � 3
t � 30

Figure 10. Stretching a tracer patch by a vortex. The arrow indicates the

vortex rotation sense.
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system [2±4]. But it can be reduced to an integrable two-
dimensional one, for example, by setting A � 0. This case is
characterized by the presence of the energy integral

H0 � B cos x� C sin y � const ; �63�

hence, we have an ensemble of cylindrical surfaces that
correspond to different values of the constant H0. Small
perturbations of this system of surfaces, which correspond
to small values of the problem parameterA, lead to only small
deformations for most tubes. In the vicinity of separatrix
surfaces, the domains of stochasticity form (where regular
surfaces are destroyed), entailing chaos with the streamlines.
For A � 1, this chaos extends to large spatial domains.

It is important to note that Arnold and HeÂ non had
predecessors whose results did not attract the attention they
deserved for a long time. In the Introduction, we already
mentioned Carl Eckart and Pierre Welander. In 1948, Eckart
pointed out [30] the equivalence of advection and mixing in
problems of geophysical fluid dynamics. Welander [105]
demonstrated in an experiment that by driving a laminar
flow in a two-dimensional fluid with streamlines forming a
system of enclosed ellipses, dye (passive scalar) patches of
intricate shapes can be created (Fig. 11). Welander sought the
explanation with the help of the ergodicity concept, resorting
to analogies with the coarse-grained phase volume. More-
over, approximately a decade and a half after the work by
Arnold [133] and HeÂ non [135] was published, research by
Berry and co-authors appeared [137], dedicated to the
morphology of material lines in a periodic incompressible
flow. The authors of Ref. [137] regarded two types of fixed
points for two-dimensional area-preservingmaps. The elliptic
points were related to `bends', while the hyperbolic ones were

related to dilations and contractions in the form of `curls'
(Figs 12 and 13).

We see that the effects of chaos related to advection were
well known, but the term proper was coined only in the 1980s,
when the relations between the onset of chaos in Hamiltonian
systems, problems of integrability, and numerical results
demonstrating the chaotic behavior of Lagrangian trajec-
tories were finally established. At present, rich journal
literature and several monographs devoted to the topic exist
[63, 77±81, 102, 138].

7. Stochastic layers in planar flows

Despite the obvious deep connection between the problems of
dynamical chaos in Hamiltonian dynamics, where the ideas
by Kolmogorov, Arnold, and Moser [2, 134, 139±141] found
wide dissemination, and the issues of stochasticity in hydro-
dynamical flows, numerous results related to the chaotic
advection theory were obtained only very recently [76±81].
Two-dimensional flows are explored most thoroughly. In this
case, the equations of motion for a Lagrangian particle have
Hamilton's form, the role of the Hamilton function is played
by the stream function, and the phase space coincides with the
configurational space. In fact, it becomes possible here to
visualize the phase space.

In the case of stationary planar incompressible flows,
stochasticity is absent, and the Lagrangian trajectories
coincide with streamlines determined by the stream func-

Figure 11. Tracer evolution in the experiment by Welander as an example

of chaotic advection.

Figure 12. Oscillations of a perturbed separatrix on approaching a

hyperbolic point.

Figure 13. Formation of Berry `curls' in the vicinity of a center.
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tion C:

Vx � ÿ qC�x; y�
qy

; �64�

Vy � qC�x; y�
qx

: �65�

The absence of stochastic behavior in a two-dimensional
stationary incompressible flow is directly rooted in the
absence of exponential stretching of fluid particles. This fact
was first mentioned by Zel'dovich in Ref. [142] in analyzing
dynamo effects [143±145]. Indeed, numerical experiments
indicate that for most initial conditions, the separation
between two initially close particles in a stationary two-
dimensional flow of an incompressible fluid grows only
linearly in a bounded domain.

A simple integrable case occurs for the ABC flows with
A � 0 (the BC flow),

Vx � _x � C cos y ; �66�

Vy � _y � B sin x ; �67�

which allows studying periodic vortex structures (cells) in
terms of the elementary stream function (Fig. 14):

C�x; y� � C sin y� B cosx : �68�

This flow has a set of special streamlines (separatrices)
passing through saddle points. Numerical simulations of a
weakly perturbed BC flow with the Hamiltonian

H�x; y; z� � C�x; y� � e�y sin zÿ x cos z� �69�

point to the appearance of stochastic instability. For the
parameter characterizing the amplitude of perturbations
e5 1, in accordance with the KAM theory, narrow
stochastic layers form in the vicinity of separatrices. Chaos
spreads over substantial portions of space when e � A � 1
(Fig. 15).

A similar situation occurs when the stream function of a
two-dimensional flow with separatrices acquires time depen-
dence, C�x; y; t�. Such two-dimensional models were called
systems with 3=2 degrees of freedom [4, 6, 62, 76, 102]. Here,
as well as in many other cases related to statistical descrip-
tions of phenomena, the problem dimension plays an
important role. Obviously, domains of stochasticity emerge
in the vicinity of separatrices (Fig. 16). Interesting examples
can be furnished by nonstationary generalizations of BC
flows (vortex cells), offering a possibility of exploring the
rearrangement of streamline topology.

In problems of stochastic streamlines in planar flows, we
can use qualitative estimates based on the ideas of Chirikov
and Zaslavsky on nonlinear resonance [146]. In the first
approximation, we can consider stochastic layers around
separatrices of complex flows, relying on the estimates for
the stochastic layer thickness D for the nonlinear resonance
perturbed by a periodic force with a characteristic frequency
o0. In [147], estimates of D are given for both high-frequency
perturbations,

D / l exp
�
ÿ o0

oB

�
; �70�

and low-frequency modes, interesting for the turbulent
transport theory (large Kubo numbers, Ku > 1),

D�eo� / eol
�
o0

oB

�
/ eo : �71�
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Figure 14. Integrable case of an ABC flow with A � 0. The streamlines in

the �x; y� plane.
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Figure 15. Onset of chaos in an ABC flow in the vicinity of separatrices.
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Figure 16. Buildup of a stochastic layer in the vicinity of a separatrix.
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Here,oB is the characteristic frequency of the principal mode
and eo is the amplitude of perturbations. It follows from these
estimates that specifically in low-frequency modes, the effect
turns out to be substantial.

If we consider monoscale vortex flows in which the vortex
is of a characteristic size l andV0 is the characteristic velocity
amplitude, thenoB / V0=l. Accordingly, the estimate for the
stochastic layer thickness in flows with vortex cells is
expressed as

D / eo
o0l

2

V0
/ eo

l
Ku

5 l ; �72�

where, for low-frequency perturbations, Ku5 1 because
oB 4o0 in the low-frequency limit.

An estimate for diffusion of stochastic streamlines is also
of interest:

Dc�Ku� / D 2

t�Ku� /
e 2o
Ku2

l2

t
; �73�

where t � t�Ku�. Estimating the effective correlation time t is
nontrivial because the estimate should be based on a concrete
decorrelationmechanism that accounts for the specifics of the
flow topology and the character of instabilities developing in
it. However, on a qualitative level, we can consider the
processes of decorrelation in the stochastic layer and the
flow as a whole being approximately similar, assuming that

tc / D 2

Dc
/ l2

DT
; �74�

whereDT / V 2=o0 is the traditional quasilinear coefficient of
diffusion. Substituting, we obtain

Dc / D 2

tc
/ D 2

l2
DT / e 2o

Ku2
V 2

0

o0
/ e 2ol

2o0 : �75�

We note that the estimate of tc is simultaneously also a
qualitative estimate for the stochastic instability increment in
`cell' flows,

gs�V0� / 1

tc
/ o0 Ku2 / V 2

0 ; �76�

which agrees within the order of magnitude with the quasi-
linear estimate by Kazantsev (39) discussed in Section 4 in
relation to the Kolmogorov phenomenology of a constant
spectral energy flux in conditions of well-developed isotropic
turbulence.

8. Effective transport in convective cells

Effects of stochastic instability, clearly manifested in the
vicinity of separatrices delineating vortex cells, work as a
decorrelation mechanism that maintains the exchange of
particles between the cells if the flow is nonstationary. On
the other hand, in a system of steady convective cells, the role
of decorrelation mechanism is played by molecular (colli-
sional) diffusion. In both cases, the effective transport
increases owing to the existence of convective channels,
whose width D is the key parameter of the problem. In
essence, this is one of the simplest models of anomalous
transport in the conditions of structured turbulence (con-
taining eddies).

Using straightforward estimates of the particle balance in
a stochastic layer, it is possible to show that the width of the
channel is directly related to the velocity amplitude of
convective flows. Regular vortex cells can be described with
the help of the stream function proposed by Taylor (Fig. 17),

C�x; y� � C0 sin

�
2p
l

x

�
sin

�
2p
l

y

�
; �77�

because, in this representation, the vortices are located along
the coordinate axes, which is more convenient for specifying
boundary conditions. Here, C0 � lV0.

It is assumed that in the limit of large Peclet numbers
Pe � lV0=D0 4 1, scalar particles move along streamlines
forming convective channels, and leave them because of the
presence of seed diffusion D0 in the system (molecular
diffusion Dm due to collisions or stochastic diffusion DC).

The term `passive scalar' is used to refer to tracer particles
in the flow that exert no back reaction on the flow. For
example, if the temperature of each fluid particle is preserved
(it is `frozen' in the medium), then it can be considered a
scalar. A similar situation emerges in problems of transport of
a magnetic field, when the magnetic field, being `frozen in', is
transported by the plasma.

In the simplest case where the fluid flow is incompressible,
divV � 0, we can replace the partial derivative over time
qn=qt of the scalar density n in the classical diffusion equation
with the Lagrangian derivative. Then the scalar transport
equation becomes

dn

dt
� qn

qt
� VHn � D0H 2n : �78�

In the absence of diffusion (the coefficient of diffusion
D0 � 0), we obtain the `freezing-in' condition n�r; t� �
n�r0; t�, where r0 is the particle coordinate at the initial
instant, r0 � r�t � 0�. The purely Lagrangian behavior of
the scalar can lead to arbitrarily large density gradients, but in
the presence of diffusion (or heat conduction if the transport
problem is considered in terms of temperature), the density
inhomogeneities are smoothed out. In that case, it becomes

1.0
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0

ÿ0.5

ÿ1.0 ÿ0.5 0 0.5 1.0

Figure 17. System of regular convective (vortex) cells.
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possible to describe the transport of particles with the help of
the effective diffusion coefficient.

In our case, particles leave the convective layer of a width
D diffusively, D0�dn=D 2�, whereas advection along the
boundary layer gives V0�dn=l�. Comparing these estimates
(in essence, they are estimates of characteristic time scales in
the diffusive boundary layer), we obtain the width of the
stochastic layer in the form

D�V0� �
���������
D0l
V0

s
� l

1�����
Pe
p / 1������

V0

p : �79�

If the amplitudes are large (strong turbulence, the Rayleigh
number Ra / Pe4 1), the stochastic layer is very narrow.

An estimate of the effective transport of a scalar in a
system of convective cells (Fig. 18) should include the fraction
of space occupied by the stochastic layer, lD=l2 � D=l,
because we assume that just the convective contribution is
decisive:

Deff � lV0P1 � lV0
D
l
� V0D�V0� : �80�

Here, P1 is the fraction of space responsible for convection.
We finally arrive at the following estimate for the turbulent
diffusion coefficient [70]:

Deff � const
��������������
D0V0l

p
/ V

1=2
0 : �81�

This scaling, derived from simple balance arguments,
allowed giving a theoretical interpretation of numerical
experiments, which attracted great interest, on transport in a
system of drift convective cells observed in turbulent
magnetized plasmas of tokamaks [148]. In these experi-
ments, particle diffusion in the field of several electrostatic
waves was considered. From a formal standpoint, the result
should be describable by the classical quasilinear theory; but
strong deviations from the quasilinear behavior have been
found in the behavior of the particle diffusion coefficient and
the Kolmogorov entropy. The main cause of these deviations
is the fact that as the velocity amplitude increases, the
convective channels become narrower and the rate of

increase in the effective transport decreases compared with
both quasilinear, Deff / V 2

0 , and linear (Bohm), Deff / V0,
estimates.

On the other hand, using the result in Section 7 for
stochastic layers as the seed diffusion,

D0 / Dc / e 2ol
2o0 ; �82�

and the scaling for convective cells, we can readily obtain an
estimate for the effective diffusion coefficient:

Deff�eo� /
������
D0

p
/ eo

������
o0
p

: �83�

This type of dependence of the effective diffusivity on the
perturbation amplitude has both theoretical and experimen-
tal confirmation. Solomon and Gollub considered a stream
function that models regimes of periodic instability in a
system of convective cells [149],

C�x; y; t� � V0l sin
�
2p
l
�x� eol sinot�

�
sin

�
2p
l

y

�
; �84�

where l is the characteristic spatial scale, o is the character-
istic frequency of perturbations, and eo /

��������������������
RaÿRa�
p

is the
scale of perturbation related to the deviation of the Rayleigh
number

Ra � argDTL3
0

kBnf
�85�

from its critical value Ra� at which cells can develop periodic
oscillations. Here, ar is the thermal expansion coefficient, g is
acceleration of gravity, and kB is the Boltzmann constant. An
important experimental result was a substantial increase in
transport compared to that in the steady case. The flux of
particles occurring in these regimes was proportional to the
perturbation amplitude: eo / �RaÿRa��1=2.

9. Mel'nikov function and the stochastic layer

The nontrivial character of transport in the Solomon±Gollub
model (see Section 8) can be explained by considering the
appearance of stochastic layers in the vicinity of separatrices
bounding the vortex cells, in the framework of the perturba-
tion theory for the stream function (Hamiltonian) describing
a steady cellular flowC0�x; y�:

C�x; y; t� � C0�x; y� � eoC1�x; y; t� : �86�

With the appearance of oscillating perturbations, the regular
boundaries of cells (separatrices) are subject to deformations
(Fig. 19) related to the formation of heteroclinic trajectories
[76±80]. In 1963, Mel'nikov [138, 150] proposed a method for
exploring oscillating perturbations of this kind, and practi-
cally simultaneously such an approach was applied by
Morozov and Solov'ev [151], who considered oscillating
`lobes' of magnetic field lines to analyze the structure of
eroded magnetic surfaces in plasma traps for systems of
controlled fusion. In the case of a scalar, the `lobes' of
streamlines lead to stochasticity of the Lagrangian particle
transport (lobe transport), which augments fluxes compared
to those for molecular diffusion.

Research pertaining to the nontrivial behavior of phase
trajectories of perturbed Hamiltonian systems was already
initiated by PoincareÂ [2±5] and continued later by Birkhoff

l

l

D D D

Figure 18. Profile of tracer concentration in a system of convective cells.

D is the stochastic (diffusive) layer width and l is the characteristic spatial
scale of a cell. The dashed line indicates the direction of concentration

decrease.
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and Andronov. Related questions, dealing with notions of
stable and unstable manifolds, are described in detail in the
extensive educational literature [77±81, 102, 147, 152]. For the
purposes of this review, we schematically present the main
ideas of this approach using the example of a separatrix loop
with a single hyperbolic point (Fig. 20). Such a situation is
encountered, for example, when a particle moves in a `cubic'
potential of the form

U�x� � c1x
2 � c2x

3 ; �87�

where c1 and c2 are constants chosen based on physical
considerations.

Close to the separatrix, the period of particle oscillations
tends to infinity. That is why a small perturbation in
frequency may cause a substantial phase shift. The emerging
local instability of trajectories leads to splitting of the
perturbed separatrix, which was first discovered by PoincareÂ .

Indeed, four `branches' pass through the hyperbolic point
of the separatrix being considered, whereas the separatrix
itself delineates finite and infinite trajectories of particles in
the selected cubic potential. We consider two branches, S�
and Sÿ. Perturbations may lead to the appearance of a small
gap between S� and Sÿ, and, because of the periodicity of
perturbations, the branches begin to oscillate independently
(Fig. 21). The oscillations grow in amplitude, but their step

simultaneously decreases. For S�, this happens in the
direction of Sÿ, while for Sÿ, the oscillations grow in
amplitude, and their step simultaneously decreases in mov-
ing from the hyperbolic point in the direction of S�. This
specific behavior comes from the amplification of instability
with the distance from the hyperbolic point (increasing the
deformation of phase elements) and from the motion
deceleration on approaching the end of the loop. The
branches considered here intersect transversely, leading to
the occurrence of a stochastic layer in the vicinity of an
unperturbed separatrix.

As we have seen in Sections 2±8, the erosion of the
separatrix has a pronounced effect on transport processes,
allowing tracer particles to pass through the barriers separat-
ing regions of finite motions (corresponding to particle
confinement in the vortex) and infinite motions in the
unperturbed system of streamlines.

Mel'nikov [138, 150] proposed an analytic method
allowing the computation of branch displacement in the
direction normal to the unperturbed separatrix. The change
of sign of this quantity for a point moving along the
separatrix loop would indicate transverse intersections of
stable and unstable fixed-point manifolds in the perturbed
Hamiltonian system. The amplitude of the oscillating
Mel'nikov function can be interpreted as the width of the
stochastic layer.

The main idea lies in the fact that on an unperturbed
separatrix, the vector that corresponds to the velocity of
motion of a point along the phase trajectory � _x�t�; _y�t�� is
tangent to the separatrix. On the other hand, it is easy to
construct an orthogonal vector �ÿ _y�t�; _x�t��. Then the dot
product of this vector, orthogonal to the unperturbed
separatrix, with the vector describing the perturbed motion
of the depicting point in the phase plane, �x1�t�; y1�t��, can be
treated as the displacement of the perturbation along the
normal to the unperturbed separatrix:

_dm�t� � qC1�x; y�
qx

qC0

qy
ÿ qC1�x; y�

qy
qC0

qx
: �88�

This quantity has two components, which correspond to the
stable, _d s�t�, and unstable, _du�t�, manifolds (Fig. 22). It

0 p

p

2p
Figure 19. Splitting of separatrices in a system of convective (vortex) cells.

Figure 20. Phase portrait of a system with one hyperbolic point.

a b c

0
0

0

S�
S�

Sÿ Sÿ

Figure 21. Two branches of a split separatrix in a system with one

hyperbolic point.
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Figure 22. Schematic of the vector that defines the Mel'nikov distance;

n�t� is the normal to the separatrix, d is theMel'nikov vector, and rs and ru
are the respective radius vectors of the entering and exiting branches of the

perturbed separatrix.
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should also be borne in mind that the stable manifold for
t!1 and unstable manifold for t! ÿ1 should tend to the
same fixed point (in the homoclinic case, we have one
hyperbolic point):

xu1�ÿ1� � xs1�1� ; �89�
yu1�ÿ1� � ys1�1� : �90�

This implies that in calculating, we must use the condition
that displacements of perturbed branches of the separatrix are
equal:

ds�1� � du�ÿ1� : �91�

Turning to integration and subtracting the displacements
corresponding to stable and unstable branches, we arrive at
the Mel'nikov integral expression describing the distance
between perturbed separatrix branches:

dC0�t0�� eo

�1
ÿ1

dt

�
qC1�x; y�

qx
qC0

qy
ÿ qC1�x; y�

qy
qC0

qx

�
: �92�

Here, we use an asymptotic representation for particle
trajectories assuming that the Hamiltonian of the system is
represented as a perturbation of an integrable problem,
whose solution x�t�, y�t� is assumed to be known,

x�t; t0� � x�t0� � eo x1�t� ; �93�
y�t; t0� � y�t0� � eo y1�t� ; �94�

where �x�t0�; y�t0�� are the initial particle positions.
The Mel'nikov method is also applicable when there are

several saddle (hyperbolic) points (Fig. 23). Having chosen
the stream function (Hamiltonian) in the form modeling a
system of regular vortex cells,

C0 � V0l sin x sin y ; �95�
and the perturbing function in the special form (convenient
for subsequent computations)

C1 � ÿeoo
�
xy sin

�
ot� p

4

�
cos

�
ot� p

4

��
; �96�

it is possible to compute theMel'nikov function by selecting a
branch of the separatrix connecting the points �0; 0� and
�p; 0�. Following the technique described above, we then
obtain [153]

dC�t0� � eool
2p sech

�
l
V0

op
2

�
sin

�
ot0 � p

4

�
: �97�

Here, the periodic perturbation with the characteristic
frequency o also causes the splitting of the separatrix, and
the width of the stochastic layer is

dC � eol
2op sech

�
l
V0

op
2

�
; �98�

which leads to the characteristic dependence of the effective
diffusion on the amplitude of oscillating perturbations. Now,
it is not difficult to obtain an estimate of transport effects that
takes the erosion of separatrices bounding vortex cells into
account and corresponds to the data of the Solomon±Gollub
experiment,

Deff�eo� / dC / eo : �99�

We remark that the use of the simplest form of the
perturbation method restricts the applicability of the Mel'ni-
kov method to only a close vicinity of separatrices. In the
domain of well-developed chaos, the renormalization group
method is used, as elaborated by Zaslavsky and Chirikov [4±
6, 61, 62], whereas a detailed study of the transverse structure
of intersections stimulated the development of symbolic
dynamics methods [61, 62].

The Lagrangian turbulence is currently a fairly indepen-
dent branch of research, and we therefore limit ourselves to
just general remarks. Naturally, there is special interest in
models of flows in which the form of the function C is
constrained by the condition of being consistent with the
laws of fluid dynamics. For example, in geophysical fluid
dynamics, one of the first models where dynamical chaos
was carefully studied was the Kida vortex flow [154].
Classical fluid dynamics has a large number of model
stream functions available, which may serve as satisfactory
models of ocean flows, with the dynamics of scalar transport
governed by simultaneously present large-scale eddies and
(meandering) jet flows. The possibility of including the
effects of rotation and allowing different forms of bound-
aries modeling the basin shoreline is also not altogether
unworthy [79±83, 152, 155].

10. Splitting of saddle points
and advective transport

The appearance of stochastic layers, which we considered in
Section 6, invites a question on the existence of `transport
channels' in two-dimensional flows, which may substantially
influence the transport processes. An instructive example can
be constructed by considering steady perturbations of a
regular system of convective cells. In the case of a super-
position with a periodic shear flow with the stream function
eC sin y, the resultant flow field

C�x; y� � C0�sin x� sin y� � eC sin y �100�

then contains `open' streamlines (Fig. 24). Here, eC is the
amplitude of the shear perturbing flow. The existence of

O0 x

N � 7

Figure 23. Schematic of separatrices in the presence of several hyperbolic

points in the Morozov±Solov'ev model for a toroidal magnetic field.
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streamlines piercing the entire system, obviously, leads to the
dominance of convective transport over the diffusive one.
Such situations occur in the physics of high-temperature
magnetized plasmas, the physics of oceanic flows, etc.

The system of convective flows created by adding a small
one-parameter periodic perturbation

DC�x; y� � eC cos x cos y �101�
to the system of regular convective cells (symmetric Taylor±
Roberts cells) was carefully studied by numerically modeling
the stream function

C�x; y� � C0 sin x sin y� eC cos x cos �ky� : �102�

Here, eC is the perturbation amplitude. In the case eC > 0, the
streamlines C � const form a periodic cat-eye system of
vortices separated by open convective channels (Fig. 25).
Here, advection is the dominant transport mechanism, and
the width of convective channels for Pe4 1 is estimated as
[63]

D�V0� / 1�����
Pe
p / 1������

V0

p : �103�

Certainly, regular structures are an exception rather than
the rule. A realistic but nontrivial vortex flow occurs in a
system of regular convective cells if the separatrices are split
randomly in the vicinity of saddle points under the action of
external perturbations (Fig. 26). Such a two-dimensional
steady flow with zero mean velocity is governed by an
isotropic stream function C�x; y�, oscillating on average and
quasi-random in the distribution of saddle points with respect
to the amplitude. In this formulation, the problem reduces to
a percolation description of a topological phase transition (a
model of continual percolation) (Fig. 27) in a system of
streamlines [69±71]. It is rigorously proved that for any
generic function C�x; y�, there is a unique closed zero
streamline (a percolation streamline) of infinite length [156,
157].

The problems of statistical topography were considered in
the context of exploring two-dimensional turbulent flows

from the standpoint of correlation analysis [158, 159], as
well as in order to obtain effective diffusion coefficients [69,
71, 74] and to describemagnetic line reconnection inmagnetic
hydrodynamics [160]. As a model to analyze turbulent
transport, this approach was first proposed by Kadomtsev
and Pogutse [69], and detailed analysis of a monoscale steady
percolation flow with

C0 � lV0 ; l �
���� C
HC

���� �104�

was presented in [161].
A formal expression for the diffusion coefficient in the

percolation limit can be written in the form generalizing a
similar formula for convective cells,

Deff �
�1
0

dC1

C1
P1�C1� a

2�C1�
t�C1� ; �105�

where the perturbation of the Hamiltonian is given by
C1 � e�lV0. Here, the correlation time t is estimated
ballistically,

t � tB � L�e�
V0

; �106�
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Figure 24.Appearance of open streamlines in a system of convective cells.
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cells modeling a stationary chaotic two-dimensional velocity field.
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P1 � L�e�D�e�=a 2�e� is the fraction of the volume occupied
by percolation streamlines, D is the width of the percolation
layer, and a is the correlation scale (the mixing length).
Calculation leads to the scaling [161]

Deff�e� � a 2

t
P1 � a 2

t
L�e�D�e�

a 2
� V0D�e� ; �107�

which confirms the idea of the importance of considering
stochastic layers in the analysis of transport under the
conditions of structured turbulence. In essence, the problem
of determining the turbulent diffusion coefficient in the
adopted approximation reduces to computing the width of
the stochastic (percolation) layer and the small parameter e
that characterizes the proximity of the system to the
percolation transition.

Calculations of transport coefficients can be carried out to
the end if we use scalings for the correlation scale a and the
fractal streamline length L as functions of e obtained in the
continual percolation theory [156, 157],

a�e� � leÿn ; L�e� � l
�
a

l

�Dh

; �108�

where n � 4=3 and Dh � 1� 1=n are the percolation indices
rigorously calculated for two-dimensional systems with the
help of conformal field theory methods.

As it stands, the monoscale approximation of a complex
two-dimensional vortex flow by a `distorted' lattice of
vortices is undoubtedly an oversimplification; however,
rigorous results for percolation streamlines (the percolation
hull) have been obtained only in this approximation. On the
other hand, if we consider the full hierarchy of scales, it is
already impressive even in this simplified case

L � a

e
4 a4 l4D � le : �109�

Indeed, besides the correlation scale and the `perimeter of the
shell', we have to include thewidth of the stochastic layer built
around a percolation streamline in our consideration, because
an individual line (isolated from the layer) cannot contribute
to the effective transport. As mentioned above, the width of
the stochastic layer is proportional to the amplitude of
perturbations, D / eol, which in our case can be identified
with the percolation parameter e � eo characterizing the
deviation of the system from the `ideal' percolation transi-
tion. This ensures the finiteness of percolation streamlines in
model flows. On the other hand, such a definition can be
interpreted as specifying the internal metric of the percolation
stochastic layer model [161, 162]. In this sense, we are dealing
with a situation essentially different from that assumed in the
approach by Skal±Shklovskii±de Gennes [157], where a
similar internal metric was based on the macroscale L � l=e
(the length of the macrolink of the conducting cluster).

Additionally, we can introduce the characteristic scale ls
associated with an individual streamline because the area
corresponding to the stochastic layerD is mush larger than the
size of the `elementary vortex cell':

L�e�D�e� � a�e�le
e
� al4 l2 : �110�

This is natural because the stochastic layer hosts many
streamlines, not just one (Fig. 28). A suitable estimate
characterizing the size of regions where the adiabatic
invariance is violated (exponentially narrow layers near
separatrices), ls, is [163]

L�e� ls�e� � l2 : �111�

Simple manipulations give

ls � l2

L�e� � le n�1 5D � le : �112�

1

2

3

Figure 27. Percolation in a two-dimensional potential. The transition is

between an `endless' land confining isolated lakes to an `endless' sea

embracing isolated islands.

D�e� � le

Figure 28. Internal structure of a stochastic layer containing a `bunch' of

streamlines, with D being the stochastic layer width, l the characteristic

spatial scale, and e the small percolation parameter.
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In summary, the full hierarchy of spatial scales for percola-
tion models of random two-dimensional flows,

le n � ls 5D � le5 l5 a � l
e n

5L � a

e
� l

e n�1
; �113�

has a sufficiently `elaborate' form, which allows analyzing
nontrivial correlation and transport effects in two-dimen-
sional models of structured turbulence.

11. Stochastic layer in the percolation limit

Gruzinov, Isichenko, and Kalda [163] considered a percola-
tion model of transport in two-dimensional random flows. In
the low-frequency caseo5V0=l, the actual correlation scale
a defining the effective transport is much less than V0=o,
which formally describes the path length of particles along
streamlines. Here, the main decorrelation mechanism is
connected to topology rearrangements (for instance, the
reduction in the length of streamlines because of their
reconnection) (Fig. 29). We note that deriving the scalings
describing vortex reconnection processes is a difficult pro-
blem, because a rigorous physical±mathematical picture of
turbulence has not been created, and scaling estimates have to
be used [164].

Turning to the ideas of the percolation hierarchy of spatial
scales, we can consider the character of anomalous transport
in the case where percolation streamlines play a defining role.
The number of streamlines in the stochastic layer can be
estimated as the ratio of two characteristic scales:

Ns�e� / D
ls
/ a

l
/ P1�e�4 1 : �114�

In addition to the characteristic scale of turbulent velocity
pulsations V0, the estimate Vs � lo5V0 for the velocity of
the `accompanying' motion of separatrices in the stochastic
layer was proposed in [163]. The characteristic time interval
for reconnection between two nearest separatrices can be
estimated as

ts � ls�e�
Vs
� ls

lo
� l

L�e�o 5
1

o
: �115�

This is in fact an estimate of the stochastic instability
increment gs � 1=ts, which is noticeably different from the
simplest, but widely disseminated, Batchelor approximation
gs � V0=l.

Additionally, it is possible to estimate the time of full
`mixing' in the stochastic layer (correlation time):

t�e� / D�e�
Vs
/ e

1

o
; �116�

which allows a qualitative description of streamline reconnec-
tion processes in the low-frequency limit [71, 72]. It should be
kept in mind that a single streamline does not contribute to
the effective transport. We are dealing in reality with a
nonstationary process of reconnection, which leads to the
appearance of a bunch of percolation streamlines (stochastic
layer). We would expect to obtain a useful result if it were
possible to compute a concrete `universal' value of the small
percolation parameter e� � e��o;V0; l�. The authors of
Ref. [163] proposed that the characteristic mixing time in the
stochastic layer is of the same order of magnitude as the time
scalar particles move ballistically along the percolation
streamline,

e�
o
� L�e��

V0
; �117�

where L�e� � l�a=l�Dh . In this case, computations give the
small percolation parameter e� as a function of the flow
parameters o, V0, and l:

e� �
�
lo
V0

�1=�2�n�
�
�

1

Ku

�3=10

; n � 4=3 : �118�

Here, e�5 1 for Ku4 1. The expression for the diffusion
coefficient in the percolation limit is written in the form

Deff�C1� �
�1
0

dC 01
C 01

P1�C 01�
a 2�C 01�
t�C 01�

; �119�

where C1 � e�lV0. Simple manipulations lead to the follow-
ing expression for the effective transport characterized byDeff

[163]:

Deff�e�� � l2o
�
V0

lo

�7=10

� l2oKu7=10 / V
7=10
0 o3=10 : �120�

The character of percolation dependence (120) is fundamen-
tally different from the quasilinear estimate Deff�o� / V 2

0 =o,
but agrees with simple estimates we performed previously
based on the result by Chirikov and Zaslavsky for a system of
convective cells, Deff /

���������
V0o
p

. In both cases, we have an
increase in the effective transport with frequency in low-
frequency regimes, whereas the dependence on the amplitude
of turbulent pulsations is slower than the linear one.
Numerous experiments confirm the percolation scaling for
regimes with Ku4 1 [165±171].

If we assume that the characteristic frequency o
describing a periodic action on the system is not excessively
high (the low-frequency limit), we can assume the character-
istic time for stochastic instability to evolve to be compar-
able with the time a particle follows a percolation stream-
line. This allows taking the balance of characteristic times
ts � tB as the basis for computing the small percolation
parameter:

l
L�e��o �

L�e��
V0

: �121�
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Figure 29. Intersection of streamlines in a system of convective cells.

(a) System of regular convective cells. (b) Flow forming as a result of

separatrix reconnection under the action of a small perturbation.
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As a result of calculation, we obtain the scaling

e� �
�
lo
V0

�1=�2�n�1��
�
�

1

Ku

�3=14

; n � 4=3 : �122�

The expression for the stochastic instability increment gs in
the percolation limit becomes

gs �
Vs

ls�e�� � o
L�e��
l
� o

�������
Ku
p

: �123�

Expression (123) is markedly different from the quasilinear
result of Kadomtsev and Pogutse, gs � oKu2 [69], and is in
good agreement with the results of numerical simulations
[167, 170].

Effects of stochastic instability are prominent through the
stage preceding full `mixing'. From this standpoint, it is
convenient to introduce an `evolving' (running) coefficient
of diffusion,

D��t� / R 2�t�
t

: �124�

Here, R 2�t� is the root mean square displacement of a
scalar particle and t is the time. From general arguments, it
is clear that for times less than the correlation time, t5 t,
particles move ballistically, R 2 / V 2

0 t
2 and D� / V 2

0 t
(Fig. 30).

A stage then begins related to decorrelation processes in
the stochastic layer forming under the action of instability.
Simultaneously with the increase in the length of the
percolation streamline (or the growth of the path traveled by
a scalar particle along the streamline), L�t� / V0t, the
correlation scale increases:

aI�t� �
�
L�t�
l

�1=Dh

�
�
V0t

l

�1=Dh

: �125�

We note that the increase in the correlation scale can be
interpreted in the framework of the Corrsin approach, which
treats the evolution of Lagrangian correlations using a model
of correlation cloud growth [32, 172, 173]. This initial phase of
fractal cluster growth is associated with a subdiffusive
transport regime, because particles `explore' the fractal
streamline. To estimate the root mean square displacement,

we use the expression

R 2�t� / a 2�t�P1�t� / a�t�l ; �126�

which leads to the scaling for the transport coefficient

D��t� / R 2�t�
t
/ 1

t 3=7
�127�

and to the formula for the root mean square displacement

R�t� � l
�
L�t�
l

�1=�2Dh�
� l
�
V0t

l

�1=�2Dh�
/ t 2=7 ; �128�

found by Isichenko in studying the stochasticity of magnetic
field lines [174, 175].

The last stage, t5t, has a traditional, diffusive character,
and the correlation time (mixing time) can be obtained by
using the linear estimate [176]

D�t� / Vst / lot �129�

and the balance of evolving correlation scales

l
�
V0t
l

�1=Dh

� l
�

l
D�t�

�n

: �130�

We note that the linear estimate for the evolution of the
stochastic layer width is a key link between the phenomen-
ological approximation of the correlation time in the form
t / eT0 and the Zaslavsky±Filonenko scaling for the stochas-
tic layer width in low-frequency regimes:

D / o
o0

el / oleT0 :

Thus, as in steady random flows, the main closure of the
percolation model is D / el. An estimate of the turbulent
diffusion coefficient is given by the expression Deff �
lV0�lo=V0�3=10 [163], obtained previously for the nonsta-
tionary percolation model. The results given in this section
are used in Section 15 for the analysis of work dealing with the
transport of particles in a stochastic magnetic field of
tokamaks (Fig. 31).

TheKubo number used in this section can be conveniently
interpreted in terms of an adiabatic invariant if we introduce

Subdiffusion

Ballistic regime

t4 t

t t

D�t�

Deff

Figure 30. Evolution of the particle diffusion coefficient in the percolation

model. D�t� is the running coefficient of diffusion, Deff is the effective

coefficient of diffusion established as the result of evolution, and t is time.

Turbulence

Turbulent
dynamo

Chaotic
advection

Stochastic
layers

Nuclear fusion
and stochastic
magnetic éelds

Statistical
mechanics

Chirikov (1959)

KAM (1958ë1963)Batchelor (1952)

Zel'dovich (1956)

Kazantsev (1967) ABC êows
(1965)

Mel'nikov method
(1963)

Quasilinear
method (1961)

Hopf
(1941)

Krylov (1941)KolmogorovëObukhov
(1941)

Dynamical
systems

Figure 31. Flow chart of the main avenues in the development of the

stochastic instability theory.
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the adiabaticity parameter as the ratio of the characteristic
time a particle moves in a random flow to the time over which
the stream function varies. For instance, when describing
advection in three-dimensional flows, we do not have a
universal method, but resorting to the ideas of adiabatic
invariant diffusion (adiabatic chaos) [177±180] proves help-
ful in treating certain types of flows [181].

12. Stochastic magnetic field
and a quasilinear estimate of the increment

The problem of divergence of initially close field lines (Fig. 32)
is of great practical significance in plasma physics and
astrophysics [182±184]. In this section, we consider one of
the simplest estimates related to the stochastic instability of
magnetic field lines in the framework of a quasilinear
approach and confirm the `universality' of the result by
Kazantsev in the case of weak turbulence of magnetic field
lines.

In considering stochastic magnetic fields, we need to
redefine the notions of increment and of the Kolmogorov±
Sinai entropy to account for the new features. Two initially
close field lines diverge from each other, on average,
according to the law

D�z� � l0 exp

�
z

lK

�
; �131�

where l0 is the initial distance between the field lines and z is
the distance traveled along the field line. The quantity
hK � 1=lK is called the Kolmogorov entropy:

hK � lim
l0!0; z!1

�
1

z
ln

D�z�
l0

�
: �132�

In the Lagrangian approach, the field line equations of
motion are analogous to those describing streamlines. This
suggests that the analysis results obtained previously for
weakly turbulent flows can be used to describe the turbulence
of magnetic field lines. Kadomtsev and Pogutse succeeded in
realizing this approach in a strongly anisotropic case where a
weak random field B 0 �Bx;By; 0� is superimposed on a strong
constant field B�0; 0;B0� aligned with the z axis,

B�x; y; z� � B0 ez � B 0�x; y; z� ; �133�

where divB 0�x; y; z� � 0. The Lagrangian equations of
motion for a field line are given in this approximation by the

vector equation

dr?
dt
� b�z; r?� ; b � B 0

B0
: �134�

For estimates, we use the quantity b0 as a characteristic
relative perturbation scale. In problems related to diffusion
of magnetic field lines in a high-temperature plasma, its order
of magnitude is estimated as b0 � 10ÿ3ÿ10ÿ4 [185, 186].

In this case, the classical Taylor expression [69, 187] for
the coefficient of transverse diffusion of magnetic field lines
takes the quasilinear form:

Dm � 1

4

�1
ÿ1

dz


b�z; 0� b�0; 0�� / b 2

0 lz : �135�

Here, h. . .i denotes averaging and

lz � 1

b 2
0

�1
ÿ1

dz


b�z; 0� b�0; 0�i : �136�

is the longitudinal correlation scale of the stochastic magnetic
field. In the anisotropic case, we need to carefully analyze
both longitudinal and transverse correlation effects. Here, we
neglect the transverse displacement l? in the Taylor expres-
sion for the diffusion coefficient, b�z; l?� � b�z; 0�, which is a
valid approximation only if the diffusive displacement in the
transverse direction is much less than the transverse correla-
tion scale, b0lz 5 l?. Kadomtsev and Pogutse [69] proposed
an applicability criterion for such an approach in terms of a
dimensionless parameter, the magnetic Kubo number char-
acterizing the ratio of longitudinal and transverse correlation
effects:

Kum � b0lz
l?

: �137�

The quasilinear approximation is valid for Kum < 1.
Now, only simple manipulations are needed to derive an

expression describing the initial stage of field line divergence
in a stochastic magnetic field,

q
qz
�r2 ÿ r1� � b�z; r2� ÿ b�z; r1� � qb

qr
�r2 ÿ r1� ; �138�

in the limit of a small initial displacement r2 ÿ r1 [69]. An
estimate of the relative displacement can be obtained in the
exponential form,

r2�z� ÿ r1�z� � Dr � Dr
���
z�0

exp

�� z

0

qb
qr

dz

�
: �139�

For the increment of stochastic instability, scaling implies
averaging this expression for Dr�z�. Assuming that the
magnetic field perturbations are Gaussian, it is possible,
resorting to the classical formula

hexpAi � exp

�
1

2
hA2i

�
; �140�

to estimate the stochastic instability increment, which makes
the quadratic character of the increment dependence on the
magnetic field amplitude manifest:

gz �
b 2
0 lz
l2?
� 1

lz
Ku2m : �141�

B

Figure 32. Divergence of the initially close field lines in a stochastic

magnetic field.
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The result in (141) can be rewritten in a somewhat different,
but also informative form gz � Dm=l

2
?, where it is taken into

account that the quasilinear limit implies the relation
Dm � b 2

0 lz. The applicability limits for the expression of the
stochastic instability increment coincide with those for the
quasilinear approximation, Kum � b0lz=l? < 1. We note
that for a quasi-isotropic stochastic magnetic field, similar
computations were carried out by Ptuskin [188].

An important role in estimates of the stochastic instability
increment is played by topological details of the stochastic
magnetic field. For example, in the problem of magnetic
confinement of high-temperature plasma, it is important to
account for the shear effect [185, 186],

B � B0

ÿ
ez � q�x�ey

�� dB�x; y; z� ; �142�

where q is the magnetic field shear.
Despite a substantially increased complexity in the picture

of field line behavior, the quantity gz is successfully redefined
in this case by introducing an additional characteristic spatial
scale Ls � �dq=dx�ÿ1 � const for constant shear. The mod-
ified equations for the field lines take the form

dr?�x; y�
dz

� b�r?; z� � q�x�ey : �143�

If the displacements dx and dy are small, an analog of the
quasilinear approximation is the system of equations

d

dz
dx � qbx

qx
dx� qbx

qy
dy ; �144�

d

dz
dy �

�
qby
qx
� 1

Ls

�
dx� qbx

qy
dy : �145�

The qualitative approach does not work here. The equation
for the evolution ofDr � �hdx 2i; hdy 2i; hdx dyi� is written in a
matrix form,

dDr
dz
� bWDr ; �146�

where eigenvalues of the matrix bW allow finding the
stochastic instability increment in the case of constant shear,

gz �
1

�lzL2
s �1=3

; Ls < lz : �147�

Unfortunately, this result, found by Kromes [94], does not
allow establishing a direct link between gz and the Kubo
number Kum � b0lz=l? characterizing the influence of
transverse correlation effects.

13. Weak turbulence
and the Kadomtsev±Pogutse scaling

If we suppose that the main decorrelation mechanism is
stochastic instability, then it is natural to use the expression
for its increment in estimates of transport effects. We suppose
that decorrelation is attributed not to collisions between
particles moving in a stochastic magnetic field, but to
stochastic instability manifested in the exponential diver-
gence of neighboring field lines. The role of seed diffusion in
this case is played by the randomwalk ofmagnetized particles
along and transverse to the magnetic field lines.

The simplest estimates can be derived by considering the
expressions for the particle diffusion coefficientD? written in

terms of the magnetic diffusion coefficient Dm,

D? / D 2
cor

t
/ Dm

Lcor

t
: �148�

Here, Lcor is the longitudinal correlation length and t is the
correlation time. In this approach, it is assumed that the
magnetic diffusion coefficient Dm and collisional coefficients
of longitudinal and transverse diffusion, wk and w?, are
known. The analysis is commonly carried out in terms of
thermal conductivity coefficients in order to free the problem
from complications brought about by plasma ambipolarity.

If the longitudinal motion of particles along the magnetic
field bears a diffusive character, it is convenient to introduce a
characteristic spatial scale lz that corresponds to the long-
itudinal correlation length. The quantities Lcor and t are
related to each other through the expression for the long-
itudinal diffusion coefficient wk � L2

cor=�2t�. Substituting
t � t�wk� in Eqn (148), we then obtain an estimate of the
transverse diffusion coefficient:

D? / Dm�b0�
wk
Lcor

: �149�

In terms of the correlation time t, the expression for the
transverse diffusion coefficient on scales z > lz becomes

D?�t� / Dm�b0�
������
wk
t

r
: �150�

We used the simplest model of a random walk of field lines in
order to obtain expressions for particle transport effects
based on simple estimates.

Kadomtsev and Pogutse proposed a new scaling for the
correlation time t, which relies on the increment of stochastic
instability of field lines gz. Assuming that particle longitudinal
motion is diffusive and resorting to dimensional arguments, it
is convenient to represent the characteristic correlation time
in the form [69]

t � 1

g 2z wk
� l4?

b 4
0 lzwk

� l2z
wk

Kuÿ4m : �151�

Inserting expression (151) into formula (150), we obtain the
transverse particle diffusion coefficient

D?�Kum� / Dmwkgz�Kum� � Dmwk
Ku2m
lz

: �152�

The field line diffusion coefficient Dm here also depends on
the magnetic Kubo number. Because the quasilinear approx-
imation has been used for the stochastic instability increment,
this same quasilinear approximation has to be used for the
field line diffusivity,Dm / b 2

0 lz. As a result, we obtain scaling
for the effective coefficient of particle transverse diffusion in a
stochastic magnetic field, with a nontrivial dependence on the
amplitude of turbulent field pulsations:

D?�b0� / wkb
2
0Ku2m � wkb

4
0

�
lz
l?

�2

: �153�

The applicability condition for this regime of transport
follows from the principle of fast mode selection teff < t?
[189]. Here, we assume that an alternative mechanism of
decorrelation is the transverse collisional diffusion of parti-
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cles (with the characteristic decorrelation time t?), leading to
a change in the carrier field line. Then, taking the last
inequality into account, we arrive at the existence condition
for regimes in which the main decorrelation mechanism is
stochastic instability,

l2?
D?�wk�

<
l2?
w?

; �154�

or, in terms of transport coefficients,

D? / wkb
4
0

�
lz
l?

�2

> w? : �155�

It is noteworthy that in problems of high-temperature
plasma confinement in tokamak installations, the coefficient
of longitudinal particle diffusion is much larger that the
coefficient of transverse diffusion, wk4 w?. This condition
can easily be rewritten in terms of plasma physics:

wk � V 2
Ttei ; �156�

w? �
r 2e
tei
� 1

tei

�
VT

O h
e

�2

: �157�

Here, VT is the thermal speed of electrons, nei � 1=tei is the
electron±ion collision frequency, re is the Larmor electron
radius, andO h

e 4 nei is the electron gyrofrequency. Hence, we
obtain the condition that longitudinal diffusion dominates,
expressed in terms of characteristic time scales of the problem:

wk
w?
� �O h

e tei�2 4 1 : �158�

Performing simple computations, we find the applicability
region of the regime being explored, in terms of plasma
physics (Fig. 33),

b0O h
e tei >

1

Kum
� l?

b0lz
; �159�

whereKum 5 1 because we used the quasilinearmodel forDm

and gz. We note that condition (159) can be interpreted in

terms of characteristic spatial scales:

lcor�wk� /
���������������������������
2wkteff�Kum�

q
� lz

Kum
4 lz : �160�

The approach proposed by Kadomtsev and Pogutse,
which is based on the `direct' use of the stochastic instability
increment, does not take many details of transport in a
stochastic magnetic field into account. Nevertheless, the
scaling obtained is important for explaining processes
occurring in magnetized plasmas and plays an important
role in the analysis of correlation effects [121, 124, 125].

14. Rochester±Rosenbluth approximation

The approach of Kadomtsev and Pogutse discussed in
Section 13 was extended by them in the same Ref. [69] by an
analysis of the decorrelation role of collisions of particles
moving in a braided magnetic field. Decorrelations linked to
collisions and stochastic instability were treated by the
authors independently, and each separate mechanism led to
a respective scaling [69]. It is possible to consider these effects
jointly, based on ideas on the character of the behavior of a
random magnetic field tube.

It is necessary to mention that the Batchelor model is well
known in the theory of turbulent transport [34, 86]; there, to
analyze the behavior of a tracer patch in the field of
Kolmogorov turbulence, a conjecture was made on the
importance of accounting for the `competition' between the
processes of exponential instability and molecular diffusion.
Rochester and Rosenbluth [190] used this approach to
explore the transport of particles in a stochastic magnetic
field, considering the evolution of a field line tube of a
stochastic magnetic field, such that the behavior of its
transverse section `copies' the already studied behavior of a
`small element of phase fluid' with the scale l0 (Fig. 34). By
virtue of the magnetic field incompressibility divB � 0, in the
presence of stochastic instability, together with an exponen-
tial growth of the distance between field lines l�z� �
l0 exp �z=lK�, the width of an element decreases exponen-
tially so as to preserve the initial area,

d
ÿ
z�t�� � l0 exp

�
ÿ z�t�

lK

�
: �161�

Here, d is the evolving width of the magnetic tube and z is the
distance traveled along the field line. In the collisionless case,
z�t� � VTt. In the case of a diffusive particle walk, it is natural
to use the estimate z 2�t� � 2wkt, where wk is the longitudinal
coefficient of particle diffusion.

Kum 4 1

Kum � 1 Kum

b0O h
e tei > 1=Kum

b0O h
e tei < Kum

b0O h
e tei

b0O h
e tei 4 1

Figure 33.Diagram showing the applicability domain for the Kadomtsev±

Pogutse regime. b0 is the dimensionless amplitude of magnetic field

fluctuations, Kum is the magnetic Kubo number, O h
e is the electron

rotation gyrofrequency, and tei is the characteristic time of electron±ion

collisions. The Kadomtsev±Pogutse regime is applicable in the dotted

domain.

l0

D?

Figure 34. Cross section of a field-line tube in a braided magnetic field.

D? is the width of the stochastic layer in the tube cross section and l0 is the

initial transverse size of the cross section.
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However, it is necessary to include the effect of transverse
diffusion processes, which increase d. Rochester and Rosen-
bluth considered a collisional case, assuming that d 2�z� �
4w?t, where w? is the transverse particle diffusion coefficient.
After the substitution of the last expression in Eqn (161), we
obtain an equation for the correlation time t,���������

2wkt
q

� ÿlK ln
d�t�
l0

; �162�

which describes an equilibrium that sets in as a result of
competition between the processes of exponential shrinking
of the tube and its diffusive broadening. We solve transcen-
dental equation (162) by taking t � l2K=�2wk� as the first
approximation. As a result, we find

t � l2K
8wk

ln2
�
4

�
l0
lK

�2 wk
w?

�
� tK

4
ln2
�
4

�
l0
lK

�2 wk
w?

�
: �163�

We assume that wk=w? � �O h
e tei�2 4 1, and hence a particle

performs several longitudinal diffusive steps and only then
leaves the field line (decorrelates) because of the presence of
transverse diffusion (Fig. 35).

For z > lz, we have the expression D?�t� / Dm�wk=t�1=2
for the particle diffusion coefficient; hence, the final formula
becomes

DRR�t� / 4wk
Dm�b0�
lK

lnÿ1
��

l?
lK

�2 wk
w?

�
: �164�

We here used the estimates of model parameters valid for
problems of magnetic confinement of high-temperature
plasmas, l0 � l? and b0 5 1. The parameters Dm, wk, w?, l?,
and lK are considered to be known, and the condition
�l?=lK�2�wk=w?� > 1 is assumed to hold, which can be
conveniently expressed in terms of characteristic time scales
of the model (the dominance of the fast mode):

t? � l2?
w?

>
l2K
wk
� tK : �165�

Additionally, we can take the magnetic Kubo number into
account, which enters the condition written above if we use
the plasmo-physical parameters b0O h

e tei > Kum.

The correlation time and correlation length are uniquely
related. In the case of diffusive longitudinal motion consid-
ered here, the condition t � l 2cor=�2wk� holds. Accordingly, we
can derive a transcendental equation for the correlation
length lcor if we use the estimate obtained above,

d �
����������
4w?t

p
� lcor

����������
2
w?
wk

s
5 lcor ; �166�

and rearrange the initial balance for the characteristic width
of the field tube in new terms:

lcor

�������
w?
wk

s
� l? exp

�
ÿ lcor

lK

�
: �167�

Applying the method of perturbations used above, we obtain
the longitudinal correlation length

lcor � lK ln

�
l?
lK

�������
wk
w?

r �
: �168�

In addition to stationary magnetic field perturbations
(braided magnetic field), its temporal fluctuations (magnetic
flutter) are also of practical interest. A simple estimate of the
impact of periodic perturbations of a frequency o on the
effects of stochastic instability is provided by the linear
approximation for the decorrelation size evolution:

dd
ÿ
z�t�;o�
dz

� b0ot : �169�

Now, using the Taylor (quasilinear) scaling for the corre-
sponding diffusivity [173, 174]

Do�o� � �b0ot�2lz �170�

for scales greater than lz, it is not difficult to obtain the
relation between transverse and longitudinal effects:

d 2�z;o� � Doz�t� � Dm�ot�2z�t� : �171�

We recall that we are dealing with weak turbulence, where the
coefficient of quasilinear magnetic diffusion is given by the
estimate Dm � b 2

0 lz. Changing to correlation times, we
suppose, as previously, that the longitudinal particle motions
are of a diffusive character, z 2�t� � 2wkt, and hence

d 2�t;o� � o2Dmt 5=2
�������
2wk

q
: �172�

We now can use the Rochester±Rosenbluth balance equation
in order to determine the characteristic correlation time t:

d�t� � l? exp
�
ÿ z�t�

lK

�
: �173�

By approximately solving transcendental equation (173), we
obtain the correlation time

t � l2K
2wk

ln2
�

l?�������������
DmlK
p wk

ol2K

�
� e 2� tk ln

2

�
l?�������������
DmlK
p wk

ol2K

�
;

�174�
where tk � l2z=�2wk�. The corresponding coefficient of parti-
cle diffusion in the field of magnetic fluctuations on scales

wk

w?

Figure 35. Schematic of the path of a charged particle in the Rochester±

Rosenblut model; wk and w? are the longitudinal and transverse heat

conductivities.
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z > lz takes the form [175]

D? � wk
Dm

lK
lnÿ1

�
l?�������������
DmlK
p wk

ol2K

�
: �175�

It is apparent that such a weak dependence of the effective
transport on the modulation frequency can only be valid in a
narrow range of parameters. The criterion of applicability of
estimate (175) is the obvious condition that effects of
stochastic instability dominate:

o <
1

tK
� wk

l2K
: �176�

In reality, this is the low-frequency approximation, which is
most interesting. It is also important to note that the models
considered above are valid only for weak turbulence, b0 5 1.
The opposite case of strong turbulence, Kum > 1, requiring
consideration of the effects of `long-range correlations', are
addressed below based on the percolation model (Fig. 36).

15. Large-scale structures
and percolation analogy

It should be kept in mind that in the strongly anisotropic case
wk4 w?, we need to carefully analyze both longitudinal and
transverse correlation effects. For this reason, neglecting the
transverse displacement l? in the Taylor (quasilinear)
expression for the amplitude of magnetic perturbation
b�z; l?� � b�z; 0� is a serious drawback: this expression is
valid only when the diffusive displacement in the transverse
direction is much smaller that the transverse correlation scale,
b0lz 5 l?. But for problems related to strong turbulence, the
case of most interest occurs when transverse correlation
effects play a significant role, b0lz 5l?.

Kadomtsev and Pogutse [69] proposed using a new
approach and formulated a criterion of its applicability in
terms of a dimensionless parameter, the magnetic Kubo
number Kum characterizing the ratio of longitudinal and
transverse correlation effects, Kum � b0lz=l? > 1. The
authors of Ref. [69] attributed such a regime to the
percolation character of streamline behavior, which allows
exploring the effects of `long-range correlations'. It is, in fact,
assumed here that the transverse decorrelation b0lz occurring

in reality is larger than the formally introduced transverse
scale l?.

We trace the stage of percolation structure formation
(Fig. 37) resorting to the ballistic approximation for the
perimeter L�t� of a percolation cluster (shell), under the
condition

L�z� � b0z�t�4 l? : �177�

We use expressions derived above for the main spatial
percolation scales, relying on the analogy in Section 12
between the hydrodynamical and magnetic Kubo numbers
[174, 175]:

D?�e�� � e�l? ; a�e�� � l?

�
1

e�

�n

;

�178�

L � a

e�
; e��Kum� �

�
1

Kum

�1=�n�2�
;

where n � 4=3 and Dh � 1� 1=n � 7=4.
The principal distinction from the hydrodynamical

model is the need to introduce a hierarchy of longitudinal
scales that would correspond to this hierarchy of transverse
scales. It is convenient to introduce the scale lB from the
condition b0lB � l?. In terms of the Kubo number, we then
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Figure 36.Flow chart of the connections between different approaches to the theoretical description of charged particle transport in a stochastic magnetic
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Figure 37. Percolation structure in a cross section of a magnetic stochastic

field tube.D? is the thickness of the stochastic layer, lz is the characteristic
longitudinal spatial scale, l? is the characteristic spatial transverse scale, e
is the small percolation parameter, b0 is the dimensionless amplitude of

magnetic field fluctuations, L�z� is the perimeter of the percolation

structure in the magnetic field tube at a distance z, and r? is the

characteristic correlation scale.
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obtain

lB�Kum� � lz
Kum

< lz : �179�

On a scale smaller than lB, particles do not `feel' the fractal
structure of magnetic field lines. Additionally, of importance
to us is the longitudinal scale (mixing length) lm that
corresponds to the transition to the regime of complete
mixing a�lm� � a�e��. Computations give

lm � e�lz � lz

�
1

Kum

�1=�n�2�
: �180�

To optimize the system of characteristic longitudinal
scales, Isichenko suggested adopting the simplest estimate of
the Kolmogorov length lK � lm � e�lz [174, 175]. Even-
tually, we obtain a hierarchy of longitudinal scales for the
percolation model

lB 5 lK � lm � e�lz � lz

�
1

Kum

�1=�n�2�
5 lz : �181�

We now modify the classical Rochester±Rosenbluth
approach, preserving its basic idea on the competition
between stochastic instability and diffusive decorrelation,

d�t� � l0 exp

�
ÿ z�t�

lK

�
: �182�

With the above assumptions, this renormalized balance
takes the form of a transcendental equation for the
correlation time t,

z�t� � ÿe�lz ln
����������
4w?t

p
e�l?

: �183�

It is supposed here that the initial scale of the evolving field
tube l0 is equivalent to the width of the percolation layer
l0� D?�e��� e�l?. If the longitudinal motions of magnetized
particles are diffusive, z 2�t� � 2wkt, on scales z > lz, we
obtain solutions of Eqn (183):

t � l2K
wk

ln2
��

b0
Kum

�2 wk
w?

�
: �184�

In the percolation limit Kum > 1, b0 5 1, and wk=w?4 1, the
renormalized coefficient of transverse particle diffusion in a
stochastic magnetic field takes a form linear in the perturba-
tion amplitude [174],

D?�t� �
b 2
0 wk

Kum
lnÿ1

�
b 2
0 wk

Ku2mw?

�
/ b0 ; �185�

where the estimate of the magnetic diffusion coefficient in the
limit of large Kubo numbers, Dm�b0� � b0D?, is used.

Isichenko [174] also considered the stage of percolation
structure formation by expressing the width of the stochastic
layer through the perimeter of the percolation cluster,

D?�t� / l?

�
l?
a�t�

�1=n

/ l?

�
l?
L�t�

�1=�nDh�
: �186�

The projection of the path traveled by a magnetic field line in
the cross section of a plasma cord is given by the linear

expression L�z�t�� � b0z�t�, and hence, assuming (as is
commonly done) that longitudinal particle motions are
diffusive, z 2�t� � 2wkt, we obtain the law for stochastic layer
width evolution:

D?�t� / 1

�b0
��
t
p �3=7

: �187�

On the other hand, in agreement with the views of
Batchelor and Rochester and Rosenbluth [187], decorrela-
tion occurs as the result of particles hopping from one field
line to another when the characteristic width of the stochastic
layer D?�t� becomes comparable to the characteristic
transverse diffusive scale

����������
4w?t

p
. The new equation for the

correlation time takes the form

l?

�
l?

b0z�t�
�3=7

�
����������
4w?t

p
: �188�

Having found the characteristic correlation time t �
�l2?=w?��w?=�b 2

0 wk��3=10, we can compute the coefficient of
transverse diffusion at this evolutionary stage of percolation
structure formation,

D / r 2?�t�
t
� a 2�t�P1�t�

t
� l2?

t

�
L�z�
l?

�1=Dh

: �189�

As previously, P1 � l?=a is the effective fraction of space
responsible for the percolation transport and L�z� � b0z �
b0

���������
2wkt

p
. Substituting the last expression in Eqn (189), we

obtain the transverse diffusion coefficient

D?�t� � l2?

�
b0

�����wkp
l?

�
tÿ�n�2�=�2�n�1�� � b0

����������
wkw?

p
: �190�

This expression is valid under the conditions

1 >
w?
b 2
0 wk

>
1

Ku2m
: �191�

It is important to note that percolation indices dropped
out from the final expression, and the result of computations
coincides with the classical approximation of Kadomtsev and
Pogutse for the regimes of strong turbulence, Kum 4 1 [69].
Nevertheless, the use of an ideology of this kind led to the
derivation of fundamentally new scalings for the transport
coefficients pertaining to magnetic flutter in the percolation
limit [176].

16. Quasi-isotropic stochastic magnetic field

Problems of particle transport in a stochastic magnetic field
with pronounced asymmetry are motivated by problems of
high-temperature plasma confinement and trap design for
controlled fusion. Quasi-isotropic stochastic magnetic fields
also play an important role in astrophysical problems. For
example, one encounters serious difficulties in trying to
describe processes of heat conduction in a stochastic field in
clusters of galaxies [191, 192], because the observed transport
greatly exceeds theoretical estimates derived in the framework
of the Rochester±Rosenbluth approach, even if wk � w?.

An important modification of the Rochester±Rosenbluth
scaling [190] was proposed in [192], where the characteristic
spatial scale of the inhomogeneity of a braidedmagnetic field,
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lB, is simultaneously the parameter describing the capture of
electrons by magnetic traps formed due to the substantial
inhomogeneity of the magnetic field in the longitudinal
direction.

The expression for the longitudinal correlation length for
quasi-isotropic magnetic fields can be conveniently written in
the form that involves the decorrelation scale directly linked
with the Larmor electron radius:

re � l? exp
�
ÿLcor

lK

�
: �192�

The authors of Ref. [192] suppose that the transverse
decorrelation of electron motion develops at distances of the
order of lB (Fig. 38), while this same scale characterizes the
sizes of magnetic traps which the electrons leave by acquiring
additional energy on collisions (Fig. 39). This situation is
characterized by the following hierarchy of scales:

re 5 lB � lK 4lcoll 5Lcor : �193�

Formally, in the case lB 4lcoll, where lcoll is the collisional
path length, the expression for the effective coefficient of
magnetic diffusion can be written in a one-parametric form:

Dm � l 2B
lB
� lB : �194�

The corresponding formula for the longitudinal correlation
length is

Lcor � lB ln
lB
re
: �195�

Scaling for the effective diffusion coefficient of electrons in a
quasi-isotropic stochastic magnetic field takes the form

Deff � Dm
Lcor

t
� Dm

wk
Lcor
� lB

wk
Lcor
� wk

ln �lB=re�
: �196�

The physical problem considered in [192] assumes using the
Spitzer±Harm electron heat conductivity coefficient wSp [193]
for wk. Then, in view of the one-dimensional character of the
electron motion along field lines, we find

wk �
D 2
?

2t
� wSp

3
: �197�

On the other hand, the estimate of re under conditions that
correspond to clusters of galaxies [191, 192] is Lcor � 30lB,
and therefore the approach in [192] gives the estimate

Deff � weff � 10ÿ2wSp : �198�

Estimate (198) is not totally satisfactory from the
standpoint of explaining the observed heat losses. Unfortu-
nately, the main cause is the complexity of the Spitzer±Harm
model [194]. This is why the approach used by Chandran and
Cowly needs modification.

The monoscale quasi-isotropic model in [192] assumed an
isotropic character of strong magnetohydrodynamic (MHD)
turbulence, a simple model of which was considered by
Iroshnikov [195] and Kraichnan [196], who arrived at the
energy spectrum

E�k� / 1

k 3=2
: �199�

However, a semi-empirical anisotropic model by Goldreich
and Sridhar, proposed in 1995, allows accounting for
contributions of different turbulent scales to the formation
of lB.

The authors ofRef. [200] used themodel byGoldreich and
Sridhar, which is based on the balance of characteristic times
in the AlfveÂ n MHD turbulence,

1

tA
� kkVA � k?V?�k?� � 1

t?
; �200�

where 1=tA is the AlfveÂ n frequency, VA is the AlfveÂ n velocity,
kk is the longitudinal wave number, k? is the transverse wave
number, V?�k?� is the transverse velocity scale associated
with the spatial scale k?, and t? is the dimensional estimate of
the nonlinear interaction time that characterizes the turbulent
cascade in the direction perpendicular to the magnetic field.
Certainly, expression (200) is just an approximation, but its
efficiency was repeatedly confirmed by numerical modeling,
which demonstrated the validity of the phenomenological
scaling [201±204]

lk � 1

kk
� VAl?

V?
� VAl?
�eKl?�1=3

� VA

e 1=3K

l
2=3
? ; �201�

eK � V 3
?
l?
� const ; �202�

where eK is the spectral energy flux. The corresponding energy
spectrum has the Kolmogorov form,

E�k?� / 1

k
5=3
?

: �203�

lB

Figure 38. Magnetic field magnitude along the particle trajectory, with lB
being the characteristic spatial scale of inhomogeneity.

D?

24

3

1

Figure 39.Magnetic field lines 1±2, 3±4 and a particle trajectory 1±4, with

D? being the characteristic scale on which the field is `braided'.
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The link between the longitudinal and transverse scales of the
form lk � l a? with a � 2=3 corresponds to strong MHD-
turbulence, and for a � 4=3 it corresponds to an intermedi-
ate regime, which lends support to the assumption that the
correlation scales characterizing transport in a stochastic
magnetic field are connected by

Lcor

lB
�
�
D
lB

�a

: �204�

This estimate, being essentially different from the Chandran
and Cowly expression Lcor � 30lB, leads, for transverse
displacements D � lB, to a prediction for the longitudinal
correlation length:

Lcor � D � lB 5 30lB : �205�

The new expression for the electron heat conductivity, of the
form weff � wSp=3, agrees better with data from astrophysical
observations.

We note that somewhat later, Goldreich and Sridhar
proposed a model for weak MHD turbulence, which led to
the energy spectrum [201±206]

E�k?� / 1

k 2
?
: �206�

But in this case, one can also use rigorous methods of weak
turbulence theory, which have been successfully used in
Refs [207±210] and discussed in reviews [205, 206, 211]. Our
task was only to show the usefulness of the phenomenological
approach for a fast qualitative assessment of effects, and we
therefore urge the interested reader to consult these works.

17. Stochastic instability and the inverse cascade

In Section 16, we briefly explained how the idea of a turbulent
cascade is applied to the analysis of the hierarchy of scales in
problems pertaining to the description of astrophysicalMHD
turbulence. The idea to use the Kolmogorov phenomenology
for studying the effects of stochastic instability, in relation to
the analysis of scalar (passive tracer) transport, goes back to
Batchelor [212]. Batchelor adopted the balance of character-
istic time scales (the characteristic diffusion and dissipation
times) to determine the boundary of the domain lBat where the
scalar cascade does penetrate,

td � l 2Bat
D0
� �nf eK�1=2 � tn : �207�

But this approach has not allowed deriving a consistent
estimate for the stochastic instability increment that would
reflect the functional dependence on theKolmogorov spectral
energy flux.

Two-dimensional turbulent flows characterized by the
inverse energy cascade that maintains the formation of
large-scale vortex structures [213, 214] are especially interest-
ing from the perspective of studying the evolution of the
stochastic layer. In analyzing spectra of two-dimensional
turbulence, it should be borne in mind that in this case, both
the kinetic energy of the fluid,

E � 1

2


jVj2� ; �208�

and its enstrophy,

OV � 1

2
hx2

Vi ; �209�

are conserved. Here, xV � rotV is the curl of velocity.
The existence of a second conserved quantity modifies the

character of cascade processes in turbulence. The transport
processes are now governed by the energy dissipation rate eK
and the enstrophy dissipation rate eo [34]. If the energy and
enstrophy are injected into the flow at some intermediate
scale kI, distant from the dissipation scale, they both become
involved in cascade processes. The connection between
spectral densities of energy and enstrophy prohibits simulta-
neous transfer of both quantities to small scales. For this
reason, in a freely evolving flow, its spectral fluxes of energy
and enstrophy have to be directed to the opposite spectral
ends, with the enstrophy flux being directed to small scales
and the energy flux to large scales (Fig. 40).

Therefore, two inertial ranges exist. For small scales
(smaller than the energy injection scales k > kI), the defining
quantity is the enstrophy dissipation rate. Its dimension is
eo � �sÿ3�, and hence the only possible dimensional combina-
tion gives the spectral distribution [213]

E�k� � Coe 2=3o kÿ3 : �210�

The enstrophy cascade is a direct one, i.e., the enstrophy is
transferred in it from larger scales to smaller ones. At large
scales (small wave numbers k < kI), the cascade process is
determined by the energy dissipation rate eK and the
corresponding Kolmogorov formula

E�k� � CKe
2=3
K kÿ5=3 ; �211�

with the essential difference that energy is transferred from
small to large scales in the inverse cascade. In two-dimen-

Energy cascade Enstrophy cascade

EO�k� � kÿ3

EK�k� � kÿ5=3

logE�k�

log klog knlog kin

Figure 40. Schematic of the energy spectrum of two-dimensional turbu-

lence in a double logarithmic scale. A direct cascade of enstrophy is

realized in the interval of wave numbers exceeding those of injection,

k > kI. An inverse energy cascade exists for wave numbers that are smaller

than the injection wave numbers, k < kI. Energy is dissipated in the

interval of wave numbers that exceed the viscous scale, k > kn. Here, E�k�
is the energy spectrum, k is the wave number, EK�k� is the Kolmogorov

energy spectrum, andEO�k� is the Kraichnan±Zakharov energy spectrum.

The arrows indicate the cascade directions. kin is the wave number of

energy injection and kn is the wave number related to the dissipation scale.
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sional and quasi-two-dimensional flows, this mechanism
supports the formation of large-scale vortex structures
because the inverse spectral energy cascade, bounded from
above by the characteristic flow size, leads to the accumula-
tion of a substantial fraction of kinetic energy in the large-
scale range. In fact, these vortices, filling extended spatial
regions, contribute to a nonlocal diffusion mechanism.

In this situation, the percolation method [71, 72, 215] can
be applied, in which a modified Batchelor balance for
characteristic times tB � ts is used. The characteristic time
associated with effects of stochastic instability, ts, should be
linked to a characteristic size of the stochastic layer ls and the
Kolmogorov spectral energy flux, ts � ts�ls; eK�. On the other
hand, instead of the diffusion time td, the characteristic time
of ballistic particle motion along the percolation streamline,
tB, is used, which in this problem statement `is responsible for
the mixing' of a scalar in the stochastic layer, tB � L=V0.
Here, as previously, l is the characteristic size of vortices in
the injection range andL�e� � a�e�=e � l=e n�1 is the length of
the percolation equipotential line. Recalling the percolation
estimates discussed above, we find the width of the stochastic
layer D � el and the spatial scale ls � l2=L [215]:

ts�eK; ls� �
�
l 2s
eK

�1=3

�
��

l2

L�e��
�2

1

eK

�1=3
: �212�

To determine the small percolation parameter e, we use the
balance of characteristic times as proposed above, based on
the dependence of key quantities on the small percolation
parameter ts�e� � tB�e�:��

l2

L�e��
�2

1

eK

�1=3
� L�e��

V0
: �213�

The increment of stochastic instability takes the form

gs �
1

ts
� V0

L�e�� �
�
V0

l

�2=5�eK
l2

�1=5

/ V
2=5
0 e 1=5K ; �214�

where the small percolation parameter is given by the
scaling

e n�1� �
�

l
V0

�3=5�eK
l2

�1=5

: �215�

The dependence of the increment on the amplitude of
turbulent pulsations V0 in the percolation limit proves to be
traditionally slow, gs / V

2=5
0 . Here, the spectral energy flux eK

is a key parameter, enabling the increment of stochastic
instability to be estimated based on the quantity characteriz-
ing the scale of energy injection.

A similar method for assessing the increment of stochastic
instability in two-dimensional flows with an inverse cascade
can be used to describe stochastic instability in two-dimen-
sional turbulent MHD flows, because the inverse cascade of
the vector potential occurs in them [216].

An analysis of the system of two-dimensional MHD
equations indicates that, as in the hydrodynamical case,
there are conserved quantities. We have the conservation of
the total energy,

E � 1

2

�
�V 2 � b 2� d2x � 1

2

X
k

k 2
ÿjFkj2 � jCkj2

�
; �216�

the helicity,

H cross �
�
Vb d2x �

X
k

k 2FkCÿk ; �217�

and the mean square magnetic potential,

A �
�
C 2 d2x �

X
k

jCkj2 : �218�

Here, we set b � ez � HC andV � ez � HF. It is important to
mention that the energy and helicity cascade is directed to the
interval of small scales, while the vector potential is carried by
the inverse cascade to the interval of large scales [217].
Therefore, large-scale vortices form in the range of scales
greater than the injection scale.

The spectrum of the vector potential (Fig. 41) is given by

A�k� / e 2=3A kÿ7=3 ; �219�

which is based on a conserved quantity

eA / C 2

t
� const �220�

the spectral flux of the vector potential.
Resorting to dimensional analysis, we can express the

characteristic time related to the deformation of long
equipotential lines in the form that combines the character-
istic spatial scale ls and the spectral flux of the vector
potential eA:

ts�eA� �
�
l 4s
eA

�1=3

; ls�e� � l2

L�e� : �221�

Here, l is the characteristic size of vortices in the injection
range andL is the length of the percolation equipotential line.
Anticipating the character of the scalar patch evolution in the
vortex field of MHD turbulence, we write the balance of
characteristic time scales as ts�eA� � tB�V0�. After the

t � 30

t � 300

t � 75

kÿ7=2

kÿ7=3

103

102

101

100 101

100

10ÿ1

10ÿ2

10ÿ3

10ÿ2 10ÿ1 k

Ak

kin

Figure 41. Inverse cascade of the vector potential; Ak is the vector

potential spectrum, k is the wave number, and kin is the wave number

pertaining to the spatial injection scale. The arrow points to the change

in the slope in the vector potential spectrum related to the presence of

two cascades.
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substitution, we arrive at the equation�
l 4s �e��
eA

�1=3

� L�e��
V0

: �222�

In fact, we assume that the scalar particlesmanage to undergo
a ballistic flight along the equipotential line they `ride' on for
the characteristic time related to the stochastic instability of
the current lines. Solving Eqn (222) for the small percolation
parameter e�, we find

e n�1� �
�

eA
lV 3

0

�1=7

: �223�

Here, as above, we use the exact value of the correlation index
in the two-dimensional case, n � 4=3.

The new scaling for the increment of stochastic instability
in two-dimensional MHD flows with the inverse spectral
cascade of the vector potential is expressed as

gs �
V0

l

�
eA
lV 3

0

�1=7

/ V
4=7
0 e 1=7A : �224�

Formula (224) determines the character of the dependence of
the stochastic instability increment on the amplitude of
turbulent velocity pulsations V0 and the spectral flux of the
vector potential eA.

18. Multi-scale approximations

Monoscale models of stochastic instability do not allow a
detailed description of turbulent transport. Currently, the
treatment of stochastic instability in the multi-scale limit is
still an unsolved problem. However, there are various
approximations that lead to estimates and scalings for
certain effects of transport pertaining to the exponential
divergence of streamlines or magnetic field lines.

One of the simplest models relies on the modification of
the model differential equation of Batchelor, which describes
the exponential regime. The equation describing the expo-
nential `separation' of initially close lines of a quasi-isotropic
random magnetic field takes the form

dD2

dl
/ D2

lB
: �225�

For D2 > l 2B , however, the exponential regime should pass
into the diffusive one:

dD2

dl
� Dm � l 2?

lB
: �226�

From this standpoint, it is natural to describe intermediate
situations by modifying the factor before 1=lB, taking the
increased role of large scales in intermediate regimes into
account. Then, in terms of wave numbers k / 2p=l, it is
convenient to write the model equation in the form that
includes the contribution from different scales in the
hierarchy,

dhD2i
dl
� hD2i

� 1=D

1=lB

k d ln k�
� 1=lmin

1=D
k d ln k ; �227�

where kmin / 2p=lmin is the wave number associated with the
minimum spatial scale of turbulence.

Such an approach was repeatedly used to analyze the
hierarchy of scales that corresponds to the model of strong
AlfveÂ n turbulence, Lcor=lB � �D=lB�a [197, 200, 218], satisfy-
ing the condition

lmin < l? < lB 4Lcor : �228�

In terms of wave numbers k? / 1=l? and kk / 1=lk, themodel
equation can be conveniently written in a form that takes the
contributions of different scales of the hierarchy to the
formation of the scale LK � lB into account:

dhD2i
dl
� hD2i

� 1=D

1=lB

kk�k?� d ln k? �
� 1=lmin

1=D

kk�k?�
k 2
?

d ln k? ;

�229�
where kk / k

1=a
? , and, consequently, describes the transition

to regimes with Da � l a? � lk. It is important to note that
despite the use of the multi-scale approach linking long-
itudinal and transverse motions in strong AlfveÂ n turbulence,
the characteristic scale lB of a braided magnetic field turned
out to be the universal model parameter lB � Lcor � LK � D.

Another method, close in spirit, relies on the construction
of approximate equation for the Richardson coefficient of
relative diffusion. The exponential divergence of particles

l 2�t� � L2
0 exp �gst� �230�

is then associated with the differential equation

DR � d

dt
l 2�t� � gsl

2�t� : �231�

Here, gs is the stochastic instability increment and L0 is the
characteristic spatial scale. On the other hand, for large times,
we are dealing with the Richardson regime, which is described
by the differential equation

DR � d

dt
l 2�t� / 2DT : �232�

It is possible to construct an approximate differential
equation that allows obtaining both characteristic regimes:

d

dt
l 2�t� / 2Deff�l � : �233�

An appropriate approximation can be the equation combin-
ing molecular effects with turbulent diffusion:

d

dt
l 2�t� / 2D0 � 2DT

�
l

Dmix

�2

: �234�

Here, D0 is the coefficient of molecular diffusion, DT is the
coefficient of turbulent diffusion, and Dmix is the character-
istic spatial scale of mixing. From Eqn (234), it is not difficult
to obtain the characteristic time of scalar patch evolution,

dt � 2l dl

2D0 � 2DT�l=Dmix�2
: �235�

Computations give the following expression for the mixing
time:

tmix�Pe� � D2
mix

DT
ln

Pe

1� PeL0=Dmix
: �236�
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In reality, we have obtained the scaling known from the
simplified monoscale approach:

tmix�Pe� � 1

gs
ln Pe ; Pe4 1 : �237�

This is not surprising because with this approximate
approach we did not manage to incorporate information on
the character of the turbulence field. Obviously, the develop-
ment of methods for analyzing stochastic instability in
conditions of developed turbulence in the multi-scale limit
will require considerable efforts from the research commu-
nity.

19. Conclusions

Ideas about stochastic instability and the stochastic layer
have become an important tool for deriving expressions for
coefficients describing turbulent transport. However, a
rigorous, mathematically grounded theory of turbulence is
absent thus far, which makes it necessary to use phenom-
enological arguments and scalings. We see that the problem
of describing stochastic instability is being attacked by
research from different sides. This includes estimating
increments of stochastic instability, finding concrete decorr-
elation scales, describing various transport regimes in both
hydrodynamical flows and plasmas, and attempts to
construct multi-scale approximations. The main task of
this review was to show the importance of determining the
functional dependence of increments and transport coeffi-
cients on the amplitude of turbulent pulsations and other
key parameters (characteristic frequencies of pulsations,
drift velocities, spectral energy flux, and others) describing
the systems being explored.

In conditions of strong structural turbulence, using
formal exponential dependences for the autocorrelation
function is impossible because of the existing long-range
correlations. For this reason, the classical Taylor approach
relying on these correlation functions often loses its meaning,
even in the case of power-law approximations that allow
modeling anomalous transport. The emerging difficulties lead
to the need to construct phenomenological models that
account for the topological features of coherent structures.

A particular focus of this review was on two-dimensional
turbulent flows. The existence of the inverse energy cascade is
responsible for the emergence of large-scale vortices in such
systems as the result of evolution, whereas their streamlines
may contribute substantially to the effective particle trans-
port. A principal distinction of the systems of equations
describing two-dimensional incompressible flows is the
absence of a term responsible for the stretching of vortices.
This is an essential drawback, which is considered by many
researchers as a rationale for considering two-dimensional
models to be oversimplified. Nevertheless, with the help of
two-dimensional turbulence, we can describe important
geophysical phenomena such as tropical cyclones, large-
scale atmospheric motions, and oceanic flows.

We paid much attention to analyzing percolation models.
This is motivated by the efficiency of such models in the
analysis of two-dimensional and quasi-two-dimensional
turbulent transport. Here, the small width of the stochastic
layer where the adiabatic invariant is destroyed becomes a
critical parameter that characterizes the proximity of the
system to the phase (percolation) transition. This approach
facilitated deriving scalings for the increment of stochastic

instability in a random two-dimensional flow, and also
transport coefficients for charged particles in a magnetic
field, modeling conditions in devices for high-temperature
plasma confinement. We note that in one of his last papers,
Zel'dovich pointed to the percolation problem statement as
an important addition to Moffat's ideas on streamline
cohesion [219].

When considering problems of estimating the increment
of stochastic instability in the percolation limit, we find that
the concept of a scalar proves to be rather efficient. The use of
scalars helps not only to visualize complex vortex structures
of turbulent flows in experiments but also to find closure
conditions for computing concrete physical quantities. Just
the analysis of the evolution of a scalar placed in a turbulent
field led to various balance equations for characteristic times.

Much consideration is given in this review to exploring
plasmo-physical models describing diffusion of charged
particles in a stochastic magnetic field and transport in
conditions of developed drift turbulence. For example, in
magnetized high-temperature plasmas, the energy flux is
directed toward large scales, and therefore small perturba-
tions may strongly influence large scales. This makes the
description of turbulent transport in plasmas, which proves to
be anomalous in most cases, all but trivial.

Indeed, the fundamental question on the character of the
interaction and evolution of vortices in a turbulent flow
remains open, and scaling continues to be the main tool for
the analysis. This situation is not unique. Difficulties also
persist in considering general questions of nonequilibrium
statistical mechanics related to effects of stochastic instability
and mixing. In spite of the fruitfulness of Boltzmann's ideas
on the phase fluid evolution and fundamental work by
Bogoliubov on many-particle distribution functions, we still
have only limited possibilities for deriving rigorous turbulent
transport equations from first principles.
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A M Popov, V D Pustovitov, V K Rerikh, A A Rukhadze,
V P Silin, A V Timofeev, A S Trubnikov, VD Shafranov, and
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