
Abstract. The problem of turbulent flow in pipes, although at
first sight of purely engineering interest, has since the 1930s
been the subject of much attention by mathematicians and
physicists, including such outstanding figures as Th von
K�arm�an, L Prandtl, and L D Landau. It has turned out that
despiteÐor perhaps due toÐ the seemingly simple formula-
tion of this problem, research on it has revealed new aspects of
the still very mysterious phenomenon of turbulence. Reference
[1] briefly summarizes our work over the last twenty years on
the problem. Some of our results strongly disagree with com-
monly accepted views which, unsurprisingly, makes them diffi-
cult to accept. This is well exemplified by letter [2], so its
analysis here may hopefully be of interest to UFN's (Physics ±
Uspekhi) readers.
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1. We briefly recapitulate the notions needed for what
follows. For a statistically averaged mean velocity u of a
flow at a distance y from a pipe wall, the formula (the von
K�arm�an±Prandtl universal logarithmic law)

u� � 1

k
ln y� � B ; u� � u

u�
; y� � yu�

n
�1�

was proposed.
For the reader's convenience, we change the notation

from that used in our paper [1] to that of letter [2], so that
u� � �t=r�1=2 is the `dynamic velocity', t is the shear stress at
the pipe wall, Re � Ud=n, U is the section-mean velocity, i.e.,
the transport rate divided over the cross section area, d is the
pipe diameter, and r and n, respectively, are the density and
kinematic viscosity of fluid. We stress the intermediate-
asymptotic character of formula (1): it is considered valid for
an intermediate range of distances from the wall, outside the
thin `viscous sublayer', where the contributions from turbu-
lent and viscous stresses are comparable, and a narrow
vicinity of the pipe axis. The constants k (the von K�arm�an
constant) and B are assumed to be universal, i.e., in principle,
the same for all experiments in all laboratories. This was, in
particular, stressed by L D Landau, who proposed in 1944
[3, 4] a simple derivation of relationship (1) based on the
hypothesis explicitly formulated by von K�arm�an:

``On the basis of these experimentally well-established
facts, we make the assumption that away from the close
vicinity of the wall, the velocity distribution of the mean flow
is viscosity independent.''

Indeed, dimensional analysis [5, 6] gives

qyu � u�
y

F
�
Re;

yu�
n

�
;

or

qy�u� �
1

y�
F�Re; y�� :

The independence from viscosity, which enters both argu-
ments of the function F, implies that the function F is a
constant; it is traditionally denoted as 1=k, so that

qy�u� �
1

ky�
: �2�
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The integration of the last relationship (we stress the ordinary
integration, studied in a standard calculus course) leads to the
von K�arm�an±Prandtl universal law (1).

2. Let us turn now to letter [2]. On page 197 we read:
``Reference [1] correctly mentions that problems arise in

attempts to determine the empiric constants k and B from the
results of velocity profile measurements. These problems can be
associated with different causes. First, they are certainly linked
to the measurement errors and also to the difference in the
interpretation of the results obtained and their processing
technique. So Ref. [4] (it is Ref. [7] here) mentioned in Ref. [1]
proposes the values of k � 0:44 and B � 6:3, while in the more
recent study [5], carried out with the same setup [4], gives
k � 0:425� 0:002 and B � 5:6� 0:08, which is already fairly
close to the pair k � 0:41 and B � 5 used most frequently.
Second, one may criticize formula (3) proper. Indeed, the
derivation given by Landau [6] only strictly states that

u� � 1

k
ln y� � o�ln y�� ; y� ! 1 : �5�

That the second term of asymptotic form (5) turns out to be
constant is an additional assumption which should possibly be
abandoned. The problem here, however, is the lack of
theoretical arguments for constraining the form of the second
term in expansion (5)'' [italics are ours Ð the Authors].

Thus, letter [2] makes an explicit statement on the
inappropriateness of the universal logarithmic law (1). Nothing
is proposed instead.

Letter [2] reminds the reader of traditional similarity laws:
the universal logarithmic law (3) for the velocity profile in the
near-wall layer:

u� � 1

k
ln y� � B� o�1� ; y� ! 1 �3�

(a straight line in the plane ln y�, u�) and the universal law of
velocity defect near the axis, the matching of which, as done
by Isakson, Millikan, and von Mises, is proposed as the
derivation of the universal (i.e., independent of the Reynolds
number) logarithmic law.

Just higher we find in letter [2]:
``Thus, the logarithmic law does not exist on its own but

represents a part of a general concept used for an asymptotic
description of the velocity field in a pipe. If the respected authors
of paper [1] are willing to discard it, they then should
simultaneously abandon the Prandtl and von K�arm�an self-
similar laws and propose something instead. Put differently, if
one opts for changes, then they should not be limited to just
replacing the logarithmic law with the power law, but must
introduce a new theory instead of the classical asymptotic
theory of the velocity field in a pipe, which, as we can judge, is
still lacking.''
Here, we need to correct the respected author of the letter:
such a theory has existed for a long time (see Ref. [8] and
subsequent publications of the authors, in particular, book [9]
published recently). Importantly, the procedure of Isakson±
Millikan±von Mises, described by the author, and the self-
similar laws were modified in our work with due regard for
the Reynolds number effect.

3. Let us turn to experimental facts. The experiments by
M V Zagarola [7] (Fig. 1) are in strict contradiction to the
universalityÐ the independence from the Reynolds number.
One sees that data are split in the function of the Reynolds

number, and, in particular, the Reynolds number dependence
of the velocity defect near the axis (the `domes' in Fig. 1) and
straight line intervals in the plane ln y�, u� matching the
domes.

What is said above is sufficient to challenge the correct-
ness of the von K�arm�an±Prandtl law. We have realized (even
before the Zagarola experiments) that this is linked to the
incorrectness of the main assumption of von K�arm�an
reproduced above, so that the influence of viscosity perme-
ates the whole pipe section, not only the viscous sublayer. We
put forward a proposition on the incomplete self-similarity in
the parameter y�, i.e., the invariance of the velocity distribu-
tion with respect to the group of transformations:

qy�u� �
1

y�
F ; F � A �Re� �y��a�Re� :

This proposition includes as a particular case the complete
self-similarity in the parameters y� and Re when a � 0,
A � const, but is more general. We also adopted the
`vanishing viscosity hypothesis', according to which the
velocity gradient tends to a finite limit as n! 0. This
hypothesis is satisfied automatically in the case of complete
self-similarity in the parameter y� when F � const. From
these two hypotheses accepted by us, we deduced rigorously
the relationship

u� � �C1 lnRe� C2��y��C3= lnRe :

The constants C1, C2, and C3 featured in the last formula
were obtained by us through a comparison with the results of
J Nikuradse [10] (256 experiments) carried out in Prandtl's
laboratory. Their values have been found to be (within
experimental uncertainty):

C1 � 1���
3
p ; C2 � 5

2
; C3 � 3

2
:

These constants, in contrast to individual selections for
each series of experiments, which are mentioned in letter [2],
were strictly fixed and kept without changes for all subse-
quent processing of the experimental data.

Figures 2 and 3 present a comparison of the power law
proposed in our work, namely

u� �
�

1���
3
p lnRe� 5

2

�
�y��3=2 lnRe ; �4�

Re=35 �106
Re=10 �106

Re=3.1 �106
Re=1.0 �106

Re=32 �103
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Re=310 �103

u� � 1

0:44
ln y� � 6:3
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Figure 1. The universal logarithmic law is not confirmed by the data of

Zagarola's experiments at the Superpipe facility (Princeton, USA).
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with the experiments by Nikuradse [10] and Zagarola [7]. We
carried out the comparison using a sensitive transform:
instead of u�, we considered the function

c � 1

a
ln

2au����
3
p � 5a

; a � 3

2 lnRe
:

This transform modifies the power law proposed by us to the
simple relationship

c � ln y� :

The comparison shows that, beginning from the upper
boundary of the viscous sublayer y� � 30 and up to a narrow
vicinity of the axis 2y=d > 0:95, the experimental points fit
accurately the bisector of the first quadrant c � ln y�, which
confirms the power law proposed by us.

Remarkably, for y� < 30, the experimental points fit a
single curve in this plane and do not split in the Reynolds
number. This fact suggests some opportunity to explore flows
in the upper part of the viscous sublayer.

Concurrently, we have shown in paper [8] that Zagarola's
experiments cannot be treated as performed on a setup with
smooth walls beginning from Re � 106, because the manifes-
tations of wall roughness become visible. This conclusion was
confirmed in Ref. [11].

We arrive at the following conclusions.
1. Contrary to the vonK�arm�an assumption, the influence

of viscosity in a turbulent flow in a pipe does not disappear in
the entire section. The vonK�arm�an±Prandtl universal log law
cannot be accepted as a rigorous one.

2. The nonuniversal (depending on theReynolds number)
power law proposed in our work, namely

u� �
�

1���
3
p lnRe� 5

2

�
�y��3=2 lnRe ;

is valid over the whole range from the upper boundary of the
viscous sublayer y� � 30 to the narrow vicinity of the pipe
axis: 2y=d > 0:95. The experiments conducted by Nikuradse
[10] confirm the power law in the full range of the Reynolds
number variations up to Re � 3:24� 106. Zagarola's experi-
ments lend support to the power law up to 1� 106. For larger
Re number variations, wall roughness becomes noticeable at
the Superpipe facility (Princeton, USA) [8, 11]. With account
for corrections on roughness based on the standard proce-
dure, the power law is confirmed for all Re in the experiments
by Zagarola. Notice that attempts to use the intermediate-
asymptotic power law (4) outside its applicability boundaries,
present in letter [2], cannot be substantiated.

3. An additional argument in favor of the proposed power
law is the outstanding agreement of the relationships based on
it with the data of numerous experiments on boundary layers.

4. In our opinion, letter [2] does not affect the content of
our work reflected in review [1].
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Figure 2.Nikuradse's data confirm the new power law.
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Figure 3. Zagarola's data confirm the new power law.
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