
Abstract. We review the current status of the theory of discon-
tinuous magnetohydrodynamic (MHD) flows and its applica-
tion to the physics of magnetic reconnection in astrophysical
plasmas and in laboratory and numerical simulation studies.
The emphasis is on the study of continuous transitions occur-
ring between different types of discontinuities under gradual
and continuous variation of the plasma flow parameters. The
properties of the Syrovatskii reconnecting current sheet are
described, and the possibility of the splitting of the current
sheet into a system of MHD discontinuities is demonstrated.
A simplified analytic model of magnetic reconnection is used to
study the system of shock waves associated with the current
sheet. With this system as an example, some implications of the
conditions of continuous transitions and the possibility of addi-
tional plasma heating by a shock wave are considered.
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1. Introduction

Magnetohydrodynamics (MHD) describes the behavior of a
conducting medium (liquid or gaseous) interacting with an
electromagnetic field. The MHD theory is based on the
electromagnetic field and fluid dynamics equations. Pro-
gress in MHD studies peaked in the middle of the 20th
century and was related (in addition to numerous technical
applications) to new problems in solar physics, geophysics,
and astrophysics. This was due to specific features of the
objects, first of all, the high ionization degree of the
interstellar gas, stellar atmospheres, and stellar interiors,
which makes these media excellent conductors. Second,
magnetic fields have an energy density comparable to that
of the surrounding medium, i.e., they can control frozen
plasma flows. Third, the large scales of space objects justify
their hydrodynamic description.

The basics of MHD were formulated in the 1940s by the
Swedish physicist H AlfveÂ n, who proposed this theory to
explain some phenomena in space plasma [1]. AlfveÂ n
described a new type of wave motion of a conducting
medium in the magnetic fieldÐmagnetohydrodynamic
waves, now known as AlfveÂ n waves. Later, several more
characteristic low-amplitude waves inmagnetizedmedia were
identified, such as fast and slow magnetosonic waves.

Unlike AlfveÂ n and magnetosonic waves, which are
described by small perturbations in the equations for
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conducting media, discontinuous flows are regions where
solutions of nonlinear equations for two continuous fluids
separated by a discontinuity surface are to be matched.
Complex interactions of the magnetic field with matter in
MHD (especially when a high-temperature plasma in a strong
magnetic field is considered) give rise to many different
discontinuous solutions [2].

We recall that a drastic change (jump) in the parameters of
matter occurs across the discontinuity surface. As is well
known, equations of ordinary fluid dynamics allow discon-
tinuous solutions of two types: tangential discontinuities and
shocks [3]. The first solution is an interface between two
media moving relative to each other; there is no matter flow
through the discontinuity fromonemedium into another. In a
shock, by contrast, the matter inflows into the discontinuity
supersonically and outflows from it subsonically. This
property of shocks provides their mechanical stability. Small
perturbations propagate only with the speed of sound and are
unable to cross the shock front, which is conducive to keeping
the sharp form of the front. Figure 1 illustrates both types of
hydrodynamic discontinuities in a reference frame co-moving
with the discontinuity along the x axis directed normally to
the discontinuity surface.

In MHD, the presence of a magnetic field in a plasma
leads to the formation of fast and slow shocks, AlfveÂ n flows,
and other discontinuities [4±6]. The discontinuousMHD flow
type is determined by changes in the plasma density, its flow
velocity, and the frozen magnetic field strength. Moreover,
unlike fluid dynamics, MHD allows continuous transitions
between different types of discontinuities under continuous
changes in the plasma flow conditions [7]. This proceeds via
the so-called transition solutions, which satisfy two types of
discontinuity conditions simultaneously. In addition, on the
discontinuity surface, plasma heating occurs, which, of
course, also depends on the MHD discontinuity type, but
does not determine its classification pattern, namely, the
continuity or jump of the density or the presence or absence
of the normal velocity component v? and the normal
magnetic field B?.

The possibility of transitions between discontinuities of
different types can be conveniently represented as a block
diagram in which each block corresponds to a particular
MHD flow type. Several such diagrams have been proposed
at different times [7±9]. Each subsequent diagram included
more diverse MHD discontinuities than the previous one.
Such diagrams, taking all possible types of discontinuities
into account and describing the allowed transitions between
them, are necessary, for example, in order to interpret
modern numerical simulations of the magnetic reconnec-
tion.

Discontinuous plasma flows can be realized under a wide
range of physical conditions. As a consequence, they occur in
various technological devices and setups used in practice (see
[10±12]), in laboratory and numerical experiments (see, e.g.,
[13±15]), and in space conditions [16±18], especially in
relation to the magnetic reconnection effect [19±23]. This
effect is a rearrangement of the interacting magnetic fluxes
that changes their topological connection. Typically, the
interaction of magnetic fluxes in a highly conducting
plasma, for example, in the solar corona, generates electric
currents, more precisely, thin current surfaces or current
sheets, which can be considered two-dimensional discontin-
uous MHD flows [24±26].

In highly conducting plasmas, current sheets significantly
slow down the reconnection process compared to the vacuum
case. A substantial magnetic energy excess is stored in the
magnetic field of the current sheets, which corresponds to the
interaction energy of nonreconnected magnetic fluxes and is
called the free magnetic energy. For a current sheet in the
solar corona, the free energy can be as high as 1032 erg, which
corresponds to the energy of the most powerful solar flares.
Thus, Syrovatskii's theory of current sheets [27] answered the
key questions of the physics of solar flares: where, when, and
in which form is their energy accumulated.

The second important feature of the Syrovatskii current
sheet is its metastability. It is stable only in a certain range of
physical parameters. Depending on their values, the current
sheet either is stable and slowly changes with variations of the
parameters, or loses stability at some threshold values of the
parameters, which leads to a rapid dissipation of the stored
energy in the form of a solar flare [28].

Omitting significant details and stages of the development
of a solar flare, we only note that the fast magnetic
reconnection in the flare occurs in a high-temperature
turbulent current sheet [29, 30]. During the flare, the
reconnection rapidly transforms the magnetic field energy
stored before the flare into the energy of plasma particles. A
significant fraction of the flare energy is then released in the
form of jetsÐhigh-velocity narrow plasma flows from the
current sheet. Outside the current sheet, the jets give rise to a
complex picture of discontinuous MHD flows. Understand-
ing this picture is necessary, in particular, for explaining
observational properties of powerful eruptive flares, coronal
mass ejections, and other geoeffective solar phenomena [31±
33].

X-ray space observatories, the international Yokoh
satellite first of all [34, 35], allowed observing consequences
of the magnetic reconnection in solar flares. The most
pronounced among them are the so-called solar flare loops
observed in soft X-rays [36, 37]. The motion of the loop base,
observed in hard X-rays [34, 36], directly evidences the
magnetic reconnection at the magnetic field separatrices in
the solar corona. Other manifestations of the magnetic
reconnection include the high-temperature plasma rising
from the chromosphere to the corona along the reconnecting
field lines [36], hard X-ray sources at the top of the loops [38,
39], horizontal motion of matter in the reconnecting region
[40], plasma flows [41], and whole plasma `islands' injected
with high velocity from the solar corona into the interplane-
tary space [42, 43].

In the last decade, detailed images from the space
observatories RHESSI and SDO have resolved the double
structure of the hard X-ray emission above the solar flare
loop tops [44, 45]. The coronal source of the hard X-ray

vx1 vx2 < vx1

by

x

r r2r1

x0

r r2r1

x0

v2 6� v1

v1

ay

x

Figure 1.Hydrodynamic discontinuous flows: (a) tangential discontinuity,

(b) shock wave.
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emission is directly related to the plasma heated and
accelerated at opposite ends of the current sheet. The
measured spectra and temperature profiles of this emission
depend on the local magnetic field configuration and
plasma density [46]. Observations suggest that the jet
formation regions and shocks play a significant role in
particle acceleration and plasma heating to huge tempera-
tures [47]. Despite these data, so far no direct observations
of the formation and evolution of a current sheet in a flare
have been obtained. A high electric conductivity and an
almost force-free configuration of the magnetic field restrict
the reconnecting current sheet to a very narrow region in
the rarefied corona, which makes the sheet difficult to
observe due to a very small proper emission.

Modern numerical simulations of the magnetic reconnec-
tion (both two- and three-dimensional) in the dissipative
MHD approximation demonstrate a somewhat smoothed
picture of discontinuous flows in the vicinity of a reconnect-
ing current sheet [48±52]. When interpreting the results of
such simulations, especially in 3D, it is difficult to uniquely
identify the type of the discontinuity using an incomplete set
of features. Once this difficulty is overcome, a second problem
arises: it is necessary to explain the simultaneous presence of
different discontinuity types, which smoothly transit from
one into another.

The problem of interpretation of the continuous transi-
tions is frequently complicated by the emergence of non-
evolutionary discontinuities [53]. Small perturbations applied
to the surface of a nonevolutionary discontinuity instantly
lead to big changes in the discontinuous flow. This distinctive
property of nonevolutionarity is different from instability: the
usual instability is related to a gradual increase in small
perturbations that remain small during some finite time
interval. But in a nonevolutionary discontinuity, perturba-
tions become large immediately. For this reason, the detec-
tion and analysis of nonevolutionary regions are important
tasks of the fluid dynamics and MHD. These features are
especially difficult to observe in numerical simulations of the
magnetic reconnection process.

In [53, 54], a two-dimensional stationarymodel of reconnec-
tion in a strong magnetic field was considered, including a
Syrovatskii-type thin current sheet [26] and four finite-length
discontinuous MHD flows attached to its edges [56]. The
analytic solution of the problem allows constructing the
pattern of magnetic field lines around the reconnection
location. The calculated field structure is generally very
complicated. The formation of the current sheet is accompa-
nied by reverse currents arising at its edges, which makes this
structurenonevolutionary [57, 58]. Explaining the structure and
comparing it with numerical simulations, for example, those
carried out in the dissipative MHD approximation [59±63],
requires a simple and convenient interpretation of the magnetic
field structure change on the discontinuity surface in the
`laboratory' frame with a nonzero electric field, which inevi-
tably arises during magnetic reconnection.

We here review the properties of discontinuous MHD
flows and the magnetic reconnection physics. In Section 2, we
consider the boundary conditions of the ideal MHD on the
discontinuity surface. An equation that relates the magnetic
field line inclination angles at different sides of a two-
dimensional discontinuous flow is derived. Using the char-
acteristic parameter, namely, the mass flow rate across the
discontinuity, the relation of this dependence to the standard
MHD plasma flow classification is obtained.

In Section 3, we seek the transition solutions between all
neighboring pairs of the MHD discontinuities among both
2D- and 3D-flows. Section 4 is devoted to the study of a
boundary condition that is equivalent to the energy con-
servation at the discontinuity surface. The corresponding
equation does not reflect the classification pattern of the
discontinuity, but bears information about the plasma
internal energy and hence about the ability of an MHD
flow to heat the plasma. We seek an equation that explicitly
describes the plasma internal energy change across the
discontinuity. The dependence of this equation on both
thermodynamic parameters of the medium and the MHD
discontinuity type is examined.

The basic properties of the Syrovatskii reconnecting
current sheet are described in Section 5; here, the notion of
evolutionarity is introduced. Typical approximations are
considered that allow addressing the evolutionarity of the
current sheet as a discontinuous MHD flow. In Section 6,
we study the evolutionarity of a reconnecting current
sheet. The fundamental possibility of the current sheet
splitting into a system of MHD discontinuities is demon-
strated.

Properties of discontinuous flows near a reconnecting
current sheet in a strong magnetic field are discussed in
Section 7. A self-consistent analytic model of the magnetic
field is considered in the strong-field and cold-plasma
approximation. MHD flows that are formed at the side
edges of the reconnecting current sheet are classified. It is
shown that the magnetic field configuration changes with the
distance from the current sheet, signaling a change in the
discontinuous flow type. The analysis of the corresponding
transition solutions confirms the possibility of additional
plasma heating by shocks outside the reconnection domain.
Conclusions are formulated in Section 8.

2. Magnetic field change
at the magnetohydrodynamic discontinuity

2.1 Boundary conditions at the discontinuity
In the vicinity of an MHD discontinuity, the plasma
density, its pressure, the flow velocity, and the direction
and strength of the magnetic field can change abruptly over
a scale comparable to the mean free path of particles.
Physical processes inside such a jump are determined by
kinetic phenomena in the plasma, both laminar and
turbulent [64]. In the dissipative MHD approximation, the
internal structure of a discontinuous plasma flow is
determined by the dissipative transport coefficients (viscos-
ity and electric conductivity) as well as by the heat
conductivity [65, 66]. However, in the ideal MHD approx-
imation, this jump has zero thickness, i.e., it occurs on some
discontinuity surface.

We consider a flat discontinuity surface, which is relevant
for areas whose diameter is small compared to the surface
curvature radius. Figure 2 shows the reference frame in
which the observer moves together with the discontinuity
surface located in the plane �y; z�. The homogeneous plasma
inflows with a constant velocity into the discontinuity from
the left-hand side and outflows from it to the right. In the
ideal MHD approximation, we neglect the viscosity, thermal
conductivity, and electric conductivity of the plasma. Then
the boundary conditions for the MHD equations at the
discontinuity can be written in the form of the conservation
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laws [4, 67, 68]

fBxg � 0 ; �1�
frvxg � 0 ; �2�
fvxBy ÿ vyBxg � 0 ; �3�
fvxBz ÿ vzBxg � 0 ; �4��
rvxvy ÿ 1

4p
BxBy

�
� 0 ; �5��

rvxvz ÿ 1

4p
BxBz

�
� 0 ; �6��

p� rv 2
x �

B 2

8p

�
� 0 ; �7��

rvx

�
v 2

2
� E� p

r

�
� 1

4p

ÿ
B 2vx ÿ �vB�Bx

�� � 0 : �8�

We use the standard notation for the physical quantities,
unless stated otherwise. Curly brackets denote the difference
in the values of the expressions inside them on each side of the
discontinuity. For example, the first equation implies the
continuity of the normal component of the magnetic field:

fBxg � Bx2 ÿ Bx1 � 0 ;

or, equivalently, the magnetic flux conservation. The other
seven equations also bear a simple physical meaning: Eqn (2)
expresses the mass flux continuity; Eqns (3) and (4) are
conditions of the continuity of the tangential electric field
component; Eqns (5)±(7) describe the continuity of the three
momentum flux components; finally, Eqn (8) is the condition
of the energy flux continuity. Quantities with the index 1 are
related to the left-hand side of Fig. 2, corresponding to the
upstream plasma, and those with the index 2, to the right-
hand side of Fig. 2, corresponding to the downstream plasma.
Of course, in addition to these eight equations, the plasma
equation of state is assumed to be known, for example, in the
form of the specific (per unit mass) enthalpyw as a function of
the density r and pressure p.

As is well known, the system of boundary conditions (1)±
(8), unlike a similar system in hydrodynamics, does not
decompose into a set of mutually incompatible groups of
equations, and therefore, in principle, allows continuous
transitions between different types of discontinuous flows

under continuous changes in the plasma flow conditions.
Hydrodynamic discontinuous flows can be of only two types
[tangential discontinuities and shocks (see Fig. 1)] and can
have only two propagation velocities (zero and the speed of
sound, respectively). This property prohibits continuous
transitions between hydrodynamic flows. Transitions in
MHD occur through some discontinuities, which simulta-
neously satisfy the boundary conditions for two adjacent
types of discontinuous flows, and can therefore be related to
one type or another [7]. The existence of such transitions can
be guessed by passing from the discontinuous solutions to the
limit of low-amplitude waves and studying their phase
velocity diagrams [29, 69]. In this limit, the fast and slow
magnetosonic waves correspond to oblique shocks, and the
rotational discontinuity corresponds to the AlfveÂ n wave.

If there are transition solutions, the classification ofMHD
discontinuities becomes conventional. Indeed, a discontinuity
of a certain type can continuously transform into a disconti-
nuity of another type under a smooth change in the incident
plasma parameters. As we show in Section 4, the disconti-
nuity type can change from one point to another on the
discontinuity surface. In any case, due to the possibility of
smooth transitions between discontinuities of different types,
their classification is based on the local external properties of
the flow near the discontinuity plane, including the presence
or absence of the normal components of the velocity vx and
the magnetic field Bx (those perpendicular to the plane), the
continuity or a jump in the density r. Relative to these
signatures, the energy conservation law (8) is an additional
condition: with the magnetic field, the velocity field, and the
density jump found, Eqn (8) determines the jump in the
internal energy E.

Before seeking transition solutions, we must understand
under what conditions different types of discontinuities are
formed. Without loss of generality, we rotate the coordinate
system about the x axis such that the velocity component
vanishes, vz1 � 0. Then, substituting (1) in (6) and using (2),
we obtain the equation

Bx

4p
fBzg � rvxvz2 : �9�

We consider some simple particular solutions of this equation
(Fig. 3):

(1) If Bx � 0 and vx � 0, i.e., the magnetic field does not
cross the discontinuity and the plasma does not flow through
it, Eqn (9) implies that fBzg and vz2 can take arbitrary values.
Relations (3) and (5) also suggest the arbitrariness of fvyg and
fByg. Equation (7) implies that the pressure and magnetic
field strength are related by the total pressure continuity
condition:�

p� B 2

8p

�
� 0 :

This solution corresponds to the classical tangential disconti-
nuity (Fig. 3a).

(2) If Bx � 0 but vx 6� 0 [which together with (9) then
implies that vz � 0], the magnetic field is parallel to the
discontinuity plane and, as can be seen from (2)±(4), changes
due to the plasma flow across the discontinuity and its
compression in accordance with the magnetic flux freezing
condition:�

B

r
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� 0 :
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Figure 2. Change in the magnetic field B, velocity field v, and plasma

density r at the shock front x � 0.
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This type of discontinuity corresponds to a perpendicular
shock (Fig. 3b), which is also well known in MHD. It
represents a usual compression wave propagating perpendi-
cularly to the magnetic field direction and compressing the
plasma together with the frozen magnetic flux.

(3) Let Bx 6� 0 and vx � 0 [and hence, according to (9),
fBzg � 0]; then Eqns (3)±(5) imply the continuity of the
components vy, vz, and By. The magnetic field direction does
not change across the discontinuity, but the density can
change. This is a contact discontinuity (Fig. 3c).

(4) If both Bx 6� 0 and vx 6� 0, substituting vz � 0 in (9)
yields fBzg � 0. As a result, Eqn (4) becomes

Bzfvxg � 0 :

This equation, naturally, has two different solutions.
(a) We first consider the solution fvxg � 0. Substituting

this solution in (2) yields a new condition frg � 0, which in
the presence of a plasma flow across the plane (with vx 6� 0)
corresponds to an AlfveÂ n shock. Using the condition
fBzg � 0 and assuming that fpg � 0 due to all other
thermodynamic quantities being zero, we rewrite Eqn (7) in
the form fB 2

y g � 0. If fByg � 0, no changes occur in the
medium and there is no discontinuity. Therefore, By2 � ÿBy1

(Fig. 3d).
(b) The solution Bz � 0 leads to a two-dimensional

picture of the discontinuity: the velocity and magnetic field
vectors lie in one plane normal to the discontinuity plane (see
Fig. 2).

Thus, the presence or absence of the plasma flow and the
magnetic field penetration through the discontinuity surface
allow identifying the discontinuity type (see a more detailed
discussion of the discontinuity properties, e.g., in [7, 69]). The
description of many discontinuous flows is significantly
simplified in the so-called de Hoffmann±Teller frame. This

frame is moving along the discontinuity surface with the
velocity

uHT � vÿ vx
Bx

B ;

and therefore the vectors v and B become parallel to each
other. In particular, the AlfveÂ n discontinuity is then described
as the magnetic field strength vector rotated through some
angle about the x axis, keeping its modulus constant, and all
discontinuous flows (with the magnetic field inclined to the
discontinuity plane) turn out to be two-dimensional. Due to
the constraint Bx 6� 0, the de Hoffmann±Teller frame is
inapplicable to tangential discontinuities and perpendicular
shocks, and we do not discuss it.

However, because all discontinuous flows, except tangen-
tial and AlfveÂ n discontinuities and perpendicular shocks, can
be reduced to the two-dimensional form, we start by
considering the boundary conditions for the two-dimen-
sional case. In Section 2.2 below, in order to find the
characteristic parameter that would allow segregating some
cases of two-dimensional discontinuous flows, we consider
the case referred to as 4 (b) above in more detail.

Hereafter and until Section 4, we study only classification
signatures of discontinuous flows, and therefore there is no
need in Eqn (8). In this approach, two-dimensional discontin-
uous flows with vz � 0 and Bz � 0 are described by five
boundary conditions:

fBxg � 0 ; frvxg � 0 ;

�
rvxvy ÿ BxBy

4p

�
� 0 ;

�10�

fvxBy ÿ vyBxg � 0 ;

�
rv 2x � p� B 2

y

8p

�
� 0 :

We use these equations in Section 2.2 to study the change in
the magnetic field at the discontinuity.

2.2 Inclination of magnetic field lines
Two-dimensional discontinuous flows are classified by the
behavior of the velocity field and the magnetic field near the
discontinuity surface under certain assumptions about the
density jump. As in the ideal MHD, the plasma flow velocity
is related to the magnetic field by the flux freezing condition;
the classification can be based on how the magnetic field
changes across the discontinuity. This change can be
described by the angles between the magnetic field line
(more precisely, the tangent to the magnetic field line at a
given point of the discontinuity if themagnetic field lines have
some curvature) and the left (upstream) and right (down-
stream) normals to the discontinuity (see Fig. 2). We refer to
these angles as the magnetic field inclination angles. On
different sides of the discontinuity, these angles are generally
different. To find a convenient parameter characterizing the
discontinuous flow type, we first find the relation between
these two angles. For this, it is necessary to find the relation
between the tangential magnetic field components from
boundary conditions (10) and then, using condition (1), to
pass to the inclination angle tangents.

Following [70], we introduce new variables r � 1=r and
m � rvx and rewrite system of equations (10) in the linear
form with respect to the jumps fvxg, fvyg, frg, and fByg.
To do this, we substitute the first equation in (10) in the
third and fourth equation, and pull the quantities that are
conserved across the discontinuity outside the curly brack-
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Figure 3. Schematics of discontinuities projected on the �x; y� plane:

(a) tangential discontinuity, (b) perpendicular shock, (c) contact disconti-

nuity, (d) AlfveÂ n shock.
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ets. We obtain

fvxg ÿmfrg � 0 ; mfvyg ÿ Bx

4p
fByg � 0 ;

~Byfvxg ÿ Bxfvyg �m~rfByg � 0 ; �11�

mfvxg � fpg �
~By

4p
fByg � 0 :

Here and hereafter, the tilde denotes mean values, in
particular, ~r � �r1 � r2�=2.

For nontrivial solutions of the linear system of equa-
tions (11) to exist, the determinant of its coefficients must
vanish:

ÿ1 0 m 0

0 m 0 ÿBx

4p
~By ÿBx 0 m~r

m 0
fpg
frg

~By

4p

�������������

�������������
� 0 :

We expand the determinant to obtain

fpg
frg

�
B 2
x

4p
ÿm 2r

�
�m 2

�
B 2
x

4p
�

~B 2
y

4p
ÿm 2r

�
� 0 :

Because m 2 cannot be negative, the last equation imposes a
constraint on the admissible mass flux value m:

m 2 � ÿfpgfrg
m 2 ÿ B 2

x=4p~r

m 2 ÿ �B 2
x � ~B 2

y �=4p~r
: �12�

By the ZempleÂ n MHD theorem (see, e.g., [66])

frg � 1

r2
ÿ 1

r1
� r1 ÿ r2

r1 r2
< 0 ;

and because the pressure p increases with the density r for
most real substances, one of the following inequalities should
be satisfied:

m 2 <
B 2
x

4p~r
�13�

or

m 2 >
B 2
x � ~B 2

y

4p~r
: �14�

We find the fundamental system of solutions of linear
equations (11). The basis minor

ÿ1 0 m
0 m 0
~By ÿBx 0

������
������ 6� 0

determines three linearly independent equations:

mC3 � C1 ; mC2 � Bx

4p
C4 ;

~ByC1 ÿ BxC2 � ÿm~rC4 :

Hence,

C1 � 1

~By

�
B 2
x

4pm
ÿm~r

�
C4 ;

C2 � Bx

4pm
C4 ;

C3 � 1

m ~By

�
B 2
x

4pm
ÿm~r

�
C4 :

Thus, the solution of system of equations (11) has the form

fvxg � C4
1

~By

�
B 2
x

4pm
ÿm~r

�
;

fvyg � C4
Bx

4pm
;

frg � C4
1

m ~By

�
B 2
x

4pm
ÿm~r

�
; fByg � C4 :

Finally, we find

fvxg � Cm

�
B 2
x

4p
ÿm 2~r

�
;

fvyg � Cm
Bx

~By

4p
;

�15�
frg � C

�
B 2
x

4p
ÿm 2~r

�
;

fByg � Cm 2 ~By :

The constant C can be found by substituting the obtained
expressions for fvxg and fByg in the equation for the
x-component of the momentum flux from system (11):

C � ÿfpg
m 2

�
B 2
x � ~B 2

y

4p
ÿm 2~r

�ÿ1
:

We consider the last two equations of system (15). After
eliminating the constant C, we find a relation between
tangential magnetic field components:

fByg � m 2frg
B 2
x=4pÿm 2~r

~By :

Next, expanding the relations

fByg � By2 ÿ By1 ;

~By � 1

2
�By2 � By1� ;

we obtain

By2 � 2�B 2
x=4pÿm 2~r� �m 2frg

2�B 2
x=4pÿm 2~r� ÿm 2frg By1 : �16�

We divide both sides of (16) by Bx to find the sought relation
between themagnetic field inclination angles at different sides
of the discontinuity:

tan y2 � 2�B 2
x=4pÿm 2~r� �m 2frg

2�B 2
x=4pÿm 2~r� ÿm 2frg tan y1 : �17�
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We next rewrite this equation, by similarly expanding the
jumps frg and the mean values ~r:

tan y2 � m 2 4pr1=B 2
x ÿ 1

m 2 4pr2=B 2
x ÿ 1

tan y1 :

We introduce the notation

m 2
off �

B 2
x

4pr1
; m 2

on �
B 2
x

4pr2
:

Below, we show that moff and mon are the respective mass
fluxes through the switch-off and switch-on shocks. We note
that moff 4mon because, according to the ZempleÂ n theorem
[66], r2 4 r1 at the discontinuity. The equation relating the
magnetic field inclination angles takes the simple form

tan y2 � m 2=m 2
off ÿ 1

m 2=m 2
on ÿ 1

tan y1 : �18�

We now introduce the notations

m 2
A �

B 2
x

4p~r
; m 2

? �
~B 2
y

4p~r

to simplify the form of conditions (14) and (13):

m 2 < m 2
A ; �19�

m 2 > m 2
A �m 2

? : �20�
The values of moff, mA, and mon resemble those for a

plasma flow moving with the AlfveÂ n velocity VA � Bx=
��������
4pr
p

and, indeed, become such if r1 � r2. As m! mA, the sign of
the tangential component of the magnetic field is reversed.
The magnetic field lines have the same configuration at the
flat (two-dimensional) AlfveÂ n discontinuity if the magnetic
field vector outside the discontinuity plane rotates about the
x axis through the angle p. Asm! mA, the conditions for the
transitions to the AlfveÂ n discontinuity are established.
Because r2 4 ~r4 r1,

moff 4mA 4mon : �21�

We note that the values of moff, mA, and mon are not
independent but are related by the condition

m 2
A �

2m 2
on m

2
off

m 2
on �m 2

off

: �22�

To see this, we expand themean value ~r and the expression for
m 2

A:

m 2
A �

B 2
x

4p
1

~r
� B 2

x

4p
2

r1 � r2
� B 2

x

4p
2 �1=r1��1=r2�
1=r1 � 1=r2

� 2m 2
on m

2
off

m 2
on �m 2

off

:

Multiplying and dividing the expression for m? by B 2
x , we

finally obtain

m 2
? �

B 2
x

4p~r

� ~By

Bx

� 2

:

The right-hand side of this equation containsmA and tangents
of the magnetic field inclination angles:

m 2
? �

m 2
A

4
�tan y2 � tan y1�2 : �23�

Therefore, unlike moff, mA, and mon, the parameter m?
depends not only on the density ratio at the discontinuity
but also on the magnetic field configuration.

In Section 3.3, we show that m? is the minimum plasma
flux at which the transition to the perpendicular shock is
possible.

2.3 Classification of discontinuities by matter flux
Formula (18) demonstrates that the mass flux m through the
discontinuity surface, more precisely, its square m 2, is a
suitable parameter to identify different MHD flow types. (In
addition, the mass flux is proportional to the magnetic
reconnection rate, which is important, for example, in
astrophysical applications.) It is nonnegative. Its values
(under other equal conditions and in the presence of a density
jump at the discontinuity) are split into several intervals
according to inequalities (21). A specific magnetic field
configuration is realized inside each interval.

Using the argument given above and formula (18), we
consider the function y2 � arctan �a tan y1� at different
admissible values of the coefficient

a � m 2=m 2
off ÿ 1

m 2=m 2
on ÿ 1

;

which shows how the tangential component of the magnetic
field changes across the discontinuity [9]. We use the fact that
inequalities (21) hold if there is a density jump at the
discontinuity. We consider the behavior of the function at
zero, at the pointsmoff,mA, andmon, and inside the mass flux
intervals between these points.

As follows from (18), a � 1 at m � 0. The magnetic field
inclination angle is conserved �y1 � y2�. Accordingly, the
tangential magnetic field component is conserved: fByg � 0.
It follows from system (11) that there are no jumps fvxg, fvyg,
or fpg at the discontinuity. However, the temperature and
density of the plasma can change across the discontinuity.
This is a two-dimensional variant of the contact discontinuity
considered in Section 2.1 (Fig. 3c).

Inside the interval 0 < m < moff, the inequalities
0 < a < 1 hold. Therefore, 0 < y2 < y1. This means that the
magnetic field strength decreases across the discontinuity.
The magnetic field behaves in such a way on a slow shock
(Fig. 4a).

Substituting m � moff in (18) yields a � 0. The tangential
magnetic field component vanishes across the discontinuity,
which must be the case at the switch-off shock (Fig. 4b).

Inside the interval moff < m < mA, the inequalities
ÿ1 < a < 0 hold. The slow shock changes the tangential
magnetic field direction, as shown in Fig. 4c.

At m � mA, the coefficient a � ÿ1. To see this, it is
necessary to substitute formula (22) in the formula for a.
The tangential component of the magnetic field is reversed,
with its absolute values remaining unaltered. The same
magnetic field configuration can be realized in the particular
case of a flat AlfveÂ n shock if frg � 0. This wave is
schematically shown in Fig. 3d in Section 2.1.

Substituting any value of m from the interval
mA < m < mon yields a < ÿ1. The absolute value of the field
strength increases, but its tangential component changes sign.
Such is the behavior of a trans-AlfveÂ nic shock (Fig. 4d).

At m � mon, a! �1. In other words, the tangential
field component can arise behind the discontinuity even it was
absent before it. This is a switch-on shock (Fig. 4e).
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Finally, if m > mon, then a > 1. Therefore, y2 > y1 > 0.
Themagnetic field strength increases across the discontinuity,
as must be the case for a fast shock (Fig. 4f).

Different regimes of the magnetic field behavior are
shown in Fig. 5 as the plots of the function y2 �
arctan �a tan y1� for angles from the interval y1 2 �0; p=2�.
The case y1 2 �ÿp=2; 0� can be obtained by rotating the
coordinate frame about the x axis through the angle p.

We now consider the limit values of the angle y1.
(1) The magnetic field is perpendicular to the discontinu-

ity surface, i.e., y1 ! 0. The angle y2 can take any value from
�0; p=2�. The angle y2 can be zero in any regime if y1 ! 0. A
parallel shock is then formed, which is a hydrodynamic shock
(Fig. 1b) propagating along the magnetic field lines. The
values y2 2 �0; p=2� correspond to a switch-on shock at given
values of r1 and r2.

(2) The magnetic field is parallel to the discontinuity
surface, i.e., y1 ! p=2. The angle y2 takes the values
y2 � �p=2. The magnetic field strength vectors are parallel
to the discontinuity plane and, moreover, take the same
values on different sides of the discontinuity. These proper-
ties are characteristic of two-dimensional tangential disconti-
nuities and perpendicular shocks.

The question can arise: if the discontinuity classification is
so conventional, being dependent on geometrical relations
between the magnetic field line inclination angles, could the
type of the observed discontinuous flow change in passing
from one reference frame to another? Let the primed
reference frame move relative to the laboratory (unprimed)
framewith a constant velocity u along the discontinuity plane,
such that the axes of both frames are parallel to each other.
We let the magnetic field components parallel and perpendi-
cular to the relative velocity u be denoted by Bk and B?. Then
the Lorentz transformations for the magnetic field can be

written as

Bk � B 0k ;

B? �
�
B 0? �

1

c
�u� E 0�

��
1ÿ u 2

c 2

�ÿ1=2
:

Let the moving (primed) frame be the de Hoffmann±
Teller system in whichE 0 � 0. Then the ratio of the parallel to
the perpendicular field components gives the angle transfor-
mation in the moving (primed) to the laboratory (unprimed)
reference frames in the form

tan y 0 � tan y

��������������
1ÿ u 2

c 2

r
:

The angle transformation has the same form on each side of
the discontinuity surface and therefore cannot change the
qualitative relation between the angles y1 and y2. Equal angles
remain equal, the larger angle remains larger. Moreover, in
the nonrelativistic limit, the angles are simply preserved.

To compare two systems moving relative to each other
with some velocity at which the electric field is not equal to
zero, it is sufficient to pass from both systems to the
de Hoffmann±Teller one and then compare the results:

tan y 0

������������������������������
1ÿ �uHT ÿ u�2

c 2

s
� tan y

����������������
1ÿ u 2

HT

c 2

r
:

Here, u and uHT are the velocities of the new frame and the
de Hoffmann-Teller frame relative to the `laboratory' frame.
Again, we arrive at the same conclusion that the qualitative
relations between the angles y1 and y2 do not change. Hence,
the graphic representation of the admissible relations between
the angles on the discontinuity surface obtained above (see
Fig. 5) can be applied directly in the `laboratory' reference
frame.We use this property in Section 3 when considering the
magnetic reconnection problem.
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Figure 4. Oblique MHD-shocks: (a) slow shock, (b) switch-off shock,

(c) slow shock reversing the tangential magnetic field, (d) trans-AlfveÂ n

shock, (e) switch-on shock, (f) fast shock.
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Figure 5. Possible relations between angles y1 and y2 for different types of
discontinuous MHD-flows.
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3. Continuous transitions between
magnetohydrodynamic discontinuities

3.1 Conditions for the transitions
In Section 1, we found that each type of two-dimensional
discontinuous flow corresponds to a certain region on the
mass flux axis m, more precisely, m 2. Therefore, continuous
transitions are possible only between discontinuities located
immediately close to each other on this axis. Otherwise, the
transition would require matter flux jumps. The form of the
dependence y2�m 2; y1� can be conveniently determined by
two parameters, moff and mon, although this can be done by
other means, for example, by specifying the densities r1
and r2. To find the magnetic field from the distribution of
angles, in addition, the value of Bx should be known.

We are interested in signatures of discontinuous flows,
i.e., in qualitative changes between the angles y1 and y2 with
varying m 2. Therefore, we temporarily consider formula (18)
without specific applications to physical conditions in the
plasma. We choose the values of the parameters in Eqn (18)
based on requirements of clarity and simplicity. The values of
mA and m? are determined from Eqns (22) and (23). Let the
values of r1 and r2 be related as 1 :2. The precise values of
m 2

off,m
2
A, andm

2
on are then related as 3 :4 :6.With this inmind,

the mass flux square is measured in units of m 2
A=4.

Figure 6 shows the plots of y2�m 2� for three values of the
magnetic field inclination angle before the discontinuity:
y1 � 5�, 25�, and 45� [71]. We see that the curves y2�m 2�
demonstrate similar behavior. First, they all cross at one
point at m 2 � m 2

off � 3. Second, for each curve, y2 ! ÿy1 as
m 2 ! m 2

A � 4. Third, in all plots, there is a region that does
not satisfy conditions (19) and (20). This region lies in the
vicinity of the point m 2 � m 2

on � 6.
We identify four regions in Fig. 6 with the characteristic

behavior of the function y2�m 2�. In region I �0 < m 2 < 3�, the
component By2 of the magnetic field B2 decreases with
increasing m 2. Here, 0 < y2 < y1, i.e., the tangential mag-
netic field component decreases across the discontinuity
surface. At m 2 � 3, the tangential component By2 vanishes
across the discontinuity. In region II �3 < m 2< 4�, the
component By2 is negative and increases by the absolute
value, but now ÿy1 < y2 < 0. In region III �4 < m 2 < 6�, as
in region II, the tangential component By changes sign across

the discontinuity. However, in this case, the absolute value of
By increases �y2 < ÿy1�. Finally, in region IV �m 2 > 6�, the
magnetic field increases �y2 > y1�, preserving its sign.

At the boundary between regions II and III, m 2 � m 2
A.

The domain of the function y2�m 2; y1� to the left and to the
right of m 2

A is defined by respective conditions (19) and (20).
Asm 2 ! m 2

A,
~B 2
y ! 0, and condition (20) becomesm 2 > m 2

A.
Therefore, the function y2�m 2; y1� is defined near m 2

A in both
regions II and III (see Fig. 6). However, with increasing m 2,
the right-hand side of inequality (20) increases as well. At
some value ofm 2 in region III, these values becomes equal to
each other. A maximum strong trans-AlfveÂ nic shock (at the
maximum increase in the magnetic field energy) emerges.
With a further increase in the mass flux, the value of m 2

cannot satisfy conditions (19) and (20) until m 2 again
becomes comparable to m 2

A �m 2
?. This happens in region

IV, where the strongest fast shock is observed.
We derive an equation for the curve onwhich the free ends

of the plots lie and hence, for a given relation between the
plasma density r1 and r2, the strongest fast and trans-
AlfveÂ nic shocks occur. We equate m 2 to the right-hand side
of (14):

m 2 � B 2
x � ~B 2

y

4p~r
:

Hence,

By1 � �2
�������������������������
4p~rm 2 ÿ B 2

x

q
ÿ By2 ;

where the signs ÿ and � correspond to respective regions III
�mA < m < mon� and IV �m > mon�. We divide the obtained
equation by Bx. Then

tan y1 � �2
����������������
m 2

m 2
A

ÿ 1

s
ÿ tan y2 : �24�

After substituting Eqn (24) in (18), we obtain an equation for
the sought curve:

tan y2 � �2 m 2=m 2
off ÿ 1

m 2=m 2
off �m 2=m 2

on ÿ 2

����������������
m 2

m 2
A

ÿ 1

s
:

We simplify this equation by using relation (22):

tan y2 � � m 2=m 2
off ÿ 1������������������������

m 2=m 2
A ÿ 1

q : �25�

In Fig. 6, the thin line shows the plot of curve (25).
With a further increase in the mass flux, the tangent of the

magnetic field inclination angle behind the discontinuity
tends asymptotically from above to the value

tan y2 � m 2
on

m 2
off

tan y1 ;

or, after expanding moff and mon,

tan y2 � r2
r1

tan y1 : �26�

Multiplying equation (26) by Bx, we obtain

By2 � r2
r1

By1 : �27�
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Figure 6. The magnetic field inclination angle y2 behind the discontinuity

plane as a function of themass flux squaredm 2 for different angles y1. The
solid, dashed, and dotted lines show the respective cases y1 � 5�, 25�, and
45�. All plots y2�m 2� for different y1 end at the curve shown by the thin

line.
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Such a form of the dependence between the magnetic field
strength on different sides of the discontinuity surface is
typical for perpendicular shocks. This is related to the
possibility of a continuous transition between shocks, which
is considered in Section 3.3. In the next subsection, we start
studying the transitions occurring when the mass flux
changes.

3.2 Transitions with matter flux changes
Figure 6 demonstrates how the character of the relation
between the magnetic field inclination angles and, hence, the
type of discontinuous MHD flow, changes with gradually
increasing the plasma flow. At m 2 � 0, a contact disconti-
nuity (C) arises. Regions I and II correspond to slow MHD
shocks that do not reverse �S"ÿ� and do reverse �S#ÿ� the
magnetic field tangential component. They are separated by
the switch-off shock �Soff�. At the boundary between regions
II and III, conditions for the formation of an AlfveÂ n
discontinuity (A) hold. Trans-AlfveÂ nic shocks (Tr) are in
region III, and fast shocks �S�� are in region IV. A switch-on
shock �Son� can form at the boundary between regions III
and IV.

In any of these variants, the transition solutions for
discontinuous flows corresponding to neighboring regions
are realized for the mass flux square separating these two
regions on the coordinate plane (see Fig. 6). We consider all
adjacent pairs of discontinuities of different types one by one
and search for the transition solution for each pair. We start
with a zero mass flux and then increase its value.

At a zero mass flux, a contact discontinuity is formed.
Region I, occupied by slow shocks, joins it. Therefore, in the
entire set of two-dimensional discontinuous flows, the
transition from a contact discontinuity to a slow shock is
only possible with a continuous change in the mass flux. We
verify this.

The full system of boundary conditions at the slow shock
coincides with the general equations for oblique shocks,
which follow from the full system of equations (1)±(8) with
vz � 0 and Bz � 0:

Bz � 0 ; vz � 0 ;

fBxg � 0 ; frvxg � 0 ;�
p� rv 2x �

B 2

8p

�
� 0 ; �28��

rvx

�
v 2

2
� E� p

r

�
� By

4p
�vxBy ÿ vyBx�

�
� 0 ;

fvxBy ÿ vyBxg � 0 ;

�
rvxvy ÿ 1

4p
BxBy

�
� 0 :

The solution of these equations in region I shown in Fig. 6
indeed corresponds to a slow shock �S"ÿ�, which does not
reverse the sign of the magnetic field tangential component.
This can be easily verified at small m 2. For example, formula
(18), which is applicable to two-dimensional discontinuous
flows like (28), implies that

tan y2 �
�
1ÿ m 2

m 2
off

� m 2

m 2
on

�
tan y1 ;

and hence, due to inequalities (21), 0 < y2 < y1, as must be
the case in a slow shock. Moreover, as m 2 ! 0, i.e., vx ! 0,
we have y2 ! y1, which is the natural limit case for slow
shocks.

We show that at m � 0, i.e., when vx � 0, boundary
conditions (28) also satisfy the contact discontinuity condi-
tions. Indeed, substituting vx � 0 in system of equations (28)
yields

Bz � 0 ; vz � 0 ; vx � 0 ;

fBxg � 0 ; fvyg � 0 ; �29�
fByg � 0 ; fpg � 0 :

Boundary conditions (29) immediately imply that the
magnetic field strength is continuous, i.e., B1 � B2, and the
density jump frg is nonzero, as must be the case at a contact
discontinuity. Thus, system of equations (29) describes both
slow shocks in the limit vx ! 0 and contact discontinuities,
i.e., is a transition solution.

We return to Fig. 6. Region II, like region I, corresponds
to slow shocks; however, in region II, the tangential magnetic
field component changes sign across the discontinuity sur-
face. At the boundary between these two regions, m � moff.
At this value of the mass flux, according to formula (18), the
magnetic field is perpendicular to the discontinuity plane.
With other conditions being equal, this is true for any initial
angle y1 that corresponds to the intersection of the curves in
Fig. 6. These properties define a switch-off shock. Therefore,
the transition between the slow shock that does not reverse
the tangential magnetic field (region I in Fig. 6) and the shock
that reverses the tangential field component (region II in
Fig. 6) occurs via a switch-off shock. To find the boundary
conditions for this transition, we substitute the condition
By2 � 0 obtained from (18) with m � moff in the system of
equations for oblique waves (28) to obtain

Bz � 0 ; vz � 0 ; By2 � 0 ;

fBxg � 0 ; frvxg � 0 ;

fp� rv 2xg �
B 2
y1

8p
; �30��

v 2

2
� E� p

r

�
� fvygvy2 ;

Bxfvyg � ÿvx1By1 ; rvxfvyg � ÿ 1

4p
BxBy1 :

The next transition solution is sought at the right
boundary of region II for m � mA. The corresponding
transition occurs between the slow shock reversing the
tangential magnetic field �S#ÿ� and a flow whose type is to be
established. Equation (12) with m � mA can be satisfied only
if frg � 0, i.e., frg � 0. Substituting the last condition in (28)
yields

Bz � 0 ; vz � 0 ;

frg � 0 ; fBxg � 0 ; fvxg � 0 ; �31��
p� B 2

8p

�
� 0 ; fEg � 0 ;

Bxfvyg � vxfByg ; rvxfvyg � 1

4p
BxfByg :

In the case fByg � 0, all quantities are continuous, and there
is no discontinuity. Therefore, we consider the case fByg 6� 0.
We substitute mA in Eqn (18). Using expression (22), we find
that By2 � ÿBy1. Then solution (31) describes a particular
two-dimensional case of the AlfveÂ n discontinuity. To see this,
we substitute frg � 0 in system of equations (1)±(8). As a
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result, we find the boundary conditions for the AlfveÂ n
discontinuous flow:

frg � 0 ; fBxg � 0 ; fvxg � 0 ;�
p� B 2

8p

�
� 0 ; fEg � 0 ;

�32�
Bxfvyg � vxfByg ; rvxfvyg � 1

4p
BxfByg ;

Bxfvzg � vxfBzg ; rvxfvzg � 1

4p
BxfBzg :

A comparison of (31) and (32) shows that boundary
conditions (31) describe a two-dimensional AlfveÂ n disconti-
nuity such that the velocity and magnetic field vectors lie in
the �x; y� plane. Therefore, system (31) represents a transition
solution between the slow shock reversing the tangential
magnetic field component in the limit frg ! 0 and the
AlfveÂ n discontinuous flow at vz � 0, Bz � 0.

Eliminating the ratio fByg=fvyg from the last two
equations of system (31), we obtain the mass flux squared
corresponding to the AlfveÂ n velocitym 2 � rB 2

x=4p.We stress
that r in this expression is the plasma density at the AlfveÂ n
discontinuity at which the transition from the two-dimen-
sional discontinuous flow occurs. There is no density jump at
the AlfveÂ n discontinuity, and the density r, generally speak-
ing, does not coincide with r1 or r2 that appeared in
considering two-dimensional discontinuous flows. This den-
sity can be found from comparing the AlfveÂ n mass flux and
the value that was previously denoted by mA [see inequalities
(13) and (19)]: r � 1=~r.

Region III joins the value m � mA from the right in
Fig. 6. In this region lie trans-AlfveÂ nic discontinuities, which
reverse and increase the magnetic field tangential compo-
nent. The trans-AlfveÂ nic discontinuous flow (Tr) satisfies
inequality (14). When the mass flux square tends to m 2 �
�B 2

x � ~B 2
y �=4p~r, the jump fByg vanishes. Thus, a smooth

transition of the mass flux to mA occurs. The transition
conditions between the trans-AlfveÂ nic shocks and the AlfveÂ n
discontinuity are nearly identical to those in the preceding
case of the transition from slow shocks, the difference being
that the transition from slow and trans-AlfveÂ nic shocks
occurs at the respective maximum and minimum possible
mass flux. The transition solution is described by system of
equations (31).

Inside some mass flux interval near the boundary between
regions II and IV, no discontinuous flow can be realized,
which makes it impossible to continuously change the mass
flux from the region of trans-AlfveÂ nic shocks to the region of
fast shocks. This interval decreases as the initial magnetic
field inclination angle decreases, until its vanishing at y1 � 0
(see Fig. 6). The possible mass fluxes of fast shocks are
restricted by the same inequality (14) as the trans-AlfveÂ nic
shocks. The fastest shock (that maximally increases the
magnetic field energy) is realized at the minimum possible
mass flux squared, m 2 � �B 2

x � ~B 2
y �=4p~r. But now, unlike in

the trans-AlfveÂ nic case, the jump fByg does not tend to zero; it
is finite and can be found from the solution of Eqn (17). This
explains the different possible mass fluxes for trans-AlfveÂ nic
and fast shocks.

3.3 Transitions at zero flow parameters
As was shown in Section 2.3, some discontinuous flows occur
at the limit flow parameters. Variations of r1, frg, and Bx

squeeze or stretch the plots shown in Fig. 6 along the
coordinate axes while preserving their general structure. For
zero values of y1, Bx, and frg, the behavior of y2�m 2� is
schematically shown in Fig. 7.

Decreasing the angle y1 also decreases the gap between the
allowed mass flux for the fast and trans-AlfveÂ nic shocks (see
Fig. 6). Under the conditions in Fig. 7a, a transition between
them can occur at y1 � 0. Boundary conditions (28) here take
the form

Bz � 0 ; vz � 0 ; By1 � 0 ;

fBxg � 0 ; frvxg � 0 ;

f p� rv 2xg � ÿ
B 2
y2

8p
; �33��

v 2

2
� E� p

r

�
� fvygvy2 ;

Bxfvyg � vx2By2 ; rvxfvyg � 1

4p
BxBy2 :

From the common solution of the last two equations of
system (33), we have

m 2 � r2B
2
x

4p
� m 2

on :

Thus, a continuous transition indeed occurs at the boundary
between regions II and IV, where trans-AlfveÂ nic and fast
shocks are located. For m � mon, Eqn (18) cannot be solved
uniquely. The zero value of y1 can correspond to a nonzero
value of y2. Behind the shock front, a tangential magnetic
field appears. Such a shock is called a switch-on shock �Son�.
It can play the role of a transition solution for the trans-
AlfveÂ nic and fast shocks in the limit y1 ! 0, but for the
transition to occur, the mass flux must tend to mon.

For any other valuesm 6� mon, Eqn (18) implies that when
the angle y1 vanishes, the angle y2 also vanishes. In other
words, if By1 � 0, then By2 � 0 (Fig. 7a). Here, the boundary
conditions for two-dimensional discontinuous flows (28) are
written in the form

Bz � 0 ; vz � 0 ; By � 0 ;

fBxg � 0 ; frvxg � 0 ; �34�

f p� rv 2xg � 0 ;

�
v 2

2
� E� p

r

�
� 0 ; fvyg � 0 :

m2
on m2

m2
A

y2

m2
off

a

0

p=2

m2

y2

m2
?

b

0

m2

y2
y1

m2
off;A;on

c

0

Figure 7. Schematic behavior of y2�m 2� for y1 � 0 (a), Bx � 0 (b), and

frg � 0 (c).
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System of equations (34) includes boundary conditions of the
ordinary hydrodynamic shock. However, due to the condi-
tions By1 � 0 and By2 � 0, such a shock propagates along the
magnetic field lines. This is a parallel shock �Sk�. System of
equations (34) represents a transition solution between
oblique shocks in the limit y1 ! 0 and a parallel shock.

To find the form of the transition solution between a
parallel shock and a contact discontinuity, we set vx � 0
in (34):

Bz � 0 ; vz � 0 ; By1 � 0 ; �35�
fBxg � 0 ; f pg � 0 ; fvyg � 0 :

This system of equations corresponds to contact discontinu-
ity (29), which is orthogonal to magnetic field lines. Hence, it
describes the transition solution between a parallel shock in
the limit as vx ! 0 and a contact discontinuity.

When themagnetic flux �Bx � 0� vanishes,mon separating
regions III and IV in Fig. 6 formally vanishes. Thus, all
nonzero mass fluxes prove to be in region IV (Fig. 7b).
Therefore, the transition in this case is from a fast shock. To
determine the type of discontinuous flow in this case, we find
the boundary conditions for the transition solution by
substituting Bx � 0 in (28):

Bz � 0 ; vz � 0 ; Bx � 0 ;

frvxg � 0 ;

�
p� rv 2x �

B 2

8p

�
� 0 ;

�36��
rvx

�
v 2

2
� E� p

r

�
� vx B 2

4p

�
� 0 ;

fvxByg � 0 ; fvyg � 0 :

These conditions represent a compression shock propagating
orthogonally to the magnetic field, i.e., a perpendicular shock
�S?�. The magnetic field lines are parallel to the y axis. Of
course, in the general case, the magnetic field direction can be
different from the direction of the coordinate system axes.
After substituting Bx � 0 in Eqns (1)±(8), we find the
boundary conditions for the orthogonal shock:

Bx � 0 ;

frvxg � 0 ;

�
p� rv 2x �

B 2

8p

�
� 0 ;�

rvx

�
v 2

2
� E� p

r

�
� vx B 2

4p

�
� 0 ; �37�

fvxByg � 0 ; fvyg � 0 ;

fvxBzg � 0 ; fvzg � 0 :

The equations in system (36) represent boundary conditions
for a transition discontinuity between a fast shock in the limit
Bx ! 0 and a perpendicular shock with the magnetic field
parallel to the y axis. We note that this transition can occur
only for the mass fluxes satisfying inequality (20), which at
Bx � 0 takes the form m 2 > m 2

?. Relation (27), derived in
Section 3.1 for fast shocks in the limit of large mass fluxes, is
also valid for Eqns (36) and (37).

We now determine the boundary conditions for the
discontinuity that arises at m 2 � 0 in Fig. 7b. For this, we
substitute Bx � 0 and vx � 0 in system of equations (1)±(8).
In this case, the magnetic field and velocity are parallel to the

discontinuity surface and their absolute values and directions
can have arbitrary jumps:

Bx � 0 ; vx � 0 ; �38��
p� B 2

8p

�
� 0 :

This is a tangential discontinuity (T). In the limit Bx ! 0,
both a contact discontinuity and a slow shock, as well as an
AlfveÂ n discontinuity, can pass into it. We obtain the
corresponding transition solutions.

Substituting Bx � 0 in the boundary conditions for
contact discontinuity (29) yields the following transition
solution:

Bz � 0 ; vz � 0 ; Bx � 0 ; vx � 0 ; �39�
fByg � 0 ; fvyg � 0 ; f pg � 0 :

System of equations (39) describes tangential discontinuity
(38) for the zero field component Bz in the absence of jumps
fvyg and fByg.

The boundary conditions of oblique shocks (28) for
Bx � 0 and vx � 0 are transformed to the form

Bz � 0 ; vz � 0 ; Bx � 0 ; vx � 0 ;
�40��

p� B 2

8p

�
� 0 :

Transition solution (40) corresponds to the flat tangential
discontinuity (38) at Bz � 0.

The transition solution from the AlfveÂ n discontinuity can
be found by substituting Bx � 0 in system (32):

Bx � 0 ; �41�
frg � 0 ;

�
p� B 2

8p

�
� 0 :

Boundary conditions (41) describe tangential discontinuity
(38) without a density jump.

When the magnetic flux through the discontinuity
decreases, the trans-AlfveÂ nic shocks occupying region III in
Fig. 6 degenerate into a particular case of the AlfveÂ n
discontinuity. This can be observed in Fig. 6 as a gradual
decrease in the mass flux intervals inside which the trans-
AlfveÂ nic discontinuities can appear as the magnetic field
incidence angle y1 increases.

Of course, for any type of flow, the density jump can be set
to zero. In this case, all parameters m 2

off, m
2
A, and m 2

on are
equal to flux (22) at whichAlfveÂ n discontinuity (34) is formed.
The point m 2

off;A;on in Fig. 7c corresponds to this disconti-
nuity. For different values of the mass flux, a difference in the
plasma characteristics on each side of the discontinuity
surface disappears. The discontinuity plane then corre-
sponds to an arbitrary plane in the homogeneous medium.
The discontinuity as such is then absent.

3.4 Scheme of continuous transitions
The obtained transition solutions allow visualizing the
pattern of possible continuous transitions between discontin-
uousMHD flows [9]. The first scheme of transitions, based on
the transition solutions known at that time, was proposed by
Syrovatskii [7]. It included transitions between discontinuous
flows of only four types: tangential discontinuities (T) and
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AlfveÂ n (A), oblique (S), and perpendicular �S?� shocks
(Fig. 8).

Clearly, this scheme is not complete. First, it does not
include some discontinuous MHD solutions, in particular,
parallel shocks �Sk� and contact discontinuities (C). Second,
the notion of an `oblique shock' (S) includes many different
types of discontinuous flows: fast �S�� and slow �Sÿ� shocks,
switch-on �Son� and switch-off �Soff� shocks, and trans-
AlfveÂ nic shocks (Tr).

Later, the picture of transitions between discontinuous
flows was completed [72] using the correspondence between
shocks and low-amplitude waves in MHD [8]. The scheme of
transitions based on the diagram of low-amplitude wave
phase velocities is presented in Fig. 9. Although this
approach correctly predicts possible continuous transitions
between discontinuous flows and even the conditions for such
transitions, it does not describe the specific form of the
transition solutions between the considered discontinuities.
Also, this scheme still lacks many types of discontinuities.

The results obtained in Sections 3.1 and 3.2 enable us to
construct the general scheme of possible continuous transi-
tions between discontinuous MHD flows (Fig. 10). Three-
dimensional discontinuous flows are in the upper row of the
scheme. Two-dimensional discontinuous flows are in the
middle row of the scheme in the order of increasing mass
flux through the discontinuity surface. One-dimensional
parallel shocks �Sk� are in the bottom row. The individual
elements are grouped in order to conveniently compare our
scheme of transitions with earlier ones.

Syrovatskii's scheme shown in Fig. 8 [7] is in agreement
with the scheme shown in Fig. 10 if the elements S#ÿ, Soff, S

"
ÿ,

Tr, Son, and S� are joined into one `oblique wave' block (S),
the possible transitions inside the block are ignored, and the
contact discontinuities (C) and parallel shocks (S) are
omitted.

The scheme shown in Fig. 9, proposed by Somov [8] (see
also [69, 72]), includes a parallel shock �Sk� and divides
oblique shocks into a block of `slow' discontinuous flows
�Sÿ� corresponding to condition (13) and a block of `fast'
�S�� flows, corresponding to condition (14). Symbols VA and
Vs in Fig. 9 denote the AlfveÂ n velocity and the speed of sound.
These conditions for the transition are obtained from a
comparison of the properties of discontinuities and low-
amplitude waves. We verify these conditions for shocks.

We first consider the transition of oblique shocks to the
AlfveÂ n discontinuity. We note that the term ÿfpg=frg in
Eqn (12) is proportional to the mass flux moving with the
speed of sound. Indeed,

ÿf pgfrg � r1r2
f pg
frg / r 2 qp

qr
� �rVs�2 : �42�

The transition of oblique shocks to the AlfveÂ n discontinuity,
according to the new generalized scheme of transitions,
occurs as m 2 ! m 2

A; near m
2
A, we have

m 2 ÿ B 2
x=4p~r

m 2 ÿ �B 2
x � ~B 2

y �=4p~r
< 1

T A

S

S?

Figure 8. Schematic of continuous transitions among MHD discontinu-

ities [7].
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Figure 9. Schematic of continuous transitions among MHD discontinu-

ities [72].
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Figure 10. Generalized schematic of continuous transitions among MHD discontinuities. For comparison, the dashed-line contour shows a set of

discontinuities corresponding to the oblique shock block in [7]. The gray background inside the contour shows `slow' (on the left) and `fast' (on the right)

blocks in [72].
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for (13) and

m 2 ÿ B 2
x=4p~r

m 2 ÿ �B 2
x � ~B 2

y �=4p~r
> 1

for (14). Using Eqns (12) and (42), we then deduce that as in
Fig. 9, the transition to the AlfveÂ n discontinuity occurs at
Vs > VA for the `slow' block (14) and atVA > Vs for the `fast'
block (13).

We now consider the transition from oblique shocks to a
parallel shock. As m 2 ! 0 and m 2 !1, we respectively
obtain Vs ! 0 and Vs !1. Thus, in transitions from
oblique shocks to a parallel shock, VA > Vs for (14) and
Vs > VA for (13), which had to be proved.

In Fig. 9, the transition from the parallel shock to the
AlfveÂ n discontinuity is also shown. Substituting the AlfveÂ n
discontinuity condition frg � 0 in the boundary conditions
of parallel shocks (34), we obtain zero jumps for all variables.
Thus, the transformation of the parallel shock into an AlfveÂ n
shock is possible only when the discontinuity is eliminated
and cannot be treated as a continuous transition between
discontinuous flows.

We also note the impossibility of continuous transitions
between slow and fast shocks and the AlfveÂ n discontinuity,
which was noted in [5]. The transition is only possible from a
flat AlfveÂ n discontinuity to a nonevolutionary trans-AlfveÂ nic
shock and a slow shock reversing the tangential magnetic
field. Only after that does the transition to the fast and slow
shocks via respective switch-on and switch-off shocks occur.

Combining the above considerations, we see that the
proposed scheme of continuous transitions between discon-
tinuous solutions of the ideal MHD equations is a correct
generalization and extension of two earlier incomplete
schemes.

We stress that the generalized scheme includes disconti-
nuities that are nonevolutionary both in ideal MHD (trans-
AlfveÂ nic shocks) [73±75] and in dissipative MHD (for
example, the AlfveÂ n discontinuity and the switch-on shock).
Modern numerical simulations often demonstrate the pre-
sence of nonevolutionary regions (ignoring their specificity).
In this connection, it is necessary to accurately consider the
arising conditions of such discontinuous flows, including the
possibility of the transition of an evolutionary discontinuity
into a nonevolutionary one under a gradual change of the
flow parameters. The generalized scheme allows estimating
the possibility of such transitions under different conditions
in plasma with a magnetic field. Such a transition is observed,
in particular, in the analytic model of magnetic reconnection
[54, 55]. We return to the analysis of this model in Section 7.2.
However, we first consider plasma heating in discontinuous
MHD flows.

4. Plasma heating
at magnetohydrodynamic discontinuities

4.1 Internal energy jump
Many phenomena in cosmic and laboratory plasmas are
related to a fast change in the magnetic field configuration.
These processes can be accompanied by the formation of a
variety of discontinuousMHD flows of different types, which
exist simultaneously and change with time. The strong
magnetic field reconnection provides an important example.
This process gives rise to the formation of accelerated plasma

flows (jets), the acceleration of charged particles to high
energies, and the heating of plasma inside and outside the
reconnection region. The effect of discontinuous plasma
flows in the plasma thermal energy turns out to be important.

To establish the ability of a discontinuity to heat the
plasma, following [9], we consider boundary condition (8),
which represents the energy conservation law. Using Eqn (2),
we find the internal energy jump from (8):

fEg � ÿ
�
v 2

2

�
ÿ 1

m
fvxpg ÿ 1

4pm

�
B 2vx ÿ �vB�Bx

	
: �43�

The right-hand side of (43) includes three terms. Using the
mean of the velocities ~vx, ~vy, and ~vz, we write the first term in
the form

ÿ
�
v 2

2

�
� ÿ~vxfvxg ÿ ~vyfvyg ÿ ~vzfvzg :

The jumps of the tangential velocity components can be
expressed in terms of the jumps of the magnetic field
tangential components using Eqns (5) and (6) subject to
conditions (1) and (2). We obtain

fvyg � Bx

4pm
fByg ; fvzg � Bx

4pm
fBzg :

Now, the first term in the right-hand side of (43) has the form

ÿ
�
v 2

2

�
� ÿ~vxfvxg ÿ ~vyBx

4pm
fByg ÿ ~vzBx

4pm
fBzg : �44�

In the second term in the right-hand side of (43), written as

ÿ 1

m
fvx pg � ÿ ~p

m
fvxg ÿ ~vx

m
fpg ;

we substitute the pressure jump from Eqn (7), namely,

fpg � ÿmfvxg ÿ
~By

4p
fByg ÿ

~Bz

4p
fBzg :

Here, as in (43), condition (2) was used. The second term in
the right-hand side of (43) finally takes the form

ÿ 1

m
fvx pg � ÿ ~p

m
fvxg � ~vxfvxg � ~vx ~By

4pm
fByg � ~vx ~Bz

4pm
fBzg :
�45�

In the third term in the right-hand side of (43), we expand
the dot product vB:

ÿ 1

4pm

�
B 2vx ÿ �vB�Bx

	
� ÿ 1

4pm

��vxBy ÿ vyBx�By � �vxBz ÿ vzBx�Bz

	
:

To the obtained equality, we apply conditions (3) and (4):

ÿ 1

4pm

�
B 2vx ÿ �vB�Bx

	
� ÿ vxBy ÿ vyBx

4pm
fByg ÿ vxBz ÿ vzBx

4pm
fBzg : �46�

Thus, each of the three terms in the right-hand side of (43)
is expressed through separate jumps of the normal velocity
component and the tangential magnetic field component.
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After substituting (44)±(46) in (43), we obtain

fEg � ÿ ~p

m
fvxg � ~vx ~By ÿ ~vyBx

4pm
fByg ÿ vxBy ÿ vyBx

4pm
fByg

� ~vx ~Bz ÿ ~vzBx

4pm
fBzg ÿ vxBz ÿ vzBx

4pm
fBzg :

This equation is significantly simplified if the means of the
velocity and the magnetic field are expanded:

fEg � ÿ ~p

m
fvxg ÿ fvxgfByg

16pm
fByg ÿ fvxgfBzg

16pm
fBzg :

Writing ÿfvxg=m � ÿfrg as a common factor, we find the
final equation expressing the internal energy jump at the
discontinuity in terms of the jumps of the inverse density and
tangential magnetic field components:

fEg � ÿfrg
�

~p� fByg2 � fBzg2
16p

�
: �47�

For two-dimensional flows, Eqn (47) takes a very simple
form:

fEg � ÿfrg
�

~p� fByg2
16p

�
: �48�

Clearly, the heating due to the parallel shock is independent
of the magnetic field, because formula (48) contains only
tangential field components, which are absent in the parallel
shock (34). AlfveÂ n discontinuity (32), in turn, leaves the
plasma internal energy unchanged because frg � 0 there.
To determine the efficiency of plasma heating due to
discontinuous flows of other types, information about the
magnetic field configuration is required.

4.2 Heating dependence on the discontinuity type
Equation (47) allows making certain general conclusions
about the internal energy change of the plasma across the
discontinuity surface. First, the internal energy of the plasma
increases because ÿfrg > 0 according to the ZempleÂ n
theorem, and ~p and fByg2 are positive quantities. Second,
the change in the internal energy consists of two parts: a
thermodynamic one depending on the plasma pressure and a
magnetic one related to the magnetic field structure change
near the discontinuity surface.

We consider the adiabatic approximation p � rg, where g
is the adiabatic index. The thermodynamic part of the internal
energy jump increases with the density jump at the disconti-
nuity:

fEg � ÿfrg ~p � frgg :

The character of the dependence on r1 is determined by the
adiabatic index g, namely,

fEg � ÿfrg ~p � rgÿ2
1 :

For an ideal gas, g � �i� 2�=i, where i is the number of
degrees of freedom of plasma particles (see [76]). The internal
energy jump increases with r1 for g > 2 �i < 2� and decreases
for g < 2 �i > 2�. The number of degrees of freedom therefore
affects the heating of matter.

The magnetic part of the internal energy jump depends on
the magnetic field configuration and hence on the disconti-

nuity type. To use the relations between the magnetic field
inclination angles obtained above (see Fig. 6), we transform
Eqn (48):

fEg � ÿfrg ~pÿ frg fByg2
16p

� ÿfrg ~pÿ frg B 2
x

16p
fByg2
B 2
x

� ÿfrg ~pÿ frg B 2
x

16p
�tan y2 ÿ tan y1�2 :

The thermodynamic part of the heating, which is independent
of the discontinuity type, is referred to as the zero point, and
the internal energy jump itself is measured in units of
ÿfrgB 2

x=16p. For this, we make the substitution

fEg 0 � ÿ 16p
frgB 2

x

ÿfEg � frg ~p
�
:

We obtain the equation

fEg 0 � �tan y2 ÿ tan y1�2 : �49�

Plots of Eqn (49) for distributions of the angle y obtained
above are presented in Fig. 11.

Similarly to Section 3.1, we find an equation for the curve
on which the strongest trans-AlfveÂ nic and fast shocks lie. To
do this, we first express tan y1 from Eqn (18) and substitute it
in Eqn (49):

fEg 0 �
�
m 2=m 2

off ÿm 2=m 2
on

m 2=m 2
off ÿ 1

tan y2

�2

: �50�

we then substitute expression (25) in the obtained equation:

fEg 0 � �m
2=m 2

off ÿm 2=m 2
on�2

m 2=m 2
A ÿ 1

: �51�

The thin line in Fig. 11 shows the plot of curve (51).
Figure 11 implies that the maximum internal energy jump

for the given plasma parameters is produced by the strongest
trans-AlfveÂ nic shock, with its amplitude strongly increasing
with the magnetic field incidence angle y1. The relations
between the plasma heating efficiency by other types of
oblique shocks depend on the specific flow conditions. For
example, the heating by slow shocks can be either weaker or
stronger than by trans-AlfveÂ nic shocks. To compare the
heating by a perpendicular shock with that by the shocks
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Figure 11. Internal energy jump fEg 0 as a function of the mass flux across

the discontinuity for different values of the angle y1 � 5� (solid curve), 25�

(dashed curve), and 45� (dotted curve).
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shown in Fig. 11, we takeBx in formula (50) to be equal to the
normal field component in oblique shocks, and find the
component By1 of the perpendicular shock from the relation
By1 � Bx tan y1. The component By2 is determined from
formula (27). The heating by oblique shocks corresponds to
asymptotes of the plots in Fig. 11 as m!1. The internal
energy jump at a parallel shock, as was shown in Section 4.1,
does not have a magnetic component, and is completely
absent at an AlfveÂ n discontinuity. No plasma flow occurs
across the contact or tangential discontinuities, and hence
there is no plasma heating in these cases.

In any case, the heating amplitude naturally depends on
the strength of the shock. The stronger the magnetic energy
density changes across the discontinuity, the higher the
plasma heating temperature.

5. Properties of a reconnecting current sheet

5.1 Classical models of reconnection
Magnetic reconnection is one of themost important processes
in space plasma generating discontinuous flows. It serves as
the key mechanism in many astrophysical flaring processes,
including flares in coronas of accretion discs around
relativistic compact stars (see Section 10.3 in [30]), solar
flares [16, 24, 29, 77], and geomagnetic storms [17]. The
usual reconnection scenario in application to these phenom-
ena is as follows. Initially, the flare energy is stored in the form
of an energy excess of a nonpotential magnetic field compared
to the potential field. Then, in the process of reconnection, the
magnetic energy excess, i.e., the `free magnetic energy', is
released in the form of thermal and kinetic energy of the
plasma and accelerated particles.

The first theoretical description of the magnetic reconnec-
tion mechanism was proposed by Sweet and Parker [19, 20]
for incompressible plasma in the framework of a stationary
two-dimensional MHD problem, whose solution was
replaced by an order-of-magnitude analysis of dimensional
relations. It may seem that such an approach does not deserve
serious attention. However, it is very instructive, and it makes
sense to summarize it below (see [13, 78] for more details).

In the Sweet±Parker model, the reconnection proceeds
between homogeneous parallel magnetic fields oppositely
directed relative to each other. In a thin plasma layer
separating these fields, a flat current sheet emerges whose
thickness is much smaller than the width. The width of the
sheet characterizes the size of the interacting region of the
magnetic fluxes and hence their interaction energy. The
thickness of the sheet is determined by the plasma conductiv-
ity and the inflow velocity. The latter is related to the outflow
velocity through the ends of the sheet by the mass conserva-
tion law. Thus, the current sheet mediates the reconnection of
magnetic field lines. However, estimates of the reconnection
rate (see, e.g., [78]) have turned out to be several orders of
magnitude smaller than the observed reconnection rate and
the corresponding power released in solar flares. What is the
reason for this?

The plasma enters the current sheet across its entire width.
To accumulate a sufficient amount of the free magnetic
energy, the plasma inflow velocity (the reconnection rate)
must increase as the width of the current sheet decreases. For
a fast reconnection, Petschek proposed a model with a
significantly smaller field interaction region [21]. The model
describes the reconnection of homogeneous magnetic fields

(at large distances from the y axis in Fig. 12a) proceeding in a
narrow diffusion region D (along the x axis). Most of the
magnetic energy transformation into the thermal and kinetic
plasma energy occurs outside this region, namely, at four
attached slow shocks of infinite length Sÿ.

If there were no shocks, the diffusion region D, i.e., the
region of interaction and annihilation of oppositely directed
magnetic fields, would have infinite width. In other words, it
would be a flat current sheet as in the Sweet±Parker model.
The shocks in the Petschek model make the diffusion region
width finite. In the ideal MHD approximation, the shocks
have zero thickness, i.e., are replaced by discontinuities. The
magnetic field outside the discontinuities and the D region is
assumed to be potential.

The inclusion of shocks in the model allowed Petschek to
increase the expected reconnection rate by two orders of
magnitude. Nevertheless, it remained below the observed
reconnection rate in solar flares [40] and did not explain the
power released. On the other hand, the results of numerical
experiments [60] were in qualitative agreement with the
Sweet±Parker model. Later, Kulsrud [79] demonstrated that
in the homogeneous conductivity approximation (in which
the above results were obtained), the diffusion region of the
Petschek flow should be of the same size as the Sweet±Parker
current sheet and should therefore have the same reconnec-
tion rate. He also noted that the use of an inhomogeneous
conductivity can increase the reconnection rate in both
models to values observed in astrophysical conditions [80].
Unfortunately, the Petschek model has some internal contra-
dictions, which show up in the case of reconnection in highly
conductive plasmas, which is the most interesting from the
astrophysical standpoint (see Section 6.3 in [13]). In addition,
the magnetic reconnection theory is constantly being
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Figure 12. Two classical two-dimensional magnetic reconnection models.

(a) The Petschek flow consists of a small diffusion region D and four

attached slow shocks Sÿ. (b) Syrovatskii's current sheet includes the direct
current region (DC) and two reverse current regions (RC). 2b is the width

of the current sheet.
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improved by taking significant physical effects into account,
such as radiation energy losses [81, 82], viscous heating,
energy redistribution by thermal conductivity, and MHD
turbulence [30, 83, 84]. A discussion of these factors, however,
is beyond the scope of this paper.

Here, we mostly consider another classical model of
magnetic reconnection, the reconnection in the Syrovatskii
thin current sheet. Unlike the Petschek and Sweet±Parker
models and their modifications, such a sheet is formed in the
vicinity of a zero of a hyperbolic magnetic field. This provides
a more precise description, for example, of the pre-flare
configuration of magnetic fields in the solar corona. Syro-
vatskii formulated an analytic model of the reconnecting
current sheet in the strong-field and cold-plasma approxima-
tion [26].

The current sheet in the Syrovatskii model is a flat surface
of finite width separating oppositely directed magnetic fields,
as shown in Fig. 12b. The internal structure of this
discontinuity assumes a two-dimensional reconnection in a
neutral sheet [25], i.e., in the sheet where the normal
(perpendicular) component of the magnetic field is absent.
The transition to the zero-thickness current sheet is possible
because in highly conducting plasmas, the thickness of the
sheet, 2a, is much smaller than its width 2b. The points x � and
ÿx � separate the direct current region DC from the reverse
current region RC.

We note that the neutral Syrovatskii current sheet is
fundamentally different from the diffusion region in the
Petschek flow models [27]. First, the current density is
minimal in the diffusion region, but it is maximal in the
center of the current sheet. This fact is significant from the
standpoint of stability of the current sheet and the possibility
of its disruption. Second, as the plasma conductivity
increases, the diffusion region width decreases, while, con-
versely, the width of the current sheet increases. This allows
the free magnetic energy, i.e., the energy of the reconnecting
magnetic fluxes (or, in other words, the energy of the current
sheet), to accumulate before the flare. Due to these two
features, the Syrovatskii current sheet is preferred to the
Petschek flow from the standpoint of the reconnecting
theory of flares in highly conducting plasmas.

For a current sheet emerging from a low-order zero point,
an analytic solution was obtained by the conformal transfor-
mation method [26]. Let h0 be the magnetic field gradient in
the vicinity of a zero point in the �x; y� plane considered as the
complex plane z � x� iy. Then the solution for the potential
magnetic field outside the current sheet is expressed in terms
of the complex potential:

F�z; t� � A�x; y; t� � iA��x; y; t�

� h0
2

z
����������������
z 2 ÿ b 2
p

ÿ 2I

c
ln

z�
����������������
z 2 ÿ b 2
p

b
� A0�t� : �52�

The magnetic field vector has the form

B � Bx � iBy � ÿi
�
dF

dz

��
; �53�

where the asterisk denotes complex conjugation.
In the complex z plane, the potential has a singularity in

the form of a cut with ends at the points x � b and x � ÿb. On
this cut, the surface density of the electric current is

j�x� � ch0
2p
�b 2 ÿ x 2�1=2

if we assume a quasi-stable, fully equilibrium regime of
reconnection without reverse currents in the current sheet.
The current density j�x� � 0 at x � b and x � ÿb. In this
particular case, the total current in the sheet is

I � 1

4
ch0b

2 : �54�

The function A0�t� corresponds to the magnetic flux
dissipated in the current sheet within the time t.

General solution (52) with an arbitrary value of the total
current I in the reconnecting current sheet leads to an
infinite magnetic field at the current sheet ends. The plasma
velocity and density fields in a close vicinity of the current
sheet were found in the strong-field and cold-plasma
approximation [85]. The features of the plasma flow and
density behavior near the reconnecting current sheet explain
the origin of the reverse currents. In addition, they play an
important role in the current sheet stability. For a given total
current, the velocity of electrons increases as the plasma
density decreases inside the layer. Various instabilities arise
in this way.

Numerical simulations demonstrate the splitting of the
reconnecting current sheet (RCS) into different MHD
discontinuities [56, 59, 60, 86, 87]. The system of attached
discontinuities is frequently found to be much more compli-
cated than that in the Petschek model. Both slow [59, 60] and,
for example, fast [86] shocks can be attached to the ends of the
current sheet (Fig. 13). At the same time, in theoretical
interpretations of numerical models [88], fast and slow
shocks are considered to be a possible result of current sheet
splitting. In addition, other types of MHD discontinuities are
formally not forbidden.

The current sheet splitting process means a change in the
magnetic reconnection regime, because the electric field
distribution becomes two-dimensional. The reason for this
could be the nonevolutionarity of the reconnecting current
sheet representing an MHD discontinuity or its structural
instability. We consider the conditions under which the
splitting occurs.

5.2 The notion of evolutionarity
A stable discontinuity can exist in real plasmas only if it is
stable with respect to a decay into other discontinuities or the
transition to some nonstationary flow. Let MHD quantities
be subjected to an infinitely small perturbation at the initial
instant of time. Linear waves then start propagating from the
discontinuity. If the amplitudes of these waves and the
displacement of the discontinuity are determined from
linearized boundary conditions, the problem of the evolution
of the initial perturbation with time has a unique solution. If

RCS

x

y

SÿSÿ

Sÿ Sÿ

Figure 13. Split current sheet with four attached MHD discontinuitiesÐ

slow shocks �Sÿ�.
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this problem does not have a unique solution, the assumption
on the smallness of the initial perturbation is incorrect. In that
case, infinitesimal perturbations instantly (in the ideal
medium approximation) lead to large nonlinear changes in
the initial discontinuous flow. Such a discontinuity is non-
evolutionary. We note that, unlike the nonevolutionary
discontinuity, the perturbation in an unstable evolutionary
discontinuity remains small within a short time interval.

The criterion for evolutionarity results from a comparison
of two numbers. The first, Nw, is the number of independent
parameters (the amplitudes of outgoing, i.e., reflected and
refracted waves, and the displacement of the perturbed
discontinuity) describing an infinitesimal perturbation. We
recall that the variations of all quantities in each wave are
linked by certain relations. Therefore, each wave is deter-
mined by one parameter, the amplitude of some quantity. The
second number, Ne, is the number of independent boundary
conditions (i.e., the number of equations) expressing the
unknown parameters in terms of the amplitudes of incident
waves. If these numbers are equal, the discontinuity satisfies
the evolutionarity requirement. Otherwise, the problem of
time evolution of an initially infinitesimal perturbation has no
solution or an infinite number of solutions. Such a disconti-
nuity cannot exist in real media and is said to be a non-
evolutionary discontinuity.

Because the propagation direction of a wave depends on
the relation between its group velocity and the flow velocity,
the evolutionarity requirement imposes constraints on the
unperturbed MHD quantities on each side of the disconti-
nuity. In particular, shocks turn out to be evolutionary when
the upstream and downstream flow velocities either exceed
the AlfveÂ n velocity (fast shocks) or are smaller than it (slow
shocks).

The reconnecting current sheet cannot be reduced to a
one-dimensional flow, because the velocity inhomogeneity
inside it is two-dimensional and is characterized by two
spatial parameters. The thickness of the sheet, i.e., the
distance 2a between the reconnecting magnetic fluxes
(Fig. 14), determines the magnetic field dissipation rate, and
the width 2b characterizes the magnetic energy stored in the
interaction region. The problem of the evolutionarity of a
reconnecting current sheet can be solved only for perturba-
tions interacting with the current sheet as a discontinuity.

5.3 Magnetic field and plasma flows near the current sheet
We consider a thin current sheet arising in the immediate
vicinity of the zero magnetic field line of hyperbolic type:

B0 � �h0y; h0x; 0� :

The current sheet is formed by the electric field

E � �0; 0; E � ;
which is nonzero and is parallel to the zero magnetic field line
coinciding with the z axis of a Cartesian coordinate system.
The magnetic field lines, frozen into the plasma, flow into the
sheet together with the plasma along the y axis. Here, the
magnetic field freezing conditions are violated, and the
magnetic field lines reconnect in the current sheet and are
expelled from it along the x axis. In [26], a simple analytic
formula is presented for the distribution of the magnetic field
B outside the sheet in a complex form in the limit case where
the half-thickness of the sheet a (the size along the y axis) is
zero (Fig. 12b):

By � iBx � h0
ÿ
z 2 ÿ �x ��2��z 2 ÿ b 2�ÿ1=2 �55�

(see also [85]). Here, z � x� iy is a complex variable and b is
the half-width of the sheet (the size along the x axis). The
quantity I (the total current in the sheet) varies within the
range 04 I4 ch0b

2=4, where c is the speed of light. At the
points

x � � �
����������������������
1

2
b 2 � 2I

ch0

s
; �56�

the magnetic field changes sign (see formula (55) and
Fig. 12b). The thin sheet approximation means that a5 b.

In the region jxj < jx �j, the directions of the electric
current j and the electric field in the sheet coincide. This is
the direct current, DC, shown in Fig. 12b. However, in
regions jx �j < jxj < b, the current is oppositely directed (see
the reverse current, RC, in Fig. 12b). If x � b and
bÿ jx �j � b, the reverse current amplitude is comparable to
that of the direct current. We assume that exactly this
configuration is realized. Here, all MHD quantities outside
the reconnecting current sheet can be considered quasi-
homogeneous everywhere except some neighborhoods of the
points x � x � and x � �b, which are excluded from further
consideration without affecting the generality of our conclu-
sions.

Under the assumption of the infinite plasma conductivity
s, b increases without a bound as time progresses. If s is large
but bounded, a finite width 2b of the sheet is established in a
finite time interval [27] and a=b 6� 0, although a5 b. In this
case, unlike (55), the transverse magnetic field component
By 6� 0 on the surface and inside the current sheet. However,
when the conductivity s is sufficiently large, Bx 4By outside
some neighborhoods of points (56). Further, the component
By is assumed to be zero on the surface and inside the current
sheet, which corresponds to the neutral current sheet
approximation. A more general setting of a self-consistent
MHD problem of the structure and shape of a reconnecting
current sheet that is not magnetically neutral is given in [29],
Section 3.4. Below, we restrict ourselves to some qualitative
considerations.

Let the plasma flow satisfy the MHD approximation. If
a5 b, all variables except the velocity v are quasi-homo-
geneous along the x axis within the sheet. The velocity
inhomogeneity is two-dimensional because the mass con-
servation law at the point x � 0, y � 0 yields

qvx
qx
� ÿ qvy

qy

y

vvy

RCDCRC

x

2a

Figure 14. Plasma flows inside the current sheet and its surroundings.
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by the flow symmetry. Therefore, the reconnecting current
sheet cannot be reduced to a one-dimensional flow. This is
obvious because the reconnecting magnetic fluxes move
toward each other, and the plasma flow inside the current
sheet also must be two-dimensional. In the case of an infinite
electric conductivity, the current sheet turns into a tangential
discontinuity in the process of formation, formally in the limit
t!1, where t is the time from the instant of the appearance
of the electric fieldE in the vicinity of the hyperbolic magnetic
field B0.

We consider a steady current sheet. The electric field E
does not depend on time. Then the aspect ratio a=b can be
estimated from the stationary Ohm's law [27] as

a

b
� nmh0

cE
; �57�

where nm is the magnetic viscosity. In addition, in the steady
model, the electric field is independent of the coordinates.
Therefore, the plasma flows into the sheet in the direct current
region, and is expelled from it in the reverse current region.

This pattern of the flow is shown schematically in Fig. 14.
The velocity component vy changes sign when the plasma
flows from the direct current region into two reverse current
regions (the same regions as in Fig. 12b). This is important in
order to calculate the number of outgoing low-amplitude
waves Nw.

5.4 Necessary assumptions
We suppose that all dissipative factors except the magnetic
viscosity nm are zero and nm is so small that

cE

h0b
5

h0b��������
4pr
p : �58�

The left-hand side of this inequality is a characteristic drift
velocity directed toward the current sheet vy, while the right-
hand side coincides with the AlfveÂ n velocity VA.

We also assume that

r in � r ex ; �59�

where the indices `in' and `ex' refer to internal and external
quantities for the sheet. Such a relation between the plasma
densities is found, for example, in the numerical experiment
in [59].

For an infinite electric conductivity s, the magnetic field
on the surface of the current sheet grows unboundedly with
time, and the drift velocity near the sheet tends to zero. This
corresponds to the absence of reconnection in ideal plasmas.
At the same time, the pressure p outside the reconnecting
current sheet is close to its value at z � 1 and is nonzero or
infinite for any s. From this, we can conclude that for a
sufficiently high conductivity, outside the vicinity of point
(56), the sound velocity Vs satisfies the condition

v ex
y 5V ex

s 5V ex
A : �60�

Inequalities (60) are in good agreement with the magneto-
static approximation.

Taking the characteristic values of these quantities for an
active region in the solar corona,

vy � 10 km sÿ1 ; Vs � 100 km sÿ1 ; VA � 1000 km sÿ1 ;

we see that approximation (60) is applicable there.

As regards the velocity component vx inside the current
sheet, its modulus increases from zero at x � 0 to

jv inx j �
h0b��������
4pr
p �61�

at x � x � [26] and then decreases to zero toward jxj � b.
Outside the current sheet, the velocity component vx is also
not greater than the characteristic AlfveÂ n velocity.

We suppose that the set ofMHD quantitiesQ is subjected
to a small perturbation dQ. For simplicity, we set

dvz � 0 ; dBz � 0

and assume that the perturbation satisfies the WKB approx-
imation conditions outside the current sheet [68]. For an
interaction of such perturbations with the current sheet as
with a discontinuity, at least two conditions must be satisfied.
First, the perturbation wavelength must be much longer than
the current sheet thickness, i.e., the wave vector must obey the
inequality ky 5 aÿ1. If the opposite inequality holds, wave
diffraction instead of reflection and refraction would occur
on scales of the order of a. However, a second condition is
also important. Perturbations inside the sheet must be
described by ordinary differential equations in y. Otherwise,
the perturbation would depend on two variables, and one-
dimensional boundary conditions on the current sheet surface
would not be satisfied. Therefore, another small parameter,
1=kb, should exist.We take this parameter as themain and the
only one because b4 a. Then the situation is greatly
simplified (see [57]).

In the zeroth order in the small parameter 1=kb, the wave
vector k can be determined from the dispersion equation

o0

�
ik 2V 2

s �kVA�2 ÿ V 2
s k

2o0�io0 ÿ nmk 2�
ÿ ik 2V 2

Ao
2
0 � o3

0�io0 ÿ nmk 2�� � 0 ; �62�

where o0 � oÿ kv is the frequency in the plasma rest frame.
In addition to the above assumptions, we impose the

following restrictions on the frequency o in the `laboratory'
frame where the current sheet is at rest:

vy
a

5ok5
Vs

a
; �63�

with

ok � oÿ kxvx : �64�

The right-hand inequality in (63) means that weak-amplitude
sound waves satisfy the condition ky 5 aÿ1. The left-hand
inequality allows reducing the equations for perturbations
inside the sheet to ordinary differential equations with respect
to y.

As an example, we consider the linearized mass conserva-
tion equation

qdr
qt
� dr

qvx
qx
� r

qdvx
qx
� dvx

qr
qx
� vx qdr

qx

� vy qdr
qy
� dr

qvy
qy
� dvy

qr
qy
� r

qdvy
qy
� 0 : �65�

If a5 c, the derivative qr=qx inside the current sheet can be
neglected. Because the plasma flow is two-dimensional and
the velocity inside the reconnecting current sheet is not
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uniform, terms with qvy=qy should be neglected together with
terms proportional to qvx=qx.

Thus, with (60) taken into account, the problem contains
the following small parameters:

e0 �
v exy
ao ex
k
; e1 �

ao ex
k

V ex
s

; e2 �
v ex
y

V ex
s

; e3 �
�
V ex

s

V ex
A

�2

: �66�

For simplicity, we additionally set

vy � V 3
s

V 2
A

: �67�

It is this velocity component that enters the criterion of the
current sheet evolutionarity.

We now consider infinitesimal perturbations of the
reconnecting current sheet using the plasma flow features
described above.

6. Evolutionarity
of the reconnecting current sheet

6.1 Perturbations normal to the current sheet
First, we consider the case of perturbations propagating
along the normal to the current sheet, i.e., with kx � 0. In
the zeroth order in the small parameters defined by inequal-
ities (63), solutions of Eqn (62) are

k d
y � ÿi

vy
nm

V 2
A

V 2
s

; �68�

k 0
y �

o
vy
; �69�

kÿy �
o
vy
; �70�

k�y � �
o
VA

: �71�

Here, root (71) is double-valued.
Perturbations satisfy theWKB approximation (see [68]) if

1

k�y b
5 1 ;

where jk�y j is the smallest wavenumber. This condition is
equivalent to the following condition for the frequency o:

o4
h0��������
4pr
p : �72�

If condition (72) holds, derivatives of the unperturbed
quantities with respect to coordinates can be neglected in
linear MHD equations, and dispersion equation (62) is
satisfied.

To obtain the condition for evolutionarity, wemust divide
the perturbations into those coming to the current sheet and
those going out from it. As a rule, such a division should be
done according to the sign of the sum of projections of the
flow velocity v and the group velocity on the normal of the
current sheet. However, in the case of normal propagation, it
suffices to determine the sign of the phase velocity, because in
the absence of frequency dispersion that velocity coincides

with the group velocity projection on the direction of the
vector k in the plasma rest frame [89].

A perturbation with the wavevector k 0
y from Eqn (69)

corresponds to an entropy wave, and kÿy from solution (70)
corresponds to a slow magnetoacoustic wave propagating
across themagnetic field. In the plasma rest frame, their phase
velocities are zero, but in the laboratory frame they coincide
with the plasma velocity v. If this is the case, both perturba-
tions move toward the current sheet when the plasma flows
into it and move out of the layer when the plasma flows out
from it. In addition, for the left-hand side of inequality (69),
we have

k 0
y 4

1

a
; kÿy 4

1

a
:

Therefore, the reconnecting current sheet is not a disconti-
nuity for perturbations (69) and (70).

Perturbations with the vector k�y from solution (71) are
fast magnetoacoustic waves. Their phase velocities o=k�y
satisfy the condition V�ph 4 vy [see (60) and (71)] and are
directed along the normal to the current sheet or away from it.
One of the waves always enters the layer, irrespective of the
sign of vy. Unlike the case with k 0

y and kÿy , we have k
�
y 5 1=a,

and waves (71) interact with the reconnecting current sheet as
with a discontinuity.

The perturbation k d
y from solution (68) is a dissipative

wave. It decays at distances much shorter than the current
sheet half-thickness a. Therefore, as was noted in [75], the
amplitude of this perturbation does not appear in the
boundary conditions on the discontinuity surface. Dissipa-
tive effects outside the current sheet are insignificant.

Thus, in the case of normal propagation, there is one
outgoing shock from each side of the current sheet where the
plasma flows into it (in the direct current region), and there
are four shocks where the plasma flows out from the sheet (in
the reversed current region).

6.2 Oblique propagation of perturbations
We now turn to oblique propagation of waves. To solve the
problem of evolutionarity of the current sheet as a
discontinuity, it is necessary to obtain a solution of Eqn (62)
for arbitrary o and kx. As shown in [89], for a given flow, the
number of shocks propagating from the x axis with arbitrary
o and kx does not depend on kx, i.e., on the propagation
angle [90]. Hence, it suffices to determine the number of such
shocks for kx � 0. From Section 5.3, it follows that when the
plasma flows into the sheet (the direct current region in
Fig. 12b), there is only one outgoing shock on each side
from it. However, when the plasma flows out from the sheet,
there are four such shocks.

In a reconnecting current sheet under condition (63), the
number of perturbations with ky 5 1=a depends on kx. If
kx � 0, there can be two such perturbations determined by
the wavevector k�y from (71). As we show below, there are
three outgoing perturbations for oblique propagation. This
fact is important for further considerations.

The wavevector of a slow magnetoacoustic wave is given
by

jkÿj � o
vy sin y� vx cos y� jVÿphj

; �73�

where Vÿph is the phase velocity and y is the angle between the
wavevector kÿ and the x axis. The scalar product kv is here
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represented in the form

kv � jkÿj�vy sin y� vx cos y� :

For Vs 5VA, the following expression for jVÿphj holds:

jVÿphj �
VAVs

V?
j cos yj

�
1� 1

2

V 2
AV

2
s

V 4
?

cos2 y� o

�
V 2

AV
2
s

V 4
?

��
; �74�

where V 2
? � V 2

A � V 2
s .

We choose the angle y0 such that jVÿphj � Vs, i.e., the value
j cos y0j is not small, and find solutions of (62) for fixed values
of o and

kx � jkÿj cos y0 : �75�

For this, we isolate the unknown variable ky:

�ok ÿ kyvy�
h
�nmvyV 2
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? ÿ nmokV 2
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� ik 2
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2
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xV
2
AV

2
s � ÿ io 4

k
i
� 0 : �76�

Condition (63) was used here.
In the zeroth order in the small parameters defined by the

inequality in (63), this equation has the following solutions:
the dissipative wave (68) and

k 0
y �

ok
vy

; �77�

k 1ÿ
y � 2ok

vy
; �78�

k 2ÿ
y � kx tan y0 ; �79�

k s
y �

1

2

�
okV 2

s cos
2 y0

2vyV 2
A

�
�
ÿ
4o2
k

V 2
s

�
o2
kV

4
s cos

4 y0
4v 2

y V
4
A

� 2 sin y0j cos y0j
o2
kVs

vyV 2
A

�1=2�
: �80�

The sign inside the parentheses in (80) coincides with that
before jVÿphj in formula (73), and the sign before the
parentheses defines two different solutions of Eqn (76).
Inequality (63) implies that for perturbations (77) and (78),
ky 4 1=a, but for (79) and (80), conversely, ky 5 1=a.

Perturbations with k 1ÿ
y and k 2ÿ

y are slow magnetosonic
waves, where the angle that the wavevector k 2ÿ makes with
the x axis is equal to y0 from expression (75) for kx.
Perturbations with k s

y can be either slow magnetosonic or
surface waves, depending on the ratio vyV

2
A=V

3
s .

If the expression inside the parentheses in formula (80) is
negative, k s

y has an imaginary part. The corresponding
perturbations exponentially grow or decay at a characteristic
distance that is much shorter than a.

The analysis of the second-order polynomial in vy in the
parentheses in Eqn (80) shows that it is equal to zero at the
points

vy � V 3
s

4V 2
A

j cos y0j �� sin y0 � 1� : �81�

Here, the sign before sin y0 is determined by the sign in (73).
The two signs before unity determine two values on the y axis
between which perturbations (80) are magnetosonic waves.
Outside this interval, they become surface waves. Perturba-
tions that increase in propagating away from the current sheet
surface must be excluded because they do not satisfy the
boundary condition at infinity. As shown in [89], decaying
perturbations are those that leave the discontinuity surface.

Below, we use the fact that at sufficiently high velocities
vy, perturbations (80) are surface waves, irrespective of the
values of y0. It can be shown that the function vy�y0� defined
by (80) is bounded in absolute value from above by

vmax
y � 3

���
3
p

16

V 3
s

V 2
A

: �82�

The maximum in (82) is reached at y0 � p=6. If

jvyj > vmax
y ; �83�

perturbations (80) are surface waves for any y0.
A surface perturbation decaying with the distance from

the x axis does not transport energy from the current sheet
surface, because its amplitude vanishes at y � 1. However,
this surface wave is included in the total perturbation of the
reconnecting current sheet, and its amplitude must be
determined from the boundary conditions. According to this
property, the surface wave is classified as an outgoing wave.

As regards the growing perturbations, they are formally
incoming waves, but they must be rejected because their
amplitude tends to infinity as y!1. For this reason, in the
plasma outflow region from the current sheet where only one
incoming wave is possible, incoming waves are absent for a
given y0 when jvyj > vmax

y .
We note that vmax

y coincides with the maximal value of the
projection of the slow magnetosonic wave group velocity on
the y axis, which in the approximation Vs 5VA has the form

�Vÿgr�y �
V 3

s

V 2
A

sin y cos3 y : �84�

In addition, this value is also attained at the angle y � p=6.
For example, inequality (83) means that all slow magneto-
sonic waves are either incoming or outgoing, depending on
the plasma flow direction, towards or away from the current
sheet.

To solve the problem of the evolutionarity of a reconnect-
ing current sheet, we must specify appropriate boundary
conditions. They relate the amplitudes of perturbations for
which ky 5 1=a (i.e., the perturbations interacting with the
current sheet as with a discontinuity) on each side of the
current sheet surface. However, this is not a simple task.
Unlike one-dimensional discontinuities, waves with ky 5 1=a
outside the current sheet can give rise to perturbations for
which the opposite inequality holds inside the current sheet.
In addition, because dissipative effects are important inside
the current sheet, the wavenumbers of these perturbations
have imaginary parts that tend to infinity as a=b! 0. This
implies that the amplitude of perturbations increases without
a bound. Therefore, linearized one-dimensional boundary
conditions are not satisfied as a whole on the reconnecting
current sheet [58]. This fact is clarified in the next section
when analyzing perturbations inside the current sheet.

February 2015 Discontinuous plasma êows in magnetohydrodynamics and in the physics of magnetic reconnection 127



6.3 Perturbations inside the current sheet
In the zeroth order in the small parameters ei, solutions of
Eqn (76) take the form
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It follows from the main inequality (63) that wave vectors
(77), (85), and (86) satisfy theWKB approximation inside the
reconnecting current sheet. The dispersion relation is valid for
them as long as the terms with derivatives of unperturbed
variables in the MHD equations (see [68], Ch. VIII) are
insignificant in the limit ky 4 1=a.

Expressions (85) and (86) yield four solutions of theMHD
equations in theWKB approximation. By contrast, perturba-
tions (87) do not satisfy theWKB approximation, because for
them 1=kya! 0. In this case, it is not possible to ignore the
derivatives of the unperturbed variables in the MHD
equations and to use Eqn (76).

We thus conclude that inside the reconnection current
sheet, there are four perturbations that satisfy the WKB
approximation irrespective of the value of kx. We recall that
outside the current sheet, there are four such perturbations in
the case of normal propagation and three perturbations in the
case of oblique propagation. In the latter case, the perturba-
tions with ky 5 1=a and ky 4 1=a transform into each other.

6.4 One-dimensional boundary conditions
For a specified but sufficiently general distribution of
unperturbed MHD parameters inside the reconnecting
current sheet, expressions for perturbations (and, hence,
describing the transition between perturbations with
ky 5 1=a and ky 4 1=a) can be found analytically [58]. These
solutions are shown schematically in Fig. 15.

The horizontal solid and dashed lines represent the
respective solutions with ky 5 1=a and ky 4 1=a. The slanted
lines represent the solutions that do not satisfy the WKB
approximation. A superposition of perturbations on one side
of the thick vertical line y � �a (i.e., on one side of the current

sheet) turns into a superposition of perturbations on the other
side.

In the case of normal propagation, long waves with
ky 5 1=a do not turn into short waves with ky 4 1=a
(Fig. 15a). In this case, long waves interact with the
reconnecting current sheet as with a tangential discontinu-
ity, i.e., as if the velocity component vy were zero. The wave
amplitudes satisfy the linearized boundary conditions for
magnetoacoustic waves at the tangential discontinuity with
vx1 � vx2:�

dp� Bx dBx

4p

�
� 0 ; fdvyg � 0 : �88�

Thus, there are two boundary conditions and two outgoing
waves for any sign of vy. In addition, Eqns (88) always have a
unique solution. Therefore, the reconnecting current sheet is
evolutionary for normally propagating waves.

Another situation emerges in the case of oblique propaga-
tion, where long waves outside the sheet turn into short waves
inside the sheet. This imposes two additional boundary
conditions on the perturbations that interact with the
reconnecting current sheet as with a discontinuity; for such
perturbations, the short-wave amplitudes should be zero. As
a consequence, the current sheet behaves like a discontinuity
only for specially chosen perturbations.

The problem of the evolutionarity of such perturbations
can be formulated. However, conclusions about the non-
evolutionarity are different for the direct current region,
where the plasma flows into the reconnecting current sheet,
and for the reverse current regions, where the plasma flows
out from the sheet.

6.5 Evolutionarity and decay
We have obtained the evolutionarity criterion for a recon-
necting current sheet treated as an MHD discontinuity.

If the plasma flows into the sheet (in the direct current
region in Figs 12b or 14) or if inequality (83) holds, the
conclusion about the nonevolutionarity cannot be made. In
this case, either the current sheet does not behave as a
discontinuity or, alternatively, the problem of small perturba-
tions has a unique solution. In the latter case, we can consider
the usual linear stability problem. For example, the question
about linear tearing instability [91, 92] always exists in
application to the central part (the direct current region) of
the reconnecting current sheet.

Let the relation opposite to (83) hold,

jv exy j <
3
���
3
p

16

V 3
s

V 2
A

: �89�

The plasma flows out from the sheet (in the reverse current
regions in Figs 12b and 14), with the outflow velocity being
smaller than the projection of the group velocity of the slow
magnetoacoustic wave normal on the current sheet [see (89)].
Then there is a perturbation for which, first, the boundary
conditions on the sheet surface are satisfied and, second, the
outgoing wave amplitudes are large compared to the
amplitudes of incident waves in the limit ei ! 0, i.e., when
the plasma conductivity is sufficiently high.

Such a perturbation inside the current sheet is a solution
of the system of linearized MHD equations and is character-
ized outside the sheet by the resonance angle y �0 determined
from (81). The perturbation is not described by linear

ÿa �a y

a

ÿa �a y

b

Figure 15. Schematics of the solution of linearized MHD equations in the

case of (a) normal and (b) oblique propagation.
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equations, and its time evolution has no unique solution.
Therefore, the current sheet is not evolutionary, and the
initial perturbation of the MHD flow is not small. The
perturbation can represent the splitting of the current sheet
into shocks that are observed in numerical experiments [56,
59, 60, 86].

This allows unifying two regimes of magnetic reconnec-
tion in current sheets: with or without MHD discontinuities
attached to the current sheet ends (see Section 7). Such a
unified model can be used to describe nonstationary phenom-
ena in astrophysical plasmas related to the magnetic recon-
nection process.

7. Problems of interpretation
of numerical simulations

7.1 Discontinuities near the magnetic reconnection region
In [54±56], a two-dimensional analytic model of stationary
magnetic reconnection in plasma with a strong magnetic
field was constructed. The model includes a thin current
sheet and four discontinuous MHD flows of finite length R
attached to its ends. Figure 16 shows the right-hand side of
the current structure; the left-hand side can be constructed
symmetrically with respect to the y axis. The plasma flows
into the reconnecting current sheet from above and from
below and flows out from it to the left and to the right. The
specific geometry of the current sheet is defined by its free
parameters, depending on astrophysical applications.

Figure 17 shows a particular case of magnetic reconnec-
tion (L � 1, R � 1, the inclination angle of the discontinuity
plane to the x axis is 45�), which can be taken as a template
when comparing many other possible reconnection regimes.
Figure 17 demonstrates that the current sheet is the main
result of the solution of the problem in the central part of
the reconnection region. The sheet is `crossed' by two
symmetric magnetic field lines; the `crossing points' (see
[93] for more details about their properties) separate the
current sheet parts relative to which the field circulation has
opposite signs. Thus, in the central part of the reconnection
region, a Syrovatskii current sheet indeed emerges, which

consists of the direct current and two attached reverse
currents.

In specific astrophysical applications, in particular, in
solar flares, the model of a so-called `superhot' turbulent
current sheet [30] should be used for determining the
parameters of this region. An advantage of the analytic
model, however, is the possibility of studying general
relations independent of the detailed assumptions of the
physical model of reconnection. We consider some general
properties of discontinuous flows in the vicinity of a current
sheet predicted by the analytic model [54, 55]. The magnetic
field inclination angles y1 and y2 are one of the results of the
magnetic field calculation (see Fig. 16). Their values change
with the coordinate l along the discontinuity surface from the
current sheet to the free edge of the shock, which changes the
MHD discontinuity type.

In Section 2.3, a graphic representation of the possible
dependences between the angles was obtained, as shown in
Fig. 5. It can be used to identify the type of discontinuous
MHD flows from the known magnetic field configurations
in numerical simulations of magnetic reconnection. Indeed,
plots of the function y2 � arctan �a tan y1� for different
values of a do not have crossing points inside the interval
y1 2 �0; p=2�. For this reason, the value of a (and hence the
discontinuous flow type) is uniquely defined by the angles y1
and y2. For a > 1, a fast shock emerges. The value a � 1
corresponds to a contact discontinuity. If ÿ1 < a < 1, a
slow shock appears. The value a � ÿ1 corresponds to an
AlfveÂ n shock. Finally, a < ÿ1 corresponds to a trans-
AlfveÂ nic shock. The switch-off and switch-on shocks are
respectively realized at a � 0 and a!1. Each value of the
coefficient a is determined by three physical parameters r1,
r2, and m.

The characteristics of plasma crossing the discontinuity
change with the distance from the reconnection point to the
current sheet along the discontinuity surface. Different types
of discontinuous MHD flows correspond to different flow
regimes. Figure 18 shows the gradual change in the magnetic
field inclination angles along the attached discontinuity
surface starting from the point l � 0 of the attachment to
the current sheet up to its `free end' l � R, R � 1, where the
angles y1 and y2 are equal to each other.

L

x

y

y2

y1

B

R

CS

l

0

Figure 16. The configuration of electric currents (thick solid segments)

consists of the current sheet (CS) and discontinuity surfaces of finite length

R attached to its ends; L is the half-thickness of the reconnecting current

sheet. The electric currents are parallel to the z axis of a Cartesian

coordinate system.
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Figure 17. Magnetic field lines (thin curves with arrows) marked with the

vector potential values. The direct and reverse current regions are seen

inside the current sheet (the horizontal thick solid segment). The magnetic

field has a jump at the attached discontinuity surfaces (slanted thick solid

segments).
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According to the graphical representation constructed in
Section 2.3, near the attachment point of a shock to the
current sheet, the shock is trans-AlfveÂ nic. Indeed, the angles
y1 and y2 are different, have opposite signs, and ÿy2 > y1
(Fig. 4d). The situation changes when the angle y1 vanishes.
At this point, a switch-on shock arises �y2 6� 0�. Further, at
larger l, the discontinuous flow turns into the fast shock
regime. The conditions for this transition are considered in
detail in Section 7.2.

In the framework of the same analytic model of
reconnection, another distribution of magnetic field inclina-
tion angles was also obtained [55], which is characteristic for
other model parameters. Figure 19 shows the results of
calculations in which `external' shocks (those that end at
free ends of the attached discontinuous flows) are slow. This
regime of magnetic reconnection is considered in more
detail in Section 7.2. We only note that the presence of
slow MHD shocks in the vicinity of the compact reconnect-
ing region is a characteristic feature of the classical Petschek
flow [21].

However, we recall that the two-dimensional Petschek flow
corresponds to the model problem of reconnection of oppo-
sitely directed magnetic fields that are uniform at large
distances from the reconnection region, i.e., formally at

infinity. At the same time, the analytic model considered here
has another asymptotic form of magnetic fields at large
distances: the field becomes hyperbolic there. This type of
reconnection, apparently, is typical for the case where the
reconnecting region (the magnetic field separator in the
corona) is not located so high, relatively close to the `magnetic
obstacle', i.e., a flaring loop arcade in the corona [30]. A similar
situation arises in a nonstationary MHD model in which the
fast reconnection point inside an infinite current sheet is
located near a massive slowly moving `magnetic island' [63].

As is well known, trans-AlfveÂ nic shocks are nonevolu-
tionary in both ideal and dissipative MHD [75, 94, 95].
Moreover, they apparently remain nonevolutionary in a
weakly collisional magnetized plasma and in the vicinity of
superhot turbulent current sheets in solar flares. Hence, we
assume that the structure of discontinuous flows becomes
more complicated near the ends of such a sheet. It is likely to
be similar to the quasistationary picture found in numerical
dissipative MHD experiments (see, e.g., [51]). However, a
strongly nonstationary picture of discontinuous flows is also
possible, which is caused by the so-called oscillatory disin-
tegration of trans-AlfveÂ nic shocks [95].

7.2 Transitions between discontinuities
in the reconnection model
The discontinuity surface in Fig. 19, with the behavior of
angles on the surface shown there, can be separated into three
regions according to the types of discontinuous flows. A
trans-AlfveÂ nic shock is attached immediately to the current
sheet. In Fig. 19, this region corresponds to negative values of
y1. Away from the current sheet, a fast shock appears
�y2 > y1� up to the intersection point of the curves y1 and y2.
The discontinuity ends with a slow shock �y2 < y1� smoothly
transiting into a continuous flow �y2 � y1� at the edge of the
discontinuity surface, i.e., at l � 1.

The change of the shock type with a gradual change in the
flow parameters should occur via transitional discontinuities.
In the case considered here, the first transition occurs between
the trans-AlfveÂ nic and fast shocks. As shown in Section 3.3,
switch-on shock (33) plays the role of a transitional
discontinuity. Indeed, we see in Fig. 19 that at the transition
point between the trans-AlfveÂ nic and fast shocks, the
magnetic field in the incident plasma flow is normal to the
discontinuity surface �y1 � 0�, and in the outgoing plasma
flow, the field has a tangential component �y2 > 0�.

This transition cannot occur only by the gradual change in
the mass flux across the discontinuity. Simultaneously, the
magnetic field incidence angle should decrease in order to
diminish the jump between the allowed mass fluxes for fast
and trans-AlfveÂ nic shocks (see Fig. 6). In addition, both
trans-AlfveÂ nic and fast shocks satisfy inequality (20). There-
fore, to smoothly change the medium parameters, the mass
flux of the switch-on shock that mediates the transition, must
also satisfy the inequality

m 2
off > m 2

A �m 2
? ;

or

B 2
x

4pr2
>

B 2
x � ~B 2

y

4p~r
:

After simplifying the last expression, we obtain a constraint
on the possible change in themagnetic field inclination behind
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Figure 18. Distribution of the angles y1 and y2 on the attached disconti-

nuity surface. The variable l is the distance from the current sheet end

measured along the discontinuity surface. No slow shocks can be realized

in the model.
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Figure 19. Distribution of angles y1 and y2 on the attached discontinuity

surface. The variable l is the distance from the current sheet end measured

along the discontinuity surface. Slow shocks can be realized in the model.
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the discontinuity plane:

tan2 y2 <
2frg
r1

: �90�

There is no transition solution for the fast-to-slow shock
transformation (the intersection point of plots for y1 and y2 in
Fig. 19). Regions of the allowed mass fluxes for these
discontinuity types have no common points (see Fig. 6).
Moreover, the crossing of the curves in Fig. 19 suggests the
absence of magnetic field jumps at the point separating the
fast and slow shocks. Only a contact discontinuity has such a
field structure. However, in a fast shock, according to
Eqn (26), tan y2 ! tan y1 only as frg ! 0. The same
condition should have been imposed on the transition
solution, if it had existed. Meanwhile, substituting frg � 0
in the boundary conditions of contact discontinuity (29)
leaves the parameters of the medium and magnetic field
unchanged. The density, velocity, magnetic field, and pres-
sure jumps at the point considered are zero. There is no
discontinuity at the contact point between the fast and slow
shocks.

Thus, the discontinuity surface turns out to be physically
separated into two regions: the inner part consisting of trans-
AlfveÂ nic and fast shocks, and the outer part representing a
slow shock. By changing the free parameters of themodel, it is
possible to obtain the reconnection regime in which the
discontinuity ends with a fast shock, and the external part of
the discontinuity is entirely absent. This suggests that the
inner part of the discontinuity is due to the reconnection
process itself and is closely related to the presence of reverse
currents at the ends of the current sheet, which is well
demonstrated in [54]. At the same time, the outer part of the
discontinuity is strongly dependent on the external factors
affecting the general topology of current sheets, including the
presence or absence of the `magnetic obstacle' and plasma
inhomogeneities outside the reconnection site.

Some analogs of the above conclusions can be found in
the results of modern numerical MHD simulations of the fast
reconnection process. The nonevolutionarity of trans-Alfv�e-
nic and switch-on shocks in the analytic model in [54, 55]
points to the discontinuity flow decay into a collection of
interacting discontinuities. Calculations of numerical models
in this region should be especially accurate. This determines
the possibility of correctly interpreting a complicated system
of shocks observed near the reverse current regions [49, 51,
52]. In [55], the characteristics of the external part of the
discontinuity surface formed by slow shocks depend on the
geometry of the analyticmodel and hence on the reconnection
process conditions.

Numerical experiments also suggest that the plasma
expelled from the reconnecting current sheet is clumped into
so-called `plasmoids'. As a rule, they are separated from the
surrounding plasma by a system of slow shocks. The structure
and intensity of the latter depend on the size and density of the
`plasmoids'.

Generally, the relation of the magnetic reconnection
processes to the formation of the accompanying discontin-
uous flows requires further careful investigation.

7.3 Plasma heating outside the reconnection region
The strongest matter heating at the discontinuities can be
expected from plasma subjected to a strong density jump in a
magnetic field with drastically changing geometry (see
Section 4.2). Such conditions hold in the magnetic reconnec-

tion region. The merging of two oppositely directed magnetic
fluxes results in the formation of a current sheet, which in a
highly conducting plasma slows down the reconnection
process and accumulates free magnetic energy in its vicinity.
This energy is later released during disruption of the current
sheet (see, e.g., [24, 30]). Here, the magnetic reconnection
mediates the fast transformation of the free magnetic energy
into the plasma particle energy and is accompanied by the
formation of a complex picture of MHD discontinuities in
those regions with sharp changes in the magnetic field and
plasma velocities. Such systems of discontinuities are
observed in both laboratory and numerical experiments [13,
15].

In the analytic model for magnetic reconnection [54, 55],
these discontinuous structures are present as separate ele-
ments. The types of discontinuities and the transition
conditions between different discontinuity types were stu-
died in Sections 7.1 and 7.2. We now briefly discuss the
additional plasma heating outside the reconnection region, at
the shocks attached to the reconnecting current sheet. First of
all, the following facts should be noted. First, near the ends of
the current sheet, where the reverse currents are formed, the
shocks are trans-AlfveÂ nic. Second, the density jump is large
near the current sheet and decreases to zero when approach-
ing the free edge of the discontinuity. In Section 4.2, we
showed that all these factors tend to increase the internal
energy jump at the discontinuity. Therefore, the most
favorable conditions for plasma heating in the reconnection
model under consideration are realized near the reverse
current region. This is consistent with ideas about the
presence of a `superhot' plasma (with the electron tempera-
ture above 10 keV) in solar flares [30].

X-ray observations of solar flares confirm the superhigh
plasma temperatures. The temperature increase suggests the
presence of the main energy release site (see Fig. 20 in [45]).
Modern concepts of the solar flare structure (see [96])
uniquely associate this region with magnetic reconnection.
Hard X-ray emission in Fig. 20 shows the location of the
`superhot' plasma passing through a turbulent current sheet.
The presence of discontinuous plasma flows at the boundaries
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of the high-temperature regions gives rise to additional
heating of the plasma passing through the discontinuity.

8. Conclusion

We have presented a review of the modern state of the
theory of discontinuous MHD flows and its application to
the physics of magnetic reconnection in astrophysical
plasmas and in laboratory and numerical studies. The
correspondence is established between the standard classifi-
cation of discontinuous MHD flows [4] and the character-
istic plasma flow parameterÐ the mass flux across the
discontinuity, Eqn (18). Transition solutions for all dis-
continuities with allowed transitions are found in explicit
form. They are used to construct a generalized scheme of
continuous transitions between discontinuous MHD flows
[9]. The scheme includes discontinuities that have not been
incorporated in earlier schemes, such as contact disconti-
nuities and switch-on and switch-off shocks. Some types of
discontinuous flows, for example, trans-AlfveÂ nic shocks, are
nonevolutionary. They are also included in the generalized
transition scheme. When interpreting the results of numer-
ical integration of MHD equations, this allows identifying
the regions that require more accurate calculations and
additional investigation.

The properties of Syrovatskii's reconnecting current sheet
are described and the need for generalizing themodel in [26] is
demonstrated. In the framework of a simplified analytic
model [55], it is possible to identify different parts of
discontinuous surfaces with different MHD shocks attached
to the current sheet. In particular, near the ends of the current
sheet (in the presence of reverse currents), the regions of trans-
AlfveÂ nic and switch-on shocks, which are known to be
nonevolutionary, are located.

Based on the analysis of evolutionarity, the possibility of
the current sheet decaying into a system of MHD disconti-
nuities [57] is demonstrated. With the shocks present in the
analytic reconnection model in [55] as an example, possible
constraints on the flow parameters imposed by the contin-
uous transition conditions are shown. The separation of the
discontinuous surfaces attached to the current sheet into two
regions of different origins is established. The quasi-station-
ary inner region is related to the currents in the current sheet,
and the outer region is mostly determined by the boundary
conditions under which the magnetic reconnection proceeds
and by the reconnection rate.

For the analytic equation (47) describing the internal
plasma energy change across the MHD discontinuity, its
dependence on both thermodynamic plasma parameters and
the MHD discontinuity type is found. The larger the plasma
density and magnetic energy density jumps at the disconti-
nuity are, the stronger the heating. Trans-AlfveÂ nic flows
produce the maximum heating. Such conditions are realized
near the reverse current region duringmagnetic reconnection.
The result can be used to explain the plasma temperature
distribution in solar flares observed by modern X-ray space
observatories [45].

The study was supported by the Russian Foundation for
Basic Research (grants 11-02-00843 and 14-02-31425-mol).
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