
Abstract. We review the succession of ideas underlying the
emergence of the nonequilibrium diagram technique (Keldysh
diagram technique). Simple examples are used to illustrate the
implementation of the technique and to demonstrate possible
difficulties and the ways to overcome them. Together with well-
known facts, some lesser-discussed details are considered, in
particular, whether the so-called three-component technique is
necessary. Several applications of the nonequilibrium diagram
technique are discussed including, notably, tunneling systems
and linear response problems. We hope that some parts of the
review can be useful even for the reader familiar with the non-
equilibrium diagram technique.
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1. Introduction

The history of the nonequilibrium diagram technique (NDT)
began 50 years ago with the work by Keldysh [1] published in
1964 in Russian in the Journal of Theoretical and Experi-
mental Physics (JETP), and in 1965 in the English version of
JETP (Soviet Physics ± JETP). Although, of course, there
was work that paved the way for the appearance of this
article, it was [1] where simple rules that are the cornerstone of
the diagram technique for nonequilibrium processes were
formulated for the first time. In that paper, moreover, such
rules were first shown to exist, which had not been obvious
previously.

Article [1] has an unusual history. On the one hand, the
article attracted attention and it was generally appreciated.
On the other hand, the habit of using the temperature
diagram technique in condensed matter physics was so
embedded that many problems that could be solved much
more easily and in a more natural way by the NDT continued
(and continue) to be considered in the temperature technique.
To make the temperature technique efficient, great ingenuity
was often required, for example, in the case of the analytic
continuation procedure proposed by Eliashberg [2]. Some-
how, the doubling of variables in the NDT was considered an
unnecessary complication, but in fact calculations using the
NDT are often simpler and clearer.
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In some cases, the temperature technique was used for
systems (for example, tunnel junctions) where it cannot work
correctly in principle. (We should not be misled by the fact
that the temperature technique gives correct results in simple
cases.) We note that as early as 1971, Caroli, Combescot,
Nozieres, and Saint-James, in a series of superb papers [3±5],
systematically applied the NDT to the problem of tunneling
through an intermediate system with a phonon interaction
within the tight-binding approximation. However, later, the
temperature technique language was very often used in spite
of being unsuitable for describing interacting systems with
nonequilibrium current. It was only after the appearance of
paper [6] (taking almost 30 years to recognize that the NDT is
a natural language for this area!) that the NDT began to be
widely used in such problems. Presently, the Keldysh
technique is commonly used in the theory of solid-state
heterostructures.

The NDT was also applied to a wide range of problems
related to the interaction of high-intensity light with super-
conductors, the description of lasing in semiconductor
structures, and the development of the cascade laser theory
(many results are collected in book [7] and a number of
references are given in Section 10). The incoming high-
intensity wave creates a large density of nonequilibrium
electrons and holes, which are scattered by impurities,
interact with each other and with phonons, and recombine
with emission of light. TheNDT turns out to be a suitable tool
for describing nonstationary and strongly nonequilibrium
states in such systems.

In recent years, the technique has also been increasingly
used in areas such as cosmology, heavy-ion collisions, and
some other problems of elementary particle physics (nuclear
physics).

Historically, the first diagram technique was the Feyn-
man±Dyson technique [8, 9], which was remarkably clear and
simple (for pioneering papers, see [10]). However, this
`quantum field theory' technique was based on averaging all
observables over a vacuum (it was later generalized in solid
state theory to the case of zero temperature and averaging
over the many-body ground state). In 1955, Matsubara
proposed his version of the diagram technique for many-
body systems in thermodynamic equilibrium [11]. Due to the
efforts of many theorists (see, e.g., [2, 12±15]), technical
methods were developed that allowed applying the tempera-
ture technique more efficiently. But this technique is not
suitable for directly finding propagators in real time
(Green's functions). The first steps to real-time calculations
were made in the first paper by Mills [16], where time
propagators were considered, albeit for thermodynamic
equilibrium only. The thermodynamic equilibrium condition
allowed using the spectral decomposition and analytic
continuation methods to construct a scheme for calculating
time propagators.

However, the problem of describing real-time systems in
other (nonequilibrium) states seemed to be very complicated.
This view was based on the fact that any technique for
calculating the retarded correlators underlying the descrip-
tion of the nonequilibrium response was complicated and
cumbersome.

The main achievement of paper [1], which appeared
50 years ago, is that it showed that things were much simpler
than most theorists thought at that time. This is how its
author explains his motivation (a talk at the interdisciplinary
seminar ``Progress in nonequilibrium Green's functions,''

19 August 2002, Dresden, Germany [17]): ``The Feynman
diagram technique seemed so logical and natural to me that I
could not believe that its validity was limited to very
particular, though important, classes of statesÐ the ground
state or the thermodynamic equilibrium state. So the program
was simple and straightforward: to repeat the original
Feynman±Dyson derivation step by step, looking for a step
that fails for any state, and then try to circumvent the
difficulties following the original formulation as closely as
possible.''

In the same talk, Keldysh explains how much had already
been done (in particular, in the Soviet Union) for extending
field-theoretical concepts andmethods, including the Green's
functions, to many-body problems by the time the NDT was
formulated [18±21]. In a sense, the NDT arose as a necessary
generalization of field theory methods. In what follows, we
mention some of the work that was conducive to the creation
of the NDT.

The temperature diagram technique is often preferred in
applications because at first glance it appears to be simpler
than theNDT.However, this simplicity of formulation has its
price: calculations become rather complicated in all nontrivial
cases.Moreover, the temperature technique is applicable only
to the thermodynamic equilibrium and response theory.
Although the NDT is a two-component theory and looks
more complicated, it leads to much simpler and clearer
calculations for complex systems and allows considering
both nonequilibrium and nonstationary cases. We show in
what follows that both the derivation and the operational
rules of the NDT are in fact nomore difficult than those in the
temperature technique. After a brief derivation of the original
NDT equations, we use some simple examples to discuss
principles and subtleties of the NDT that are usually not
mentioned in the reviews. To show how the NDT works, we
consider several problems in solid state physics. Finally, we
briefly discuss some other applications of the Keldysh
technique.

2. Basic concepts
of the nonequilibrium diagram technique

In this section, we briefly review quite elementary facts from
quantummechanics (statistics). In this way, we show the logic
underlying the approach used by Keldysh in his paper. We
first note that a nonequilibrium diagram technique aims to
calculate time variations in a system under the action of
external fields. Hence, to build the NDT, we begin with a
general description of time evolution in quantum mechanics.
As always, the starting point here is the SchroÈ dinger equation,
giving rise to the well-known formula for calculating any
observable I at a time t,

I�t� � 
C�t�jÎ jC�t�� � 
0jS�t0; t�ÎS�t; t0�j0� ; �1�
where the evolution (matrix) operator is defined by the
SchroÈ dinger equation

i
q
qt

S�t; t0� � HS�t; t0� ; S�t0; t0� � 1 : �2�

In the many-body case, we deal with quantum statistics,
and hence the evolution is described by a density matrix. Any
observable can be calculated if the density matrix is known at
a time t:

I�t� � hÎ i � Sp
�
r̂�t�Î � : �3�
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The time evolution of the densitymatrix itself is defined by the
same evolution operator,

r�t� � S�t; t0� r�t0�S��t; t0� : �4�

A diagram technique arises when the evolution operators
cannot be found explicitly, and have to be calculated as
perturbative series. The Hamiltonian is then assumed to be
split into an initial unperturbed Hamiltonian and a perturba-
tion operator,

H � H0 � V : �5�

It is important that all solutions of the unperturbed system be
known. We note that the Hamiltonian H0 can contain a
number of external fields as long as we can explicitly calculate
expectation values with respect to the unperturbed density
matrix. The perturbation operator can contain external fields
as well as interactions between various particles in the system.
It is convenient to formulate such a perturbation theory using
the Heisenberg picture, because we are interested in both
observables at a given time and their temporal correlation
functions. In the case of a single operator, we have

hÎ i � Sp
�
S�t; t0�r�t0�S��t; t0�Î

�
� Sp

�
r�t0�S��t; t0�ÎS�t; t0�

�
; �6�

Sp
�
r̂�t�Î � � Sp

�
r0S

��t; t0�ÎS�t; t0�
�

� Sp
�
r0U

��t; t0�Î�t�U�t; t0�
�
; �7�

where

Î�t� � exp �iH0t�Î exp �ÿiH0t� ; �8�
U�t; t0� � exp �iH0t�S�t; t0� : �9�

If the perturbation operator commutes with the initial
Hamiltonian H0, then the evolution operator in the interac-
tion picture can be found simply as

U�t; t0� � exp
�ÿiV�tÿ t0�

�
: �10�

However, this is not usually the case. To find the operator U,
we use the equation

i
q
qt

U�t; t0� � V̂�t�U�t; t0� ; �11�

where all operators are given in the interaction picture:

V̂�t� � exp �iH0t� V̂ exp �ÿiH0t� : �12�

Because the operators V̂ and H0 do not commute with each
other, solutions of (11) are represented in terms of the so-
called T-ordered exponential

U�t; t0� � T exp

�
ÿi
� t

t0

V̂�t 0� dt 0
�
: �13�

The time-ordering (T-ordering) operator arranges a set of
operators (in the Heisenberg or the interaction picture) from
left to right as the time argument increases:

TÂ�t�B̂�t 0� � y�tÿ t 0�Â�t�B̂�t 0� � y�t 0 ÿ t�B̂�t 0�Â�t� : �14�

We note that interchanging two fermion operators leads to a
sign change (the upper sign in the above relation). Operator

(13) is represented as a series,

U�t; t0� � 1ÿ i

� t

t0

V̂�t1� dt1

� i 2
� t

t0

V̂�t1� dt1
� t1

t0

V̂�t2� dt2 � . . . ; �15�� t

t0

V̂�t1� dt1
� t1

t0

V̂�t2� dt2 � 1

2
T

�� t

t0

V̂�t1� dt1
� t

t0

V̂�t2� dt2
�
:

�16�
The inverse operator

ÿi q
qt

U��t; t0� � U��t; t0�V̂�t� �17�

is defined using the inverse time-ordering operation, which
places operators with later times to the right of those at earlier
times:

U��t; t0� � 1� i

� t

t0

V̂�t1� dt1

� i 2
� t

t0

dt2

� t2

t0

dt1 V̂�t1�V̂�t2� � . . . ; �18�

U��t; t0� � ~T exp

�
�i
� t

t0

V̂�t 0� dt 0
�
: �19�

In many cases, we are interested in correlators of some
observables. Moreover, it is known that much physical
information is contained in the Green's functions, which are
also the simplest correlators. A simple correlator of two
operators is given by


ÂH�t�B̂H�t 0�
� � Sp

�
r0S

��t; t0�ÂS�t; t 0�B̂S�t 0; t0�
�
: �20�

In turn, a correlator representing an average of twoT-ordered
operators can be written in a more concise manner using the
following property of evolution operators:

S�t; t0� � S�t; t1�S�t1; t0� : �21�

The evolution matrices and the averaged operators can then
be placed under the same T-ordering:


TÂH�t�B̂H�t 0�
� � Sp

�
r0U

��t; t0�T
�
U�t; t0�Â�t�B̂�t 0�

	�
:

�22�

Therefore, the expectation values always have the form

Sp

�
r0 ~T exp

�
�i
� t

t0

V̂�t 02� dt 02
�

� T

�
exp

�
ÿi
� t

t0

V̂�t 01� dt 01
�
Â�t�B̂�t 0�

��
: �23�

Formulas of this type solve the following problem. It is
known that a system at the initial instant t0 is described by a
densitymatrix r0, which allows calculating expectation values
of any observables. Then the interactionV starts to act, which
changes the density matrix such that the expectation values
can no longer be calculated explicitly. Equation (23) allows
finding the time evolution of any observable using the
perturbation theory if the exponentials are expanded into
series.
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In the usual `field theory' technique (see Ref. [21] for
applications in many-body problems), expectation values are
evaluated over the ground state (the vacuum). The first factor
in (23) then reduces to just a phase factor. Such a factorization
is impossible for states described by an arbitrary density
matrix, which for a long time had been considered the
obstruction to simplifying real-time calculations. But it was
shown in Ref. [1] that simple rules exist that allow building a
perturbation series based on a formula like (23) in a simple
and concise manner. These rules constitute the diagram
technique for nonequilibrium systems.

The groups of operators in (23) are ordered in a certain
way. In particular, any operator from the `inverse' evolution
matrix U� is always on the left (`after', if we track how the
operators successively act from right to left) of all operators
under the standard T-ordering.

All times in this operator can be assigned a `�' sign, while
times in the conventionally T-ordered operators are assigned
a `ÿ' sign. It follows that arrangement rules for operators can
be made more intuitive if we draw the contour depicted in
Fig. 1. Here, we suppose that times with a `ÿ' correspond to
the upper branch of the contour, while those with a `�' are on
the lower branch. Going around the contour starts at the
initial instant t0, then continues along the upper branch until
the maximum time t of the averaged operators, and then
returns to t0 along the lower branch. Introducing the
operation of TC-ordering along the contour, we find that
operators from U on the upper branch are T-ordered, while
operators from U� on the lower branch are anti-T-ordered,
because the direction of moving along this part of the contour
from t to t0 is reversed. We note that all operators from U�

always follow those from U, as it must be in (23).
In this way, the notion of TC-ordering along a contour

allows representing Eqn (23) in a quite compact form

Sp

�
r0TC

�
exp

�
ÿi
�
C

V̂�tc� dtc
�
Â�tÿ�B̂�t 0 ÿ�

��
; �24�

taking into account that on the lower branch, we have

U��t; t0� � ~T exp

�
ÿi
� t0

t

V̂�t 0� dt 0
�
:

We note that the terms upper and lower referring to the
branches of the contour are conventional. In fact, the
integration along both branches of the contour goes strictly
along the real time axis, and the contour is drawn as a loop for
illustrative purposes only. There is no extension to the
`complex time-plane'. We discuss this point later in the
context of the `three-component' technique.

We traditionally started with a T-ordered product of two
operators. Equation (24) can be easily generalized to the case

of the usual correlator (called the Wightman function in field
theory), where the ordering of operators is rigidly fixed. For
example, we consider the correlator of two operators with the
time t either less or greater than t 0:


ÂH�t�B̂H�t 0�
� � Sp

�
r0S

��t; t0�ÂS�t; t 0�B̂S�t 0; t0�
�
: �25�

It is sufficient to assign the index t� to the argument of A and
the index tÿ to the argument of B, such that the general
TC-operation always places B before A, and parts of the
evolution matrix are properly arranged. For t > t 0, we have


ÂH�t�B̂H�t 0�
�� Sp

�
r0U

��t; t0�Â�t�U�t; t 0�B̂�t 0�U�t 0; t0�
�

� Sp

"
r0 ~T exp

�
�i
� t

t0

V̂�t 02� dt 02
�
Â�t�

� T

�
exp

�
ÿi
� t

t0

V̂�t 01� dt 01
�
B̂�t 0�

�#
; �26�

and for t 0 > t, we have

ÂH�t�B̂H�t 0�

�� Sp
�
r0U

��t; t0�Â�t�U��t 0; t�B̂�t 0�U�t 0; t0�
�

� Sp

"
r0 ~T exp

�
�i
� t

t0

V̂�t 02� dt 02
�
Â�t� ~T exp

�
�i
� t 0

t

V̂�t 03� dt 03
�

� T

�
exp

�
ÿi
� t 0

t0

V̂�t 01� dt 01
�
B̂�t 0�

�#
: �27�

In both cases, the result again takes the general form

Sp

�
r0TC

�
exp

�
ÿi
�
C

V̂�tc� dtc
�
Â�t��B̂�t 0 ÿ�

��
: �28�

We note that the `�' and `ÿ' signs assigned to the time
arguments of the operators or to the operators themselves just
indicate which (original or inverse) evolution operator these
operators belong to and in which order they appear inside the
averaging operation. It is at this point that two sets of
variables are formed: one is from the forward evolution
matrix, and the other from the `backward' evolution matrix
S�. These variables are always mutually ordered in a certain
way.We see that such a structure with two `types' of operators
naturally arises when calculating time variations of any
quantum mechanical observable. It is not surprising that
paper [22] by Schwinger, which is usually considered a
predecessor of [1], already contained matrix evolution
equations. Schwinger used equations of motion obtained by
means of his functional differentiation technique to reveal the
correct structure of the equations eventually rewritten in a
2� 2 matrix form. The diagram technique was absent in
Schwinger's papers, however.

The diagram technique cannot be built using Eqn (24)
alone. The question now arises whether the calculation of
expectation values of a product of many operators arising
when expanding a T-exponential,

Sp

�
r0 ~T

�
i n

n!

���
V̂�t1� . . . V̂�tn� dt1 dt2 . . . dtn

�
� T

�
Â�t�B̂�t 0� �ÿi�

m

m!

���
V̂�t1� . . . V̂�tm� dt1 dt2 . . . dtm

��
�29�

t0

t 0

t� tÿ

t

t

Sp

�
r0 ~T exp �i

�t
t0

V̂�t 02� dt 02
� �

T exp ÿi
�t
t0

V̂�t 01� dt 01
� �

Â�t�B̂�t 0�
� ��

Figure 1.Keldysh contour.
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can be `automated'. Within the usual technique, Wick's
theorem allows proving that such T-products of a large
number of creation and annihilation operators are reduced
to pairwise expectation values. In our case, Wick's theorem is
not obvious.

It seems that one of the main achievements in [1] was the
understanding that perturbative calculations of not only
ordinary (T-ordered) Green's functions but also any real-
time correlators can be represented as a general TC-ordering
along a particular contour. Furthermore, such a generalized
T-ordering does not break the general rules of the diagram
technique.1

We emphasize the nontrivial fact that the modified Wick
theorem is valid in the nonequilibrium case. This is stated in
the first article [1], but the complete proof of this fact is not
given there. Numerous review articles tend to discuss it as
something taken for granted. The so-called proof of Wick's
theorem in the thermodynamic limit is just traditional
stupidity (unfortunately, this can be found even in good
textbooks on condensed matter theory). According to the
`proof', in any order of the perturbation theory, a pair of
creation and annihilation operators for a particular state
should appear only once, i.e., the averaging is trivial because
pairs of operators in different states are averaged indepen-
dently. Thus, for any perturbation, its impact on particles in
any state is counted only once. Unfortunately, if Wick's
theorem were valid in many-body theory only in this sense,
then it would be impossible to apply the diagram technique to
any impurity problem (such as the Anderson model), the
problem of polaritons with multiple re-emission of photons
by an atom, and other problems in which the electron state is
affected by multiple perturbations.

To streamline our presentation, we show in the Appendix
that the T-ordering not only simplifies expressions like (24)
but also allows generalizing Wick's theorem to the non-
equilibrium case. Moreover, this derivation immediately
shows what happens if the system has initial correlations
between particles in different states. The generalization of the
nonequilibrium diagram technique for systems with initial
correlations was done by Hall [25] and then significantly
developed by Kukharenko and Tikhodeev [26].

Thus, the second step after the TC-ordering leading to the
appearance of the diagram technique is a generalization of
Wick's theorem: the expectation value of a TC-ordered
product of operators is equal to the sum of all possible
partitions into pairwise TC-ordered expectation values. For
fermions, the standard rule is that the sign of each partition
depends on the parity of the permutation of fermionic
operators arranged in pairs.

3. Nonequilibrium diagram rules

Within the secondary quantization method, any perturbation
Hamiltonian V consists of creation and annihilation opera-

tors for different particles. For bosons and fermions interact-
ing with an external field (defined by a scalar potential), the
perturbation operator then has the form

V̂ �
�
C��r�U�r; t�C�r� �

X
p; q

a�p�qapUq�t� : �30�

We have

V̂ �
�
C��r1�C��r2�U�r1 ÿ r2�C�r2�C�r1� dr1 dr2

�
X
p; p 0; q

a�p�qa
�
p 0ÿqU�q�ap 0ap �31�

for pair interaction, and

V̂ �
X
p; q

gp; qa
�
p�qap�b�ÿq � bq� �32�

for electron±phonon interaction, where bq is the phonon
annihilation operator.

The basic elements of the diagram technique are pairwise
averages of the creation and annihilation operators in
perturbation operators. In what follows, we therefore discuss
general expression (24) where arbitrary operatorsA andB are
creation and annihilation operators of particles in a given
state,

Â � ap ; B̂ � a�p 0 : �33�

The basic element of the conventional diagram technique
is the usual T-ordered average of two operators in the
interaction picture (one creation and one annihilation
operator). Now, the situation is slightly more complicated,
because the basic elements are the pairwise averages of all
possible combinations of two TC-ordered operators. We note
that the general statement of Wick's theorem [27] was
originally formulated for all possible pairs of creation and
annihilation operators; however, as in the usual case, only a
pair of a and a� has a nonzero average value. (The super-
conductor case with anomalous averages of two creation or
annihilation operators is discussed in Section 8.1.)

Because the time arguments of the operators can lie either
on the upper or on the lower branch of the contour C, the
general definition of theGreen's function as themean value of
the TC-ordered pair of operators,

Ĝ�r; t a; r 0t 0 b�� ÿi
TCC�r; t a�C��r 0; t 0 b�
�� Ĝ a; b�r; t; r 0; t 0� ;

�34�

implies the appearance of four different functions of the real
time variable tÿ t 0 �a; b � �;ÿ�. In the case of noninteract-
ing particles, a straightforward calculation of the Green's
functions in momentum space shows that

â�p �t� � exp �iept�â�p ; âp�t� � exp �ÿiept�âp ; �35�

C�r; t� �
X
p

âp�t� exp �ipr� ; �36�

Ĝÿÿp �t; t 0� � ÿi


TCâp�tÿ�â�p �t 0 ÿ�

� � ÿi
T âp�t�â�p �t 0�
�

� ÿi�y�tÿ t 0� � np
�
exp

�ÿiep�tÿ t 0�� ; �37�

1 We note that in Craig's paper [23] published in 1968, four years after
Keldysh's paper, the diagram technique was reconsidered using a general-
ized concept of T-ordering along a contour around the real axis. In this
article, the author notes that some parts of the technique were obtained
independently in [1]. Surprisingly, the book by Mills in 1969 [24] already
has a summary of this technique based on Craig's work, but no reference
to the pioneering work [1] is given. At the same time, both [23] and [24]
describe the calculation of time propagators only in thermodynamic
equilibrium. The possibility of using the technique to describe non-
equilibrium and nonstationary states was not discussed (and, apparently,
was not understood).
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Ĝ��p �t; t 0� � ÿi



~Tâp�t�â�p �t 0�
�

� ÿi�y�t 0 ÿ t� � np
�
exp

�ÿiep�tÿ t 0�� ; �38�

Ĝ�ÿp �t; t 0� � ÿi


âp�t�â�p �t 0�

� � ÿi�1� np� exp
�ÿiep�tÿ t 0�� ;

�39�
Ĝÿ�p �t; t 0� � �i



â�p �t 0�âp�t�

� � �inp exp �ÿiep�tÿ t 0�� ; �40�
where the upper (lower) sign refers to bosons (fermions).

It follows from definition (34) that the four Green's
functions satisfy the equality

Ĝÿ� � Ĝ�ÿ � Ĝÿÿ � Ĝ�� : �41�

Clearly, Green's functions (37)±(40) for noninteracting
particles also satisfy this relation.

We emphasize that the set of four functions can be
defined without the TC-ordering operation (as in the book
by Landau, Lifshitz, and Pitaevskii [28]). However, it seems
that using TC-ordering leads to a more logical and uniform
treatment and, in particular, allows considerably simplifying
the proof of Wick's theorem. For example, a function such
as

G�ÿ�rt; r 0t 0� � ÿi
Ĉ�rt�Ĉ��r 0t 0�� ; �42�

whose definition involves no T-ordering, can be constructed
according to the general definition of TC-ordering,

G�ÿ�rt; r 0t 0� � ÿi
TCĈ�rt��Ĉ��r 0t 0 ÿ�
�
: �43�

Here, the time t� on the contour C is always `after' the time
tÿ, and hence the operator C is always to the left of C�,
irrespective of the relation between the times t and t 0 on the
real axis.

The occupation numbers of states np in (37)±(40) are not
necessarily Fermi or Bose distributions n�ep�. It is shown in
the Appendix that the initial density matrix is only required
not to contain correlations between different states. The
Gibbs density matrix corresponding to the thermodynamic
distribution for noninteracting particles satisfies this require-
ment, but the initial occupation numbers can in fact be
arbitrary.

In many cases, we are interested in the time variation of
occupation numbers (or concentration) in a given state. Such
a variation is directly related to the function Gÿ�:

n�r; t� � ÿiGÿ��rt; rt� � ÿi
X
p

Gÿ�p �t; t� �
X
p

np : �44�

The simplest way to discuss nonequilibrium diagram rules
is to consider corrections to the usual T-ordered Green's
function

Ĝÿÿp; p 0 �t; t 0� � ÿi


Tâp�t�â�p 0 �t 0�

� �45�

in the case of particles in external fields:

V̂ �
X
p; q

a�p�qapUq�t� : �46�

In the first order of the perturbation theory, there are two
terms arising in the decomposition of the evolution matrix S

and S�:

ÿ i

�
TC

��
�ÿi�

� t

t0

X
p1; q

a�p1�q�tÿ1 �Uq�t1�ap1�tÿ1 � dt1

� ��i�
� t

t0

X
p1; q

a�p1�q�t�1 �Uq�t1�ap1�t�1 � dt1
�
ap�tÿ�a�p 0 �t 0 ÿ�

��
:

�47�

Splitting the expression into pairs of TC-ordered operators,
we obtain

G
ÿÿ�1�
p�q; p �

� t

t0

dt1
�
Gÿÿp�q�tÿ t1�Uq�t1�Gÿÿp �t1 ÿ t 0�

ÿ Gÿ�p�q�tÿ t1�Uq�t1�G�ÿp �t1 ÿ t 0�� : �48�

This equation corresponds to the two diagrams shown in
Fig. 2.

The second term in (48) has aminus sign because the usual
vertices arising from the evolution operator S have the
prefactor �ÿi�, while vertices with the `�' sign arise from the
inverse operator S� in (19) and have a different sign of the
imaginary unit ��i� [see Eqn (23)]. This rule is general: the `�'
sign of a vertex is to be changed, in contrast to the
conventional diagram technique.

Even this particular example shows that there is a sort of
matrix structure, because the Green's functions for any
interactions are always linked in chains of the form

Gÿÿ / GÿaG a;bG bg . . .G dÿ ; �49�

where the summation over all intermediate indices ranging
over � and ÿ is assumed.

By Wick's theorem, two more terms occur in (47) in the
case of two paired external operators and mutually con-
tracted operators from the evolution matrices. The terms
described by the diagram in Fig. 3 correspond to the analytic
expression

Gÿÿpp 0 �tÿ t 0�

�
� t

t0

dt1
X
p1

�
Gÿ�p1; p1�q�t1; t1�Uq�t1� ÿ Gÿ�p1; p1�q�t1; t1�Uq�t1�

�
:

�50�

ÿÿ ÿ
p� q p

Uq

ÿ � ÿ
Uq

p� q p

Figure 2. First-order diagrams in the case of an external field.

���
ÿ

ÿ ÿ

t1

t t 0

Figure 3. Simplest disconnected diagrams.
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It follows that diagrams containing segments discon-
nected from the main line vanish: one closed loop is exactly
canceled by the other one due to the change of the `�' sign of
the vertex (Fig. 4).

A very important property of the NDT shown in the
simplest example above is that the sum of all disconnected
loops vanishes for any interaction. Any disconnected dia-
gram, just like a sum of them, is a prefactor of all connected
diagrams. We split each order in the perturbation theory into
all possible connected and disconnected parts. Then, using
standard combinatorics, it is easy to show that the sum of
disconnected loops is given by a power series expansion where
each term is calculated using Wick's theorem. It follows that
the averaged product of the inverse and initial evolution
matrix is given by

Sp
�
r0U

��t; t0�U�t; t0�
�ÿ 1 � Sp �r0� ÿ 1 � 0 : �51�

Therefore, the sum of all closed loops of the same order is
exactly zero not only for an external field but also for any
perturbation. This is completely analogous to calculating the
series expansion, for example, of the following function:

exp �x� exp �ÿx� � 1 ; �1� x��1ÿ x� � 1�O�x2� ; etc :

�52�

Thus, the diagram rules in the simple case of an external
field are very simple:

Ð all connected topologically nonequivalent diagrams
are drawn, just as in the conventional diagram technique;

Ð if we calculate corrections to the usual T-ordered
function, then the endpoints are assigned the indices `ÿÿ' or
any other index for the corresponding correlators;

Ð there are two options for any vertex, `�' and `ÿ', the
lines with different signs at the endpoints correspond to
different initial Green's functions, the potential U is in the
`ÿ' vertex, and the sign-reversed potential ÿU is in the
`�' vertex.

We consider the integration with respect to time in each
vertex. While we follow the original scheme for calculating
expectation values of several operators with a maximum time
t, the integration domain is finite: from the initial time t0,
when the interaction is turned on, until the current time t. But
when mutual positions of times on the time axis are not fixed,
it is inconvenient to keep track of which of the `outer' times is
the biggest. For convenience, the integration domain can be
extended to �1 by the same method as in the conventional
diagram technique. In what follows, we also use the Fourier
transformation. For this, it is also necessary to extend the
integration with respect to intermediate times to infinity.

Because the evolution matrix has the property

S���1; t�S��1; t� � Sÿ1��1; t�S��1; t�
� S�t;�1�S��1; t� � S�t; t� � 1 ; �53�

the unit operator can be inserted into the original equations

ÂH�t�B̂H�t 0�

�
� Sp

�
r0S

��t;ÿ1�S���1; t�S��1; t�ÂS�t; t 0�B̂S�t 0;ÿ1��:
�54�

In the interaction picture, we find that

ÂH�t�B̂H�t 0�

�
� Sp

�
r0U

���1;ÿ1�T�U��1;ÿ1�Â�t�B̂�t 0�	�
� Sp

�
r0TC1

�
exp

�
ÿi
�
C1

V̂�tc� dtc
�
Â�tÿ�B̂�t 0 ÿ�

��
: �55�

This operation can be represented graphically as the original
contour augmented by an `empty' loop extending from the
maximum time to �1 and back (Fig. 5).

Time integrals in the original expressions were restricted
by the maximum time t, and now the integration domain is
extended to infinity. This seems to change the value of each
individual term in the perturbation series. However, there is
no paradox because all terms of a given order are summed in
such a way that the remaining integrals are taken over the
original time domain. As we show in the next section, this can
be explicitly demonstrated by writing the NDT equations in a
different representation. If t is the maximum time in averaged
operators, then integration with respect to the intermediate
times from t to �1 is explicitly eliminated in each diagram.

4. Matrix Dyson equations.
Various matrix formulations
of the nonequilibrium diagram technique

In the presence of an external field, the summation over two
possible signs in any vertex can be easily represented inmatrix
form by combining the perturbation series for all fourGreen's
functions Gÿÿ, Gÿ�, G�ÿ, G�� into a single equation:

Ĝ a; b � Ĝ a;b
0 � Ĝ a; g

0 Sg; dĜ d;b
0 � Ĝ a; g

0 Sg; dĜ d;m
0 Sm; nĜ n; b

0 � . . . ;

�56�

Ĝ a; b � Gÿÿ Gÿ�
G�ÿ G��

� �
; �57�

Sa; b � U 0
0 ÿU

� �
: �58�

This series can be conventionally represented as a Dyson
equation in matrix form

Ĝ a; b � Ĝ a;b
0 � Ĝ a; g

0 Sg; dĜ d;b : �59�

We here assume that depending on the representation, we
integrate in any vertex with respect to intermediate times and

� 0

ÿ �

�

Figure 4. Vanishing sum of disconnected diagrams.

t0

t0 t

�1

Figure 5. Contour in the steady-state case.
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coordinates or sum over momenta:

G a; g
0 Sg; dG d;b

�
�
dt1 dt2

X
p1; p2

G a; g
p; p1
�t; t1�Sg; d

p1; p2
�t1; t2�G d;b

p2 ; p 0 �t2; t 0� : �60�

In the presence of an external field, the irreducible matrix part
turns out to be very simple: it is local in time and diagonal in
the space of Keldysh indices `�;ÿ'.

But the case of pair interactions between particles,
Eqn (31), is more complicated. In the first order of the
perturbation theory, the irreducible part is also diagonal in
the indices `�;ÿ'. But because any vertex has a sum over
indices `�;ÿ' there are two different connected diagrams
corresponding to four contributions (Fig. 6). For example,
the second graph in Fig. 6 corresponds to two terms:

G �1�ÿÿ�r; t; r 0; t 0�
�
�
Gÿÿ�rÿ r1�

�
iGÿ��r1 ÿ r2�U�r1 ÿ r2�

�
Gÿÿ�r2 ÿ r 0� �61�

� Gÿ��rÿ r1�
�ÿiGÿ��r1 ÿ r2�U�r1 ÿ r2�

�
G�ÿ�r2 ÿ r 0�: �62�

The peculiarity of the rules in the case of pair interaction
is that depending on the `�' and `ÿ' signs, the line
corresponding to the interaction potential corresponds to
the expressions

Uÿÿ � ÿiU�r1 ÿ r2� ; U�� � �iU�r1 ÿ r2� ; �63�
containing not only a change of sign but also an additional
imaginary unit.

Higher-order diagrams are more complicated. If we
consider the Dyson equation in the usual way by extracting
irreducible parts of the diagram series, then, in the pair
interaction case, irreducible parts shown in Fig. 7 already
appear in the second order. These parts are nondiagonal in
the indices `�;ÿ'. It follows that in all cases more complex
than that of an external field, the irreducible part is a full-
fledged matrix all of whose elements are nonzero. Hence, the
NDT Dyson equation is more complicated. It becomes a
system of four equations, which can always be written in
matrix form (59). Because four Green's functions are related
by (41), the four components of the irreducible part are not
independent:

Sÿÿ � S�� � Sÿ� � S�ÿ � 0 : �64�

Therefore, the matrix equations can be simplified by keeping
only independent components. Usually, this can be done by
choosing a linear transformation matrix such that one
element of the Green's function (GF) matrix vanishes,

Ĝ) LĜLÿ1 � 0 GA

GR GK

� �
; �65�

where the rotation matrix has the form

L̂ � 1���
2
p 1 ÿ1

1 1

� �
: �66�

The retarded and advancedGreen's functions appear here
as linear combinations of the NDT functions G a;b:

ĜR � Ĝÿÿ ÿ Ĝÿ� � Ĝ�ÿ ÿ Ĝ�� ; �67�
ĜA � Ĝÿÿ ÿ Ĝ�ÿ � Ĝÿ� ÿ Ĝ�� : �68�

However, it is precisely these combinations that correspond
to the definitions of the retarded and advanced functions:

ĜR
p �t; t 0� � ÿi



âp�t�â�p �t 0� � â�p �t 0�âp�t�

�
y�tÿ t 0�

� ÿi exp �ÿiep�tÿ t 0��y�tÿ t 0� �69�
(the upper sign is for fermions and the lower sign is for
bosons).

The advanced function is related to the retarded one as
GA�p; t; t 0� � �GR�p; t 0; t���.

The third new function, now commonly called the
Keldysh function, is defined as

ĜK � Ĝÿ� � Ĝ�ÿ � Ĝ< � Ĝ> : �70�

Because the retarded (advanced) function is defined by the
anticommutator for fermions, the function GK is the average
of the commutator of the same operators (with the lower sign
is for bosons):

ĜK
p �t; t 0� � ÿi



âp�t�â�p �t 0� � â�p �t 0�âp�t�

�
� ÿi exp �ÿiep�tÿ t 0���1� 2np� : �71�

As we see below, this choice of `independent variables' in
the matrix Dyson equation leads to the correct `ideology': the
retarded and advanced functions are `responsible' for a
change in the system spectrum caused by external fields,
interaction, etc., while the Keldysh function determines the
nonequilibrium filling of the spectrum.

If we use (65) to put the matrix Green's functions into the
triangular form, the transformed self-energy part also
becomes a triangular matrix:

Ŝ) LŜLÿ1 � SK SR

SA 0

� �
; �72�

where

SK � ÿ�Sÿ� � S�ÿ� ;
SR � Sÿÿ � Sÿ� � ÿ�S�� � S�ÿ� ; �73�
SA � Sÿÿ � S�ÿ � ÿ�S�� � Sÿ�� :
We write the matrix Dyson equations

Ĝ a; b � Ĝ a;b
0 � Ĝ a; g

0 Sg; dĜ d;b �74�

ÿ

ÿ ÿ ÿÿ ÿ

(�)

�
(�) ÿ

(�)
ÿ
(�)

Figure 6. First-order diagrams for the pair interaction.

ÿ ÿ� � ÿ

ÿ

�

�

Figure 7. Irreducible parts off-diagonal in the indices `�ÿ'.
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and find the corresponding system of equations in the new
representation. The (1,2) and (2,1) components give two
conjugate equations for the retarded and advanced func-
tions,

ĜR � ĜR
0 � ĜR

0 SRĜR : �75�

This equation contains the irreducible part of the retarded
component only. It may seem that calculating the spectrum
variations is independent of calculating the occupation
numbers or concentration. But this is not true because
calculating SR typically requires knowledge of the functions
Gÿ� and G�ÿ as well. In other words, the spectrum itself
depends on the nonequilibrium occupation numbers.

The equation for the Keldysh function corresponds to the
(2,2) component of the matrix Dyson equation and has a
more complicated form:

ĜK � ĜK
0 � �Ĝ0SĜ �22

� ĜK
0 � ĜK

0 SAĜA � ĜR
0 SKĜA � ĜR

0 SRĜK : �76�

The matrix structure of the original equation manifests itself
in three different types of integral terms in the right-hand side
of (76).

We note that formulas for the irreducible parts S in (64)
and (73) differ from those for the Green's functions by the
sign �ÿ1� at Sÿ� and S�ÿ. As already mentioned, this is
because a vertex with the index `�' always corresponds to
multiplying the whole expression by �ÿ1� compared with the
`ÿ' vertices.

In (59), the sign change is part of the definition ofSÿ� and
S�ÿ (in S��, the sign is changed twice, and hence there is no
such problem); hence, the occurrence of the �ÿ1�. Therefore,
when calculating irreducible parts shown, for example, in
Fig. 5, we should remember that expressions obtained by the
general diagram rules are to bemultiplied by �ÿ1�. This is due
to the change of sign in one of the external vertices when
substituting them in theDyson equation. IfSK is defined as in
(73), the irreducible part is calculated in accordance with the
general rules as a standard diagram (ignoring signs in external
vertices). Also, all equations like (76) contain the part with
SK on an equal footing with SR and SA. In the literature,
another definition exists without the �ÿ1� [see (73)], which is
inconvenient, however, because the sign changes twice. First,
the term SK in Dyson equation (76) has a minus sign, in
contrast to the other two terms, and second, when substitut-
ing the diagrammatically calculated SK in the Dyson
equation, we need to multiply by �ÿ1�.

Both the sign effect and the diagram rules in different
matrix representations can be `automated' by introducing a
matrix (tensor) interaction and specifying how it changes
when passing from one representation to another. In the
original formulation, the indices of all Green's functions
adjacent to a vertex are the same, and the sign is changed to
�ÿ1� for the `�' vertex. In other words, considering the vertex
as a tensor quantity linking the matrix Green's function, we
can say that any vertex is proportional to the matrix sz and
the product of d-functions. Hence, for electron±phonon
interaction (32), the vertex can be represented as

G k
ab � g�sz�abdak ; �77�

where the indices k and a, b refer to the respective phonon and
electron Green's functions. For pair interaction (31), the

matrix structure is given by

Gab
gd � U�sz�abdagdad ; �78�

where the indices a; b and g; d correspond to the respective
incoming and outgoing Green's functions (see Fig. 8).

All theNDT rules for diagram calculations are completely
equivalent to the Feynman rules if we take lines to represent
matrix Green's functions and associate vertices with tensors
of a corresponding rank relating matrix Green's functions.
All changes of sign following from changing the vertex index
`ÿ' to `�' are absorbed into the definition of the vertex tensor.

In this formalism, for example, the first-order self-energy
for electron±phonon interaction is given by

Sab � ig 2G k
ab1

G b1g1Dkq�G q
g1b
: �79�

In the new matrix representation, after transformation
(65), the electron±phonon vertex with the emission of a
phonon has a different form:

~G k
ab � g

X
a1; b1; k1

L̂aa1G
k1
a1b1

L̂
�ÿ1�
b1b

L
�ÿ1�
k1k

: �80�

Using explicit form (77), we obtain

~G 1
ab � g

1���
2
p dab ; ~G 2

ab � g
1���
2
p �sx�ab : �81�

This particular form of vertices yields the following structure
of the simplest irreducible part (79):

SK � S 11 � ig 2 1

2
�GADA � GRDR � GKDK� ;

�82�
SR � S 12 � ig 2 1

2
�GKDR � GRDK� :

Similar transformations in the case of pair interactions are
considered below.

In the literature, there is also a slightly different matrix
representation, which can be obtained from the one above if
we further `tune' the matrix Green's functions as follows:

Ĝ) 0 1
1 0

� �
Ĝ : �83�

Then we also obtain the triangular representation

Ĝ � GR GK

0 GA

� �
; �84�

where the functions R and A are on the diagonal and the
matrix of irreducible parts has the same form as the Green's
function itself,

Ŝ) LŜLÿ1 0 1
1 0

� �
� SR SK

0 SA

� �
: �85�

In this representation, of course, we obtain the same
equations (75) and (76) for the functions GR and GK, but
now they correspond to the (1,1) and (1,2) components of the
matrix equation. The obvious advantage of transformations
(65) is that they are unitary, while new transformation (83)
and (84) is nonunitary. However, we show in what follows
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that the NDT rules can be `automated' in the nonunitary case
as well.

We note that in many cases we can use not the Keldysh
function GK but simply the function Gÿ�, which directly
determines the concentration or the number of particles in a
particular state. Inspection of the Green's functions GK in
(71) shows that

GK / �1ÿ 2np� �86�

for fermions. This function has the particle±hole symmetry
and is therefore commonly used in the theory of metals. On
the other hand, a vast number of observables (including
concentration of electrons in metals, currents in metal, and
tunnel junctions) are expressed directly in terms of Gÿ�. For
bosons (photons and phonons),

GK / 2

�
1

2
� np

�
; �87�

and hence this function determines the energy in a given field
mode. Of course, both GK and Gÿ� contain exactly the same
information. The use of a particular representation depends
on the particular problem and, to a greater extent, is a matter
of habit. Also, in the representation based on Gÿ�, this
function is usually referred to as G<, a notation that was
introduced before [1], e.g., in [29]. The use of this notation
often creates the illusion that some earlier work already
described the basic NDT concepts. However, this is not true
and no diagram technique had been proposed before the
appearance of [1]. Nonetheless, the notation is convenient to
use in our analysis.

The triangular representation with the function
G< � Gÿ�

Ĝ � GR G<

0 GA

� �
�88�

is obtained from the original matrix Green's functions
by transformations similar to those used in deriving (84).
Transformations (65), (83) reducing the matrix Green's
functions to form (84) can be written as

Ĝ) ÛĜV̂ �89�
with the matrices

Û � 1���
2
p 1 1

1 ÿ1
� �

; V̂ � 1���
2
p 1 1

ÿ1 1

� �
: �90�

To obtain triangular form (88), the matrices U and V must
have the form

Û � 1 0
1 ÿ1

� �
� ŝz � sÿ ;

�91�
V̂ � 1 0

ÿ1 1

� �
� 1̂ÿ sÿ ; sÿ � 0 0

1 0

� �
:

The transformation of the irreducible part S is given by the
inverse matrices,

Ŝ) V̂ÿ1ŜÛÿ1 ; �92�

where Ûÿ1 � Û and V̂ÿ1 � 1̂� sÿ. This yields the same
triangular form (85), but with SK replaced by Sÿ�. After
transformation (91), the (1,2) component of the matrix
Dyson equation is quite similar to the equation for Keldysh

function (76):

Ĝ< � G<
0 � G<

0 SAGA � GR
0 S<GA � GR

0 SRG< : �93�

Similarly toSK in (73), the quantity S< introduced in this
equation contains an extra overall �ÿ1� in front of Sÿ�:

S< � ÿSÿ� : �94�

By analogy with the unitary transformation case in (65),
finding any interaction vertex in the new representation can
also be `automated' for nonunitary transformations.

For example, for electron±phonon interaction [cf. (80)],
the vertex with the emission of a phonon has the form

~G k
ab � g

X
a1; b1; k1

V̂ÿ1aa1G
k1
a1b1

Ûÿ1a1aU
ÿ1
k1k
; �95�

while the conjugate vertex corresponds to absorption:

~G �kab � g
X

a1; b1; k1

V̂ÿ1aa1G
k1
a1b1

Ûÿ1a1aV
ÿ1
kk1
: �96�

Their explicit form is similar to (81) and is given by

~G 1
ab � gdab ; ~G 2

ab � g
0 0
1 ÿ1

� �
;

�97�
~G �1ab � g

1 0
1 0

� �
; ~G �2ab � gdab :

Accordingly, for the simplest irreducible part (79), instead
of (82), we have

S< � S 12 � ig 2G<D< ; �98�
SR � S 11 � ig 2�G<DR � GRD< � GRDR� :

In the case of pair interaction (31), this formal vertex
transformation is more cumbersome, although the result is
quite simple. In the triangular representation, instead of the
original vertex (78), we arrive at the combination

Ĝ a2b2
g2d2
� U�V̂ÿ1�a2a�V̂ÿ1�b2a�sz�aa�Ûÿ1�ag2�Ûÿ1�ad2

� U�da21db21d1g2d1d2 ÿ da22db22d2g2d2d2
� �da21db22 � da22db21�d1g2d1d2
� da22db22�d2g2d1d2 � d1g2d2d2�

�
: �99�

In contrast to the original representation, there are now
vertices with not necessarily equal indices a, b, g, and d. The
same is true in the unitary transformation case (65), however,
and hence the nonunitary transformation case can be
considered along the same lines. Vertices for other interac-
tion types can be transformed in a similar way.

To give an example, we show how the technique works
when calculating the second-order irreducible part in the case
of pair interaction (Fig. 8):

Ŝ ag1 � Ĝ ab
gd G

ga1
1 G

db1
2 G d1b

3 Ga1b1
d1g1

: �100�

Substituting the explicit form of vertex (99), we obtain

S< � S 12 � U 2G<
1 G<

2 G
>
3 ; �101�

SR � S 11 � U 2�G>
1 G

R
2 G<

3 � GR
1 G

<
2 G

<
3 � G<

1 G
>
2 GA

3 � :
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(Here, we use the compact form with the relation
G> � G< � GR ÿ GA taken into account.)

Formal analysis of the simultaneous transformation of
the matrix Green's functions and interaction vertices shows
that in any NDT representation, we have clearly defined
Feynman rules for finding analytic expressions for diagrams,
where lines correspond to the matrix Green's function and
vertices correspond to tensors of a given rank. We note that
using relations between different Green's functions and
irreducible parts (67), (68), and (73) in the original symmetric
representation, we can directly (and often easily) find
expressions corresponding to a particular diagram in a given
representation. For example, using S< � ÿSÿ� for the
diagram in Fig. 8, we immediately obtain the expression
G<

1 G
<
2 G

>
3 . To calculate SR, we can use the relation

SR � Sÿÿ � Sÿ� and relations for incoming Green's func-
tions (67) and (68), which also gives the result in (101).

Triangular representations (65), (84), and (88) are `more
efficient' not only because they contain only independent
components of the Green's functions. For convenience, we
have also extended the integration range with respect to
intermediate times to �1 (to be able to use the Fourier
transformation in time in what follows). On the other hand,
we earlier noted that the integration from the latest time in
external operators to �1 makes no contribution. In the
original representation, every individual diagram contained a
nonzero contribution from the added time domain, and only
the sum of all contributions of a given order vanished.

In triangular representation (65), (84), (88), this fictitious
region is absent from the very beginning, because the
retarded and advanced functions explicitly depend on time
as y�tÿ t 0�. All intermediate times in the equations for GR

or GA are `sandwiched' by y-functions between time
arguments of these functions. The functions R and A in
each term of the equation for G< (or GK), Eqn (93), are
arranged such that integrals with respect to intermediate
times are always bounded by the maximum time of `external'
averaged operators.

We now consider Eqn (76) or (93) in more detail. If the
system is perturbed such that states of all particles are
essentially changed, and if there are nonstationary transient
processes, then it is clear that the filling of states can be very
different from the initial (equilibrium) distribution. But the
right-hand side of Eqn (76) or (93) involves the function GK

0

or G<
0 , which is determined by initial distribution (37), and it

seems that the equation always depends on the initial state.
However, already in the first article [1], it was shown that the
presence of GK

0 �G<
0 � in this equation is in some sense

`fictitious'. The point is that matrix Dyson equation (59) can
be converted into integro-differential equations using the
inverse operator matrix

�Ĝ0�ÿ1 � �GR
0 �ÿ1sz : �102�

For noninteracting particles, the inverse ofGR
0 in (69) is given

by

�GR
0 �ÿ1 � i

q
qt
ÿ ep : �103�

Indeed,

�GR
0 �ÿ1G 0R

p �
�
i
q
qt
ÿ ep

��
ÿiy�tÿ t 0� exp �ÿiep�tÿ t 0���

� d�tÿ t 0� : �104�

The operator gives zero when acting on the function
Gÿ�0 �G<

0 � in (37), i.e.,

G<
0p�t; t 0� � inp exp

�ÿiep�tÿ t 0�� ; �105�

�GR
0 �ÿ1G<

0p �
�
i
q
qt
ÿ ep

�
inp exp

�ÿiep�tÿ t 0�� � 0 : �106�

Therefore, in the original matrix representation [cf. (67)], we
find that

Ĝÿ10 Ĝ0 � 1̂ : �107�

In passing to the triangular representation, the inverse
operator matrix is also transformed. For transformation
(65), it is given by

êG0
ÿ1 � LĜÿ10 Lÿ1 � �GR

0 �ÿ1sx : �108�

For transformation (91), it is given by

êG0
ÿ1 � Vÿ1Ĝÿ10 Uÿ1 � �GR

0 �ÿ11̂ : �109�

In what follows, we mainly use the triangular matrix form
with G< in (88). As already mentioned, by construction, this
formulation is completely equivalent to the `unitary' trian-
gular form (65) and gives equivalent Dyson equations. The
diagram rules for calculating irreducible parts in this
representation are also derived automatically using the
original matrix form symmetric in the Keldysh indices. All
formulas below are almost `literally' transferred to the
canonical triangular form (65) with G< replaced by GK. In
triangular representation (88), (109), the (1,2) component of
(107) is simply the action of the operator �GR

0 �ÿ1 on the left-
hand and right-hand sides of Eqn (93):

Gÿ10 G< � S<GA � SRG< : �110�

This equation explicitly contains the exact functions G< at
current times and no function G<

0 . However, the information
on the initial distribution function is contained in the initial
conditions of the integro-differential equation.

Integral equation (93) for steady nonequilibrium states
can be transformed such that the dependence on G<

0

disappears completely. Rewriting Eqn (93) in the form

�1ÿ ĜR
0 SR�Ĝ< � Ĝ<

0 �1� SAĜA� � ĜR
0 S<ĜA ; �111�

using Eqn (75) for the retarded and advanced Green's
functions,

�1ÿ ĜR
0 SR�ĜR � ĜR

0 ; �112�
ĜA

0 �1� SAĜA� � ĜA ; �113�

g g1

d

d1

a a1

b1

b

2

3

1

Figure 8. Matrix vertices of the second-order irreducible part for a pair

interaction.
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and introducing the operators inverse to GR and GA, we
obtain

G< � GR
��GR

0 �ÿ1G<
0 �GA

0 �ÿ1�GA � GRS<GA : �114�
Because �GR

0 �ÿ1G<
0 � 0, the first term in the right-hand

side of (114) must vanish, and hence the explicit dependence
on the initial function G<

0 disappears. In fact, there is a
subtlety, to which we also return in what follows, discussing
it from different perspectives. Indeed, if all transient processes
from the initial state of any `nonpathological' system are
guaranteed to have completely terminated, then the function
G< at the current time is defined only by the last term in (114).
However, in passing from the original Dyson equation (93) to
(114), we actually applied nonequivalent transformations
related to the inverse operators �GR�ÿ1 in (103). Roughly
speaking, such transformations require solving some differ-
ential equations in time, and the last term in (114) describes
only the inhomogeneous solutions. But homogeneous solu-
tions, which were discarded in the transformation, are
important for describing all transient processes at finite
times. Thus, the original equation (93) does describe these
transient processes, and it therefore naturally contains the
initial function G<

0 , but transformed equation (114), strictly
speaking, is suitable for large times only when it becomes
independent of the initial state. (A system influenced by
external perturbations can be in both nonequilibrium and
unsteady states, however.) In Section 6, we illustrate this with
a simple example.

It follows that if all transient processes from the initial
state have terminated, we must solve the system of two
equations

ĜK � ĜRSKĜA or Ĝ< � ĜRS<ĜA ; �115�
ĜR � ĜR

0 � ĜR
0 SRĜR : �116�

In fact, there are two, not three, equations because the
function GA is always uniquely determined by GR

(GA�r; t; r 0; t 0���GR�r 0; t 0; r; t��� or GA�p;o���GR�p;o���).
It is important that the foregoing referred to the most

general case, where some perturbation in the system is turned
on at the initial time t0, and we describe all time variations,
including transient processes. In other words, the most
general formulation of the NDT in the time representation
allows describing not just nonequilibrium but also any
nonstationary processes. The Green's function then depends
on two times, which considerably complicates calculations
compared to the stationary case, where all functions depend
only on the time difference. We show in Section 5 how to pass
from the Dyson equation to various types of differential
equations similar to quantum kinetic equations, which are
sometimes easier to use in the nonstationary case.

In many cases, we deal with a nonequilibrium but
stationary state. For example, we have solid state problems
with continuous radiation and the electron tunneling effect
for a constant contact-potential difference. Then the initial
time t0 is to be pushed far into the past, i.e., t0 � ÿ1. In this
case, the calculation is much simpler because we can use the
Fourier transformation in time for stationary states.

The Green's functions of noninteracting particles (37) in
the Fourier representation have the form

GR
p �o� �

1

oÿ e�p� � id
; �117�

Gÿ�p �o� � G 0<
p �o� � 2pinpd

ÿ
oÿ e�p�� : �118�

If particles are in thermodynamic equilibrium at the initial
time, then, using the d-function, we can represent G< as

G 0<
p �o� � 2pin0�o�d

ÿ
oÿ e�p�� � n0�o��G 0A

p ÿ G 0R
p �

� 2in0�o� ImG 0A
p �o� : �119�

The Green's function G 0<
p is the product of the spectral

function ImG 0A
p �o� and the particle distribution function

n0�o�. We note that, generally speaking, replacing np with
n�o� is not quite an equivalence transformation, as was well
illustrated in [30]. This subtlety is discussed using the example
in Section 6.

Inmany cases, comparing formulas (115) and (119) allows
introducing a nonequilibrium distribution function of parti-
cles in given states. If the irreducible part in a state jli is
diagonal in some approximation, Eqn (115) can be trans-
formed into a form analogous to (119).

Using the relation

SA
ll ÿ SR

ll � �ĜR
ll�ÿ1 ÿ �ĜA

ll�ÿ1 �
ĜA

ll ÿ ĜR
ll

ĜR
llĜ

A
ll

; �120�

we can represent G<�o� in the form

Ĝ<
ll�o� �

S<
ll�o�

SA
ll�o� ÿ SR

ll�o�
�
ĜA

ll�o� ÿ ĜR
ll�o�

�
� 2iNl�o� Im ĜA

ll�o� : �121�

The quantity appearing here can be called a nonequilibrium
distribution function,

Nl�o� � S<
ll�o�

SA
ll�o� ÿ SR

ll�o�
: �122�

It follows that we do not need to solve kinetic equations in
order to find the nonequilibrium distribution functions and
nonequilibrium occupation numbers. It suffices to calculate
the irreducible parts S< and SR;A using the NDT rules.

Such formulas can describe nonequilibrium occupation of
discrete electron states in tunneling problems, nonequili-
brium excitation of optical modes and molecular vibrations,
and occupation of optical modes in a resonator.

We note that the information contained in the non-
equilibrium distribution functions is richer than the informa-
tion about occupation numbers in a given state contained in
the semiclassical balance equations, because the occupation
numbers expressed in terms of nonequilibrium Green's
functions are a more coarse integral characteristic:

Nl � ÿiG<
ll�t; t� �

�
doNl�o� 1p Im ĜA

l �o� : �123�

Passing to the Fourier transform allows keeping track of
what happens when the temperature tends to zero. In this
case, the averaging is done with respect to the ground state of
a many-body system, and the conventional diagram techni-
que based only on the T-ordered functions Gÿÿ should be
valid. It turns out that all diagrams for the function Gÿÿ

having vertices with the `�' sign vanish. For example, the
contribution of the diagram shown in Fig. 9a for fermions is
given by

Gÿ��r ÿ r1;o�G�ÿ�r1 ÿ r 0;o� / n�o��n�o� ÿ 1
�! 0

�124�
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(for bosons, Gÿ� ! 0). In more complex cases, as in the
diagram in Fig. 9b, occupation numbers appear in combina-
tions that vanish anyway as T! 0:

n�oÿ o1�n�o2 � o1�
�
n�o� ÿ 1

��
n�o2� ÿ 1

�
! �

1ÿ y�o� o2�
�
y�o� o2� � 0 : �125�

Therefore, in the case T � 0, there are only diagrams with the
`ÿ' signs in all vertices.

We note that the sum of all disconnected loops containing
onlyGÿÿ is not zero. Therefore, at zero temperature, wemust
either use standard arguments to cancel the overall factor in
all disconnected diagrams and prove that there are only
connected diagrams built of the usual GFs, or use the NDT,
where the sum of all disconnected loops is equal to zero, and
prove that the usual GFs remain in connected diagrams for
the usual function Gÿÿ.

5. Quantum kinetic equations

Usually, classical kinetic equations describe the time evolu-
tion of the particle number in a given state (concentration at a
given spatial point),

q
qt

np�t� � . . . : �126�

In terms of the NDT, this implies that the left-hand side of
these equations must be

ÿi q
qt

Ĝ<
p �t; t� � . . . : �127�

Observables are expressed in terms of the Green's
functions at equal times. But the quantum kinetic equations
can also describe the rate of change of a GF with respect to
one of the arguments if the other plays the role of a parameter.
These equations are sometimes easier to solve, and the
observables then follow by setting t 0 � t in the solution. The
equations can be easily obtained fromDyson equation (93) by
acting on each term in this equation with the operator �GR

0 �ÿ1
in (103). Since the action of this operator on the function G<

0

gives zero, just two terms in the right-hand side of the Dyson
equation remain [see (110)]. Hence, for the GF in the
momentum representation, we obtain�

i
q
qt
ÿ ep

�
Ĝ<

p; p 0 �t; t 0� �
�
S<
p; p1
�t; t1�ĜA

p1 ; p 0 �t1; t 0� dt1

�
�
SR
p; p1
�t; t1�Ĝ<

p1; p 0 �t1; t 0� dt1 : �128�

There is no G<
0 in this equation, nor is there any explicit

information about the initial particle distribution function.
The information about the initial state is contained in the
solution of the integro-differential equations in the form of
boundary conditions.

To derive a quantum-statistical analogue of the Boltz-
mann equation, we supplement the above equation with the
adjoint equation obtained from the same Dyson equation
written in a different form:

Ĝ<�t; t 0� � Ĝ<
0 �t; t 0� � Ĝ<SAĜA

0 � ĜRS<ĜA
0 � ĜRSRĜ<

0 :

�129�

To eliminate the function G<
0 , we now have to act on this

equation with the operator Gÿ10 `from the right', or,
equivalently, act on the second argument of the Green's
function with the operator adjoint to �GR

0 �ÿ1:

�ĜR
0 ��ÿ1�t 0� � ÿi

q
qt 0
ÿ ep 0 : �130�

Subtracting the resulting adjoint equation fromEqn (128), we
arrive at the generalized kinetic equation�

i
q
qt
ÿ ep � ep 0

�
Ĝ<

pp 0 �t; t� �
�
S<
pp1
�t; t1�ĜA

p1p 0 �t1; t� dt1

�
�
SR
pp1
�t; t1�Ĝ<

p1p 0 �t1; t� dt1 ÿ
�
Ĝ<

pp1
�t; t1�SA

p1p 0 �t1; t� dt1

ÿ
�
ĜR

pp1
�t; t1�S<

p1p 0 �t1; t� dt1 ; �131�

where we set t � t 0, and therefore

i

�
q
qt
� q
qt 0

�����
t�t 0

Ĝ<�t; t 0� � i
q
qt

Ĝ<�t; t� : �132�

We note that although the left-hand side of (131) is the
Green's function at equal times corresponding to a certain
physical quantity (or the distribution function), the Green's
functions in the right-hand side of the equation, as well as the
irreducible parts, depend on essentially different variables due
to the quantum nature of this equation. Also, the `collisional
part' contains the Green's functions GR and GA, which
cannot be determined from this equation. This is in contrast
to the classical Boltzmann equation, which is a closed
equation for the distribution function. Thus, in the quantum
case, it is impossible to write a closed equation containing
only the Green's functions at equal times. Therefore, the
general equation

�Ĝÿ10 ÿ Ĝ �ÿ10 �Ĝ< � �ŜĜ�< ÿ �ĜŜ�< �133�

may be called the quantum kinetic equation (the generalized
quantum Boltzmann equation), with the stipulation that
retarded and advanced Green's functions have already been
found from the Dyson equation (they may also depend on the
function G<!). The choice of variables in (133) and the exact
meaning of the convolution operator product in the right-
hand side depend on the particular representation. The right-
hand side is a generalized collision integral, which can be
written differently using relations between various compo-
nents of nonequilibrium Green's functions (41) and irreduci-

o oÿ � ÿ
Uq a

o o�

ÿ

ÿÿ ÿ

�
o1 � o2

o2

oÿ o1

b

Figure 9.Diagrams vanishing at T � 0.

December 2015 On the nonequilibrium diagram technique: derivation, some features, and applications 1171



ble part (64):

�ŜĜ�< ÿ �ĜŜ�< � Ĝ<Ŝ> ÿ Ĝ>Ŝ<

� �ŜRĜ< ÿ Ĝ<ŜR� � �Ŝ<ĜA ÿ ĜAŜ<�
� ŜRĜ< � Ŝ<ĜA ÿ ĜRŜ< ÿ Ĝ<ŜA : �134�

We can use a simpler semiclassical kinetic equation when
the perturbation in the noninteracting system gives rise to
slow variations in space and time. The phrase `slow varia-
tions' means that if we consider all functions as depending on
the central and relative variables,

G<�r1; t1; r2; t2� � G<

�
r1 � r2

2
;
t1 � t2

2
; r1 ÿ r2; t1 ÿ t2

�
;

�135�

then the function must change much more slowly in the sum
variable than in the difference variable. The GF oscillation
rate in the time difference variable is determined by the
particle energy scale.

If we write the Green's function in the coordinate
representation

�ĜR
0 �ÿ1Ĝ 0R�rt; r 0t 0� �

�
i
q
qt
� 1

2m
D
�
Ĝ 0R�rt; r 0t 0�

� d�tÿ t 0�d�rÿ r 0� �136�
and then pass to the Wigner representation

G<�R; t; p;o� �
�
exp

�
io�t1 ÿ t2� ÿ ip�r1 ÿ r2�

�
� G<

�
r1� r2

2
� R;

t1� t2
2
� t; r1ÿ r2; t1ÿ t2

�
d�r1ÿ r2�d�t1ÿ t2� ;

�137�
then the right-hand side of Eqn (131) can be simplified.
Because the mean variables vary sufficiently slowly, the
integration of terms like SG in the relative variables can be
approximately considered an independent operation. There-
fore,�

S<
pp1
�t; t1�ĜA

p1p 0 �t1; t 0� exp
�
io�tÿ t 0��dt1 d�tÿ t 0�

' S<
pp1
�t;o�ĜA

p1p 0 �t;o� : �138�

For the quadratic dispersion, we have

ep�q ÿ epÿq � p

m
2q! p

m

q
qR

: �139�

Then the kinetic equation takes the familiar form of the
classical Boltzmann equation�

i
q
qt
� i

p

m

q
qR

�
Ĝ<

p;o�R; t�

� S<
po�R; t�ĜA

po�R; t� � SR
po�R; t�Ĝ<

po�R; t�
ÿ Ĝ<

po�R; t�SA
po�R; t� ÿ ĜR

po�R; t�S<
po�R; t� : �140�

We note that by introducing a compact notation usually
called theMoyal product [31], the convolution of functions in
the right-hand side of (131) can be formally written in the
Wigner representation in the local form as�

dr1 S�r; r1�G�r1; r 0� ) Sp�R� 
 Gp�R� ; �141�

where

Sp�R� 
 Gp�R� � Sp�R� exp
h
i
�
qR
 �

qp
!ÿ qp

 
qR
�!�i

Gp�R� :
�142�

The same transformation can be done with respect to the
time variables. In fact, this product is simply a compact
notation for the Taylor series of functions in the right-hand
side of the quantum kinetic equation. Because the Moyal
product is highly nonlocal, it is applicable only when
considering gradient expansions.

Quantum kinetic equations were already investigated in
[32]. Equations of this type are also given in the book by
Kadanoff and Baym [29]. However, these papers do not
contain any general standard recipes for calculating irreduci-
ble parts. In [29], the equations are obtained directly from the
Heisenberg equations for creation and annihilation opera-
tors, with the irreducible part being a functional derivative in
the spirit of Schwinger. In the case of a system in thermo-
dynamic equilibrium, the only (and cumbersome) method
was to analytically continue finite-order perturbative expres-
sions of the temperature diagram technique to real frequen-
cies. In the NDT, kinetic equations arise as a consequence of
the Dyson equations, as their differential form. Moreover,
there is a standard machinery to calculate the irreducible
parts, which is the same as in the conventional diagram
technique.

6. Simple example as a testing ground
for studying the properties
of the nonequilibrium diagram technique

In this section, we use a simple example to discuss subtleties
arising when applying the general theory. We consider a
system consisting of an isolated, localized electronic state
and free electrons in a metal or semiconductor,

Ĥ0 � e1a�1 a1 �
X
k

ekc�k ck : �143�

The state described by the operators a1 can be a discrete state
of atoms adsorbed on the surface of ametal, an impurity state
in a semiconductor, etc. The operators c�k and ck correspond
to band electrons. In all actual cases, there are overlap matrix
elements between localized and free electron states. It follows
that an electron can hop from the localized level into the free
band and back. This interaction is considered a perturbation.
Also, we consider the simplest external field, which is an
additional potentialU applied to the localized state. Then the
total perturbation Hamiltonian has the form

V̂ � Ua�1 a1 � T
X
k

�c�k a1 � a�1 ck� ; �144�

where T is the transition matrix elements between localized
and band states. As is often the case, we omit their
dependence on k. The system is schematically shown in
Fig. 10.

If the state e1 has any occupation at the initial instant,
then, after turning on interaction (144), transition processes
begin (we discuss them shortly). We first find a solution in the
stationary case where all transient processes have terminated.
The diagrams for the irreducible part of the localized state e1
are shown in Fig. 11.
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The diagrams correspond to the following matrix of
irreducible parts of the Green's function Gaa for the localized
state in representation (88):

Ŝaa �
U� T 2

P
k

G 0R
k �o� T 2

P
k

G 0<
k �o�

0 U� T 2
P
k

G 0A
k �o�

0B@
1CA : �145�

The real part of the momentum integral appearing in (145) is
frequently neglected in calculations, with only the pole
contribution retained:X

k

G 0R
k �o� �

X
k

1

oÿ ek � id
' ÿipnk�o� ; �146�

where nk is the density of band electron states. This gives the
simple expression

SR
a �o� � U� T 2

X
k

G 0R
k �o� � Uÿ ig : �147�

The characteristic quantity that appears here is the localized
state decay rate (the rate of transitions from localized states to
the continuous spectrum)

g � pT 2nk : �148�

TheDyson equation in the Fourier representation forGR,

ĜR � ĜR
0 � ĜR

0 SR
a �o�ĜR � ĜR

0 � ĜR
0 �Uÿ ig�ĜR ; �149�

can be solved easily, giving the trivial answer

ĜR � 1

oÿ e1 ÿU� ig
: �150�

The localized state energy level is shifted due to the applied
potential and broadened due to transitions to the continuous
spectrum.

We now use the formula G<� GRS<GA, Eqn (115), to
determine the steady-state filling of the localized state. The
irreducible part S< is given by

S<�o� � ÿSÿ��o� � T 2
X
k

G 0<
k �o� � 2ign0�o� �151�

[we recall thatG 0<
k �o� � 2pin0�o�d�oÿ e�k��, where n0 is the

equilibrium Fermi distribution of band electrons]. It follows
that

Ĝ<�o� � ĜRS<ĜA � 2ig

�oÿ e1 ÿU�2 � g 2
n0�o� : �152�

This relation has a clearmeaning: the density of localized level
states, broadened because of the coupling to the thermostat, is
filled with band electrons that have the equilibrium Fermi
distribution function n0.

Letting g! 0 in the expressions (which means that the
localized state becomes isolated), we calculate the occupation
of the state as a function of the potential:

G<�o� � 2pin0�o�d�oÿ e1 ÿU�
� 2pin0�e1 �U�d�oÿ e1 ÿU� : �153�

We have found that the energy level is changed, while the
filling of this state is determined by the thermodynamic Fermi
function with a shifted energy variable.

However, setting T � 0 �g � 0� from the very beginning,
we find that the nondiagonal (1,2) component is absent in the
matrix of irreducible parts (145):

Ŝ � U 0
0 U

� �
; SR � SA � U : �154�

Therefore, Eqn (115) cannot be used in this case. The
functions GR and GA are still given by (150) with g � 0. We
return to Eqn (114) and consider the first term in the right-
hand side,

Ĝ< � ĜR
��ĜR

0 �ÿ1Ĝ<
0 �ĜA

0 �ÿ1
�
ĜA ; �155�

which we omit in what follows. Here, infinitesimal imaginary
variations id are treated as small but finite quantities.We then
obtain

Ĝ<�o� � Ĝ<
0 �o�

�oÿ e1�2 � d 2

�oÿ e1 ÿU�2 � d 2
: �156�

The function G<
0 �o� in (119) can be represented as

G<
0 �o� � 2pin0�e1�d�oÿ e1� � 2in0�e1� d

�oÿ e1�2 � d 2
:

�157�

Then G<�o� can be routinely found as

G<
a �o� � 2in0�e1� d

�oÿ e1 ÿU�2 � d 2

� 2pin0�e1�d�oÿ e1 ÿU� : �158�

We note that using (119), we can represent Eqns (114) and
(155) in the form

G<
a �o� � GR

��ĜR
0 �ÿ1

ÿ
n0�e1��GA

0 ÿ GR
0 �
��ĜA

0 �ÿ1
�
GA

� GRn0�e1�
��ĜR

0 �ÿ1 ÿ �ĜA
0 �ÿ1

�
GA : �159�

U

T

e1

Figure 10. Simple model layout. The electron level e1 and bulk states are

connected by transient processes.

1 1T TkU

Figure 11. Two contributions to the irreducible part of the Green's

function for a localized state.
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Here, 2n0 ImSR
0 �e1� plays the role of S< in general formula

(115). This SR
0 �e1� is equal to 2id rather than zero, which

again gives the above result. The result shows that the energy
level changes due to the applied field, but the occupation is the
same. However, the level occupation e1 does not change if we
use (118) for the initial Green's function G<

0 �o�. But if we
start with (119), where n0�e1� is replaced by n0�o� due to the
d-function, then the level occupation changes:

G<
a �o� � 2in0�o�d�oÿ e1 ÿU�

� 2pin0�e1 �U�d�oÿ e1 ÿU� : �160�

In this case, the level occupation is determined by the
thermodynamic distribution function at the energy shifted
by the amount of the applied field. The question of why
apparently equivalent representations for G<

0 in some cases
yield different results has been discussed in the literature. But
the answer is quite simple: it depends on the `degree of
isolation' of the system (of any state or mode in the system).

Turning to Eqn (122), which determines steady-state
occupation numbers, we find that by setting g � 0 from the
very beginning, we obtain the indeterminate expression 0=0:

Na�o� � S<
a �o�

SA
a �o� ÿ SR

a �o�
� 2ign0�o�

2ig
: �161�

The resulting indeterminacy and possible dual answers are
not a drawback of the technique. This is because there are
actually two different physical situations. Let the discrete
level under consideration be that of an atom located away
from any solid (i.e., it is truly isolated). If we bring the
capacitor plate toward the atom, thereby increasing the
potential of all atomic states, then the electron occupation
number of the level does not change. This is the answer in
(157). We next consider the impurity level in a solid.
Because of multiple interactions not included directly in
Hamiltonian (160), changing the energy level of such a state
inevitably leads to changing its occupation according to the
thermodynamic distribution. Treating the imaginary varia-
tions in the GF denominators as very small but finite
quantities means exactly that we implicitly turn on the
coupling of the state to a large thermostat. Hence, the
indeterminacy is, in fact, a well-posed and very old physical
problem. The order in which the system is prepared is as
follows: we first completely turn off the coupling to the
thermostat and then send time to infinity; alternatively, we
first wait while even a weak coupling to the thermostat
yields thermalization, and then turn the coupling off to
zero.

Therefore, the rule that is sometimes seen as a shaman
spell, that np should be replaced by n�o� in the Green's
functions G< of a noninteracting system, simply means that
the coupling of our system to the outside world (the
thermostat) always exists, even if it is very small. Evaluating
the indeterminate form using (161) yields Eqn (153). This
phenomenon was already explained well in [30].

We now consider nonstationary transient processes. For
this, we solve kinetic equation (131) for the function G<

aa:

i
q
qt

Ĝ<
aa�t; t� �

�1
0

S<�t; t1�ĜA�t1; t� dt1

�
�1
0

SR�t; t1�Ĝ<�t1; t� dt1 ÿ
�1
0

Ĝ<�t; t1�SA�t1; t� dt1

ÿ
�1
0

ĜR�t; t1�S<�t1; t� dt1 : �162�

It is assumed here that the potential U and the interaction
with band electrons are turned on at the initial instant t0 � 0,
while the localized state occupation number is n0�e1�. Because
the potential affects only variations of GR and GA, it can be
taken into account simply by changing the energy value of the
localized state by U.

The irreducible parts SR and SA in (146) and (147) in the
wide-band approximation, where n�o� ' const, are local in
time:

SR�t1; t2� � ÿigd�t1 ÿ t2� : �163�

The irreducible part S< in the time representation is obtained
as the Fourier transformation of (151):

S<�t1; t2� �
�
do
p

ign0�o� exp
�ÿio�t1 ÿ t2�

�
: �164�

The kinetic equation has the form

i
q
qt

G<�t; t� � ÿ2igG<�t; t� ÿ
�
do
p

1

�oÿ e1 ÿU�2 � g 2

�
n
g�

�
�oÿ e1 ÿU� sin ��oÿ e1 ÿU�t�

ÿ g cos
��oÿ e1 ÿU�t�� exp �ÿgt�o 2ign0�o� : �165�

Under the condition ÿiG<�0; 0� � na�0� � n0�e1� �n1�t� �
ÿiG<�t; t��, its solution is given by

n1�t� � n0�e1� exp �ÿ2gt� �
�
do
p

n0�o� g

�oÿ e1 ÿU�2 � g 2

�
h
1� exp �ÿ2gt� ÿ 2 cos

��oÿ e1 ÿU�t� exp �ÿgt�i :
�166�

The solution describes relaxation processes in our system. For
large times t4 1=g, the occupation tends to a steady-state
value determined by the equilibrium broadened level occupa-
tion shifted by U:

n1 �
�
do
p

n0�o� g

�oÿ e1 ÿU�2 � g 2
: �167�

Of course, this is the same steady-state value (152) found
before.

The exact solution shows that the relaxation of the
localized state occupation is not exponential. At the initial
stage, the relaxation can even be nonmonotonic. An example
of this behavior is shown in Fig. 12.

If we switch to a more coarse-grained picture by assuming
that the oscillating terms in the right-hand side of (165) at
times > 1=e1 make a small contribution, then we arrive at the
same result that would follow from simple balance equations
based on transition probabilities from the localized state to
the continuous spectrum. Then Eqn (165) can be represented
as a simple equation for n1�t� � ÿiG<�t; t�:�

q
qt
� 2g

�
n1�t� � 2gn0�e1 �U� : �168�

Its solution is given by

n1�t� � n0�e1 �U��1ÿ exp �ÿ2gt��� n0�e1� exp �ÿ2gt� :
�169�

1174 P I Arseev Physics ±Uspekhi 58 (12)



This simplified formula shows that during the time period
t ' 1=g, the occupation numbers corresponding to the
equilibrium distribution function for a thermostat are
`imposed' on the localized state.

Equation (169) clearly shows what happens if we start
calculating the Green's function G<

aa step by step in the
perturbation theory, treating transitions between localized
and band states as perturbations (these are transitions that
give rise to variations of the state occupation). This is the
perturbation theory in the parameter g / T 2 (see the second
illustration in Fig. 11). But the first terms of solution (169)
expanded in g,

ÿiG<�t; t� � n0�e1� �
�
n0�e1 �U� ÿ n0�e1�

�
2gt

ÿ �n0�e1 �U� ÿ n0�e1�
�
2g 2t 2 � . . . ; �170�

have secular divergences in time, indicating that the perturba-
tion theory should be applied with care. The same is obtained
by a straightforward calculation of the first-order correction

to G
�1�<
aa �t; t�:

G �1�<aa �t; t��
�1
0

�1
0

h
G<

0 �t; t1�SA�t1; t2�GA
0 �t2; t� dt1 dt2 �171�

� GR
0 �t; t1�S<�t1; t2�GA

0 �t2; t� dt1 dt2
� GR

0 �t; t1�SR�t1; t2�G<
0 �t2; t� dt1 dt2

i
: �172�

Substituting irreducible parts (163) and (164), it is easy to see
that the first correction diverges linearly in time.

A characteristic feature of the NDT is the occurrence of
power-law time divergences in finite-order terms of the
perturbation series for G< whenever there are nonstationary
processes in the system. In fact, such a behavior of the
perturbation series explicitly shows that the solution of the
Dyson equation for G< is independent of G<

0 , although the
integral equation still contains G<

0 . In some cases, the secular
divergences make the calculation of G< useless and non-
informative in the first orders. They indicate that the system
flows from the original state into a completely different one.
However, the NDT is, in this sense, a renormalizable theory
giving rise to finite physically correct results. A proper
method for describing the transition is to solve the kinetic
equations derived from the Dyson equation.

7. Do we need the three-component technique
as a generalization of the nonequilibrium
diagram technique?

A simple example discussed in the preceding section
demonstrated some of the technical features of the NDT. It
also shows whether we need the so-called three-component
technique. This technique is motivated by the following
reasons. The study of kinetics of many-body systems is
traditionally based on a response theory for a system in
thermodynamic equilibrium. The response theory requires
that time correlation functions of certain operators be
calculated at a finite temperature. At the end of this
section, we discuss the diagram technique for retarded
correlators developed by Konstantinov and Perel' in 1960
[18]. Now, we consider the real-time Green's function at a
finite temperature. It is defined as

Â�t�B̂�t 0�� � 1

Sp
�
exp �ÿH=T ��

�Sp
�
exp

�
ÿH

T

�
exp �iHt�Â exp �ÿiHt� exp �iHt 0�B̂ exp �ÿiHt 0�

�
:

�173�

Expectation values of this type appeared in the famous work
by Kubo [33] devoted to calculating the response of a system
in equilibrium. Contrary to the original NDT equation (24),
the density matrix here is always assumed to be Gibbsian,

r � exp �ÿH=T �
Sp �exp �ÿH=T �� :

Then, extracting the perturbation V̂ from the Hamiltonian,
both the real-time evolution operators and the Boltzmann
factor exp �ÿH=T � can be represented as T-ordered expo-
nentials, exactly as in the temperature Matsubara technique.

Because there are now three T-ordered exponentials
averaged in a certain order, the entire expression can be
represented as a single TC3

-ordering along the contour C3

0.5

n�t�

0 4 8t

a

n�t�
1.0

0.5

0 4 8t

b

Figure 12. Density relaxation on the localized state for different model

parameters. The initial occupation is n � 1=2. Dashed lines correspond to

the contribution of the first term in (166), dashed-dotted lines correspond

to the second term, and solid lines correspond to the general time

dependence of the charge density (time is measured in 1=g units). The

initial interval of solid lines shows nonexponential behavior. (a) Energy of

the localized state above the Fermi level; (b) energy of the localized state

below the Fermi level.
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shown in Fig. 13,

Â�t�B̂�t 0�� � 1

Z
Sp

�
TC3

�
exp

�
ÿi
�
C3

V̂�tc� dtc
�
Â�tc�B̂�t 0c�

��
:

�174�

If the originally averaged operators are placed in a certain
order as in (173), then time arguments of the operators Â and
B̂ must be assigned to different contour branches along the
real axis, t 0c � t 0 ÿ and tc � t�. In averaging the ordinary
T-ordering, we set t 0c � t 0 ÿ, tc � tÿ, etc. Any correlation
function of two (or more) operators can always be repre-
sented in form (174) using theTC3

-ordering along the contour
composed of three parts.

The contour has a part `along the imaginary time axis'.
Such a graphical interpretation emerges because within the
Matsubara technique, operators in the interaction picture can
be formally represented as

ĉp�t� � exp �Ht�cp exp �ÿHt�
� exp

�
iH�ÿit��cp exp �ÿiH�ÿit�� : �175�

In the Matsubara technique, the parameter t ranges from
0 to b � 1=T, and hence there is an `imaginary time' segment
from 0 to ÿib. In principle, such a figure should not be
literally understood as a contour in the `complex time plane'.
It is just a visualization of the fact that there are three groups
of operators arranged in a certain order in any term of the
perturbation series, while each group of operators is ordered
in accordance with its own rule.

If we consider only time correlators in thermodynamic
equilibrium in a system with a time-independent Hamilton-
ian, the term `contour in the complex time plane' can have a
literal meaning. In this case, we introduce the evolution
operator in complex time

U�z; z 0� � TCz exp

�
ÿi
� z 0

z

V̂�z1� dz1
�
; �176�

where z and z 0 represent a `complex' time of the form t� it.
The complex time parameters are also used to build the
perturbation operator in the interaction picture [16, 34, 35].
However, there are a number of physical limitations. The
convergence conditions for all expressions require that the
imaginary part of the `complex time' lie in the strip �0;ÿib�.
On the other hand, the analyticity condition for the Green's
functions requires that `the imaginary part of time' on the
contour decrease monotonically from 0 to ÿib [36]. A
possible diagram technique corresponding to the contour
shown in Fig. 14 was developed by Umezawa, Matsumoto,
and Tachiki [37] and called the Thermo Field Dynamics.
Within this approach, the contour passes `above' the real axis,

then goes along a segment along the imaginary axis from zero
to ÿib=2, then goes back parallel to the real axis until the
initial instant, and finally passes along the imaginary axis
from ÿib=2 toÿib. In this theory, the averaging of operators
belonging to vertical segments is factored. Hence, only the
nontrivial averaging of operators on lines parallel to the real
axis remains. It follows that the Thermal Field Dynamics is
also a two-component technique, but for calculating time
correlation functions in an equilibrium system.

We stress once again that all operations that look like an
analytic continuation to the time plane are possible only for
time correlators calculated by the thermodynamic equili-
brium equations. If the Hamiltonian (or the perturbation to
which the diagram technique is associated) is time-dependent,
then discussing the `analytic continuation' in time is not
possible. We also note that the widely used Kubo±Martin±
Schwinger-type relations [16, 29]

G>�tÿ ib� � ÿG<�t� ; G<�t� ib� � ÿG>�t� �177�

for the Green's functions of complex time are valid only in the
case of thermodynamic equilibrium when the perturbation
operator is time-independent. We recall that in the general
case, the extension to the complex time plane is meaningless.

Moreover, a significant difference from theNDT is that in
theories with time correlation functions, we always use the
Gibbs density matrix r � exp �ÿH=T �=Sp �exp �ÿH=T �� in a
state of thermodynamic equilibrium. In general, the NDT
initial density matrix can be arbitrary, and the theory
describes all transitions and relaxation processes occurring
in the system after the perturbation is turned on. For large
times, any nonpathological system eventually thermalizes
and forgets its initial state. Therefore, it seems that it should
make no difference whether we use the initial density matrix
r0 � exp �ÿH0=T �=Sp �exp �ÿH0=T �� for noninteracting
particles, as is generally done in the NDT, or the total density
matrix r � exp �ÿH=T �=Sp �exp �ÿH=T ��, as in the three-
component technique. Arguments that have led some authors
to think that the three-component technique is necessary are
that the spectrum obtained within the NDT is correct, while
the occupation does not correspond to thermodynamic
equilibrium.

We try to clarify the matter with simple examples.
The TC3

-ordering allows generalizing Wick's theorem to
this case as well. The Green's functions arise in which each of
two operators can belong to one of three branches of the
contour, i.e., the GFs become 3� 3 matrices. In this case, it is
better to use indices `1, 2' instead of `ÿ;�', and the index `3' to
denote operators on the `imaginary' part of the contour.

We apply this technique to the simple example already
thoroughly discussed in Section 6. We have seen that if the
coupling of discrete states to the thermostatÐband elec-
tronsÐvanishes, then the result depends on how the limit
transition is done. We examine the three-component techni-

t 0 t

t

ÿib

Figure 13. Contour with three branches.

t

ÿib

ÿib
2

Figure 14. Thermo Field Dynamics contour.
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que in the case where there is a discrete state. Also, for a
particle in this state, an additional potentialU is turned on at
a time t0,

H0 � e1a�1 a1 ; V̂ � Ua�1 a1 : �178�

In addition to the fourNDTGreen's functions, functionsG13,
G23,G31, andG32 arise. Letting t denote the variable along the
vertical segment from 0 to ÿib, we find

G 0
13�t; t� � ÿi



TC3

a1�t�a�1 �t�
� � i



a�1 �t�a1�t�

�
� Sp

�
exp �ÿH0=T �a�1 �t�a1�t�

�
Sp
�
exp �ÿH0=T �

� : �179�

Operators in the interaction picture for the `imaginary' and
real parts of the contour have different forms:

a�t� � exp �H0t�a1 exp �ÿH0t� ;
�180�

a�t� � exp
�
iH0�tÿ t0�

�
a1 exp

�ÿiH0�tÿ t0�
�
:

Therefore, even for a noninteracting system, the Green's
functions G13 and G31 depend on two different variables:

G 0
13�t; t� � in�e1� exp �te1� exp

�ÿie1�tÿ t0�
�
;

�181�
G 0

31�t; t� � i
ÿ
n�e1� ÿ 1

�
exp �ÿte1� exp

�
ie1�tÿ t0�

�
:

It follows that the Fourier-transformed GFs are to be
considered as matrices G�o;o 0�. Then both the time and
temperature parts of thematrix are diagonal,G�o�d�oÿ o 0�,
G33�on�don ;o 0n , and G13 has the form

G 0
13�o;on� � i

1

ion ÿ e1
2pid�oÿ e1� exp �iot0� : �182�

The interaction picture was chosen such that all operators
at the initial instant coincide with those in the SchroÈ dinger
picture. We see that the functions G 0

13 essentially depend on
the initial time due to their matrix nature. Therefore, the
integrals in the Dyson equation must be bounded from below
by the initial time t0 first, and only then canwe set t0 ! ÿ1 in
the resulting expressions in the steady-state case.

This behavior of the off-diagonal components that relate
the time and temperature sectors allows suggesting that the
nondiagonal contribution is equal to zero due to fast
oscillations at large times induced by the factor exp �iot0�
[34, 35]. It follows that the conventional NDT (or the
conventional temperature technique, in the case of station-
ary properties) is sufficient to describe the system.

However, there have been counterexamples claiming that
this is not necessarily so. The examples pertained to isolated
states or isolated modes, and hence our example is relevant
here.

Because the third, `temperature', segment goes along the
real axis following the two branches of the contour, the order
of operators in the functions G23 and G13 is the same, and
therefore G23 � G13 and G32 � G31.

The matrix structure of the Dyson equation remains the
same. It is now just a 3� 3 matrix equation, because there are
vertices arising when expanding the Boltzmann factor
exp �ÿH=T �, which contain operators with the index `3' and
relate the Green's functions G a3G 3b.

Within the original formulation of the three-component
technique, the GFmatrix in the old NDT notation is given by

Ĝ �
Gÿÿ Gÿ� G13

G�ÿ G�� G13

G31 G31 G33

0@ 1A : �183�

It is convenient to perform the same transformations (65) that
lead to the triangular representation in the NDT,

Ĝ)
0 1 0
1 0 0
0 0 1

 !
L̂ĜL̂ÿ1 ; �184�

where

L̂ � 1���
2
p

1 ÿ1 0
1 1 0

0 0
���
2
p

0@ 1A : �185�

We then arrive at the triangular representation

Ĝ �
GR GK

���
2
p

G13

0 GA 0

0
���
2
p

G31 G33

0@ 1A �186�

or, using transformations (88)±(91), at

Ĝ �
GR G< G13

0 GA 0
0 G31 G33

0@ 1A : �187�

In this representation, the external potential corresponds to
the irreducible part represented by the diagonal matrix

Ŝ � U
1 0 0
0 1 0
0 0 1

 !
: �188�

The equation for G< is the (1,2) component of the Dyson
equation:

G<�t; t 0� � G<
0 �t; t 0� �

�1
t0

G<
0 �t; t1�UGA�t1; t 0� dt1

�
�1
t0

GR
0 �t; t1�UG<�t1; t 0� dt1 �

� b

0

G 0
13�t; t�UG31�t; t 0� dt ;

�189�

while the (3,1) component of the Dyson equation allows
representing the equation for G31 as

G31�t; t 0� � G 0
31�t; t 0� �

�1
t0

G 0
31�t; t1�UGA�t1; t 0� dt1

�
� b

0

G 0
33�tÿ t1�UG31�t1; t 0� dt1 : �190�

As in the conventional temperature technique, Eqn (190)
can be solved using the Fourier transformation with respect
to t. In the fermionic case, we expand in the odd Matsubara
frequencies on � �2n� 1�pT. However, it is not so conveni-
ent to use the Fourier transformation with respect to time in
Eqn (189). The variables of the functions G31 and G13 are
mixed, and hence the limit t0 ! ÿ1 is to be taken carefully.
Indeed, before the limit is taken, the Green's functions G<

depend on two variables, and not only on their difference.
Therefore, it is easier to use the mixed representation
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G13�t;on�, where the solution of (190) is given by

G31�on; t
0� � i

ion ÿ e1

1

1ÿ G 0
33�on�

exp
�
i�e1 �U��t 0 ÿ t0�

�
:

�191�
Without solving the equation for GA (because the answer is
obvious), we use the explicit form

GA�t; t 0� � iy�t 0 ÿ t� exp �ÿi�e1 �U��tÿ t 0�� : �192�

In this formalism, the function G33 is the usual Matsubara
function

G 0
33�on� � 1

ion ÿ e1
: �193�

After substituting the solution G31 in (189) and replacing� b

0

G 0
13�t; t�UG31�t; t 0� dt � T

X
on

G 0
13�t;on�UG31�on; t

0� ;
�194�

we find that the last term G 0
13UG31 takes the form

T
X
on

G 0
13�t;on�UG31�on; t

0�

� T
X
on

�
1

ion ÿ e1 ÿU
ÿ 1

ion ÿ e1

�
� exp

�ÿie1�tÿ t 0�� exp �iU�t 0 ÿ t0�
� �195�

� i
�
n�e1 �U� ÿ n�e1�

�
exp

�ÿie1�tÿ t 0�� exp �iU�t 0 ÿ t0�
�
:

�196�
We see that the termG13G31 is a source in the equations for

G<, thereby providing a transition from the original occupa-
tion numbers n�e1� to new equilibrium numbers n�e1 �U�. It
is easily seen that the solution of Eqn (189) in the time
representation with this additional term is given by

G<�t; t 0� � in�e1 �U� exp �ÿi�e1 �U��tÿ t 0�� : �197�

In this case, the functionsG<
0 �t; t 0� � in�e1� exp

�ÿie1�tÿ t 0��
completely disappear from the equation, and the memory of
the initial occupation n�e1� is lost.

The argument justifying the use of the three-component
technique is that when applying the potential, the occupation
changes consistently. On the other hand, a straightforward
(and thoughtless) use of the NDT should give Eqn (158),
containing the original occupation n�e1�. However, the same
correct result with the new occupation number n�e1 �U� in
(158) is obtainedwithin theNDT if we assume that our system
is still coupled to the external thermostat very weakly. It turns
out that the three-component technique is relevant only if we
consider a completely isolated system (state), but at the same
time wish the occupation to be described by the thermo-
dynamic equilibrium Gibbs distribution! It is clear that this is
an extremely illogical standpoint: the Gibbs distribution
always implies a coupling to the thermostat. Moreover, if we
explicitly or implicitly consider a weak coupling with the
thermostat as above, then the occupation numbers are the
same as in the three-component technique, and hence no
further complication of the theory is required.

In the example with one isolated state, the rapidly
oscillating factors in the off-diagonal Green's functions

cancel. This is because we are dealing with a singular density
of states described by a delta-function.

In more complex cases, the problem can be implicit.
Because there are doubts as to whether the Keldysh
technique works properly in all cases, we here briefly describe
the correct way to solve a more complicated problem
considered in [38]. That paper claims that the three-compo-
nent technique is necessary for calculating the spin suscept-
ibility in the Heisenberg model with the Hamiltonian

H �
X
i; j

Ji jŜiŜj ÿ
X
i

hŜi ; �198�

where h is an external magnetic field. For our purposes, it is
more convenient to rewrite the Hamiltonian in terms of the
electron creation and annihilation operators. Then the
original Hamiltonian is

H0 � ÿh�c�i" ci" ÿ c�i# ci#� ; �199�

and the perturbation is given by the exchange interaction:

V � J�S�Sÿ � . . .� � J�c�i" ci#c�i�1#ci�1" � . . .� : �200�

The contradiction allegedly discovered in [38] is as follows. In
the framework of the RPA approach, we can find themagnon
spectrum determined by the poles of the correlator (suscept-
ibility) wR�O; q�. The spectrum is given by the same expression
in both the NDT and the three-component techniques.
However, when calculating occupation numbers of the
collective modes, i.e., calculating the functions w<, the
author concludes that the correct thermodynamic equili-
brium occupation of the magnon modes can be obtained
only within the three-component technique. We show that
this is not true and outline the calculation of the transverse
response correlator hS�Sÿi allowing us, in particular, to
obtain the correct occupation of the collective modes. The
correlator in terms of the electron operators is given by

w�q;o� �
�
dt
X
Ri0



S�i �t�Sÿ0 �0�

�
exp �iOtÿ iqRi0�

�
�
dt
X
Ri0

exp �iOtÿ iqRi0�


c�i" �t�ci#�t�c�0#�0�c0"�0�

�
:

�201�
The right-hand side of (201) shows that the correlator
corresponds to the simple two-particle correlation Green's
function Gÿ�2 ; we therefore let it be denoted by w<. The
calculation of the two-particle function can be done within
the RPA, which corresponds to the simple Bethe±Salpeter
equation shown in Fig. 15.

Equations for the two-particle function in the RPA
approximation are fully consistent with single-particle
Dyson equations (75) and (93). To find the function
w< � Gÿ�2 , we first need to determine the corresponding
retarded and advanced two-particle functions wR � GR

2 and
wA � GA

2 . Their equations are of the same graphical form (see

� �

w
J

ww0 w0

Figure 15. Spin susceptibility equation within the RPA approach.
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Fig. 15). As a result, w< has a form similar to (115):

w<�q;O� � �1� J�q�wR�q;O��w<0 �O��1� J�q�wA�q;O�� ;
�202�

where wR;A�q;O� is a solution of equations that are
completely analogous to (75) and have a simple irreducible
part SR � J�q�,

wR�q;O� � wR
0 �O�

1ÿ J�q�wR
0 �O�

; �203�

while w<0 �O� and wR
0 �O� are the two-particleGreen's functions

(loops) of the zeroth order. Thus,

w<0 �O� �
�
do
2p

G>
# �oÿ O�G<

" �o� : �204�

(A similar expression for wR
0 �O� can also be easily obtained

using the general NDT rules.) The one-electron Green's
functions corresponding to Hamiltonian (199) are quite
simple. Moreover, we take the weak coupling of electrons to
the external thermostat into account to obtain

GR
"; #�o� �

1

o� h� ig
; G<

"; #�o�� nF�o�
ÿ
GA�o� ÿ GR�o�� :

�205�
Equation (203) has a pole corresponding to collective modes,
magnons with the dispersion Oq � 2h� J�q� tanh �h=2T �.
The function w<�q;O� must determine their occupation
numbers. From (202), it follows that

w<�q;O� � Oÿ 2h� ig
Oÿ oq � ig

2gn 2
F�O=2�

�Oÿ 2h�2 � g 2
Oÿ 2hÿ ig
Oÿ oq ÿ ig

: �206�

Using the ratio n 2
F�O=2� � nB�O� tanh �O=4T �, we obtain

w<�q;O� � tanh

�
O
4T

�
2g

�Oÿ oq�2 � g 2
nB�O�

!
g!0

tanh

�
oq

4T

�
2pnB�oq�d�Oÿ oq� : �207�

The resulting expression is fully consistent with the (1,2) spin
susceptibility component given by Eqn (3.33) in [38] and
contains the correct thermodynamic equilibrium magnon
occupation numbers given by the Bose distribution nB�oq�.

The formal difficulties encountered in [38] are, again, that
within the RPA approach, magnons are isolated excitations
not interacting either with each other or with other excita-
tions, just like the electron level in the simple example in
Section 6. We have to repeat that requiring the Gibbs
distribution for an isolated branch of excitations not coupled
to anything at all is simply wrong. We merely introduce a
small coupling to the thermostatÐ in our analysis, the
constant g, which provides thermodynamic equilibriumÐ
and in the end set it equal to zero, and hence there are no
miracles and no need to modify the NDT.

Thus, it turns out that correct application of both the
three-component technique and the NDT always yields the
same result, despite the difference in the initial density
matrices. As already noted by Keldysh [1], in any physically
relevant system without external perturbations, the NDT
initial density matrix evolves such that the correct thermo-

dynamic equilibrium is finally restored. Therefore, there is no
specific need in the three-component technique.

In this section, we considered various techniques in which
time and temperature are mixed variables. We also mention
the important work by Konstantinov and Perel' [18], which
preceded Keldysh's work. They formulated a diagram
technique for calculating the linear response of a system
with interparticle interaction, taking the calculation of
conduction as an example. In the linear response theory, the
relevant quantities (in the spirit of the Kubo formula [33])
contain an integral like� b

0

dl
1

Sp
�
exp �ÿH=T ��

�Sp
n
exp �ÿH=T � exp �ÿiH�t� il��a�p ap 0 exp �iH�t� il��a�p1ap2o ;

(208)

where t is the response time, ap are the electron operators, and
the Hamiltonian H describes all interactions in the system.
Considering both the time evolution and the Boltzmann
factor exp �ÿH=T � in the interaction picture, Konstantinov
and Perel' put forward the idea of Green's functions defined
as the operator ordering along the particular contour CKP

shown in Fig. 16.
Because the contour has four different segments, multi-

component Green's functions emerge, but we can already see
in Fig. 16 that a quite tricky technique arises with much more
complicated rules than those of the Keldysh NDT. Using
these rules for summing any series, writing the Dyson
equation, etc, is not so simple as in the conventional
technique. Unfortunately, starting from retarded correla-
tors, it is not easy to develop a simple technique for
calculating them. Indeed, a closed technique operating only
with retarded correlators does not exist, but following this
route to construct the NDT, which also allows calculating the
retarded correlators, is not easy.

Historically, nonstationary and nonequilibrium pro-
blems in many-body quantum theory were considered
primarily in terms of the response theory. Constructing the
theory was divided into two phases. The first was to derive
Kubo-type formulas that give response functions via
retarded correlators. The second was to develop methods
to calculate retarded correlators. Great progress in this
direction was achieved in [2, 15], where analytic continua-
tion methods were developed, which made it possible to
calculate retarded correlation functions in the temperature
(Matsubara) technique.

This standpoint was supported by tradition and habit.
However, it turned out that corrections to a current or density

0t

tÿ ib

ÿil

Figure 16.Konstantinov and Perel' contour [18].
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are much easier to compute directly (in the case of conduction
or susceptibility) because they are expressed in terms of the
Green's function G<, for which there is a regular and simple
diagram technique. It turns out that the desire to follow the
traditional route starting from retarded correlators and using
the Gibbs distribution made the authors of [18] do a more
difficult job than was necessary.

In the next section, we show that any response theory can
be easily formulated within the NDT.

8. Response theory within the nonequilibrium
diagram technique

Many papers are devoted to applying the NDT to the
response theory (see review [39]). We therefore give only a
brief summary, along with an example that has not been
discussed in other papers. For definiteness, we consider the
response of a system of electrons to an electric field
determined by a scalar potential f�r; t�. In the linear
response theory, a (charge) density is determined by the
response function w:

dn�r; t� �
�
dt1 dr1 w�rÿ r1; tÿ t1�f�r1; t1� : �209�

The usual response theory deals with finding the response
function w. Alternatively, the variation dn�r; t� can be
calculated directly, because it is simply a variation of the
Green's function G<�rt; rt� caused by the perturbation

Hint �
�
dr n̂�r; t�f�r; t� : �210�

A variation of the function G< is defined in the first order by
the diagrams shown in Fig. 17:

G �1�<�rt; rt� �
�
dt1 dr1

�
GR�rt; r1t1�G<�r1t1; rt�

� G<�rt; r1t1�GA�r1t1; rt�
�
f�r1; t1� : �211�

Because

dn�r; t� � ÿiG �1�<�rt; rt� ; �212�

it immediately follows that in terms of the NDT Green's
functions, the response function is given by

w�rÿ r1; tÿ t1� � ÿi
�
dt1 dr1

�
GR�rt; r1t1�G<�r1t1; rt�

� G<�rt; r1t1�GA�r1t1; rt�
�
: �213�

Using this equation and Fig. 18, we can easily establish a
correspondence between the expression obtained and the
conventional formulation of the linear response theory

based on calculating the correlator

w�rÿ r1; tÿ t1� /

�
n�rt�; n�r1t1�

��
y�tÿ t1� : �214�

In the NDT terms, the retarded density±density correla-
tion function is the two-particle Green's function (the
polarization operator) defined by the same formulas (67) as
the one-particle Green's function,

PR � Pÿÿ ÿPÿ� : �215�

The diagrams for the retarded polarization operator are
shown in Fig. 18.

The readers who are familiar with theMatsubara diagram
technique can see that two terms in (213) are exactly the two
terms in the Eliashberg analytic continuation of the polariza-
tion operator (see Fig. 18) from discrete imaginary frequen-
cies to the real axis.

8.1 Gauge-invariant response function of a superconductor
If a system describes interactions between particles, finding
the linear response is a more complicated problem because an
external field then acts on each particle both explicitly and
implicitly. For example, a change in the density of particles in
the external field in a region of space in the presence of a
Coulomb interaction produces an additional potential acting
on particles in another region. In what follows, we illustrate
some advantages of the NDT when calculating the response
function in the case of the electromagnetic response of
superconductors. Soon after the BCS theory was proposed,
the transverse field response was calculated (in fact, the
problem of a constant magnetic field and radiation absorp-
tion by quasiparticle excitations in a superconductor was
given a proper solution). However, the longstanding problem
was to properly describe the response to a longitudinal
electric field, because gauge invariance is realized in super-
conductors in a nontrivial way. Thanks to the work of many
authors [40±42], the physical mechanism for the gauge
invariance restoration is now clear. Also, it was realized that
imposing the continuity equation allows finding correct
equations for the response of a superconductor to a long-
itudinal field.

However, it is not widely recognized that within the NDT,
we automatically obtain completely gauge-invariant equa-
tions that describe the response of a superconductor to the
electromagnetic field. This is explicitly considered in [43].
Here, we describe only the basic idea of the calculation within
the general linear response theory in the NDT.

To describe the response of a superconductor, we use the
BCS Hamiltonian

bH � � bC�a �x�� p̂ 2

2m
ÿ m
�bCa�x� d3r

ÿ
��
D�x�bC�# �x�bC�" �x� � h:c:

�
d3r : �216�

��
A5

rt rt

F�r1; t1�

5

(1)
rt rt

5R

rt rt

F�r1; t1�

Figure 17.Diagram equation for a linear correction to the normal Green's

function Gÿ�1 .

� ÿ � �
R

R

A5

5

[rt r1t1] ÿ ÿ ÿ �

Figure 18.Diagrams for the retarded polarization operator.
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Then, in an external field defined by potentialsA�x� andj�x�,
the total Hamiltonian is

bH � � bC�a �x��ÿbpÿ �e=c�A�x��22m
ÿ m
�bCa�x� d3r

�
�
ej�x�dn̂�x� d3rÿ

��
D�x�bC�# �x�bC�" �x� � h:c:

�
d3r

� 1

2

�
dn̂�x�V�rÿ r 0�dn̂�x 0� d3r d3r 0 : �217�

In this section, indices a and b refer to the spin of the electron,
and x � �r; t�. For generality, we added the Coulomb
interaction between electrons, which is required to obtain
the actual spectrum of collective modes in superconductors.
Hamiltonian (217) also describes the positive homogeneous
charged background that provides the electrical neutrality of
the system, thereby leading to the operator of density
fluctuations

dn̂�x� � bC�a �x�bCa�x� ÿ n �218�

(where n is the electron density in the absence of the field),
which arise in the terms containing the scalar potential and
the Coulomb interaction between electrons V�rÿ r 0� �
e 2=jrÿ r 0j.

We note that Hamiltonian (217) is not invariant under the
gauge transformations

A�x� ! A0�x� � A�x� � Hw�x� ;

j�x� ! j 0�x� � j�x� ÿ 1

c

qw�x�
qt

; �219�

bCa�x� ! bC 0a�x� � bCa�x� exp
�
i
e

c
w�x�

�
;

if the order parameter D is considered as a fixed external
parameter. In fact, we must remember that D is self-
consistently defined by

D�x� � g

bC"�x�bC#�x�� ; �220�

where g is the superconducting coupling constant. It is then
possible to build a fully gauge-invariant linear response
theory of superconductors such that the final equations for
the current and electron density contain only gauge-invariant
combinations of the electromagnetic four-potentials.

The external field changes the electron states in a super-
conductor. Hence, order parameter (220) is obviously a
function of the external field. External fields in the linear
response theory are supposed to be weak and therefore the
resulting variations of the order parameter are also small:

D � D�0� � D�1� ; �221�
where D�1� is the order parameter correction due to the field.
Thus, the correct perturbation Hamiltonian for a super-
conductor in an external field described by BCS Hamiltonian
(216) is given by

bHint � ÿ 1

c

�
ĵ 0�x�A�x� d3r

� e

�
dn̂�x�

�
j�x� � 1

e

�
V�rÿ r 0�
dn̂�x 0���1� d3r 0� d3r

ÿ
�
D�1��x�bC�# �x�bC�" �x� d3rÿ� D��1��x�bC"�x�bC#�x� d3r ;

�222�

where

ĵ 0�x� � ie

2m

�ÿ
HbC�a �x��bCa�x� ÿ bC�a �x�HbCa�x�

� �223�

is the `paramagnetic' part of the current density operator, and
the Coulomb interaction is taken into account in the RPA.

If the density and order parameter corrections are
considered in Hamiltonian (222) as given but yet unknown
quantities linear in the external field, it is easy to calculate the
correction linear in perturbation (222) to theGreen's function
G<. This correction consists of three pairs of terms shown in
Fig. 19.

The diagram technique for a superconductor uses both the
normal Green's functions G and the anomalous functions F,
including the function Fÿ�ab defined without the T-ordering
symbol:

Gÿ�ab �x; x0� � i

bC�b �x 0�bCa�x�

�
; �224�

Fÿ�ab �x; x 0� � i

bCb�x 0�bCa�x�

�
:

Taking these functions into account, density fluctuations
(218), the current, and order parameter (220) can be
represented as

dn�x� � ÿ2iGÿ�1 �x; x� ; �225�

j�x� � ÿ2 ie

2m
�H 0 ÿ H�Gÿ�1 �x; x 0�

���
x 0�x
ÿ e 2n

mc
A�x� ; �226�

D�1��x� � igFÿ�1 �x; x� : �227�

Because we consider the linear response theory, the subscript
1 denotes the correction to the corresponding Green's
function of the first order in perturbation operator (222).
The prefactor 2 in (225) and (226) is due to the summation
over spin (here, Gab � dabG and Fab � is y

abF, because the
interaction of the electron spin with the magnetic field is
neglected).

Figure 19 clearly shows that compared to the case of
noninteracting particles, the diagrams for the linear response
of a superconductor, in addition to the external field itself,
involve corrections to the order parameter and electron
density, which play the role of `additional external fields'
(for the Coulomb interaction in the mean-field approxima-
tion).

To find the variation of the functionGÿ� determining the
total linear response, we need equations for D�1� and dn�x� as

�

� �

�

(1) (1)�

� �
dn�1� dn�1�

Figure 19. Complete diagram equation for a linear correction to the

normal Green's function Gÿ�1 of a superconductor in the presence of an

external electromagnetic field. Dashed lines correspond to the `bare'

interaction between electrons and the potentials A and j. The triangle

denotes the order parameter correction D�1�. Wavy lines denote the

Coulomb interaction between electrons V. Open circles in the third row

correspond to the electron density dn changed by the field.
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functions of the external field. The usual procedure originally
proposed within the temperature technique in [44] is that,
having calculated the Green's functions for the current and
density variation (225) and (226) using the diagrams shown in
Fig. 19, we have to impose the continuity equation
e qdn=qt� div j � 0. This equation gives D�1� as a function of
the external fields A and j (without the Coulomb interac-
tion). This restores the gauge invariance of the response
function.

However, there is a method that `respects' gauge invar-
iance at each step of the calculation. The method employs the
self-consistency equation for the order parameter and
electron density fluctuations. The quantity D�1� in the right-
hand side of the diagram equation in Fig. 19 is determined by
the anomalousGreen's function F ÿ� at equal times (227).We
also have an equation for F ÿ�, quite similar to the equation
for Gÿ�, describing a variation of the anomalous function in
the first order in Hint (see Fig. 19). Therefore, there is an
equation for D�1� shown in Fig. 20, where joining the ends of
the anomalous Green's function reminds us of the coincident
arguments x and x 0.

Similarly, we arrive at the equation for the electron
density variation dn�x� � ÿ2iGÿ�1 �x; x� shown in Fig. 21. In
the case of a normal metal, this equation accounts for the
usual screening within the RPA.

To properly take the gauge invariance into account, we
should accurately extract the effects associated with the
order parameter phase; corrections to the phase gradient
and the modulus of the order parameter are small, while the
phase variations (hence, variations of the order parameter)
can be of the order of unity.

We explicitly split the order parameter variation into the
modulus and phase variations in the external field:

D�x� � �D0 � D1� exp
�
iy�A;j�� :

By a gauge transformation, the order parameter can be made
real. (We note that the phase y is still an unknown function of
A of j.) Then, in accordance with (219), the potentials are
modified as

A0�x� � A�x� ÿ c

2e

ÿ
Hy�x���1� ;

�228�

j 0�x� � j�x� � 1

2e

�
qy�x�
qt

��1�
:

Substituting A0 and j 0 as the external fields in the diagrams
in Fig. 19, we obtain the following equation for the current
and charge density combined into a four-vector current
j � �dn; j�:

jm�q� � ÿ e

c

�
QA

mn�q� �
n

m
dmn�1ÿ dm0�

�
A 0n�q� : �229�

Here, we introduced the four-vector notation for potentials
(228), A 0�q� � �cj 0�q�;A0�q��, and performed the Fourier
transformation in space and time variables q � �o; q�. The
polarization operator QA is a loop of two Green's functions,
and its explicit form is given below. For simplicity, the
expression is given in the case of a superconductor without
Coulomb interaction and neglecting variations of the order
parameter modulus. The equation does not yet describe the
response of the current to an external electromagnetic field,
because the transformed potential A 0 contains not only the
external field but also a still unknown functionÐ the order
parameter phase gradient Hy�x�. This unknown function can
bedetermined from the self-consistency equation (seeFig. 20),
which, after a gauge transformation, is given by

D�1��q� � ÿ e

c
PA

n �q�A 0n�q� ÿ
ÿ
PD�q� �PD��q��D�1��q� :

�230�
At themoment, we are not interested in the particular form of
the different polarization operators P (loops of two Green's
functions), which can be easily found from the diagram in
Fig. 17.

The phase y is identified such that the order parameter
D�1� is real. However, Eqn (230) is complex, and it therefore
allows finding both the real correction D1, which is the real
part of Eqn (230), and the relation of y to the external field,
which is the imaginary part of Eqn (230). Using the imaginary
part of the self-consistency equation, the phase y can be
expressed in terms of the external potentials j and A. Then
the right-hand side of (229) contains the given external
potentials. In this way, we obtain the linear response
equations relating the external field to the current in a
superconductor.

Details of the calculations can be found in [43]. Here, we
just emphasize that within the NDT, it is only required to
calculate several polarization operators (two-particle func-
tions) quite similar to the simplest polarization operator (213)
(see Fig. 18). The difference is that these polarization
operators consist of both normal and anomalous Green's
functions, as follows from Figs 20 and 21. The summation
over Keldysh indices is the same as in the simple polarization
operator (213), and hence all the polarization loops used are
also retarded.

We describe polarization loops that enter the resulting
response functions (they can be obtained using the diagrams

�
(1)

(1) (1)�

� � �

dn�1�

Figure 20. Graphic representation of the self-consistency equation for the

order parameter correction D�1� linear in the external field. Filled circles

denote the BCS coupling constant g.

dn�1� �

(1)�

� �

�

dn�1�

�

dn�1�

(1)

�

Figure 21. Graphic representation of the self-consistency equation for the

electron density variation dn in the linear approximation in the external

field.
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shown in the first row of Fig. 21):

QA
kl �q� � ÿ2i

1

m 2

��
pk � qk

2

��
pl � ql

2

�
�
h
GR

0 �p� q�Gÿ�0 �p� � Gÿ�0 �p� q�GA
0 �p�

ÿ FR
0 �p� q��F��ÿ�0 �p� ÿ Fÿ�0 �p� q��F��A0 �p�

i d4p

�2p�4 ;

�231�

QA
k0�q� � QA

0k�q� � ÿ2i
1

m

��
pk � qk

2

�
�
h
GR

0 �p� q�Gÿ�0 �p� � Gÿ�0 �p� q�GA
0 �p�

� FR
0 �p� q��F��ÿ�0 �p� � Fÿ�0 �p� q��F��A0 �p�

i d4p

�2p�4 ;

�232�

QA
00�q� � ÿ2i

�h
GR

0 �p� q�Gÿ�0 �p� � Gÿ�0 �p� q�GA
0 �p�

ÿ FR
0 �p� q��F��ÿ�0 �p� ÿ Fÿ�0 �p� q��F��A0 �p�

i d4p

�2p�4 :

�233�

The resulting equations for the response of a super-
conductor in terms of the polarization operators in the
Fourier representation are given by

dn � ieqk

��
QA

kl �
n

m
dkl

�
QA

00 ÿQA
k0Q

A
0l

�
El

�
�
qk 0

�
QA

k 0l 0 �
n

m
dk 0 l 0

�
ql 0 ÿ 2oQA

0l 0ql 0 � o2QA
00

ÿ Vqk 0ql 0

��
QA

k 0l 0 �
n

m
dk 0 l 0

�
QA

00 ÿQA
k 00Q

A
0l 0

��ÿ1
; �234�

jk � ÿ e 2

c

�
QA

kl �
n

m
dkl

��
Al ÿ qlql 0

q 2
Al 0

�
� ie2

��
QA

kl �
n

m
dkl

�
QA

00 ÿQA
k0Q

A
0l

�
o

�
�
qk 0

�
QA

k 0l 0 �
n

m
dk 0l 0

�
ql 0 ÿ 2oQA

0l 0ql 0 � o2QA
00

ÿ Vqk 0ql 0

��
QA

k 0l 0 �
n

m
dk 0l 0

�
QA

00ÿQA
k 00Q

A
0l 0

��ÿ1
qlql 00

q 2
El 00 :

�235�
Here, V � 4pe 2=q 2 is the Fourier transform of the Coulomb
potential. Most importantly, the potentialsA andj appear in
a manifestly gauge-invariant manner, entering the electric
field E � ÿ�1=c� �qA=qt� ÿ Hj and the transverse part of the
vector potential �Al ÿ �qlql 0=q 2�Al 0 �.

Ensuring that transformation (228) actually compensates
the order parameter phase at all steps of the calculation, we
arrive at a well-defined relation between the phase and the
external field, resulting from the gauge invariance of the
system in arbitrary fields. Therefore, the approach based on
self-consistency equation (230) is equivalent to imposing the
continuity equation for the current used by Ambegaokar and
Kadanoff [44]. We note that although the correct results
within the temperature technique have been finally obtained,
a consistent derivation of the linear response of a super-
conductor in the presence of an essentially time-dependent

quantityÐ the order parameter phaseÐ is much simpler and
more logical within the NDT framework.

9. Tunneling systems

Tunneling systems are a problem of a different kind than
finding the density matrix variations of systems (often
homogeneous) in external fields within the response theory.
In such systems, we deal with at least three subsystems: two
junction banks and the area between them (Fig. 22). The
junction banks are two different thermal reservoirs with
different chemical potentials and possibly different tempera-
tures.

The perturbation here is not the applied potential but
transitions between the subsystems due to the tunneling
matrix elements. It follows that the initial density matrix of
the entire system is the product of the initial (equilibrium)
density matrices for the left and right banks and the
intermediate subsystem

r0 � r 0
L � r 0

d � r 0
R : �236�

Once transitions between the subsystems start to occur,
the total density matrix changes such that it cannot be
factored into a product of three independent density
matrices. The problem of the density matrix variations in a
complex system can be consistently considered only within
the NDT framework. One of the first consistent descriptions
of tunneling problems in the NDT was given in [3±5].

9.1 General equations for the tunneling current
Some general equations for the tunneling current can be
obtained even without specifying the properties of the
intermediate system. The junction banks are assumed to be
described by the Hamiltonian for free particles with the
chemical potentials shifted by eV:

Ĥ0 �
X
k

�ek ÿ m�c�k ck �
X
p

�ep ÿ mÿ eV �c�p cp � Ĥd ;

�237�
where ck is the left-bank electron operator, cp is the right-
bank operator, and the term Ĥd describes an isolated
intermediate system (with all possible interactions). The
perturbation here is given by the tunneling Hamiltonian
describing transitions between the left and right banks and
the intermediate system,

Htun � TL

X
k; i

�c�k di � d �i ck� � TR

X
p; i

�c�p di � d �i cp� ; �238�

where di is the annihilation operator of a particle in the ith
state of the intermediate system, and TL and TR are tunneling

k

d

p

EF

Tkd Tdp

eV

Figure 22. Overall schematic of the tunneling system.
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matrix elements connecting the intermediate system to the left
and right banks.

First and foremost, we are interested in calculating the
current at a given voltage across the junction. The current
operator from the left bank to the intermediate system can be
found in a standard way from the continuity equation, which
determines variations of the left-bank particle number,

q
qt

nL � ÿi�nL;HT� � ÎL : �239�

Explicitly,

ÎL � iTL

X
k

�c�k dÿ d �ck� : �240�

The same equation can be written for the current from the
intermediate system into the right bank, but these currents are
equal in the steady-state case (this can be shown by
straightforward calculation in each particular case). There-
fore, we consider a current only on one side. The current
operator expectation value can be expressed in terms of the
NDT Green's functions:

IL � iTL

X
k

ÿhc�k d i ÿ hd �cki� ; �241�

hc�k di �


c�k �tÿ�d�t��

� � G<
dk�t; t� �

�
do
2p

G<
dk�o� : �242�

In the steady-state case,

I �
X
k

Tkd

�
do
2p

ÿ
G<

kd�o� ÿ G<
dk�o�

�
: �243�

The Green's functions G<
dk are given by the diagrams in

Fig. 23. When there is no other interaction between the left
bank and the intermediate system except the one-particle
transitions, the expression shown in Fig. 23 is not a first-order
correction to the tunneling matrix element but the exact
Dyson equation.

The functions Gk correspond to the original left-bank
Green's functions, while the functions Gd are exact and take
all junction transitions and all interactions within the
intermediate system into account:

G<
dk�t; t� � TL

�
dt1
�
GR

d �t; t1�G 0<
k �t1; t� � G<

d �t; t1�G 0A
k �t1; t�

�
:

�244�
Using the explicit form of the left-bank Green's function,

we find

I�V � � 2TLT
�
L

X
k

�
ImGR0

k �o�

� �2 ImGA
d �o�n 0

k �o� ÿ iG<
d �o�

� do
2p

: �245�

This equation is also valid for the intermediate system with
electron±electron or electron±phonon interactions. In terms

of the NDT, it seems to have been first obtained in [6]. The
left±right junction symmetry is hard to see in the above
equation. The symmetry is explicitly restored once the exact
Green's functions GR

d andG<
d are found. (We note that in the

interacting case, the approximations used to obtain the exact
Green's functionGd must satisfy the relevantWard identities.
In other words, they must be consistent; otherwise, equations
for the right and left currents would give different results!)

If there are no interactions among particles in the
intermediate system, then the exact Green's function Gd

satisfies the simple Dyson equation graphically shown in
Fig. 24.

After solving the NDT matrix equation and substituting
the exact functions GR

d and G<
d in (245), the equation for the

current is simplified to the standard Landauer equation,
which is manifestly symmetric with respect to the left and
right junction banks,

I�V � �
�
4gLgRG

A
d �o�GR

d �o�
�
n 0
L�o� ÿ n 0

R�o�
� do
2p

; �246�

where the standard tunneling rates are introduced:

gL;R � pjTL;Rj2nL;R : �247�

Here, nL;R is the density of states on the left (right) bank, and
n 0
L;R�o� is the Fermi distribution function in the left (right)

bank.
We note that if the tunneling occurs through a single

isolated electron level (as in Fig. 25), i.e., the intermediate
system Hamiltonian in (237) is equal to

Ĥd � e1d �d ; �248�

then GR
d �o� � 1=�oÿ e1 � i�gL � gR��, and Eqn (246) takes

the characteristic resonant-tunneling form

I�V ��
�

4gLgR
�oÿ e1�2 � �gL � gR�2

�
n 0
L�o�ÿ n 0

R�o�
� do
2p

: �249�

This formula can be obtained by calculating the transmission
coefficient and using the temperature diagram technique. But

� �ÿ
d TL k

�
� �ÿ

d TL k

ÿ�ÿ
d k

Figure 23. Diagrams that determine the function Gdk in tunneling

problems. Here, TL is the tunneling matrix element between a junction

bank and the intermediate system.

��d d dTL TLk d dTR TRp

Figure 24. Graphic representation of the Dyson equation for the function

Gd of the intermediate system without interaction.

e1

T1 T2

eV

Figure 25. Tunneling system with an electron resonance level.
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even in this case, calculating G<
d in the Dyson equation (see

Fig. 24) gives a nonequilibrium electron distribution function
in the intermediate system, which cannot be obtained via the
temperature technique:

nd�o� � gLn
0
L�o� � gRn

0
R�o�

gL � gR
: �250�

The same two-step nonequilibrium distribution function
appears in ballistic junctions with lengths less than the
characteristic scattering length. These essentially nonequili-
brium distributions are important when considering the
electron±phonon and electron±electron interaction in the
junction area.

In the nonstationary case, when the voltage applied across
the junction or any other parameters of the system are time-
dependent, the NDT is the only method that allows consis-
tently deriving the current equation. The calculations are
more complicated, but the computational strategy remains
the same [45].

9.2 Tunneling current fluctuations (noise)
Calculating the noise spectrum or the current fluctuations in
tunnel junctions is an example where the NDT gives the most
general equations describing both the shot and thermal
Nyquist noise in a unified and simple manner. In what
follows, we describe this phenomenon using the tunnel
junction in which the tunneling occurs through discrete
electronic levels of the intermediate system. This can be a
quantum dot, a molecule in the STM, etc.

The junction is shown in Fig. 25, where only one discrete
electron level is shown for simplicity. The corresponding
Hamiltonian is given by

Ĥ � e1a�1 a1 �
X
k

ekc�k ck � TL

X
k

�c�k a1 � a�1 ck�

�
X
p

epc
�
p cp � TR

X
p

�c�p a1 � a�1 cp� : �251�

The current through the left and right barriers is defined by
(240) and (241) (the electron charge e is shown here explicitly):

ÎL � ieTL�a�1 ck ÿ c�k a1� ; ÎR � ieTR�a�1 cp ÿ c�p a1� : �252�

In the steady-state regime, the currents from the left bank
to the intermediate system and from the intermediate system
to the right bank are the same: IL � hÎLi � ÿhÎRi � ÿIR.
However, even for a constant mean current, its fluctuations
are different in different parts of the system, SLL�o� �
hI 2

L io 6� hI 2
Rio � SRR�o�. It can be shown that the charge

conservation equation implies that the zero-frequency cur-
rent fluctuations in the steady-state regime is the same
throughout the system, SLL�0� � ÿSRL � ÿSLR � SRR. If
we are interested only in the noise power at zero frequency, it
is sufficient to calculate one of the current±current correla-
tors, for example,

SLL�t� �


ÎL�t�ÎL�0�

�
� ÿe 2T 2

L


ÿ
a�1 ck�t� ÿ c�k a1�t�

�ÿ
a�1 ck�0� ÿ c�k a1�0�

��
:

�253�

From the NDT perspective, the correlator corresponds to the
diagrams shown in Fig. 26.

The Fourier-transformed correlator is given by

SLL�o� � e 2T 2
L

X
k

�
do1

2p

�
G<

aa�o1�G>
kk�o� o1�

� G<
kk�o1�G>

aa�o� o1� ÿ G<
ak�o1�G>

ak�o� o1�

ÿ G<
ka�o1�G>

ka�o� o1�
�
:

Calculating this, we find the final result for the current
fluctuations:

SLL�0� � e 2
4gLgR
gL � gR

�
do
2p

ImGA
1 �o�

��
nL�1ÿ nR�

� nR�1ÿ nL�
�ÿ 4gLgR

gL � gR
ImGA

1 �o��nL ÿ nR�2
�
: �254�

(We recall that gL � T 2
L nk and gR � T 2

Rnp are the tunneling
transition rates, and nL � n�o� and nR � n�oÿ eV �.) This
simple equation is interesting because it contains both the
shot and thermal Nyquist noise. `Classic' Nyquist noise can
be obtained from (254) in the equilibrium case with a zero
voltage V � 0 across the junction as follows. At V � 0, T 6� 0
�nL ÿ nR� � 0, formula (254) becomes

S11�0�� 4
gLgR

gL � gR

�
do
2p

ImGA
1 �o�

�
nL�1ÿ nR� � nR�1ÿ nL�

�
:

�255�
If the temperature is less than the characteristic electron
energy, say, the level width g � gL � gR, then

n�o�ÿ1ÿ n�o�� � 1

4
coshÿ2

�
o
2T

�
' Td�o� : �256�

Equation (254) reduces to the Nyquist equation

S11�0� � 2Tg�0� � 2T

Rtun
; �257�

where the junction conduction (the inverse tunneling resis-
tance) is given by

g�0� � gLgR
gL � gR

2

p
ImGA

1 �0� : �258�

On the other hand, to find the standard form of the shot
noise, we consider T! 0. We also have nL�1ÿ nR��
nR�1ÿ nL� ' nL ÿ nR and �nL ÿ nR�2 ' nL ÿ nR. Therefore,
the noise is proportional to the tunneling current, as it should
be for shot noise. This can be easily seen by comparing
formulas (254) and (249) for the noise and the current.
However, the coefficient between the noise power and the
current depends on the particular junction regime. At low
voltagesV5 g, we find the well-known equation whereby the

o� o1

o1

a a

k k

o� o1

o1

a k

k a

Figure 26.Diagrams that define the correlator SLL�o�.
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transmission coefficient determines the noise power [46, 47]:

S11 � eI �V �
�
1ÿ 4gLgR

e 21 � �gL � gR�2
�
� eI �1ÿ T � ; �259�

where

T � 4gLgR
e 21 � �gL � gR�2

is the transmission coefficient of the resonant tunneling
structure.

We see that the current fluctuations are smaller than the
usual Poisson shot noise, for which S�o! 0� � eI. More-
over, in the full resonance case, when gL � gR and e1 � 0, we
find that T � 1 and the current fluctuations are completely
suppressed. It is interesting that at high voltagesV4 e1; g, the
noise power is also proportional to the current, but the
coefficient is different:

S11 � eI

�
1ÿ 2gLgR
�gL � gR�2

�
5

1

2
eI : �260�

The study of noise in quantum systems, in atomic and
molecular junctions, using the NDT can be found in
numerous papers (for a more extended discussion, see [48]).
Of particular interest is the case of inelastic tunneling with
vibrational interaction [49±52].

9.3 Vibrations excited by the tunneling current
In any system, electrons interact with vibrational modes.
Therefore, the tunneling current flow can be accompanied
by excitation of vibrations. The excitation can occur in the
junction banks and be determined by the electron±phonon
interaction in the bulk of a material. The effect gives rise to
features on the current±voltage characteristic, whose posi-
tions are related to the phonon frequencies (one of the first
papers here is [53]).

The electron±vibrational interaction and vibrations of
such small objects as quantum dots, or even individual
molecules located near the tunnel junction, are different
from the case of massive junctions. The NDT is the most
appropriate language to formulate the theory of such systems.
Here, we mention Ref. [5] as one of the first papers where the
electron±phonon interaction was considered by means of the
NDT. To date, a huge number of papers apply the NDT to
study vibrations excited by the tunneling current inmolecules,
atomic chains, etc. [54±60]. Some aspects of tunneling and
vibrations are reviewed in [61]. Thanks to the progress in
experimental techniques, these theoretical results can be
compared with experiment, for example, with the results on
individual molecules on a substrate, obtained by a scanning
tunneling microscope (STM).

Much research work is devoted to the classification of
features in the tunneling characteristics in the presence of
electron±vibrational interaction.

In this review, we focus on another aspect of this
interaction. We discuss the calculation of the intensity of
vibrations excited by the tunneling current. Such a theory is
needed, for example, to estimate the heating of small tunnel
junctions. Moreover, there is a very interesting area in the
STM experiments on controlling dissociation, desorption,
and molecular and atomic motion over the surface by means
of the tunneling current (see, e.g., [62]).

The idea behind these NDT calculations is very simple.
Because the oscillation modes (or heating) are determined in
secondary quantization by the occupation number, we have
to find the corresponding Green's functions D<�t; t 0� �
ÿihb��t�b�t 0�i (where b� is the creation operator of a
vibration quantum), which immediately define the non-
equilibrium occupation numbers N�t� � iD<�t; t�.

As discussed in Section 5, from theDyson equation for the
phonon Green's function, we can find the kinetic equations
and use them to consider transient effects associated with the
vibrations.

To see how this strategy works, we consider the simple
example of two discrete electron levels in the intermediate
system shown in Fig. 27 [63].

The Hamiltonian consists of three parts:

Ĥ � Ĥdot � Ĥ0 � Ĥtun : �261�

The term Ĥdot describes a quantum dot or molecule that is
the intermediate system with only two electron states
(levels); the electron±vibrational interaction with a single
vibrational mode makes transitions between the levels
possible:

Ĥdot �
X
i�1; 2

eia
�
i ai � g�a�1 a2 � a�2 a1��b� b�� � o0b

�b ;

�262�
where ai are the first and second state electron operators, b is
the operator of the vibrational mode with a frequencyo0, and
g is the electron±phonon coupling constant. Here, ei are two
discrete energy levels in the quantum dot; in what follows, we
assume that level `1' is above level `2': e1 > e2.

The second term in (261) represents the right and left
junction banks described as a system of noninteracting
particles, with the chemical potential of one of the banks
shifted by the applied voltage eV:

Ĥ0 �
X
k

�ek ÿ m�c�k ck �
X
p

�ep ÿ mÿ eV �c�p cp : �263�

As usual, the tunneling Hamiltonian describes transitions
between the junction banks and the intermediate system:

Ĥtun �
X

p; i�1; 2
Tp; i�c�p ai � h:c:� �

X
k; i�1; 2

Tk; i�c�k ai � h:c:� :
�264�

The diagram technique for nonequilibrium processes
gives the Dyson equation with a first-order irreducible part
(Fig. 28), which determines all the phonon Green±Keldysh
functions.

g1k

n1

n2

g2k

g1p

g2p

Figure 27. Two-level tunneling system with electron±vibrational interac-

tion.
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The matrix Dyson equation in triangular NDT represen-
tation (75) and (93) gives rise to the system of equations

D̂< � D̂<
0 � D̂<

0 PAD̂A � D̂R
0 P<D̂A � D̂R

0 PRD̂< ; �265�
D̂R � D̂R

0 � D̂R
0 PRD̂R ; �266�

where D0 is the equilibrium Green's function,

DR
0 �O� �

2o0

�O� id�2 ÿ o2
0

;
�267�

D<
0 �O� � N0�O�

ÿ
DR

0 �O� ÿDA
0 �O�

�
;

and N0 is the Bose distribution.
We can easily write the irreducible components (polar-

ization operators) in the lowest order in electron±phonon
interaction (the first order in g 2), depicted in Fig. 28 as loops
of the two-electron Green's functions:

PA�O� ÿPR�O�

� ÿ4ig 2

�
do
2p

�
ImGA

2 �o�ImGA
1 �oÿ O�ÿn2�o�ÿ n1�oÿ O��

� ImGA
1 �o� ImGA

2 �oÿ O�ÿn1�o� ÿ n2�oÿ O��i ;
�268�

P<�O�
� ÿ4ig 2

�
do
2p

h
n1�o�

ÿ
n2�oÿ O�ÿ 1

�
ImGA

1 �o� ImGA
2 �oÿ O�

� n2�o�
ÿ
n1�oÿ O� ÿ 1

�
ImGA

2 �o� ImGA
1 �oÿ O�

i
:

In this case, the perturbation theory is based on the electron±
phonon interaction under the assumption that the tunneling
problem without this interaction is already exactly solved.
Therefore, all the electron Green's function in (268) are
defined exactly within the tunneling problem. We recall that
the nonequilibrium electron occupation numbers n1 and n2
contained in these functions are defined by tunneling
processes (250): ni�o� � �g pi n 0

p �o� � g ki n
0
k �o��=gi. As usual,

the tunneling rates are defined by the tunneling matrix
elements Tk; �p�; i and the state density nk; p on the junction
banks: g ki � pT 2

k; ink, g
p
i � pT 2

p; inp. Here and hereafter, the
total discrete level broadening caused by hybridization with
the banks is denoted by gi � g pi � g ki .

The solution of the Dyson equation in the form with
nonequilibrium distribution functions was found in (121) and
(122) in Section 4:

D< � ÿ2 P<

2 ImPR
ImDR : �269�

Therefore, the nonequilibrium vibrational occupation num-
ber is given by the simple formula

N�O� � iP<�O�
2 ImPR�O� : �270�

(Here, we discuss the steady-state case, when the voltage
across the junction is independent of time, and hence the

occupation of vibrational modes is nonequilibrium but
stationary.)

It follows from the form of the irreducible partP< that it
can be explicitly divided into two terms:

iP<�O� � 2 ImPR�O�N0�O� � P<�O� ; �271�

where the function P< is given below. Then

N�O� � N0�O� � DN�O� ; DN�O� � P<�O�
2 ImPR�O� ; �272�

where the first term is simply the equilibrium Bose distribu-
tion function for the phonon mode in equilibrium with an
electron thermostat (junction banks), and the second term
describes nonequilibrium effects associated with the tunnel-
ing current flow and vanishes in the absence of voltage across
the junction.

We note that the resulting nonequilibrium distribution
has an important symmetry property, which is easily verified
by Eqns (268) for the polarization operators: N�O� �
ÿN�ÿO� ÿ 1, with the nonequilibrium correction DN�O� �
ÿDN�ÿO�. In other words, the nonequilibrium distribution
function has the same properties as the Bose equilibrium
function. This is closely related to the fact that the non-
equilibrium distribution is also a solution of the kinetic
equation, and therefore the collision integral resulting from
integral Dyson equation (265) vanishes. However, using the
kinetic equation, we can only say that the distribution does
have the above property, but finding the specific form of the
stationary distribution is impossible.

Substituting the occupation numbers n1 and n2 expressed
in terms of the equilibrium Fermi distributions np and nk on
the banks in (268), we find

P<�O� � ÿ4g
2

g1g2

�
do
2p

ÿ
n 0
p �oÿ O� ÿ n 0

k �oÿ O��
�
h
ImGR

1 �o� ImGR
2 �oÿ O�

� ÿg k1 g p
2 n

0
k �o� ÿ g k2 g

p
1 n

0
p �o� � �g k1 g p

2 ÿ g k2 g
p
1 �N0�O�

�
� ImGR

1 �oÿ O� ImGR
2 �o�

� ÿg k2 g p
1 n

0
k �o� ÿ g k1 g

p
2 n

0
p �o� ÿ �g k1 g p

2 ÿ g k2 g
p
1 �N0�O�

�i
;

�273�

ImPA � ÿ2g
2

g1g2

�
do
2p

h
ImGA

1 �o� ImGA
2 �oÿ O�

�
�
g k1 g2

ÿ
n 0
k �o� ÿ n 0

k �oÿ O��� g2g
p
1

ÿ
n 0
p �o� ÿ n 0

p �oÿ O��
� �g k1 g p

2 ÿ g k2 g
p
1 �
ÿ
n 0
k �oÿ O� ÿ n 0

p �oÿ O���
� ImGA

1 �oÿ O� ImGA
2 �o�

�
g k2 g1

ÿ
n 0
k �o� ÿ n 0

k �oÿ O��
� g1g

p
2

ÿ
n 0
p �o� ÿ n 0

p �oÿ O��
ÿ �g k1 g p

2 ÿ g k2 g
p
1 �
ÿ
n 0
k �oÿ O� ÿ n 0

p �oÿ O���i : �274�

The sign of the tunneling rate combination �g k1 g p
2 ÿg k2 g p

1 �
in (274) determines the relative occupation of two-electron
states in the presence of the tunneling current,

g k1 g
p
2 ÿ g k2 g

p
1

g1g2

ÿ
n 0
k �o� ÿ n 0

p �o�
� � n1�o� ÿ n2�o� : �275�

��
1 1

2 2

Figure 28.Dyson equation for the vibrational Green's function.
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Phonon generation processes occur in different ways
depending on the particular case realized in the system: the
`normal' occupation �n1�o� ÿ n2�o� < 0� or the `inverted'
occupation �n1�o� ÿ n2�o� > 0� (we recall that e1 > e2).
Figures 29 and 30 show the dependence of the nonequili-
brium vibrational occupation and phonon power generation
on voltage for the particular configuration of discrete electron
levels shown in Fig. 27. The positive potential applied to the
right bank decreases the Fermi level of electrons such that it
first crosses the level e1, and then e2.

In the case of normal occupation, the phonon emission
rate is small. In this regime, the maximum values of the
nonequilibrium occupation numbers are not higher than a
few units (Fig. 29a).

In the case of the inverted occupation of two levels in the
presence of a current, the phonon generation is quite
different. Here, the vibrations are much stronger; see
Fig. 29b (the vertical scales of the left and right figures differ
twofold). Moreover, the generation increases sharply for a
certain value of the applied voltage, such that the phonon
occupation numbers defined by (272) blow up to infinity.
Figure 29 shows only the initial segment of the plot extending
from the origin to the threshold. The nonequilibrium phonon
occupation numbers diverge because the function ImPA

defined by (274) passes through zero, changing from positive
to negative at some finite voltage across the junction. The
effect is very similar to how lasing develops in the case of
inverted occupation. To correctly describe the vibrational
subsystem in this case, it is necessary to either build a theory

of a higher order in the electron±phonon interaction [63] or
consider other relaxation channels.

The NDT methods clarify the conditions that give rise to
strong or weak vibrations. This information makes it possible
to adjust the phonon emission rate in those systems where we
can vary the tunnel junction parameters. For quantum wells,
this can be achieved by both preparing wells of a special shape
and controlling the shape by an external electric field. For
molecules, we focus the tunnelingmicroscope by increasing or
decreasing the tunneling coupling between the STM tip and
the molecule.

The theory shows that the generation of phonons
(vibrations) is greatly increased if the tunneling current in
the system with discrete levels creates inverted occupation.
The suppression of generation is essential for the creation of
semiconductor cascade lasers based on a system of tunnel
junctions. Optical generation requires the creation of inverted
occupation. However, as shown in this section, phonon
generation inevitably develops at the same time, thereby
preventing light emission. An NDT analysis similar to that
in this section allows estimating whether the light emission
can be achieved and how we can vary the tunnel junction
parameters to achieve the required properties of the system.

Furthermore, using the NDT, it is very easy to study
temperature effects, because the general equations are valid at
any temperature. In our case, the temperature enters the
distribution function of electrons on the junction banks.

If nonequilibrium phonons are rapidly emitted from the
junction area such that there is no actual increase in the
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lines to T � 0:2o0. Electron levels are labeled by vertical tags.
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phonon (vibrational) occupation numbers, then Eqns (272)
and (265) can be used to determine the phonon intensity
(power) on the junction.

In many cases, the situation where nonequilibrium
phonons rapidly leave the junction area or there are fast
vibrational relaxation channels that are difficult to estimate
accurately is more physically relevant. Leaving aside all
other mechanisms of such fast relaxation (the simplest one
is the ballistic escape in systems with good heat conduction),
we see that using the NDT, the relaxation can be taken into
account by adding a relaxation term to the right-hand side of
the kinetic equation obtained from Dyson equation (265)
[see (133)]:

i
O
o0

q
qt

D<�O; t� � �PD�< ÿ �DP�< ÿ G�D< ÿD<
0 � : �276�

The appearance of the relaxation termR� ÿG�D<ÿD<
0 �

with a large constant G implies that the nonequilibrium
phonon Green's functions are little different from the
original equilibrium functions in the case of the balance
between pumping and relaxation. Then, calculating the
right-hand side of (276) using the original `zeroth' Green's
functions without knowledge of the details about the
relaxation, we can find the phonon (vibration) power
generation in the presence of the tunneling current.

Because ImDR almost always has a sharp peak at the
phonon frequency o0,

i

�
dO
2p

O
o0
D<�O; t� � ÿ

�
dO
2p

ImDR�O�No0
�t;O� � No0

�t� ;
�277�

integrating the left- and right-hand sides of (276), we obtain
the balance equation for the number of vibrational quanta:

q
qt

No0
�t� �

�
dO
2p

��PD�< ÿ �DP�<� �Wÿ G
ÿ
No0
�t� ÿN0

�
:

�278�
It follows from (278) that the phonon generation rate is

given by

W �
�
dO
2p

��PD�< ÿ �DP�<�
�
�
dO
2p

�
D<�PR ÿPA� ÿP<�DR ÿDA�� : �279�

Using the splitting in (271) for the generation power, we
obtain a very simple result,

W � P<�o0� : �280�

This expression can also be represented in another form:

W �
�
dO
p

ImDR�O�G�O�DN�O� � ÿG�o0�DN�o0� ; �281�

where G � 2 ImPR is the effective generation rate and
DN�o0� � iP<=2 ImPR is the `nonequilibrium correction'
to the equilibrium occupation number. This is the non-
equilibrium excitation level that was calculated above, i.e.,
the occupation numbers that the vibrational excitation would
reach due to the tunneling current in the absence of fast
relaxation due to other mechanisms. The generation rate is

determined by values of these functions at the frequency equal
to the phonon frequency o0.

Using (273) for the two-level model, we can find how the
vibration intensity depends on the applied voltage for
different relations between the position of electron levels
and the frequency. Examples are shown in Fig. 30. We note
that real transitions in an isolated system are possible only
with o0 � e1 ÿ e2, while the vibration frequency in an open
tunneling system can be arbitrary compared to the difference
of electron energies e1 ÿ e2. However, both the voltage at
which a noticeable generation begins and the nature of the
growth rate with a voltage depend on the relation betweeno0

and e1, e2. We also see that increasing the temperature
significantly reduces the generation rate.

Recently, there has been much interest in vibrations and
tunneling current for molecules adsorbed on a surface.
Indeed, vibrations allow explaining the mechanisms and
characteristics of experimentally observed phenomena: cur-
rent stimulated desorption, dissociation, and controlled
molecular motions on the surface (see, e.g., [62]). Junctions
of thin wires and even of monoatomic chains are actively
being investigated. Also, the NDT, along with numerical
density functional methods, is now applied to the study of
tunneling current and vibrations [64±66].

9.4 Tunneling problems within the effective mass approach
Usually, tunneling problems arise in quantum mechanics in
the context of one-dimensional wave-tunneling phenomena.
For some systems, such as planar semiconductor hetero-
structures and superlattices, it is convenient to use the
general NDT formalism in a `continuum' representation
based on the effective mass approximation. Moreover, this
representation clarifies the relation to the transmission and
reflection coefficients of (free) electrons on a barrier.

We examine the NDT Green's functions in the `con-
tinuum' representation. For a homogeneous semiconductor
or metal, the Green's functions in the momentum representa-
tion have the simple form

GR�k;o� � 1

oÿ e�k� � ig
; �282�

G<�k;o� � 2in�o�dÿoÿ e�k�� �283�

(here g is an infinitesimal quantity). Planar wave-tunneling
problems are conveniently considered using the Green's
functions in the mixed representation, where the plane
parallel to the interface is transformed into the momentum
representation, but the dependence of the coordinate along
the axis perpendicular to the boundaries is preserved. Let this
axis be z. In the case of a quadratic spectrum e�k� � k 2=2m,
the symbolic equation

Gÿ1R GR � 1

in various representations takes the form (with �h � 1 here and
hereafter)ÿ
oÿ e�k��GR�k;o� � 1 ; �284��
1

2m
D� o

�
GR�r; r 0;o� � d�rÿ r 0� ; �285�

�
1

2m

q2

qz 2
� oÿ p 2

2m
� ig

�
GR�z; z 0; p;o� � d�zÿ z 0� : �286�
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In the last equation, an infinitesimal imaginary part is
indicated explicitly because it fixes the solution uniquely.
We introduce the notation

k �
����������������������������������
2m�o� ig� ÿ p 2

q
�287�

and choose the branch Im k > 0. (The convention applies to
any root of this type.) Then there is a unique solution of
Eqn (286) that is finite at jzÿ z 0j ! 1:

GR�z; z 0; p;o� � exp
ÿ
ikjzÿ z 0j�
ik

m : �288�

The advanced function is always related to the retarded one as
GA�z; z 0; p;o� � �GR�z 0; z; p;o���. Therefore,

GA�z; z 0; p;o� � exp
ÿÿik�jzÿ z 0j�
ÿik � m : �289�

The function G< satisfies the relation

G<�z; z 0; p;o� � n�o��GA�z; z 0; p;o� ÿ GR�z; z 0; p;o��
� in�o�

�
exp

ÿ
ikjzÿ z 0j�
k

� exp
ÿÿik �jzÿ z 0j�

k �

�
m ; �290�

while the function G< at equal arguments, defining the
electron density, is given by [see (287)]

G<�0; 0; p;o� � in�o� k
� � k

jkj2 m

�
in�o�
k

m ;
p 2

2m
< o ;

0 ;
p 2

2m
> o :

8>><>>: �291�

This form of G< for a free-electron gas immediately
follows from G<�k;o� � n�o��GA�k;o� ÿ GR�k;o��. How-
ever, the same equation can be obtained from more general
equations of the Keldysh technique. We introduce a small
scattering of electrons by random impurities. An irreducible
part corresponding to such interaction can be calculated in
the standard manner as

SR�o� �
X
k

V 2GR�k;o� � ÿig ; �292�

SR�z; z 0;o� � ÿigd�zÿ z 0� ; �293�
S<�o� �

X
k

V 2G<�k;o� � 2ign�o� ; �294�

S<�z; z 0;o� � 2ign�o�d�zÿ z 0� ; �295�

where V is the impurity scattering matrix element and
g � pV 2nF.

The above equations can be viewed in two ways: the
appearance of S can be considered a consequence of
scattering by impurities, and then n�o� are the occupation
numbers in our electron system, which are postulated by the
equilibrium Fermi function for a given potential. But exactly
the same irreducible parts arise in the case of a transition of
electrons to the thermostat and back with random spatial
transition amplitudes. Then n�o� is the equilibrium electron
distribution function of the thermal reservoir. Using this
trick, it is possible to introduce a different potential and
temperature for the left and right junction banks, `incorpo-

rated' into the occupation numbers n�o� corresponding to
S<. If we move the region of interaction with the thermostat
[i.e., the region where irreducible parts (292)±(295) are
defined] some distance from the tunneling structure (Fig. 31),
then the method gives the nonequilibrium occupation
numbers over the entire junction area. The diagram shown
in Fig. 31 allows modeling many different junction types. The
thermostat areas described by the Gibbs distribution are
massive parts of the junction where the temperature and
potential are considered fixed. Solving the NDT equations
(sometimes, approximately) in the intermediate area allows
finding all nonequilibrium characteristics in the transition
region.

The function G< can be found using the general formula
of the nonequilibrium technique G< � GRS<GA,

G<�z; z 0; p;o�
�
�
dz1 dz2 G

R�z; z1; p;o�S<�z1; z2; p;o�GA�z2; z 0; p;o�

�
�
dz1G

R�z; z1; p;o�2ign�o�GA�z1; z 0; p;o� �296�

or, using the equivalent differential equation
�Gÿ10 ÿ SR�G< � S<GA,�

1

2m

q2

qz 2
� oÿ p 2

2m
� ig

�
G<�z; z 0; p;o�

� 2ign�o�GA�z; z 0; p;o� : �297�
Substituting (288) and (289) in these equations, we find

that Eqn (290) for G< is reproduced, and g can now take not
only infinitesimal (for an ideal gas) but also finite values,
appearing due to scattering on impurities or coupling to an
external thermal reservoir.

We briefly discuss how the exact solution of the one-
barrier tunneling problem found in terms of the Green's
functions in Section 1 is related to the solution obtained via
the tunneling Hamiltonian method. We assume that the
tunneling structure is as shown in Fig. 32.

The energy is referenced to the bottom of the conduction
band of the left junction bank. The applied voltage U enters
the chemical potential shift in the electron occupation
functions for regions on either side of the barrier. All
quantities on the left of the barrier are assigned the index `0',
and all quantities on the right are assigned the index `1'. The
occupation numbers on the left and on the right are
n0�o� � nF�oÿ m� and n1�o� � nF�oÿ mÿ eU�. The z axis
is perpendicular to the structure layers. The barrier is located
at 0 < z < a, where a is the thickness of the barrier.

z

V

0 a

Figure 31. Tunneling system with regions outside the junction, which are

considered to be thermostats.
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Solving differential equations for GR�z; z 0� of the type of
Eqn (286) in each region and matching the corresponding
solutions (the Green's function and its first derivative must be
continuous in z and z 0) gives the following result for z 0 > a
and z < 0:

GR�z; z 0; p;o� � m
ÿ2q
D

exp
�ÿik0z� ik1�z 0 ÿ a�� ; �298�

D � �qÿ ik1��qÿ ik0� exp �qa� ÿ �q� ik1��q� ik0� exp �ÿqa� ;
�299�

where

k0 �
����������������������������������
2m�o� ig� ÿ p 2

q
;

k1 �
���������������������������������������������
2m�oÿ V1 � ig� ÿ p 2

q
; �300�

q �
�������������������������������������������
p 2 � 2m�Vÿ o� id�

q
(d is infinitely small). For simplicity, we assume that the
coupling to the thermostat (the quantity g) is the same on
either side of the barrier. Because we are interested in the
energy region where electrons tunnel through the barrier,
o < p 2=2m� V, and therefore q > 0 is real in the sub-barrier
region.

Full correspondence to the tunneling Hamiltonian
method is achieved if we assume that exp �2qa�4 1 (that
is, `double' (back and forth) tunneling processes have little
effect on the states in each bank.) Then GR in (298) takes
the form

GR�z; z 0; p;o�

� 2m
ÿ2q exp �ÿqa�
�qÿ ik1��qÿ ik0� exp

�ÿik0z� ik1�z 0 ÿ a��
� ÿ�4q=m� exp �ÿqa� ik1ik0�qÿ ik1��qÿ ik0�

�m
exp

�
ik1�z 0 ÿ a��
ik1

m
exp �ÿik0z�

2ik0

� T�p;o�GR
0 �z; 0; p;o�GR

1 �a; z 0; p;o� ; �301�

whereGR
1 andGR

0 are the original Green's functions (288) for
the regions on each side of the barrier, and the tunneling
matrix element is

T�p;o� � ÿ�4q=m� exp �ÿqa� ik1ik0�qÿ ik1��qÿ ik0� : �302�

Here, the functions of an infinite system are used for the left
and right bank Green's functions. However, it seems more
reasonable to choose the nonperturbed Green's functions as
solutions of the semi-infinite system bounded by a potential
wall of the same height as the height of the barrier. In other
words, the Green's functions are taken `separately' for the left
and right junction banks. They are given by

GR
0 �z; 0; p;o� �

exp �ÿik0z�
ik0 ÿ q

2m ; z < 0 ;
�303�

GR
1 �a; z 0; p;o� �

exp
��ik1�z 0 ÿ a��
ik1 ÿ q

2m ; z 0 > a :

Then the function GR of the entire system in Eqn (301) at
z 0 > a and z < 0 can also be represented as

GR�z; z 0; p;o�

� exp �ÿik0z�
ik0 ÿ q

2m
ÿ2q exp �ÿqa�

2m

exp
�
ik1�z 0 ÿ a��
ik1 ÿ q

2m

� GR
0 �z; 0; p;o�T�p;o�GR

1 �a; z 0; p;o� : �304�

This is identical to the equation GR
12 � GR

1 T12G
R
2 character-

istic of the tunneling Hamiltonian method, and the tunneling
matrix element takes the very simple form

T�p;o� � ÿq exp �ÿqa�
m

: �305�
The functionG<�z; z 0�, which is needed for calculating the

current, is simpler to find using equations of type (296) if
solutions for GR�A��z; z 0� are found in different regions in z.
Because an equation similar to (296) now contains S< in
regions on the left- and right-hand sides of the barrier, the
function G<�z; z 0� contains both occupation numbers n0�o�
and n1�o�, i.e., it contains information on the potential
difference applied.

The current through the barrier is given by the usual
expression

j � ÿ 1

2m

�
q
qz
ÿ q
qz 0

�
G<�z; z 0�

���
z�z 0

: �306�

In the regions where the total current is conserved (i.e., there is
no escape of electrons into an external thermostat), this
equation can be used for any plane of z. It is convenient to
take z � 0 or z � a. The exact calculation of G<�z; z 0� yields
the following current [in the same approximation
exp �2qa�4 1]:

j�p;o� � ÿ4q
2 exp �ÿ2qa��k1� k �1 ��k0� k �0 �
jqÿ ik1j2jqÿ ik0j2

ÿ
n0�o�ÿ n1�o�

�
:

�307�
This is the current density for particles with the energy o
and momentum p along the layers. The total current is
J � � dp do j�p;o�. It turns out that using the same
tunneling matrix element T�p;o� introduced in (304) and
(305), the above equation can be represented in the form
completely equivalent to that of the tunneling Hamiltonian
method:

j�p;o� � T�p;o��ImGR
1 �a; a; p;o�T ��p;o�G<

0 �0; 0; p;o�
ÿ G<

1 �a; a; p;o�T ��p;o� ImGR
0 �0; 0; p;o�

�
: �308�

V

z

V1

0 a

Figure 32. Potential shape defining a one-dimensional tunneling system.
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For the left-bank Green's functions, we have [see (290)]

G<
0 �0; 0; p;o� � in0�o� k0 � k �0

jqÿ ik0j2
;

�309�
ImGR

0 �0; 0; p;o� �
k0 � k �0
jqÿ ik0j2

;

and similarly for the right bank.
Thus, we find the following correspondence. Initially, in

the tunneling Hamiltonian method, there are two Green's
functions Gk and Gp describing electrons in the left and right
junction banks (or quantum well) with the tunneling
Hamiltonian of the form

Htun �
X
k; p

Tk; pc
�
k cp � h:c: ; �310�

which describes transitions from states k on the left of the
barrier to states p on the right of the barrier (or vice versa).
The situation is as follows: the original `zeroth' Green's
functions are also Green's functions separately taken on
the left and right sides of the barrier, while the tunneling
matrix element depending on the frequency and long-
itudinal momentum can be symbolically written as
d�z1�T�p;o�d�z2 ÿ a�. This means that the spatial variables
of the Green's functions related by the tunneling matrix
element must be taken at the edge of the barrier (each
variable on its own edge). If the off-diagonal function Gkp in
the case of the tunneling Hamiltonian has the form

Gkp � GkTk; pGp ; �311�

then this nondiagonal Green's function now corresponds to
the function G�z; z 0� with the arguments z and z 0 taken on
different sides of the barrier, for example, z < 0 and z 0 > a.
Then

Gkp ! G�z; z 0� ; z < 0 ; z 0 > a ; �312�
GkTk; pGp ! G0�z; 0; p;o�T�p;o�G1�a; z 0; p;o� : �313�

The junction current in the tunnel Hamiltonian approach is
given by

J �
X
k; p

�TkpG
<
kp ÿ T �kpG

<
pk�

! ÿ
T�p;o�G<�0; a; p;o� ÿ T ��p;o�G<�a; 0; p;o�� : �314�

It follows that in the case of weak tunneling, all
observables are expressed in terms of the effective tunneling
elementT�p;o� and the Green's functions of the right and left
isolated banks are taken at arguments z on the edge of the
barrier.

9.5 Thermal emission
As a practical example of using the continuum representa-
tion, we show how to find the thermal emission current from a
metal surface by means of the NDT [67]. This is the problem
of the flow of electrons through the structure shown inFig. 33.
We formalize the condition that all the electrons evaporating
from the metal to the vacuum region (on the right) quickly
escape to infinity, while the zero particle density is maintained
on the left. For this, we can use the general approach in the
preceding section, assuming that the chemical potential on the
right has a large negative value.

The exact function GR�z; z 0; p;o� at z > 0 and z 0 < 0
necessary for calculating the current is given by

GR�z; z 0; p;o� � 2m

i�k1 � k0� exp �ÿik0z
0 � ik1z� ; �315�

where

k0 �
����������������������������������
2m�o� ig� ÿ p 2

q
; k1 �

�������������������������������������������
2m�oÿ V� id� ÿ p 2

q
:

�316�
Using the same equations (292) that ensure the equili-

brium electron populations in the metal,

SR�z; z 0;o� � ÿigd�zÿ z 0� ; �317�
S<�z; z 0;o� � 2ign�o�d�zÿ z 0� ; �318�

and using general equation (296), we obtain

G<�z; z 0; p;o�

�
� 0

ÿ1
dz1 G

R�z; z1; p;o�2ign0�o�GA�z1; z 0; p;o� : �319�

Because the right-hand vacuum maintains the zero concen-
tration of electrons, the integral in (319) over the region z > 0
where n�o� � 0, in contrast to the tunneling problem, is
absent. Using the function G< in (306), we find that the
metal-to-vacuum flow of electrons is given by

J �
�
do dp

�2p�3
�k1 � k �1 ��k0 � k �0 �
jk0 � k1j2

n0�o� : �320�

Here, only propagating states are taken into account due to
the factors �k1 � k �1 �, which are nonzero only when
o > V� p 2=2m.

It follows that the characteristic dependence of the
thermal emission current on the work function W � Vÿ EF

and the temperature T5W is given by

J / exp

�
ÿW

T

�
T 2

������
T

W

r
: �321�

9.6 Thermal conduction and thermal effects
With the same methods that we used to calculate the current,
i.e., the particle flow, we can find the energy flowing from
one thermostat to another. In the cases where we can use the

V

W

EF

Figure 33. Thermal emission of metal with the work functionW.

1192 P I Arseev Physics ±Uspekhi 58 (12)



semiclassical kinetic equation, the NDT has no clear
benefits. But the NDT is the most appropriate method to
study the heat transfer in quantum junctions in essentially
nonequilibrium distributions. In tunneling systems, the
energy carried away by particles, say, from the left thermo-
stat (junction bank) can be found from a relation similar to
(239) for the particle flow:

Q � q
qt
hHLi � ÿi


�HL;HT�
� � iTL

X
k

ek

�c�k dÿ d �ck�

�
:

�322�

Using the Green's functions, the energy flow in the steady-
state case can be found similarly to (243):

I �
X
k

Tkdek

�
do
2p
�G<

kd�o� ÿ G<
dk�o�

�
: �323�

In the simple case of a noninteracting intermediate
system, the heat transfer between two reservoirs is given by

Q �
�
4gLgRoG

A
d �o�GR

d �o�
�
n 0
L�o� ÿ n 0

R�o�
� do
2p

�
�
oj�o� do

2p
: �324�

Actually, the expression for the heat flux in the form�
oj�o� do is fairly obvious: if a flow of particles j�o� with

energy o escapes from the thermostat, the energy lost by the
thermostat is oj�o�.

The NDT allows finding both the particle flow and heat
flux in a system placed between thermostats with different
chemical potentials and temperatures. Thus, it becomes
possible to study a variety of thermoelectric effects in quite
general terms [68±70]. In the case of inelastic effects like the
already discussed vibration excitation in the presence of a
current, calculating the heat flux can be difficult, but the
NDT method can solve such problems [71]. The nonsta-
tionary thermal effects can also be described in this manner;
in some cases, an increase in thermoeffects in a tunneling
system is predicted [72].

We are not able to discuss all possible effects in junctions
of various types here. For example, current fluctuations in
junctions can produce electromagnetic radiation. In the case
of an STM-to-metal junction, such radiation was considered
within the NDT in [73].

There is the so-called Luttinger liquid appearing in one-
dimensional structures due to electron interactions. In this
state, the collective modes (such as plasmons) are well defined
in equilibrium, but there are no well-defined single-particle
excitations. If such a one-dimensional system is excited by an
external field or included in a junction, it is a nontrivial
problem to describe the nonequilibrium state. The non-
equilibrium Luttinger liquid and the tunneling current flow
through one-dimensional channels with such an electron state
were described by means of NDT methods in [74±79].

10. Strong electromagnetic coupling
to electrons in semiconductors

In the case of a weak incident electromagnetic perturbation, it
is sufficient to apply the linear response theory. All usual
equations for light absorption in semiconductors are

obtained in this way. But in the case of strong coupling or
lasing generation, the electron system is strongly excited, and
hence the system nonequilibricity can no longer be ignored.
The incident electromagnetic wave is absorbed, creating
electron±hole pairs. At a high density of electrons and holes,
the initial incident wave absorption conditions begin to
change. Moreover, electrons and holes are scattered by
impurities, interact with each other and with phonons, and
recombine, with emission of light. As a result, quite a complex
system is created whose behavior depends on the field
strength, the relation between different relaxation rates in
the electron±hole system, etc. The excitation spectrum in this
system is determined by nonequilibrium distribution func-
tions of electrons and holes, and therefore the use of the NDT
in such cases is quite natural [80±82].

The starting-point Hamiltonian is simple:

Ĥ�
X
k

�
e cka

�
k ak� e vk b

�
k bk

��X
k; k 0

�
lk; k 0a�k bk 0 exp �ÿio0t��h:c:

�
;

�325�

where a and b are electron annihilation operators in both the
conduction and valence bands, e ck and e

v
k are the spectra of the

conduction and valence bands, and the interaction with the
electromagnetic wave of frequency o0 is described by the last
term lk; k 0 � Ekÿk 0dcv, whereE is the field amplitude and dcv is
the dipole matrix element of a transition from the valence to
conduction band.

Because the interaction part is explicitly time-dependent,
the Green's functions of conduction electrons Gcc�o� in the
diagram series are related to the valence band Green's
functions depending on a shifted frequency, Gvv�oÿ o0�.
To remove the explicit time dependence of the Hamiltonian,
we can pass to the `rotating reference frame' using the
operator U � exp �ÿio0t=2

P�a�k ak � b�k bk��. The interac-
tion then gives rise to a system of equations for four Green's
functions Gcc�o�, Gcv�o�, Gvc�o�, Gvv�o�. The spectrum can
be determined by means of any pair of equations for GR

cc�o�
and GR

vc�o� or for GR
cv�o� and GR

vv�o�.
The quasiparticle spectrum of the transformed Hamilton-

ian has a gap if the light frequency is greater than the width of
the forbidden band Eg:

o�k� � 1

2

�
e ck � e vk �

�������������������������������������������������������
�Eg ÿ o0 � e ck ÿ e vk �2 � 4l2

q �
: �326�

Here, e ck � k 2=2me, e vk � ÿk 2=2mh, and Eg is the width of the
forbidden band. In the original formulation, this gives rise to
the electron spectrum with a gap at the point where states in
the conduction and valence bands are resonantly bound by an
external field, Eg � e ck ÿ e vk � o0,

Ec�k� �

1

2

�
e ck � e vk � o0 �

�����������������������������������������������������
�Egÿ o0 � e ckÿ e vk �2� 4l2

q �
;

e ck ÿ e vk > o0 ÿ Eg ;

1

2

�
e ck � e vk � o0 ÿ

������������������������������������������������������
�Egÿ o0 � e ckÿ e vk �2 � 4l2

q �
;

e ck ÿ e vk < o0 ÿ Eg :

8>>>>>>>><>>>>>>>>:
�327�

Using the functions GR and GA that determine the spectrum,
it is easy to find the nonequilibrium distribution functions for
electrons and holes. For this, we find the functions
G<

cc � iha�ai and G<
vv � ihb�bi from the conventional NDT
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equations as follows:

G<
cc�o� � G 0<

cc �o� � G 0<
cc �o�lGA

vc�o� � G 0R
cc �o�lG<

vc�o� ;

G<
vc�o� � G 0<

vv �o�lGA
cc�o� � G 0R

vv �o�lG<
cc�o� :

�328�

There is a nonzero concentration of electrons in the conduc-
tion band and holes in the valence band due to the excitation
by light, even at zero temperature.Moreover, the distribution
function has the form

nc�k� � 1

2

"
1ÿ jEg ÿ o0 � e ck ÿ e vk j�������������������������������������������������������

�Eg ÿ o0 � e ck ÿ e vk �2 � 4l2
q #

; �329�

different from that of the temperature functions. This
distribution function has a sharp peak at resonance values
of the electron energy, where the frequency of light is equal to
the energy transition from the valence to conduction band,
Eg � e ck ÿ e vk � o0. But the emergence of a highly non-
equilibrium distribution of electrons and holes reduces wave
absorption at the frequency o0. In the case of lasing with
population inversion, the light emission `burns a hole' in the
electron distribution at the resonance frequency. In other
words, electromagnetic waves and electrons form a rather
complex coupled system, where the interaction gives rise to
nonequilibrium distributions. In particular, the intensity of
the interaction between waves and electrons also changes. An
important role here is played by the off-diagonal Green's
function G<

cv�t; t� � iha��t�b�t�i, which determines the polar-
ization magnitude. The full system of equations describing a
strong pulse moving through a medium or the appearance of
lasing must also include the electromagnetic field equation in
which the source term is the polarization (current). A system
of equations that takes the scattering of electrons on
impurities, interaction with phonons, and the Coulomb
interaction into account was derived in [83] but is very
cumbersome. In many cases, particular calculations can be
done only approximately (for a more detailed discussion, see
books [7, 84]). The simplest example considered above deals
with a nonequilibrium steady state. However, apart from
stationary irradiation of a semiconductor by light, there is the
very topical question of short and ultrashort pulses of intense
light propagating through a substance. In this case, the
Green's functions depend essentially on two times, and the
problem becomes more complicated. The dynamics of
electron±hole correlations, the dynamics of the screening,
and plasma modes in the semiconductor after a short strong
laser pulse were studied by means of the NDT in [85, 86].

The subject of nonequilibrium and unsteady states in
systems such as a cascade laser (semiconducting super-
lattices) is particularly topical. Here, apart from the usual
scattering by impurities and phonons, there is an additional
dynamic effectÐ the tunneling of electrons from one quan-
tum well to another. Using the NDT, we can show how
different approximate approaches are related to each other
and find the validity limits of simplified approaches [87]. The
semiclassical solutions of the Boltzmann equation and more
accurate NDT equations in the nonlinear transport regime in
superlattices with inelastic scattering were compared in [88].
The study of the gain factor and emission linewidth in cascade
lasers continued, for example, in [89, 90]. Moreover, it has
been shown by means of the NDT that the cascade laser
emission line broadening related to impurity scattering can be
less than estimated by simple theories [90].

Finally, the NDT can be used in studying a non-
equilibrium Bose condensate. Presently, such exciton and
photon Bose condensates appearing in semiconductor struc-
tures and microcavities in a strong electromagnetic field are
being widely studied (see, e.g., [91]).

11. Pseudoparticle method
in the nonequilibrium diagram technique

It seems that the pseudoparticle (slave-particle) approach
was originally formulated in the work by Abrikosov [92]
to describe Kondo impurities. The basic idea of the
method was formulated within the temperature diagram
technique [92]. Later, there were attempts to establish general
diagram rules within the pseudoparticle method [93±95], but
the resulting technique was very different from the ordinary
one. To overcome the difficulties, the mean-field approxima-
tion was used, which `kills' the very essence of the approach.
A generalization of the pseudoparticle method to the NDT
was proposed in [96±98]. However, the authors considered
diagrams in the lowest orders only, and therefore the general
NDT diagram rules were not found.

In this section, we explain the method with the example of
the Hubbard (Anderson) model, showing how to properly
formulate the NDT [99].

Originally, the Hubbard Hamiltonian was formulated to
describe the motion of band electrons in the tight-binding
approximation taking the strong Coulomb interaction
between two electrons at the same site (atom) into account,

Ĥ �
X
i js

ti jc
�
is cjs �

X
is

Unisniÿs �
X
is

�ei ÿ m�c�is cis ; �330�

where c�is is the operator creating an electron with spin s in the
lattice site `i ', ei is the electron energy level, m is the chemical
potential, ti j are the hoppingmatrix elements, andU is the on-
site Coulomb repulsion of electrons.

The pseudoparticle method is that each of four possible
states at a single siteÐno electrons, one electron with either
spin, and two electrons with opposite spinsÐ is described as
an independent pseudoparticle. The pseudoparticle creation
operators correspond to certain physical on-site states:

b� ) j0i ; f �s ) c�s j0i ; d � ) c�" c
�
# j0i : �331�

Physically, b and d are Bose operators, and f are Fermi
operators. We note that the pseudoparticle vacuum state is
completely unphysical. It should be absent in any equation,
because the physical states are those pseudoparticle states
with exactly one pseudoparticle b, fs, d on each site. Thus, in
the pseudoparticle representation, we have to consider those
physical states that satisfy the relation

N̂i �
X
s

f �s fs � b�b� d �d � 1 : �332�

The original `physical' electron creation operator is expressed
in terms of pseudoparticles as

c�s � f �s b� d �fÿs : �333�
In the pseudoparticle representation, the single-site part

of the Hamiltonian with the Coulomb interaction between
electrons is converted into the noninteracting Hamiltonian

Ĥ 0 �
X
i

�X
s

ef �is fis � �2e�U� d �i di � 0 b�i bi

�
: �334�
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But the hopping between sites now looks like interaction
between pseudoparticles,

Ĥint �
X
i js

ti j� f �is bi � d �i fiÿs�� fjsb�j � dj f
�
jÿs� : �335�

It is therefore clear that the pseudoparticle method makes
sense only in the case of strong Coulomb interaction, more
precisely, for ti j=U5 1. Otherwise, it is more natural to use
the original formulation with conventional electron opera-
tors.

As already mentioned, any physical state should contain
only one pseudoparticle at each site. The mapping between
the original problem and the pseudoparticle method is exact
only in this subspace defined by constraint (332). The
projection onto the subspace can be done in different ways.
Here, we follow the prescription proposed by Abrikosov [92].
For this, we add a large positive constant li to the energy of
every pseudoparticle state at site `i ',

Ĥ 0
l �

X
i

�X
s

�e� li� f �is fis � li b�i bi � �2e�U� li�d �i di

�
:

�336�

The thermodynamic average is treated as the initial condi-
tions in the NDT. Then the average over states with n
pseudoparticles on site `i ' has the Boltzmann weight
hnj . . . jni / exp �ÿnli=T � for large l (where T is the tempera-
ture). Therefore, we can retain the average with respect to
only single pseudoparticle states on each site by means of the
operation

lim
li!1

�
exp

�
li
T

�
� h. . .i

�
: �337�

States with two or more pseudoparticles have exponentially
small weights and vanish in the limit li !1. The unphysical
`vacuum state' without pseudoparticles also has a vanishing
contribution, because the Hamiltonian and any physical
operator are normally ordered such that the pseudoparticle
annihilation operator is on the far right.

Ensuring thatNi � 1 for the initial state, we consider only
those states that obey this condition, because each term in the
Hamiltonian preserves the number of pseudoparticles on each
site. It follows that the evolution operator also preserves the
constraint Ni � 1.

After taking the limit, the pseudoparticle occupation
numbers are given by

n0 � �Z0�ÿ1 lim
l!1

�
exp

�
l
T

�
nl

�
� exp �ÿe=T �

1� 2 exp �ÿe=T � � exp
�ÿ�2e�U�=T � ;

b0 � �Z0�ÿ1 lim
l!1

�
exp

�
l
T

�
bl

�
� 1

1� 2 exp �ÿe=T � � exp
�ÿ�2e�U�=T � ; �338�

d0 � �Z0�ÿ1 lim
l!1

�
exp

�
l
T

�
dl

�
� exp

�ÿ�2e�U�=T �
1� 2 exp �ÿe=T � � exp

�ÿ�2e�U�=T � ;

[where nl, bl, and dl are the equilibrium occupation numbers
for Hamiltonian (336)] with

Z0 � SpN�1
�
exp �ÿbĤ��

� lim
l!1

n
exp �bl� Sp �exp �ÿbĤl�N̂

�o
: �339�

These occupation numbers naturally satisfy the required
constraint

b0 � 2n0 � d0 � 1 : �340�

The spectrum, state density, occupation numbers, and
other characteristics we are interested in can be obtained from
the ordinary NDT electron Green's functions

G a; b
si j �t; t 0� � ÿi



TCcis�t�; c�js �t 0�

�
: �341�

In the pseudoparticle representation, the two-particle
Green's functions have the form

Gÿÿsi j �t; t 0�
� ÿi
Tb�i fis�t�; f �js bj�t 0�

�ÿ i


Tf �ÿsidi�t�; d �j fÿsj�t 0�

�
ÿ i


Tf �ÿsidi�t�; f �sj bj�t 0�

�ÿ i


Tb�i fsi�t�; d �j fÿsj�t 0�

�
: �342�

Hence, the retarded Green's function on an isolated Hubbard
site is the sum of two simple loops in the pseudoparticle
representation (Fig. 34).

After projection onto the physical subspace, the electron
Green's function is given by

GR
iis0�tÿ t 0�
� i

�
do1

2p

�
B<
0 �t 0 ÿ t�NR

s0�tÿ t 0� � BA
0 �t 0 ÿ t�N<

s0�tÿ t 0�

ÿN<
ÿs0�t 0ÿ t�DR

0 �tÿ t 0� ÿNA
ÿs�t 0ÿ t�D<�tÿ t 0��; �343�

where the pseudoparticle Green's functions B, N, and D are

N<
0s�tÿ t 0� � in0 exp

�ÿie�tÿ t 0�� ;
B<
0 �tÿ t 0� � ÿib0 ; �344�

D<
0 �tÿ t 0� � ÿid0 exp

�ÿi�2e�U��tÿ t 0�� ;
and n0, b0, and d0 are given by (338). The retarded pseudo-
particle functions have the form

NR
0s�tÿ t 0� � ÿiy�tÿ t 0� exp �ÿie�tÿ t 0�� ;

BR
0 �tÿ t 0� � ÿiy�tÿ t 0� ; �345�

DR
0 �tÿ t 0� � ÿiy�tÿ t 0� exp �ÿi�2e�U��tÿ t 0�� :

+

< (A)

R (<)

< (A)

R (<)

Figure 34. Retarded on-site electron Green's function. The solid line

corresponds to a pseudofermion function, the wavy line to an `empty-

site' pseudoboson function, and the double wavy line to a pseudoboson

double-occupied site function.
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After the Fourier transformation in time, we obtain the
usual electron Green's function for the one-site Hubbard
model

GR
0s�o� �

n0 � b0
oÿ e� id

� n0 � d0
oÿ eÿU� id

: �346�

Pseudoparticle functions (344) and (345) are the basic
elements of the NDT in the pseudoparticle representation.
However, both the diagram rules and possible types of
diagrams are different from the usual ones. To understand
the implications of constraint (332) on the particle numbers,
we must see what happens in the limit l!1, Eqn (337).
For a finite parameter l, all the ordinary NDT rules work as
if the pseudoparticles were usual bosons and fermions. In
this case, the diagrams contain various pseudoparticle
functions G<:

G<
fs�tÿ t 0� � inl exp

�ÿi�e � l��tÿ t 0�� ;
G<

b �tÿ t 0� � ÿibl exp
�ÿil�tÿ t 0�� ; �347�

G<
d �tÿ t 0� � ÿidl exp

�ÿi�2e�U� l��tÿ t 0�� :
It is important that any of the pseudoparticle occupation
numbers nl, bl, and dl is proportional to exp �ÿl=T � at large
l. Accordingly, any of the pseudoparticle Green's functions
G< in (347) contains this exponentially small factor. There-
fore, after taking limit (337), only diagrams with exactly one
pseudoparticle function G< are retained, which are to be
replaced by expressions (344). This requirement is very
strong; for example, it forbids the existence of a Dyson
equation.

Interactions in the pseudoparticle representation are
always represented as annihilation of a particle of one type
and creation of a particle of another type. For the Hubbard
model, this is interaction (335). For the Anderson model with
on-site Coulomb repulsion, the interaction is given by

Ĥint �
X
ks

�
tk� f �s b� d �fÿs�cks � h:c:

�
; �348�

where cks is the annihilation operator of a conduction band
electron. This form of the interaction Hamiltonians implies
that any diagram is represented as a number of closed loops of
the pseudoparticle Green's functions related to the site and
connected to each other either by intersite hopping ti j in the
Hubbard model or by the Green's functions of band electrons
in the Anderson model. It is clear that at least one function
G< must exist in any closed pseudoparticle loop. If signs of all
vertices in a given loop are equal, i.e., pairs of G< and G> do
not appear explicitly, then we can use the representation
Gÿÿ � GR � G< or G�� � G< ÿ GA. Not all functions in a
closed loop can be equal toGR orGA, because the expression
GR�tÿ t1�GR�t1 ÿ t2� . . .GR�tnÿ1 ÿ tn�GR�tn ÿ t� (and simi-
larly for GA) vanishes. Hence, each loop involves either a
manifest sign change fromÿ to� or at least oneG< function,
as part of the functions Gÿÿ and G��. Therefore, the
requirement that any diagram contain just one function G<

immediately implies that diagrams with exactly one on-site
pseudoparticle loop are retained.

The structure of this pseudoparticle loop also turns out to
be rigidly fixed. The function G<

ii can change its sign from `�'
to `ÿ' only in one vertex on each part of the loop; otherwise,
there would be several functions G<. Except for one function

G< in the top loop and one function G> in the bottom loop,
all other functions are Gÿÿ and G��. Because Gÿÿ �
GR � G< and G�� � G< ÿ GA, only GR and GA are left of
the respective functions. Further simplifications are due to
summing the diagrams with all possible positions of the
propagator G> in the bottom loop. Because one of the
pseudoparticle occupation numbers already appears in the
upper part of the diagram, any propagator G> contributes
only the constant ÿ2i, and we can write the propagator as
G> � GR ÿ GA. Taking into account that the vertices in the
loop are related either by the Green's functions of band
electrons (in the Anderson model) or by electron lines leading
to other lattice sites (in theHubbardmodel), we can show that
when consistently moving the propagator G> � GR ÿ GA

along the bottom loop, vanishing closed cycles of only
retarded and advanced functions arise. The only possible
remaining types of diagrams for G<

ii are shown in Fig. 35. In
the upper part (starting with the pseudofermion line from
time t), we have to successively replace each pseudoparticle
line with the appropriate occupation number n0, b0, or d0; the
lines before this point are R lines, and after it, the A lines. For
the bottom line, there are two possibilities: all lines are
replaced with GR if t 0 > t or all lines are replaced with GA if
t > t 0, along with an overall `ÿ' sign for the full diagram.

A similar analysis yields selection rules on the pseudo-
particle loop for the function Gÿÿii . In what follows, we are
interested in the functionGR

ii � Gÿÿii ÿ G<
ii , which defines the

electron spectral density. Therefore, leaving the functionGÿÿii

aside, we show in Fig. 36 what kind of diagrams define the
function GR

ii .
The general diagram rules are as follows.
(1) Only one closed pseudoparticle loop can appear in

each diagram for any site. This fundamental difference from
the standard diagram technique prevents using the standard
Dyson equation.

(2) Only one pseudoparticle function G< can appear in
each loop. This function is replaced with the renormalized
occupation numbers n0, b0, or d0 in (338).

(3) Only R and A parts in all other pseudoparticle
functions (`ÿÿ', `��') are retained. On a line with a single
function G<, all functions located `before' it (initially
connecting the `ÿ' vertices) are replaced with GR. Functions

R

R

ÿ +
t t0

A
n

R

R

A

ÿ +
t t�

A
n

A

Figure 35. The only possible diagram types for G<
ii .

n

t t�

R

R

A

R

t t0

A

A

A

n

R

Figure 36. Diagrams for GR
ii .
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located `after' it (connecting the `�' vertices) are replaced with
ÿGA.

(4) The electron Green's functions carry the Keldysh
index `ÿ' in those vertices where they are adjacent to the
pseudoparticle function GR, and the index `�' if they are
adjacent to the pseudoparticle function GA.

(5) Oscillating factors exp �ÿilit� originally contained in
pseudoparticle Green's functions cancel in any vertex and
should be omitted.

In the Hubbard model, electron Green's function (346)
represented as a sum of two loops in Fig. 34 gives the zeroth-
order approximation. We construct the perturbation series in
interactionHamiltonian (335), i.e., in the intersite hopping ti j.
First-order diagrams contain two pseudoparticle loops for
neighboring sites connected by two hopping vertices ti j. One
of these diagrams is shown in Fig. 37a. Such diagrams can be
regarded as the beginning of a series that renormalizes a given
pseudoparticle line. It is convenient to introduce an `external
electron line' (Fig. 37b) for the on-site Green's function:

G 0ab
el �o� �

X
j

ti j G
0ab
j j �o� tj i : �349�

Diagrams with renormalized pseudoparticle lines contain
secular divergences and turn out to be more significant than
the vertex diagrams shown in Fig. 38. The secular divergences
are related to the general NDT properties: passing from
occupation numbers in the original noninteracting system to
the correct occupation numbers in the interacting system
looks like the appearance of secular divergences in calculating
the functions G< in the perturbation theory. In this case, we
speak about variations of pseudoparticle occupation num-
bers. Such a behavior of first-order terms shows that in order
to obtain physically relevant results within the pseudoparticle
method, we should have consistent equations similar to the
Dyson equation. First-order calculations in the perturbation
theory canmake sense only in some special problems (e.g., the
Kondo problem).

The simplest self-consistent procedure of this type, which
allows summing a diagram series, was proposed in [100].

The on-site electron Green's function without vertex
corrections is defined by the same two-loop diagrams shown
in Fig. 34 but with renormalized upper and bottom pseudo-
particle lines. By virtue of the pseudoparticle method, one of
these lines contains only retarded (advanced) pseudoparticle
functions. We call this line the retarded or advanced
pseudoparticle (PP) Green's function for brevity. A line
containing a pseudoparticle occupation number is called the
`lesser' pseudoparticle function. We should understand that
the name `pseudoparticle Green's function' is applied to a
particular diagram series for which we can construct the
Dyson equation, but the sum of these diagrams is not a
physical particle Green's function.

Summing all the diagrams with insertions like the one
shown in Fig. 37, we obtain the usual Dyson equation for the
retarded PP Green's function:

NR
s �o� � N 0R

s �o� �N 0R
s �o�SR

Ns�o�NR
s �o� ;

BR
s �o� � B 0R�o� � B 0R�o�SR

B �o�BR�o� ; �350�
DR

s �o� � D 0R�o� �D 0R�o�SR
D �o�DR�o� :

Here, N, B, and D denote the respective functions for a
(single-occupied site) pseudofermion, empty-site pseudo-
boson, and double-occupied site pseudoboson. The zeroth-
order Green's functions N 0, B 0, and D 0 are given by (344)
and (345).

The simplest approximation for the self-energy partsSR is
given by

SR
Ns�o� � i

X
s

�
do1

2p

�G el>
s �o1�BR�oÿ o1�

� G el<
ÿs �o1�DR�o� o1�

�
;

SR
B �o� � i

X
s

�
do1

2p
G el<
s �o1�NR

s �o� o1� ; �351�

SR
D �o� � i

X
s

�
do1

2p
G el>
ÿs �o1�NR

s �oÿ o1� ;

where the `external electron line' G<�>�s , Eqn (349), in the k;o
representation is

G<�>�s �o� �
X
k

e 2k G
<�>�
els �o; k� : �352�

The electron Green's function satisfies the general relations

G<
els�o; k� � ÿ2i n�o� ImGR

els�o; k� ; �353�
G>

els�o; k� � ÿ2i
ÿ
n�o� ÿ 1

�
ImGR

els�o; k� ; �354�
where n�o� is the Fermi distribution. For the Anderson
model, the retarded electron Green's function GR

els is simply
the Green's function for band electrons, while for the
Hubbard model, it must be determined self-consistently.

Taking self-energy parts in form (351) implies that we sum
only `nested' series of diagrams shown in Fig. 39. In this
approximation, we consider electron interaction on a given
site (using the pseudoparticle method) and replace compli-
cated correlated electron motion over other sites by the sum
of uncorrelated processes: hopping from the site, free motion,
and hopping back to the site. The electron propagation is

i

j

ti j ti j

a b

Figure 37. (a) Example of a first-order diagram for the electron on-site

Green's function. (b) The same diagram in terms of the `external electron

line' G 0ab
el �o� �

P
j ti j G

0ab
j j �o� tj i.

Figure 38. Example of the first-order vertex correction.
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described by an average electronGreen's function, which is to
be determined self-consistently by means of the on-site
electron Green's function found within the pseudoparticle
method. The ideology is similar to the dynamical mean-field
theory (DMFT) [101], although the approach itself and the
basic equations are quite different.

We note again that although the Dyson equation for the
selected diagram series has the usual form, it cannot be
considered an equation for real particles. The retarded self-
energy parts are incomplete compared to the case of real
particles. They do not contain terms with the PP functionG<,
i.e., there are no terms with PP occupation numbers. For a
given function GR

els, system of equations (350), (351) is
complete and allows finding all PP retarded and advanced
functions in a consistent way.

Using the same approximation for the irreducible parts,
we can also write the Dyson equation for lines with one
pseudoparticle occupation number:

N<
s �o� � NR

s �o�
�
S<
Ns�o� � �NR

0 �ÿ1N 0<
s �o��NA

0 �ÿ1
�
NA

s �o� ;
B<�o� � BR�o��S<

B �o� � �BR
0 �ÿ1B 0<�o��BA

0 �ÿ1
�
BA�o� ;

D<�o� � DR�o��S<
D �o� � �DR

0 �ÿ1D 0<�o��DA
0 �ÿ1

�
DA�o� ;
�355�

where the irreducible parts are given by

S<
Ns�o� � i

�
do1

2p

�G el<
s �o1�B<�oÿ o1�

� G el>
ÿs �o1�D<�o� o1�

�
;

S<
B �o� � i

X
s

�
do1

2p
G el>
s �o1�N<�o� o1� ; �356�

S<
D �o� � i

X
s

�
do1

2p
G el<
ÿs �o1�N<

s �oÿ o1� :

System of equations (355), (356) is also complete because the
PP retarded and advanced Green's functions have already
been found. Therefore, all the `lesser' PP functions can be self-
consistently calculated from these equations.

Having found all the renormalized PP Green's functions,
we can calculate the on-site electron Green's function from
the same diagrams as in the case of the zeroth-order Green's
function, but using the `total' pseudoparticle lines

GRel
iis �o�

� i

�
do1

2p

�
B<�o1�NR

s �o� o1� � BA�o1�N<
s �o� o1�

ÿN<
ÿs�o1�DR�o� o1� ÿNA

ÿs�o1�D<�o� o1�
�
: �357�

In the simplest approximation, the band-electron Green's
function contained in the `external electron line' of PP
diagrams is related to the on-site function by the usual
formula

GR
els�o; k� �

1

�GRel
iis �ÿ1�o� ÿ ek

: �358�

Thus, given the electron Green's function, we can find
renormalized PP lines that determine the on-site electron
Green's function. In turn, the on-site function determines
the electron band function that appears in irreducible parts of
PP functions. In this way, we develop a self-consistentmethod
for calculating the electron Green's function.

Using the self-consistent method, we observe differences
from the usual equations for Green's functions of real
particles. The objects called PP Green's functions are just
sums of particular diagrams, and their properties are not
necessarily the same as for the real-particle Green's functions.
In particular, their spectral weight is not automatically
normalized, contrary to the real particle case. The self-
consistent method gives the shape of the spectral function
but not its absolute value. Therefore, we require that the
electron Green's function be normalized as

ÿ 1

p

�
do
X
k

ImGR
els�o; k� � 1 :

Despite the simplicity of our approximations, this
approach yields a quite reasonable shape of the density of
electron states and its behavior with increasing the Coulomb
repulsion. It is very important that the PP occupation
numbers in the self-consistent approach are determined by
the model parameters only. Irrespective of the changes in the
initial values n0, b0, and d0 during the self-consistent
procedure, all the `lesser' PP functions converge to the same
value. In other words, they are eventually independent of the
initial distribution function, as it should be in nonperturba-
tive NDT calculations.

In what follows, we present results of calculations for
the two-dimensional Hubbard model on a square lattice.
Figure 40 shows the case of a half-filled electron band
�m � e�U=2�. A dielectric gap begins to form when the
Coulomb repulsion is comparable to the bandwidth. With a
further increase in Coulomb repulsion, the Hubbard two-
subband structure with a well-defined gap becomes more
apparent. We note that in this approach, there is no
artificial central peak in the density of states that appears
in the DMFT [95]. The relative value of the `lesser' PP
functions allows estimating the ratio between the numbers
of differently occupied sites. Figure 40 shows that most sites
are single-occupied in the half-filling case. The fraction of
empty and double-occupied sites is negligible.

If the electron concentration is less than 1=2, the lower
subband becomes larger. It follows that the self-consistently
found relation between states with different site occupations
begins to change. There is a growing fraction of empty sites
and almost no double-occupied sites (Fig. 41). Conversely,
when the electron concentration increases, the upper subband
becomes larger, the fraction of double-occupied sites
increases, and the number of empty sites decreases. The
behavior is monotonic and physically relevant.

Although the `lesser' PP functions are not real-particle
Green's functions, their relative value gives physically mean-

Figure 39. Example of self-energy parts used in the approximation.

Dashed lines denote `external electron line' (349).
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Figure 40. (a, b) Density of electron states (solid line) in the half-filling case for two different values of the Coulomb repulsionU. Density of states for the

band with no interaction is shown (dashed line),U is measured in units of the intersite hopping ti j. (c, d) PP `lesser' functions forU � 12t. They determine

the relative weight of empty sites (dotted line), single-occupied sites (solid line), and double-occupied sites (dashed line). (d) Enlarged part of (c). It is seen

that a small fraction of empty and double-occupied sites also exists in the half-filling case.
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Figure 41.Density of electron states (solid line) for intermediate concentrations (upper row): concentration is (a) less than 1=2, (b) greater than 1=2. The
chemical potential position corresponds to zero at the abscissa (vertical line). Lower row: corresponding relative fractions of differently occupied sites.

Dotted lineÐ relative weight of empty sites, solid lineÐ single-occupied, dashed lineÐdouble-occupied.
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ingful fractions of empty, single-occupied, and double-
occupied sites. The main advantage of using the NDT in the
pseudoparticle method is that it can work with real-time
expressions. Therefore, similar calculations can be easily
generalized to nonequilibrium and unsteady effects in
Hubbard systems, Kondo systems, etc.

12. Other applications

12.1 Disordered systems
The NDT has also, and in some sense unexpectedly, found
application in the theory of disordered electron systems. It
turns out that the NDT can be used in the study of
equilibrium characteristics of such systems, even though it is
apparently not needed there. The NDT solves the following
problem. To calculate the characteristics of a disordered
system, we average over random disorder, not only over
quantum states. The average of an operator Â is given by
the double averaging

�A �
�
Sp
�
exp

�ÿ�H� V �=T �Â 	
Sp
�
exp

�ÿ�H� V �=T �	
�

disorder

: �359�

The perturbationHamiltonian V̂ contains a randompotential
u�r�. It is usually assumed that the disorder is Gaussian with
the correlation function


u�r�u�r 0�� � g�rÿ r 0� : �360�

Because the random potential of impurities is included in
the density matrix r, the numerator and the denominator in
(359) cannot be averaged separately. In terms of diagrams,
electron scattering on the impurity potential is described by
the usual diagrams in Fig. 2, where the random impurity
potential is denoted by a cross. Regarding the random
potential of impurities as a Gaussian random quantity, we
find that when averaging over disorder, the vertices in
diagrams are joined pairwise by the random potential
correlation function. In the temperature technique, the sum
of all loops corresponds to the denominator in (359) and
cancels disconnected parts in the diagram expansion of the
numerator. But now, when the whole expression (359) is
averaged over disorder, formerly disconnected diagrams are
related to other diagrams of the correlation function (Fig. 42).
Thus, formerly disconnected parts are not factored, and the
diagram technique immediately becomes more complicated.

The use of the NDT solves the problem (of averaging the
denominator in thermodynamic averages) because the sum of
disconnected loops is then zero, and hence there are no
diagrams similar to those shown in Fig. 42.

The application of the NDT to localization was consid-
ered in [102]. In that paper, in addition to a diagram analysis,

the so-called nonlinear sigma model was derived within the
NDT formulation. The functional integral method based on
theNDTnonlinear sigmamodel is currentlymost widely used
in this field (it is usually called the Keldysh nonlinear sigma
model for short).

The functional integral formulation of the NDT is
considered in many articles (see [30, 103]). A detailed
discussion of the NDT and localization can be found in
[104, 105]. The long-standing problem of the mutual
influence of Coulomb interaction and localization has also
been considered within the Keldysh nonlinear sigma model
approach. The renormalization-group equations were found
in [106] by means of a diagram analysis that clarified the
original result of Finkelstein [107]. Recent work [108] general-
ized these results to different types of interaction in the
framework of the Keldysh nonlinear sigma model.

12.2 Particle physics and cosmology
The Feynman diagram technique appeared in quantum field
theory and was apparently successful in solving most of the
problems in that area. But it turned out that the NDT can be
applied not only in condensed matter physics but also in field
theory and elementary particle physics, in areas such as
scattering processes at high temperatures and densities of
elementary particles and multi-particle production in strong
interactions. New challenges arise in describing the early
Universe, the intermediate stages of heavy-ion collisions,
and stellar processes, including neutron stars.

In order to apply the NDT in elementary particle physics,
the method was extended to relativistic quantum field theory
[34, 103, 109, 110]. Field theory operates in terms of
functional integrals, which are beyond the scope of this
review. In addition to the papers cited above, a summary of
the NDT formulated by means of the functional integration
method can be found, e.g., in [30, 104, 105]. The only
difference from the conventional functional integrals is that
because average (28) contains two types of operators with
times on either the upper or lower part of the Keldysh
contour, the functional integrals also contain a double set of
integration field variables. Recently, using a relativistic
formulation of the NDT, for example, new results were
found in such an old subject as pair production in strong
fields [111].

Many interesting applications of theNDT can be found in
cosmology. Baryon production and possible reasons for the
baryon asymmetry are discussed in [112] using the quantum
kinetic equation obtained by theNDTmethods. In relativistic
theory, a time-dependent metric is a fluctuation in the field
space. Conventional field theory is formulated in flat space,
while the quantum evolution in curved space is generally
unknown. The time evolution, even starting from the
`vacuum' state, can produce instabilities due to particle
creation. The instability related to rapid particle production
in de Sitter scalar field theory was discussed in [113]. The
NDT has also been used in quantum gravity [114].

13. Conclusion

In conclusion, we focus on the areas where the NDT (the
Keldysh diagram technique) can be applied, and whether it
has advantages over other methods in solving various
problems.

1. Relaxation processes and semiclassical kinetic equa-
tions.

Figure 42. After averaging over disorder; initially disconnected loops are

linked with other parts of the diagrams by the potential correlation

function (dashed line).
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Here, we can directly build a chain of equations for
correlators using the Heisenberg equations. These equations
are essentially quantum, and the only question is to decouple
higher correlation functions in order to obtain a closed system
of equations. The semiclassical kinetic equations can also be
obtained by other methods; however, the NDT provides a
simple and clear way to derive them. Moreover, the NDT
allows systematically calculating the collision term in all
orders in interactions.

2. Response functions, time correlators, and fluctuations in
equilibrium systems.

The Matsubara (temperature) diagram technique and the
Eliashberg analytic continuation method are successfully
applied to the study of the properties of equilibrium systems
or their small perturbations by external fields. Of course, the
NDT can also solve such problems (sometimes by doing
simpler calculations), but without a distinct advantage. We
note that the problem of calculating time correlation
functions for equilibrium systems is often confused with the
NDT itself, with a single term `real-time Green's functions'
(RTGF) being used for both. However, if the NDT auto-
matically also gives all time correlation functions in an
equilibrium system, the RTGF methods elaborated in [16,
29] are not suitable for calculating characteristics of none-
quilibrium systems.

3. Nonequilibrium states with particle and heat fluxes in the
intermediate system between two (or more) thermal reservoirs.

This subject is very wide. Here, we find tunnel junctions,
ballistic junctions, microcontacts between different materials,
a variety of thermal effects in micro- and nanostructures, etc.
It is in this area where the NDT is perhaps most widely used.
Indeed, strictly speaking, except when the usual semiclassical
kinetic equation is applicable, the NDT is beyond competi-
tion in this field. If the system contains two (ormore) different
thermal reservoirs, the temperature diagram technique
cannot be constructed in principle. A strongly nonequili-
brium state arises in the intermediate system that cannot be
described by the Gibbs distribution. The fact that this strong
disequilibrium is sometimes `not felt' in simple noninteracting
cases and the result can be obtained in the temperature
technique is to some extent accidental.

4. Nonequilibrium states in strong external fields.
This is the case of such a strong interaction that using

response functions is meaningless because the system goes
into a state very far from equilibrium. For example, we
mention the problem of interaction between high-intensity
light and semiconductors, describing lasing in semiconductor
structures (including cascade lasers). Although under certain
conditions we can use simpler approximate approaches (e.g.,
kinetic balance equations), in many cases, the NDT is in a
class by itself.

We can presently add cosmology and multiparticle
nuclear reactions to this category.

Thus, it is not surprising that the NDT has a wide range of
applications: the use of the NDT is natural wherever the
problem of the evolution of an initial quantum many-body
state can be posed.

Indeed, the use of the NDT is now natural for many
authors: the Web of Science in 2015 indicates about
200 papers citing [1], while Google Scholar in 2015 finds
more than 500 papers using the Keldysh technique. ButÐ
``Carthage must be destroyed''Ðwe would like to conclude
the review by repeating the following idea once more.
Because the beginning of the active use of the NDT (not

counting sporadic articles in various fields) was separated
from its inception by decades, and because there are just a
few people who really read the original 1960s papers, a
number of enduring myths have appeared. In particular, the
NDT is often referred to as the technique (or the method) of
Kadanoff±Baym±Schwinger±Keldysh. Of course, the work
by Kadanoff and Baym [29] and Schwinger [22] was very
important. Among others (for example, the paper by
Konstantinov and Perel' [18]), they clarified matters using
the field theory methods in many-body problems. This work
can be regarded as the prehistory of the NDT. As to the
computational techniqueÐa universal machinery that
`automated' calculations in nonequilibrium many-body
systemsÐsuch a formulation was first proposed only in [1].
Therefore, it is natural that the NDT history starts from this
work.

14. Appendix. Wick's theorem
for the nonequilibrium diagram technique
and initial correlations

Usually, Wick's theorem in condensed matter theory is the
statement that the average of a T-ordered product of particle
creation and annihilation operators is the sum of all possible
products of pairwise averages of T-ordered pairs of these
operators. In fact, the statement has two parts. The theorem
originally proved by Wick [27] gives a decomposition of the
T-ordered product of operators into the sum of operator
products, but with N-ordering instead of T-ordering. The
second step is to show that by averaging the above operator
equation, we obtain the correct relation between the average
of the product of operators and the product of all possible
pairwise averages.

Wick's theorem as an operator reordering method can be
directly used in theNDT case. The most important element in
Wick's theorem is the notion of `contraction' of two
operators. Usually, this quantity is defined as the difference
between the T-ordered and N-ordered pair of operators:

â1�t1�â�2 �t2�
z���������}|���������{

� T
ÿ
â1�t1�â�2 �t2�

�ÿN
ÿ
â1�t1�â�2 �t2�

�
: �361�

(Normal ordering rearranges any creation operators to the
left of all annihilation operators; the sign is reversed if two
Fermi operators are transposed):

N�ââ�� � �â�â :

The contraction of two operators is not zero only when
the creation and annihilation operators belong to the same
state (due to their noncommutativity). The contraction of any
other pair is zero. Using the explicit form of operators in the
interaction representation,

â��tk� � exp �ietk�â� ; â�tk� � exp �ÿietk�â ; �362�

we find that the contraction of two operators is a simple
function:

â1�t1�â�2 �t2�
z���������}|���������{

� y�t1 ÿ t2� exp
�ÿie�t1 ÿ t2�

�
: �363�

The notion of contraction can be naturally extended to the
NDT case. Here, the contraction of two operators is defined
as the difference between their TC-ordered product along the
Keldysh contour and the normal product. We can easily find
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that

â1�t a1 �â�2 �tb2 �
z���������}|���������{

� TC

ÿ
â1�t1�â�2 �t2�

�ÿN
ÿ
â1�t1�â�2 �t2�

�
� yC�t a1 ÿ t b2 � exp

�ÿie�t1 ÿ t2�
�
; �364�

where yC is a function with values 0 or 1 depending on which
time is `after' the other in terms of their location on the
Keldysh contour:

yC�t a1 ÿ t b2 � �
y�tÿ1 ÿ tÿ2 � ;
y�tÿ1 ÿ t�2 � � 0 ;

y�t�1 ÿ tÿ2 � � 1 ;

y�t�2 ÿ t�1 � :

8>>><>>>:
Considering operator products in the interaction repre-

sentation, we can explicitly factor all exponentials containing
the time dependence of any creation and annihilation
operators (362). No matter how we rearrange the operators,
the whole expression is always multiplied by the product of
the exponentials of each operator. Therefore, we omit the
overall numerical factor and consider transpositions of
SchroÈ dinger operators only. Moreover, we label the opera-
tors in order to control their positions when ordering them
with respect to their time arguments. The most general form
of the operator Wick's theorem for any (creation or
annihilation) operators and states in the T-product is as
follows:

T�â1â2â3 . . . ân� � N�â1â2â3 . . . ân� �N� a1a2
z�}|�{

â3 . . . ân�
�N�a1a2a3z���}|���{

a4 . . . ân� � . . .�N� a1a2z�}|�{
a3a4
z�}|�{

a5 . . . ân� � . . .

�N� a1a2z�}|�{
a3a4
z�}|�{

. . . anÿ1an
z���}|���{� : �365�

In the first term in the right-hand side, all operators are
ordered normally; hence, there is a sum of terms in which
one pair of operators is contracted (i.e., replaced by a
numerical function), while other operators are normally
ordered. Then, two pairs of operators are contracted and
the rest are normally ordered, etc. When contracting a given
number of operator pairs, we have to consider all possible
ways to choose a number of pairs from the initial set of
operators. In the fermionic case, the anticommutativity
gives rise to an additional rule: when contracting opera-
tors, we have to rearrange them in pairs and then count the
number of necessary transpositions. If the number is odd,
then such terms in (365) have a minus sign. (For simplicity,
we omitted the signs in (365).) Because Wick's theorem is
essentially a way to systematically rearrange neighboring
operators to pass from T-ordering to the normal ordering,
the proof of (365) is the same if the T-product is understood
as the TC-ordering along the Keldysh contour, and the
contraction of two operators is replaced by generalized
expression (364).

If the initial density matrix corresponds to a noninteract-
ing system, it is clear that operators related to different one-
particle states are averaged independently. Therefore, it
remains to see what happens when both sides of operator
relation (365) are averaged over the initial density matrix and
any operator â is either a creation or an annihilation operator
in a given state. Moreover, it is clear that only those averages
can be nonvanishing that contain equal numbers of creation
and annihilation operators. In what follows, we work out the

example of four operators. It shows the general principle of
how the average of a large number of terms in the right-hand
side of (365) is rearranged into T-ordered pairs of operators.
Averaging all operators in the right-hand side of (365) over
the initial density matrix in the bosonic case, we obtain the
result

TC a�t a�a��t b3 �a��t g1 �a�t d2 �

�
� 2n 2

� nyC�t a ÿ t g1 � � nyC�t d2 ÿ t g1 � � nyC�t a ÿ tb3 �

� nyC�t d2 ÿ tb3 � � yC�t a ÿ tb3 �yC�t d2 ÿ t g1 �
� yC�t a ÿ t g1 �yC�t d2 ÿ tb3 �
� �yC�t a ÿ t b3 � � n

��
yC�t d2 ÿ t g1 � � n

�
� �yC�t a ÿ t g1 � � n

��
yC�t d2 ÿ t b3 � � n

�
; �366�

where the resulting combinations �yC�t a ÿ t b1 � ÿ n� are exactly
the Keldysh Green's functions G ab in (37) (up to a factor of
`i '). In other words, theT-ordered average is factored into the
product of T-ordered pairs of operators.

In the case of averaging over the Gibbs density matrix,
bosonic operators have the property
�a��k�a�k� � k! nk ; n � ha�ai : �367�

It follows that by averaging any 2m bosonic operators (m
creation and m annihilation operators), we obtain the
following structure in the right-hand side of Wick's theorem:Xm

k�0
k! nk

X
P�mÿk�

Y
yC�ti ÿ tj� ; �368�

where the symbol
P

P�mÿk�means that we have to sum over all
possible choices of mÿ k pairs of times from the original 2m
time arguments in the product of mÿ k theta functions. On
the other hand, the sum is exactly equal to the productX

P�m�

Y�
yC�ti ÿ tj� � n

�
; �369�

i.e., to the sum of all possible products of one-particle Green's
functions.

In the case of four fermionic operators, we find

TC a�t a�a��t b3 �a��t g1 �a�t d2 �

�
� 0

ÿ nyC�t a ÿ t g1 � � nyC�t d2 ÿ t g1 � � nyC�t a ÿ tb3 �
ÿ nyC�t d2 ÿ tb3 � ÿ yC�t a ÿ tb3 �yC�t d2 ÿ t g1 �
� yC�t a ÿ t g1 �yC�t d2 ÿ tb3 � : �370�

For fermions, terms involving ak with k > 1 are absent;
hence, hâ�â�ââi � 0. The zero is explicitly left in the
equation. Writing this term as �n 2 ÿ n 2�, we can again
represent expression (370) as a product of one-particle
Green's functions:


TC a�t a�a��t b3 �a��t g1 �a�t d2 �
�

� ÿ�yC�t a ÿ tb3 � ÿ n
��
yC�t d2 ÿ t g1 � ÿ n

�
� �yC�t a ÿ t g1 � ÿ n

��
yC�t d2 ÿ t b3 � ÿ n

�
: �371�
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A change of sign for an odd permutation of fermionic
operators automatically results in the sum of products of m
Green's functions, which is similar to that for bosons,X

P�mÿk�
�ÿ1�P

Y�
yC�ti ÿ tj� ÿ n

�
; �372�

containing, albeit formally, terms with nk for k5 2. How-
ever, for each such term, there is exactly the same term with
the opposite sign. Therefore, in the fermionic case, the
average of a T-ordered product can also be represented as
the sum of T-products of pairwise averages.

Using the algebraic derivation of Wick's theorem, we can
easily generalize the NDT to the case of initial correlations
between particles in different states. Originally, this general-
ization was formulated by Hall [25]. Later, Kukharenko and
Tikhodeev [26] showed how to build kinetic equations for a
system with initial correlations. Using the operator form of
Wick's theorem (365), which remains valid in the presence of
correlations, we can easily see that the difference between a
systemwith initial correlations and a noninteracting system is
only that the average of the N-ordered product does not
factor into the product of particle occupation numbers in
individual states. Indeed, the initial correlations imply that
for two different states `1' and `2',

hâ�1 â�2 â2â1i 6� n1n2 : �373�
There may also be ternary and higher-order correlations. In
the noninteracting case, the absence of correlations made it
possible to average operators belonging to different states
independently. Now, when we average operator equation
(365), correlation functions arise that do not allow the
standard analysis starting with this equation to be applied
for each particular state. Averages of normal-ordered
operators do not factor into products of one-particle
occupation numbers. Such averages form correlation blocks,
considered now to be additional elements of the diagram
technique. For example, if the system involves only two-
particle correlations, it is convenient to introduce the
correlation function of the form

K�1; 2� � hâ�1 â�2 â2â1i ÿ n1n2 : �374�

Hence, any two pairs of points previously connected by two
separate one-particle lines can now be connected by the
correlation block K�1; 2� (Fig. 43). Moreover, because
correlation blocks arise from normal-ordered sets of opera-
tors, they are the same for diagrams with any positions of
indices `ÿ;�' at the ends. It follows that to any usual diagram
containing two Green's functions of the first and second
states, we have to add the same diagram but with the
correlation block K�1; 2� connecting the same points. The
figure can also be interpreted as follows. In the presence of
correlations, we draw the usual diagrams and then connect
two Green's functions of correlated states by two transverse

lines to form a single block,

G ab
11 �t; t1�G gd

22 �t2; t3�
! K�1; 2� exp �ÿie1�tÿ t1�

�
exp

�ÿie1�t2 ÿ t3�
�
; �375�

for any Keldysh indices a, b, g, and d.
Specific diagram rules for higher-order correlation blocks

depend on how we define higher correlation functions (for
example, if higher correlators cannot be factored into simpler
correlators, then any diagram contains just one correlation
block of a fixed order). Because a correlation block is amatrix
in which all elements are equal to 1, a diagram vanishes if it
has a part connected to others only by correlation blocks.
This is similar to the vanishing sum of closed loops in the
NDT.

It was shown in [26] that there are secular divergences in
diagram rows containing correlation blocks. It follows that
instead of integral equations, we have to use kinetic ones,
which give time variations of initial correlations.We note that
similarly to the occupation numbers, the correlation func-
tions eventually forget about initial values; they are deter-
mined only by interaction and external fields acting on the
system.

We demonstrate the technique with correlations with a
simple example. We consider a system with two correlated
electrons in two different states denoted by `1' and `2' (states
with different spins at the same level, states with different
angular momentum in an atom or a quantum dot, etc.) and
`connect' these states to a thermostat using the tunneling
transitions matrix elements T1k and T2k. It follows that any
electron can escape from the initial state [see tunneling
Hamiltonian (310)]. To find time variations of the initial
correlation, we calculate the pair function of two electrons
G<
12�t; t 0� � ÿiha�1 �t 0�a�2 �t 0�a2�t�a1�t�i, which at equal times

yields the correlator K12�t� � iG<
12�t; t�. Diagrams for the pair

function are shown in Fig. 44.
Four edgeGreen's functions are converted toR andAdue

to the summation over the `�' indices in the vertices adjacent
to the correlation block. For example,

T1k�Gÿÿ1k ÿ Gÿ�1k � � T1kG
R
1k : �376�

Therefore, the analytic expression corresponding to the
diagram in Fig. 44 is given by

G<
12�t; t 0� � iG<

11�t; t 0�G<
22�t; t 0�

ÿ iK12�0� exp
�ÿi�e1 � e2��tÿ t 0��

� T 2
1kT

2
2k

�1
0

dt1 dt2 dt3 dt4
X

k; k 0k 00 ; k 000
GR

1k�t; t1�GR
2k 0 �t; t2�

� exp �ÿie1t1 ÿ ie2t2�K12�0� exp �ie1t3 � ie2t4�
� GA

k 001�t3; t 0�GA
k 0002�t4; t 0� : �377�

Figure 43. Pairwise correlation block replacing two independent lines of

Green's functions of individual particles.

+ +

+ÿ
1 1

2 2

+ÿ

1 1

2 2

+

+

1 11 1

ÿ
2 2k

+
ÿ( )

k

+
ÿ( )ÿ

k

+
ÿ( )

2 2k

+
ÿ( )

Figure 44.Diagrams corresponding to the pair correlation functionK12�t�.
The correlation block defining initial pair correlations of two-electron

states is in the middle.
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The Dyson equation for single-particle functions, which is
typical for a tunneling system, is

GR
1k�t; t 0� � T1k

�1
0

dt1 G
0R
11 �t; t1�G 0R

k �t1; t 0�

� T 2
1k

�1
0

dt1 dt2
X
k 0

G 0R
11 �t; t1�G 0R

k 0 �t1; t2�GR
1k�t2; t 0� : �378�

After simple calculations of K12�t� � iG<
12�t; t� � G 0<

1 G 0<
2 , we

find

K12�t� � K12�0�
�
1ÿ ÿ1ÿ exp �ÿg1t�

�2ÿ
1ÿ exp �ÿg2t�

�2�
;

�379�

where g1; 2 � pT 2
�1k; 2k�nk are the usual tunneling transition

rates.
We see that the initial correlations decay exponentially

whenever there is particle exchange with the thermostat. This
independence from the initial correlation is a quite general
phenomenon, and this technique is therefore needed, in fact,
only to describe transient processes.
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