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Abstract. The equations of motion of a particle in the gravita- , Y 1
tional field of a black hole are considered in a formulation that _ _1 dx” dx
. ) " ) S=| Lds, L=zmgy(x) : (1)
uses generalized coordinates, velocities, and accelerations and a 2 ds ds

is convenient for finding the integrals of motion. The equations
are rewritten in terms of the physical velocities and accelera-
tions measured in the Schwarzschild frame by a stationary
observer using proper local length and time standards. The
attractive force due to the field and the centripetal acceleration
of a particle is proportional to the particle kinetic energy
m/v'1 — v?, consistently with the fact that the particle kinetic
energy and the photon energy /o in the field increase by the
same factor compared with their values without a field. The
attraction exerted on particles and photons by a gravitational
field source is proportional to their kinetic energies. The parti-
cle trajectory in the ultrarelativistic limit v — 1 coincides with
the photon trajectory.

Keywords: gravitational field, Schwarzschild geometry, mass and
energy in gravitation

1. Equation of particle motion
along a geodesic trajectory

The motion of a material particle with mass m in a gravity
field is defined by the least action principle 65 = 0, stating
that the trajectory of a particle between points ¢ and b in the 4-
space x*, o =0, 1, 2, 3, is an extremum of the action S
considered as a functional of the trajectory. The action S can
be taken in the covariant form!

! We use the system of units where ¢ = G = 1.
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where s is a scalar variable, independent of the form of the
trajectory x*(s) being varied, running through the same range
of values as for the extremal trajectory. It can be interpreted
as the particle proper time if the proper time interval between
two close points is defined by the metric tensor g.;,

ds? = —gp dx*dx”,

with the signature (—, +, +, +).
The Lagrangian function L is a scalar that depends on the
generalized 4-coordinates x*(s) and the 4-velocities

dx®
ds

a=0,1,2,3.

The Lagrangian equations have the standard form
d /oL oL
— — =0. 2
ds (6)&“) 0x“ @

Because L does not explicitly depend on s, these equations
admit the integral

uyu”* = const . (3)

Choosing the constant equal to —1 (i.e., measuring the
physical velocity components in the units of the speed of
light), we obtain the condition under which s is the particle
proper time. In this case, the generalized 4-momentum of a
particle in a gravitational field and its square are given by the

* The incentive to write this article was the article by R I Khrapko,
submitted to Physics—Uspekhi (see p. 1115 of this issue) and his corre-
spondence with the Editorial Board, which contains critical comments on
formula (8.1) given in a review by L B Okun’ (Usp. Fiz. Nauk 158 511
(1989) [Phys. Usp. 32 543 (1989)]) for the force of attraction of a relativistic
particle by a gravity center. This paper shows, in particular, how such a
formula could have emerged.
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formulas Such a field is described by the Schwarzschild metric
2 2 2
pr=mu”, PaP“:—mz, Pa:mua:mga/m/h 4) ds® =dc” —df :_g“ﬁdx“dxﬁ
-1
_ tg 2 g 2 2402 22 2
which are analogous to the formulas for the Minkowski - (1 N 7) de” - (1 n 7) dr® —r°d” —r7sin" 6 do
space, where, specifically, g,5 = diag (—1,1,1,1). 9)
Using Lagrangian (1), we can represent equations of
motion (2) as with the nonzero components
-1
d r Fg
L—I—Fﬂu u’ =0, (5 goo:—(1—£)7 gu:<1—i) ;
ds r r (10)
82221‘27 g33=’”25i11297
where
and ds and dr have the meaning of the respective proper time
ri = ! g# (ang + 8o _ agﬁ?‘) . (6) intervals for a moving observer and an observer at rest in the
P2 ox7 - oxF o Oxd Schwarzschild frame of reference with the generalized

are the Christoffel symbols. We draw attention to the fact that
the relation of the Christoffel symbols to the metric tensor
arose as a consequence of the least action principle with
Lagrangian function (1).

Because the derivative du”/ds is the generalized
4-acceleration of the particle, it is natural to call the quantity
—ml"?;}uﬁu”" the ‘4-force’ acting on the particle in a gravita-
tional field, and refer to the I'%, as the strength of this field
(see Ref. [1] §§ 85, 87 and [2] § 1 Chapter 4).

The curves x*(s) satisfying Eqn (5) are called geodesics.

We note that integral of motion (3) arising because L has
no explicit dependence on s essentially coincides with the
Hamiltonian function related to L by the Legendre transfor-
mation

oL
H=x" GX“_L' (7)
Moreover,
1 |
2mp pJ:me Xy =1L. (8)

This implies that neither function contains the potential
energy —an additive term dependent solely on 4-coordi-
nates. The kinetic ‘energy’, however, depends on 4-coordi-
nates because of their presence in the metric tensor g,z(x).
The Hamiltonian and Lagrangian functions are scalars, and
this is why the word ‘energy’ is enclosed in quotation marks.

The use of the proper time and the related scalar
Lagrangian function in relativistic classical and quantum
mechanics was proposed by Fock [3]. It was subsequently
elaborated by Schwinger [4].

An actual gravitational field is created by material bodies
and decays far from them owing to the island-like distribution
of matter. The metric of such a field transforms into the
Minkowski metric g,s(x) — n,; = diag (=1, 1,1,1) at large
distances from the bodies that create it. This implies that the
space—time curvature is maintained by material bodies in a
finite spatial domain, while far from it the 4-space remains
flat.

2. Particle motion in the field of a black hole

We consider equations of motion of a particle with the mass m
in a centrally symmetric gravitational field of a black hole
with a mass M and the gravitational radius r, = 2GM/c>.

coordinates t, r, 0, ¢. The physical meaning of the intervals
ds and dt and the notation agree with those used by Landau
and Lifshitz [1].

We note that the gravitational field of a spherical star is
described by the Schwarzschild metric down to its surface,
where it smoothly matches the internal metric of the star.

A local Cartesian frame of reference can be introduced in
the vicinity of each spatial point r, 6, ¢, with a triple of unit
vectors e,, ey, e, along the radial, meridional, and azimuthal
directions. Changes in actual physical distances along these
directions are related to the changes in respective coordinates

r, 0, ¢ as
P 12
dx = /g1 dr = (1—7g> dr, (11)
dy = /g2, d0 = rdo, (12)
dz = \/g33 dp = rsinfOde. (13)

Analogously, the change in the actual (physical or proper)
time 7 measured by a clock resting near a point (r, 0, @) is
related to the change in the coordinate time ¢ measured by a
clock resting at infinity by

1/2
dt = /g0y di = ( 'g> dr.
r

The angular momentum L = [rp] of a particle in a
centrally symmetric field is orthogonal to the plane contain-
ing the radius vector of the particle r and its 3-velocity v at any
time instant. Because the angular momentum is preserved in
both amplitude and direction, the particle orbit lies in the
same plane, which can be treated as the equatorial plane of the
Schwarzschild frame of reference by selecting 6 = w/2.

Among first integrals of motion, there is the square of
4-velocity (3), equal to —1,

(14)

g°ug + gt + goou”? + g7%ul = —1. (15)
Because 0 = /2, it follows that u’ = 0. Two more conserved
quantities follow from the manifest independence of
the Lagrangian function with metric (9) of the angle ¢ and

time ¢. They are the angular momentum p,, and the energy po:

oL .
pq,:@:mgwu“’:muw:mL, (16)
Po = 0= mgoou’ = muy = —mE. (17)
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Here, we use the established notation for the angular
momentum L in units of mc and for the energy E in units
of mc? (see Refs [5-7]). In this case, we find the contra-
variant 4-velocity components

u(P :g(ﬂ(f’u(p:rz L,7 (18)
E

0 00

= 19
“ gt 1 —r/r (19)
r I Ty 1 -
w=Fy B2 (1-2) (145 12). (20)

r r

The expression for u” follows from Eqn (15) with Eqns (18)
and (19) taken into account. The values u” < 0 correspond to
the particle motion towards and away from the center. It is
noteworthy that the components of the 4-velocity change only
if the radius r changes.

We write the universal expressions for the constants of
motion in terms of the radius and the particle velocity:

rvg B [1—rg/r
VI—v?’ V1=
The hat on an index is used to denote the physical components
of a vector in a local Lorentz reference system.

Now, using the 4-velocity components u* and Christoffel
symbols for the Schwarzschild metric (with 0 = 1/2),

(1)

r
r.=rt,=-r, =——%
tr rt rr 2}"2(1 _ rg/r) ?

r_rg rg roo_ r _ Vg
Fn—ﬁ<1—7>7 9971"(0(/,7—1”(1—7),

1
q 0 0
g, =rf,=rhy=rg=-,

Qr rQ

» _pe b0 _
F(p(')_rﬁ(/)_rrpq)_OV

we can obtain equations of motion (5):

B . I2
7 7
2 5 R
Léz iiz B2
ds r2(1 —rg/r)

&Er_ e L 3
2r )

ds2™ 212 3

Thus, three components of the 4-force entering the particle
equations of motion are different from zero. This means that,
in general, the azimuthal u?, radial »", and null «°
components of the generalized 4-velocity u* change as the
particle moves. However, the component u? does not enter
the equations because the motion stays in the same plane due
to the angular momentum conservation.

d? 2L
e _ 4z
ds? r3

3. Velocity and acceleration of a particle
measured by a Schwarzschild observer

We now adapt the above equations to an observer located at a
certain point (r, 8, @) in the Schwarzschild frame of reference

and measuring the three-dimensional physical velocity v and
the acceleration w based on readings of the local proper time t
of the observer’s clock.

The absolute value of the physical velocity is

dl dr\? de\?
- 5. = mr\ 7 ¢ . ) 25
YT dr \/g (dr) +gw<dr> (25)
and its radial and azimuthal components
dr do
Vi = \/&rr a s Vo = /8o E (26)
define the velocity 3-vector
vV =vje + vpe, . (27)

Because ds = dtv1 — v2, the Lorentzian physical compo-
nents of the 4-velocity are related to its generalized contra-
variant components as

Vp

r o Yy
= s~ VB e = s = Vet
1 d di -
o T
T VT g Ve

The physical momentum p and the energy ¢ of the particle
form the physical 4-momentum p* and are expressed in terms
of the physical velocity as

mv m

PrUTe T

With these relations between the physical and generalized
components of the 4-velocity, system of equations (22)—(24)
can be easily transformed into the equivalent system

(29)

dp m { M < rg> v }
- —=e+(1-=) Lvre, (30
dt V1—02/T=rg/rl 1? r) ot (30)

de m M

—=— — vp, 31
dr \/1—1}2\/1—rg/r"2 S
where the 3-vector

VR = Vp€r — Vi€y (32)

is orthogonal to the velocity v, equal to it in absolute value,
and obtained by a right turn of v through the angle /2.
Using the physical 3-vector of acceleration

dv 1 1 —v? 3rg\ Vo
b e (20

(33)

we rewrite Eqns (30)~(32) in the form of spatial and temporal
components of the 4-acceleration a* = du”/ds:

(% , g) =mV1—v2(a,a"), (34)
o du® w (vw) (vw)
(a,ao) = ds = (1 — 2 (1 _ 1)2)2 ’ (1 _ ’U2)2> . (35)
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The appearance of the factor v'1 — v2 in the right-hand side
of Eqn (34) is related to the use of the derivative with respect
to the local time 7 in the left-hand side, in contrast to the
derivative with respect to the proper time s of a moving
particle in the definition of «* (see Ref. [8], formula (193), or
[118§ 7, 9). Formula (34) should be compared with formula
(7.3) in the review by Okun’ [9].

The metric manifests itself in the expressions for the
velocity v and acceleration w [see Eqns (26) and (33)].

In representation (30), the first term comes from the force
of attraction to the center, and the second term corresponds
to the inertia force; the latter owes its existence to the nonzero
angular momentum and the related azimuthal velocity v, [see
Eqn (21)]. We stress that the attraction force is always
directed to the center of attraction, whereas the inertia force
is aligned with the vector vg. The proportionality of the
4-force to the kinetic energy ¢ in equations of motion (30) and
(31) is obvious.

Although the radial velocity v; can have any sign (negative
when moving toward the center and positive otherwise), the
vector vg is always directed to the convex side of the
trajectory. For circular motion, as well as for the apastron
and periastron where the radial velocity vanishes, the vector
vg is directed along the radius, vg = ve,. In these cases, the
acceleration vanishes, w = 0, connecting the velocity and
radius by formula (43).

We draw attention to the fact that the particle kinetic
energy varies only in the case of a nonzero radial velocity [see
Eqn (31)].

Formula (30) can also be written as

dp

m
dT*\/l—vzx/l—rg/r

M e\ Vg
X {—r—2(e,.+v¢vR) + (1 —2—i> 7¢VR}.

In this representation, the attraction term coincides with that
given in the review by Okun’ [9]. This term acquires half the
Schwarzschild contribution from the orbital term, such that
the vector e, is replaced by the vector

(36)

e +VUpVg = }1 [(1+2v2)r— (rv)y] (37)
given by Okun’. The orbital term changes accordingly.
However, the attraction term has lost its invariable orienta-
tion to the center of attraction.

Because e, and vy are directed to the convex side of the
trajectory, and v, > 0, the attraction term in Eqn (36) is
always directed to where the trajectory is concave, and the
orbital term is directed to the convex side. Clearly, here too,
these terms compensate each other when v; = 0 and v, = v.

Decompositions (27) and (32) of the vectors v and vz with
respect to the unit vectors e, and e, allow obtaining other
representations of formula (30) as well.

4. Finite and infinite orbits

When moving along a circle or in the vicinity of the apastron
and periastron, the radial velocity u" vanishes. This implies
that

(-2 (5)

(38)

The function in the right-hand side is called the effective
potential,

v [(-)(1+5)

Considered as a function of the dimensionless radius x = r/rg
and the dimensionless angular momentum L = L/ry, the
potential is positive in the physical range 1 < x < oo, is
equal to 0 at x = 1 and 1 at x = oo, and attains the respective
maximum and minimum at the points

Xi2=L*FLVIL*-3.

(39)

(40)

For L < +/3, the potential monotonically increases with x
from 0 to 1.

For L =+/3, the potential has an inflection point at
X = xo = 3, attaining the value 1/8/9 there.

For L > /3, the maximum U(x;,L) and minimum
U(x,, L) values of the potential increase monotonically with
L in the intervals

8 8
\@< U(x1,L) < oo and \@< Uln, L) < 1,

taking the values 1 and /25/27 at L = 2 (see Fig. 1).

Thus, for L > /3, the potential takes the form of a scoop
within which are the finite Kepler orbits with the energy E
lying between the minimum and maximum of the potential if
L < 2, or between the minimum and 1 if L > 2.

We are also interested in infinite orbits that begin and end
at infinity or end at r = rg, i.e., in the black hole.

For circular motion and at the apastron and periastron,
the velocity is linked to the radius and angular momentum via
the definition of the latter,

v r

L=x— X =—,

, 41
V1-—22 I'g (41)

because in these cases, the radial velocity vanishes and v, = v.
On the other hand, from the radial acceleration being zero at
these points, a relation between the angular momentum and

1.2

U(r/rng)

1.1

0.8 | | | | | | | |

2 4 6 8 1o 12 14 16 18
r/rg

Figure 1. Effective potential U(x, L) for L = \/n,n=0,1,2,3,4,5,6,7.
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the radius follows:

X r
X =—

V2x =3’ re

[see Eqn (24)]. According to Eqns (41) and (42), the velocity
and radius are then related by
1 r

21 e

L= 42)

(43)

Thus, the last two formulas follow from the equality of
acceleration to zero.

The velocity of a particle moving along a circle increases if
the radius decreases, and attains the speed of light at
r=1.5rg.

Weinberg derived formula (42) and called it the equili-
brium condition, considering the circle as a limit of an elliptic
orbit (see (8.4.24) in Ref. [2]). This is valid only for circles with
the radius r,(L) corresponding to the potential minimum
U(x,L), because for circles with the radius r;(L) that
corresponds to the potential maximum, the radii close to r;
belong to infinite orbits. At the same time, the formulas above
are valid for any finite orbit at points where the radial velocity
and acceleration are equal to zero.

Useful information is contained in the longitudinal and
transverse components of the acceleration w:

Vg WM ( 3rg> v2:|
w=————|(l-v) - (-] —].
- vy/1 —rg/r [( ) r? 2r ) r

In particular, for a particle falling radially with a small
velocity (—v; = v < 1), the acceleration is wy = g, the local
free-fall acceleration measured by Galilei.

If w, = 0, then we have relation (43) between the velocity
and radius of the circular orbit, whence, in particular, v = 1
on the orbit with the radius r = (3/2)r,. For the radius
r< (3/2)r,, a particle with v = 1 acquires a nonzero accel-
eration w; S 0, which expels the particle from its circular
orbit toward the black hole or infinity.

A present-day Galilei measuring the speed of a satellite on
a circular orbit would be able to verify that w) and w, are
equal to zero because v; = 0 and v; = v satisfies Eqn (43).

5. Motion of an ultrarelativistic particle
and a photon

The trajectory of a photon follows from the particle equation
of motion

dr u’ 5 ) rg\ 1
P —(1==2)1=2
dp ue * \/yv ( r) r2

v—1

(45)

if we let 7 denote the constant of motion (E/L)* and let the
particle velocity v tend to the speed of light. Only one constant
of motion y remains in the resultant equation for a photon,
instead of the two featuring in Eqn (21).

It is convenient to make a transformation from dr/de¢ to
du/de, where u = rg/r < 1. Then

d
u’Eﬁ:i,/yré—uz—l—M. (46)
Hence, it follows that
3
u" +u==>u’. (47)

2

For infinite trajectories, the constant of motion is
yrgz = (rg /b)?, where b is the impact parameter. We assume
that rg/b is small.

In the zeroth-order approximation, setting the right-hand
side of Eqn (47) to zero, we find the solution

Uy = "¢ in Q,

b

which corresponds to a straight trajectory, unperturbed by
the field, with the impact parameter b = rsin ¢.

In the next approximation, we write u = ug + u;. The
equation for uy,

3
" 2
u +”1:§u07

admits the solution

11\’
uy :E(%g) (1+cos’ ).

The solution

. 1 2
%’gsingo +§ (%) (1 +cos? )

U=uy+u =
should tend to zero for r = oo. This condition is satisfied for
the angles

and @, =mn+ (48)

__ e
¢ = b b .
Then the angle a photon deflected from unperturbed straight
motion is
2r

A(P:¢z—€01_n:7g~ (49)
This result was obtained by Einstein in 1915 [10]. Clearly, it is
also valid for an ultrarelativistic particle.

Equation (46) leads to real-valued solutions if the function

f(x) = A L+L ="
‘ T A\b x2 X3’ T

in the radicand is positive. In the interval r, < r < oo, this
function has a minimum at the point r = 1.5r,, where

2
_ () _ 4 _3
ﬂxO)_(b) 270 M T

and takes the value (r,/ b)* at the ends of the interval. Hence,
for the impact parameter b < by, = \/27/4r,, the function
f(x) is positive in the entire physical range of distances and
the fall of a photon with such an impact parameter ends in a
black hole.

(50)
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For b = by, the orbit of a photon falling from infinity
reaches the radius ro = 1.5r,, makes many turns there, and
eventually ends at the black hole or infinity.

For b > bnin, the orbit of a photon reaches a radius larger
than ry and then continues to infinity.

It follows that the method of solving Eqn (47) considered
above is appropriate if (rg/b) < 1/4/27 ~ 0.38.

6. Conclusions

A gravitational field equally increases the kinetic energy of a
particle and the energy (frequency) of a photon falling in this
field from infinity. If their energies are ¢, = m/4/1 — v2 and
hwo outside the field, then in the field they increase in the
same way:

& =

m Eoo hey — fiwso

Vi V=80’ V=80’

(cf. (88.9) and (88.6) in Ref. [1]). One can assert the identical
attraction of energies ¢ and 7w by the field. And yet, the
change in ¢ entails a change in velocity and the appearance of
particle acceleration, whereas the change in o does not affect
the velocity of the photon, and there is no acceleration.
However, the conservation of momentum leads to a change
in the direction of the particle and the photon, and in the
ultrarelativistic case, to the coincidence of their trajectories.

To conclude, we note that according to a proposal by
H Weyl, the mass of a particle is identified with the relativistic
invariant m = /&2 — p2? (see Ref. [11], § 27). The mass of a
photon is zero.

(51)
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