
Abstract. This review examines the elastic response of solids
under load. The definitions of isothermal and adiabatic elastic
constants of nth order (n5 2) for a loaded crystal are given. For
the case of hydrostatic pressure, two techniques are proposed
for calculating the second-, third-, and fourth-order elastic
constants from the energy±strain and stress±strain relations.
As an example, using the proposed approach within the frame-
work of the density functional theory, the second- to fourth-
order elastic constants of bcc tungsten are calculated for the
pressure range of 0±600 GPa.

Keywords: high pressure, metals, second- and higher-order elastic
constants, equation of state, elastic phase transitions

1. Introduction

The behavior of materials under high pressure (on the order
of the bulk modulus) has seen increasing interest in recent
years [1±4] for two reasons. First, advances in high-pressure
technologyÐ in particular, the adoption of the diamond
anvil cellÐhave extended the accessible pressure range to
about 600 GPa [5]. Second, current computational methods
based on the density functional theory provide information
on the energy and other properties of any crystal structures
for different unit cell volumes, i.e., for different pressure
values. This is particularly true of the research field for
structural transformations caused by the loss of stability of a
crystal lattice under the influence of uniform strains. Such a
loss is due to the `softening' of the corresponding second-
order elastic constants of a loaded crystal (elastic phase
transitions). Importantly, the stability of the high-pressure
phase during a transition depends on the nonlinear elasticity

of the material, i.e., the higher (third, fourth, etc.)-order
elastic constants, because it is these which ensure the
minimum of the thermodynamic potential for the strain
corresponding to the structural transformation [6]. The
transition pressure and character (whether the transition is
first or second order) are determined by relations between the
second-, third-, and fourth-order elastic constants. In turn,
the jump in the order parameter and the potential barrier
height at the transition are directly related to the third- and
fourth-order elastic constants [6].

Because the elastic constants of solids at high pressure are
very difficult to study experimentally (which is especially true
of higher-order constants), the definition of various-order
elastic constants of loaded solids and how to calculate them
have become a focus of recent attention [4, 6±9]. While it was
as far back as the mid-20th century that the elastic constants
of crystalline solids under pressure first came to attention,
their definition is still the subject of discussion (see, for
example, Refs [4, 7, 10, 11]).

Among the first publications on the definition of the
elastic constants of a loaded crystal should be mentioned
paper [12], which considers the second-order constants of a
cubic crystal under hydrostatic pressure. It is shown that,
when under pressure, the elastic properties of a crystal, in
particular the relation between stress and infinitesimal strain,
are determined by elastic constants that depend on the
applied pressure. These elastic constants were given the
name `effective' to stress the fact that they not only are
determined by the interatomic interaction (the second
derivative of the free energy with respect to the strain tensor
components) but also depend on the external load directly.

In Ref. [13], it was shown for an arbitrary symmetry that,
if a crystal is taken to be initially in equilibrium at pressure P,
then an additional term, proportional to pressure, arises in
the formulas for the adiabatic and isothermal second-order
elastic constants, for example:

~Ci jkl � 1

V0

�
q2F

qZi j qZkl

�
0

ÿ P�djldik � dildjk ÿ di jdkl� : �1�

Here, ~Ci jkl are the (effective) isothermal second-order elastic
constants of a loaded crystal. The derivative of the free energy
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F with respect to the components of the Lagrangian finite
strain tensor Zi j is calculated for the equilibrium state at a
given P, V0 is the volume of the nonstrained state, and dik is
the Kronecker symbol.

The definition issue was further addressed in Ref. [14],
which derived an expression for the second-order constants
for an arbitrary (not only hydrostatic compression) load and
also showed that these constants fully determine the elastic
properties of the crystal, i.e., the stress±strain relation and the
small-amplitude vibration equation. For the special case of
hydrostatic pressure, relations identical to those found in
Ref. [13] [see Eqn (1)] were obtained.

It also follows from Ref. [14] that if the strained state is
chosen such that the unit cell volume is constant to within
terms of order e 2 (where e is an infinitesimal strain), then the
additional term proportional to P disappears. As a result, the
second-order shear constants under hydrostatic pressure are
simply equal to the second derivative of the free (internal)
energy with respect to e [10]. There is much in the literature
[15±20] on the application of this method to calculating the
second-order constants of cubic and hexagonal lattice metals
under hydrostatic pressure.

Among the drawbacks of the method is its inability to
determine all independent elastic constants simultaneously
(only shear constants allow direct determination), so that the
bulk modulus, for example, has to be calculated from the
equation of state. For low-symmetry crystals, it is quite
difficult to choose a strained state which retains its volume
up to a second order in strain. And, of course, this
methodology is not suitable for finding the higher (third and
fourth)-order elastic constants.

The concept of effective elastic constants at hydrostatic
pressure was extended to higher (third and fourth) orders in
paper [21]. This is accomplished by taking into account that
during the small adiabatic (isothermal) strain of a loaded
crystal not only does the free (internal) energy undergo a
change but also some amount of work is put out against the
external pressure. Reference [21] presents general relations for
the second-, third-, and fourth-order effective elastic con-
stants of a cubic crystal under hydrostatic pressure, relations
which link the effective constants to the respective-order
derivatives of the energy with respect to the components of
the Lagrangian finite strain tensor, as well as to pressure. For
the second-order constants, the expressions obtained are
identical to those presented in formula (1).

Review [22] argues, when discussing crystal elastic proper-
ties under load, that the experimental relations between
infinitesimal strains and their inducing stresses, on the one
hand, and the measured sound speeds, on the other, not only
involve the derivatives of the thermodynamic potentials with
respect to strain components but also contain certain
combinations of the components of the applied external
load. This is especially important to bear in mind when the
load is comparable in magnitude to the material's elastic
constants. The obtained stress±infinitesimal strain relations
and the expressions for the second-order elastic constants and
for the sound propagation coefficients (which determine the
velocity of elastic waves in the crystal) are identical to the
relations given in Ref. [14].

Thus, for a crystal strained isothermally under hydrostatic
pressure, one has

si j � ÿPdi j � ~Ci jkl ekl ; �2�

where si j are mechanical stresses, ekl are the components of
the infinitesimal strain tensor, and the crystal constants ~Ci jkl

under hydrostatic pressure are given by Eqn (1). Here and
henceforth, summation over the twice repeating indices from
1 to 3 is assumed. The tensor of sound propagation
coefficients Ai jkl has the form

Ai jkl � ÿPdjldik � Ci jkl : �3�

Here,

Ci jkl � 1

V0

�
q2U

qZi j qZkl

�
0

are the second-order adiabatic Brugger type elastic constants
(strains in this case are adiabatic), andU is the internal energy
at pressure P.

The specific cases addressed in Ref. [22] include a cubic
crystal under hydrostatic loading and a uniaxially com-
pressed tetragonal crystal.

Marcus and coworkers [23] proposed that the second-
order effective elastic constants under hydrostatic pressure be
defined in terms of the derivatives of the Gibbs (rather than
Helmholtz) energy with respect to the components of the
Euler finite strain tensor. Using the Gibbs potential, correct
relations involving the external pressure are derived for these
constants. The proposal came under criticism, though [10,
11], to which Marcus and coworkers responded by first
clarifying the points made [24] and then in papers [25, 26]
presenting the justification for their idea with a Gibbs
potential.

The effective n-order �n5 2� isothermal and adiabatic
elastic constants of a loaded crystal were constructed in
Ref. [27] as the corresponding derivatives of the Gibbs
potential and enthalpy with respects to the components of
the Lagrangian finite strain tensor. For a cubic crystal
under hydrostatic pressure, relations linking the effective
second-, third-, and fourth-order constants with conven-
tional (Brugger) elastic constants of respective orders and
pressure were made up and found to agree with their
counterparts obtained in Ref. [21]. Example calculations
using the obtained relations were performed within the
framework of the density functional theory for the second-
and third-order constants of body-centered cubic (bcc)
tantalum at T � 0 K over a wide pressure range (0±
600 GPa). The results for the second-order elastic constants
are found to be consistent with existing experimental data
and with the results obtained by other workers [16, 18] using
the constant volume method (see above). Data of other
authors on the third-order elastic constants are lacking in
the literature.

Similarly, the second- and third-order elastic constants of
bcc molybdenum and hexagonal close-packed (hcp) ruthe-
nium were calculated in Refs [28, 29] over a wide range of
pressures (0±1400 GPa and 0±600 GPa for the former and the
latter, respectively). In each of these cases, there is good
agreement between the experimental and calculated values of
second-order elastic constants (at ambient pressure) and of
their pressure derivatives. For ruthenium, the experimental
behavior of the effective elastic constant ~C44 is also known for
the pressure range of 0±60 GPa, which is found to be virtually
identically fitted by the calculations.

The nth-order �n5 2� elastic constants in the absence of
an external load are thermodynamically defined in Ref. [30],
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and this definition is widely used in research on the elastic
properties of an unloaded solid. This work gives a detailed
analysis on the basis of which nth-order elastic constants of a
loaded crystal can be given similar definitions, and methods
for calculating such constants for the case of hydrostatic
pressure can be developed.

2. Basic definitions and relations

Let us consider a crystal with arbitrary symmetry initially in
equilibrium at a fixed temperature T and under a given
external load. The stressed state is described by the stress
tensor si j.The second- and higher-order effective constants of
the loaded crystal describe its elastic properties at a finite
strain which is imposed on the initial state �si j�. A convenient
tool with which to describe such a strained state is the
Lagrangian finite strain tensor of the form [22]

Zi j �
1

2
�akiakj ÿ di j� : �4�

Here, akj � qrk=qRj is the strain gradient, and rk and Rj are
the Cartesian coordinates of a chosen point in the body in the
strained and initial states, respectively. The tensor Zi j can be
expressed in terms of the displacement gradients
ui j � qui=qRj �ui � ri ÿ Ri� because

ai j � di j � ui j ; �5a�

Zi j �
1

2
�ui j � uji � uki ukj� : �5b�

Neglecting the quadratic terms in Eqn (5b) yields the
infinitesimal strain tensor

ei j � 1

2
�ui j � uji� : �6�

The standard definition of the nth-order elastic constants
(external forces are absent) is as follows [30]

CT
i jkl... �

1

V0

�
qnF

qZi j qZkl . . .

�
T

;

�7�
CS

i jkl... �
1

V0

�
qnU

qZi j qZkl . . .

�
S

:

Here, CT
i jkl... and CS

i jkl... are, respectively, the isothermal and
adiabatic nth-order �n5 2� Brugger elastic constants, F and
U are the crystal free and internal energies, and V0 is the
volume in the nonstrained state. The derivatives are taken at
constant temperature T and constant entropy S.

The elastic constants (7) determine the elastic behavior of
an unloaded crystal. In the case of a loaded state, these
constants do not take into account the work which should
be done against the external load by the forces due to the
additional small strain Zi j. Therefore, the constants (7) cannot
fully characterize the elastic properties of a material under
load [21, 22].

Extending the results of the studies cited in Section 1, the
isothermal and adiabatic elastic constants of various orders
can be defined at a given external load as the corresponding
derivatives of the thermodynamic Gibbs potential G and the
enthalpyHwith respect to the components of the finite strain

tensor Zi j:

~CT
i jkl... �

1

V0

�
qnG

qZi j qZkl . . .

�
T

;

�8�
~CS
i jkl... �

1

V0

�
qnH

qZi j qZkl . . .

�
S

:

If the assumed initial state is stressed, with si j as an external
parameter, G and H are the most convenient to use. If a
system changes isothermally (adiabatically) at fixed si j,G�H�
has a minimum at equilibrium. The elastic constants can be
found in a unique way from Eqn (8) despite the fact that the
strain Zi j (volume V) is not a natural variable for these
thermodynamic potentials [31].

The quantities ~Ci jkl... are determined not only by the
interatomic interaction but also directly by the applied load
and, unlike the elastic constants (7), have full Voigt index
permutation symmetry only for hydrostatic pressure (and not
otherwise) [14, 22]. Also, because these constants include the
external load, they cannot obey the Cauchy relations. When
using second-order elastic constants ~Ci jkl, the equations
determining the velocity of sound waves in the crystal under
load have the same form as in the unloaded state; the same is
true for stability conditions and for the stress±strain relation
(see Refs [14, 22]).

Thus, relations (7) and (8) represent a unified approach to
defining elastic constants: elastic constants are the nth-order
�n5 2� derivatives of the characteristic functions which,
under given conditions, are thermodynamic potentials. The
use of formulas (8) in the definition of the elastic constants of
a loaded crystal results in the elasticity theory relations having
the same form for both hydrostatic pressure and P � 0. As a
result, while pressure does feature in the elasticity theory
formulation for arbitrary hydrostatic pressure as a parameter
of the state, it is not present in itself, unlike, for example,
Eqns (1) and (3). For the same reason, the elastic constants (8)
are essentially not effective but ordinary elastic constants that
fully characterize the properties of a loaded crystal under
given conditions.

We will now use formulas (8) to derive an expression for
the second-to-fourth-order isothermal elastic constants under
loading conditions. Of practical interest is the case of
hydrostatic pressure when the strain of a crystal lattice
remains elastic for any degree of compression. In this case,
the change in the Gibbs potential produced by the additional
strain Zi j (pressure P, temperature T ) per unit volume in a
nonstrained state takes the form

DG
V0
� DF

V0
� P

DV
V0

: �9�

Here, DG � G�P;T; Z� ÿ G�P;T; 0�, DF � F �P;T; Z�ÿ
F �P;T; 0�, and DV � Vÿ V0 is the change in volume due to
strain determined by the components of the tensor Zi j. The
volume in a strained state is given by the relation V � JV0,
where J � det jai jj, and then DV=V0 � Jÿ 1 [22]. Because we
consider the case of pure strain (the crystal as awhole does not
rotate, ui j � uji), Eqn (5b) takes the form

Zi j � ui j � 1

2
uki ukj :

Using Eqn (5a) and the relation

ui j � Zi j ÿ
1

2
uki ukj ;
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we can express ai j in terms of Zkl. As a result, keeping terms to
fourth-order in Z, we obtain

ai j � di j � Zi j ÿ
1

2
Zki Zkj �

1

2
Zrk Zri Zkj ÿ

5

8
Zkj Zmk Zmn Zni :

�10�

Using relation (10), we find an expression for J [given in
Appendix A as a sum of terms in powers of Zkl; see formulas
(A1)±(A5)].

Expanding DF=V0 at pressure P up to fourth-order in the
components of the finite strain tensor Zkl, we get

DF
V0
� DF1

V0
� DF2

V0
� DF3

V0
� DF4

V0
: �11�

The expressions for the terms DF1ÿ4=V0 are presented in
Appendix B, formulas (B1)±(B4).

Using formulas (8), (9), (11), (B1)±(B4), and the relations
for DV=V0 [see expressions (A1)±(A5)], we find relations
between the effective elastic constants ~Cab... and Cab... by
grouping in Eqn (9) the terms containing similar combina-
tions of the strain components. The results are presented in
Table. 1.

The relations presented in Table 1 are consistent with the
results obtained by a different approach in Ref. [21].

Thus, to calculate the elastic constants ~Cab..., it is
necessary to find the quantities Cab... and the pressure P by
expanding the free energy in a power series of the components
of the finite strain tensor Za [see Eqns (B1)±(B4)]. Then, one
can find respective quantities ~Cab... using relations listed in
Table 1.

Another possible approach to calculating the effective
elastic constants of different orders is based on the results of
Refs [32±34], whose authors use the stress±strain relations
rather than the energy±strain relation in calculating the
second-, third-, and fourth-order elastic constants at P � 0.
Because the strain is defined with respect to the initial,
nonstrained state of the body �Zi j � 0�, and because the
stress is calculated per unit area of the strained body, finite
strain and stress are related in a complex way. Note here that
the differential of the work done by stress is not equal to the
product of the stress components si j by the corresponding
strain components. The way to remedy the situation is to
introduce the quantities ti j (`thermodynamic stresses' [35]),
defined such that the sum ti j dZi j [35] is equal to the
differential of the work done by stress per unit of the initial
(nonstrained) volume. According to Ref. [35], one finds

ti j � 1

V0

�
qF
qZi j

�
; �12�

i.e., they are related to strains through the corresponding
number of elastic constants Cab.... The quantities ti j, in turn,
are related to the total stress components skl by the relation
[35]

ti j � Jskl gik gjl ; �13�

where the matrix gik is the inverse of ajl. In the theory of finite
strains, the quantities ti j correspond, according to relation
(13), to the components of the second Piola±Kirchhoff stress
tensor, which determine the stress related to the nonstrained
configuration.

The authors of Ref. [33], using the density functional
theory, obtained an analytical expression for skl [formula
(2)], making it possible to calculate the stress components
si j directly without the necessity of calculating the total
energy. Following this, the thermodynamic stresses ti j can
be obtained from relation (13), which should then be used
to calculate the corresponding combinations of elastic
constants Cab... using relations (12) and (B1)±(B4). Then,
using the known Cab..., the effective elastic constants ~Cab... at
pressure P can be calculated from the relations given in
Table 1.

The advantage of this methodology is that the calculation
of higher-order elastic constants from the stress±strain
relation requires an expansion to third (rather than fourth)
order in Z. References [32, 33] demonstrate the application of
this methodology to the calculation (at P � 0) of a number of
Brugger elastic constants [see Eqn (7)] of the second, third,
and fourth order for Si, Ge, and GaAs. In Ref. [36],
illustrative calculations are made for the second- and third-
order constants �P � 0� in Si, GaAs, AlN, GaN, and InN.

3. Methodology and details of calculations

To illustrate the use of the relations obtained, we calculated
the elastic constants of second, third, and fourth order of bcc
tungsten in the pressure range of 0±600 GPa at T � 0 K (no
difference between the isothermal and adiabatic constants).
The initial stressed state was specified by themagnitude of the
atomic volume V0. For each such state, a number of variants
of unit cell deformation were considered, which are presented
in Appendix B (Table 4). The lattice vectors in the strained
state are determined by the relation ri � ai jRj, in which the
strain gradient ai j is expressed, using Eqn (10), in terms of the
components of the Lagrangian finite strain tensor.

The total energy of bcc tungsten and mechanical stresses
si j at different values of V0 and strain Zi j were calculated
using the implemented in VASP [37], density functional
theory, where VASP stands for the Vienna Ab initio
Simulation Package. The exchange±correlation contribution
was included in the generalized gradient approximation with

Table 1. Relations between ~Cab... and Cab....

~Cab ~Cabg ~Cabgd

~C11 � C11 ÿ P
~C111 � C111 � 3P ~C1111 � C1111 ÿ 15P ~C1255 � C1255 � P

~C112 � C112 ÿ P ~C1112 � C1112 � 3P ~C1266 � C1266 ÿ P

~C12 � C12 � P
~C123 � C123 � P ~C1122 � C1122 � P ~C1456 � C1456 ÿ P

~C144 � C144 ÿ P ~C1123 � C1123 ÿ P ~C4444 � C4444 ÿ 3P

~C44 � C44 ÿ P
~C155 � C155 � P ~C1144 � C1144 � P

~C4455 � C4455 ÿ P
~C456 � C456 � P ~C1155 � C1155 ÿ 3P

November 2015 Elastic properties of solids at high pressure 1109



the Purdue±Wang parameterization PW91 [38]. To describe
the ion±electron interaction, the method of projector-aug-
mented waves was employed [39]. The integration over the
Brillouin zone was performed by the tetrahedron method
using a 28� 28� 28 array of points obtained by the
Monkhorst±Pack method [40]. The plane wave cutoff energy
was 700 eV. The reason why the calculation parameters are
chosen so large is due to the small magnitude of the third- and
fourth-order effects in Z.

The pressure and the elastic constants of different orders
were obtained by the least-square method (21 points in the
interval �0:08 with a step of 0.008) from the polynomial
dependences DF �Z�=V0 and ti j�Z� (see Table 4).

4. Calculated results and discussion

The tungsten equation of state calculated in the present work
is shown in Fig. 1 together with available experimental P�V�
data. The equation of state was studied in sufficient detail at
pressures up to 300 GPa using the shock wave technique [41]
and static measurements [42±44]. The data shown in Fig. 1
suggest that the variation ofPwithV calculated in the present
work agrees well with the experimental data (at
V=V0 � 0:664, the difference in pressure values does not
exceed 3%).

Experimental data on tungsten elastic constants are
available only for those of second order at atmospheric
pressure. Tables 2 and 3 and Figs 2±4 present our calculated
second-, third-, and fourth-order elastic constants of bcc
tungsten at pressures up to 600 GPa. The calculations were
performed using the energy±finite strain and stress±finite
strain relations.

In Table 2, the calculated second-order constants and
their pressure derivatives at P � 0 are compared with the
experimental and theoretical results of other researchers. The
calculated results correspond to T � 0 K; the experimental
data were obtained at room temperature. It is seen that both

methods used give virtually the same values for Cab. Because
both the energy and mechanical stresses si j are calculated
with VASP independently, the good agreement between the
results obtained by the two methods implies a high calcula-
tion precision.

The obtained values of C11 and C12 agree well (to within
2.5%) with the experimental data. For C44, the agreement is
worse: the calculation underestimates the data by about 8%.

In some studies [15, 19, 48] (see also Table 2), the elastic
constants were calculated from first principles using infinite-
simal strains ei j and keeping the unit cell volume fixed to first
and second order in ei j. The predicted value of C44 is again
much different from the experimental value. In Ref. [19], a
similar difference between the calculated and experimental
C44 was observed for vanadium and niobium.

0.65 0.70

50

100

150

200

250

300

0
0.75 0.80 0.85 0.90 0.95 1.00

V=V0

P, GPa

Figure 1. Pressure versus volume for bcc tungsten. Dashed line is

calculated from the regression by the Birch±Murnaghan equation of state

of the P�V� dependence obtained in the present paper (data are shown by

squares), and solid line is the experimental P�V� curve obtained from the

results of Refs [41±44]).

Table 2. Second order elastic constants and their pressure derivatives at P � 0.

Quantity C11 C12 C 0 C44 B Source

Cab, GPa

519.4 200.4 161.0 144.2 306.8 Present work
(energyëstrain)

519.7 200.5 159.6 146.0 306.9 Present work
(stressëstrain)

512.6 205.8 152.7 Experiment [45]

523 203 160 Experiment [46]

532.6 205.0 163.1 Experiment [47]

502.6 213.6 144.5 145.9 309.9 Calculation [48]

166.8 170.5 306.5 Calculation [15]

513 199 140 Calculation [19]

1

Cab

dCab

dP
� 103;GPaÿ1

10.8 16.2 10.4 Present work

11.8 16.4 10.0 Experiment [46]

Table 3. Third- and fourth-order elastic constants (in GPa) of bcc tungsten at P � 0 (T � 0 K).

ÿC111�10ÿ1 ÿC112�10ÿ1 ÿC123�10ÿ1 ÿC144�10ÿ1 ÿC155�10ÿ1 ÿC456�10ÿ1 C1111�10ÿ2 C1112�10ÿ2 C4444�10ÿ2

1

2

523.0

528.3

93.23

93.88

74.21

66.71

78.64

83.02

92.46

96.88

93.47

100.4

407.5

411.2

115.7

122.7

52.47

59.73
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Given in the last two rows of Table 2 are our calculated
results and available experimental data on the pressure
derivatives of the second-order constants corresponding to
P close to atmospheric pressure. It is seen that our results
agree perfectly with the data.

Figure 2 presents our calculated shear constants ~C44 and
~C 0 as a function of pressure in the pressure range of 0±
600GPa. Both calculationmethods used in this work yield the
same dependences (to within 0.5% for ~C44, and 2% for ~C 0 for
each specific value of P). It is seen that for the elastic constant
~C44 our results compare well with another calculation using
the first-principles pseudopotential of Ref. [19], but strongly
disagree with full potential calculations performed in
Ref. [15]. In the case of ~C 0, our results and those of Refs [15,
19] are virtually the same up to � 200 GPa. At higher
pressures, however, considerable differences are observed
among the results of all the three papers.

It should be noted that the FP-LMTO (full potential
muffin-tin orbitals) method is (as the name suggests) a full-
potential one and is bound to be more accurate than a
combination of the PAW (projector augmented wave) and
GGA (generalized gradient approximation) methods used in
the present work. At the same time, Refs [15, 19] calculated
second-order elastic constants using the energy±infinitesimal
strain relation (when volume is conserved to second order in
e). The resulting values of ~C44 and ~C 0 implicitly contain
contributions from the higher-order expansion terms. Simi-
lar calculations by the present authors using a relation
between energy and volume±conserving infinitesimal strain
(dashed line in Fig. 2b) agree much better with those of
Refs [15, 19].

The calculated values of the third- and fourth-order elastic
constants at P � 0 are presented in Table 3. The first and
second rows represent the elastic constants obtained from the
energy±finite strain and stress±finite strain relations, respec-
tively. Shown are all six of the Cabg's and the three most
characteristic of Cabgd. As seen from Table 3, both methodol-
ogies produce similar results, although the difference between
the corresponding constants is somewhat larger than in the
case of Cab.

Figure 3 presents a plot of ~Cabg as a function of pressure in
the range of 0±600 GPa obtained from the stress±finite strain
relation (the other method yields essentially the same
behavior). It is seen that, over the entire pressure range
studied, the third-order elastic constants are negative and
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their absolute value increases monotonically with increasing
pressure.

The variation of the fourth-order constants with pressure
is shown in Fig. 4. It is seen that in the pressure range of 0±
600 GPa, the constants ~Cabgd are positive. The constant ~C1111

reaches a maximum at P � 200 GPa and then decreases
monotonically. The elastic constants ~C1112 and ~C4444 increase
nearly linearly with increasing pressure.

Because the literature offers no data on the third- and
fourth-order elastic constants of bcc tungsten and their
variation with pressure, the results obtained here are of
undoubted interest.

In our earlier work, similar calculations of second- and
higher-order elastic constants were performed over a wide
range of pressures for bcc vanadium [9], bcc tantalum [27], bcc
molybdenum [28] and hcp ruthenium [29]. To summarize the
results, we have found that in the megabar pressure range the
term containing P in the expression for elastic constants (see
Table 1) has a significant effect on the magnitude of the
constants. This is especially true of second-order constants,
leading sometimes to the `softening' of ~Cab with pressure:
vanadium, ~C44 [9], molybdenum, ~C 0 [28], and, to a lesser
degree, tungsten, ~C 0 (present work). This softening is a
precursor of the elastic phase transition [6].

5. Conclusion

This paper has given definitions for the isothermal and
adiabatic elastic constants of nth order �n5 2� for a loaded
crystal. These constants fully characterize the elastic behavior
of a solid in a loaded state and are determined not only by the
interatomic interactions but also by the external load. For the
case of hydrostatic pressure, twomethodologies are presented
for calculating second-, third-, and fourth-order elastic
constants in the framework of nonlinear elasticity theory,
one of which uses the energy±finite strain relation, while the
other works with the stress±finite strain relation. Both
methodologies were used to calculate the second-, third-,
and fourth-order elastic constants of bcc tungsten over the
pressure range of 0±600 GPa (T � 0 K). Energy and
mechanical stress calculations for different deformations of
a loaded crystal are performed within the framework of the
density-functional theory using the VASP code.

Bothmethods yield similar values for the respective elastic
constants of different orders, the difference not exceeding a
few percent. As pressure increases, the second-, third-, and

fourth-order elastic constants of bcc tungsten increase
monotonically in absolute value. The results obtained agree
well with available experimental and calculated results on the
second-order elastic constants at P � 0, as well as with the
calculations on the pressure dependence of second-order
constants performed by others using the method of infinite-
simal volume-conserving strains. No literature data are
available on the values and pressure derivatives of the third-
and fourth-order elastic constants of tungsten.

Thus, the results of the present work make it possible to
foresee the high-pressure properties of metals. In particular,
information on the behavior of the second-to-fourth-order
elastic constants of solids is necessary when analyzing the
possibility of diffusionless phase transformations (marten-
site or elastic phase transitions) under pressure. Also,
because ~Cabg and ~Cabgd are determined by the third- and
fourth-order effects, their calculation provides a test for ab
initio computer codes based on the density functional
approximation.
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6. Appendices

Appendix A
The further analysis of relation (9) can be facilitated by using
formula (10) to represent the Jacobian J of the variables ri
with respect to the variables Rj as a sum of terms up to the
fourth power of Zi j, giving

Jÿ 1 � J1 � J2 � J3 � J4 ; �A1�
J1 � Z1 � Z2 � Z3 ; �A2�
J2 � Z1Z2 � Z1Z3 � Z2Z3

ÿ 1

2
�Z 2

1 � Z 2
2 � Z 2

3 � Z 2
4 � Z 2

5 � Z 2
6 � ; �A3�

J3 � Z1Z2Z3 � Z4Z5Z6 �
1

2
�Z 3

1 � Z 3
2 � Z 3

3 � Z3Z
2
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2
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6 � ; �A4�
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� Z 2
1 Z

2
2 � Z 2

1 Z
2
3 � Z 2

2 Z
2
3 � Z 2

2 Z
2
5 � �

1

2
�Z1Z 3

2 � Z1Z
3
3

� Z2Z
3
3 � Z 3

1 Z2 � Z 3
1 Z3 � Z 3

2 Z3 � Z2Z3Z
2
6 � Z1Z3Z

2
6

ÿ Z1Z2Z
2
6 � Z2Z3Z

2
5 ÿ Z1Z3Z

2
5 � Z1Z2Z

2
5 ÿ Z2Z3Z

2
4

� Z1Z3Z
2
4 � Z1Z2Z

2
4 ÿ Z1Z2Z

2
3 ÿ Z1Z

2
2 Z3 ÿ Z 2

1 Z2Z3� : �A5�

Here, we used Voigt's notation for the Lagrangian finite
strain tensor components: 11! 1, 22! 2, 33! 3, 23! 4,
13! 5, 12! 6.

Appendix B
DF=V0 is directly found to be

DF1

V0
� ÿP�Z1 � Z2 � Z3� : �B1�

Expressions for the remaining terms in formula (11) depend
on the crystal symmetry. Crystals with cubic symmetry [point
groups ��432�, �432�, �4=m �3 2=m�] have three independent

second order elastic constants Cab, six third-order constants
Cabg, and eleven fourth-order constants Cabgd [22]. The elastic
constants are presented in Voigt notation. As a result, using
relations from Ref. [49], the expressions for DF2ÿ4=V0 for a
cubic crystal can be written out in the form

DF2

V0
� 1

2
C11�Z 2

1 � Z 2
2 � Z 2

3 � � C12�Z1Z2 � Z2Z3 � Z1Z3�

� 1

2
C44�Z 2

4 � Z 2
5 � Z 2

6 � ; �B2�

DF3

V0
� 1

6
C111�Z 3

1 � Z 3
2 � Z 3

3 � �
1

2
C112

�
Z 2
1 �Z2 � Z3�

� Z 2
2 �Z1 � Z3� � Z 2

3 �Z1 � Z2�
�� C123Z1Z2Z3

� C456Z4Z5Z6 �
1

2
C144�Z1Z 2

4 � Z2Z
2
5 � Z3Z

2
6 �

� 1

2
C155

�
Z 2
4 �Z2 � Z3� � Z 2

5 �Z1 � Z3� � Z 2
6 �Z1 � Z2�

�
; �B3�

Table 4.Deformation conditions for a cubic crystal (elastic constants and the components of the finite strain tensor are presented in Voigt's notation).

Deformation Free energy and thermodynamic stress

Z1 � Z * DF
V0
� ÿPZ� 1

2
C11Z 2 � 1

6
C111Z 3 � 1

24
C1111Z 4 ;

t1�Z� � ÿP� C11Z� 1

2
C111Z 2 � 1

6
C1111Z 3 ; t2�Z� � ÿP� C12Z� 1

2
C112Z 2 � 1

6
C1112Z 3

Z1 � Z2 � Z DF
V0
� ÿ2PZ� �C11 � C12�Z 2 �

�
1

3
C111 � C112

�
Z 3 � 1

12
�C1111 � 4C1112 � 3C1122�Z 4 ;

t3�Z� � ÿP� 2C12Z� �C123 � C112�Z 2 �
�
1

3
C1112 � C1123

�
Z 3

Z1 � ÿZ2 � Z DF
V0
� �C11 ÿ C12�Z 2 � 1

12
�C1111 ÿ 4C1112 � 3C1122�Z 4 ;

t1�Z� � ÿP� �C11 ÿ C12�Z� 1

2
�C111 ÿ C112�Z 2 � 1

6
�C1111 ÿ 4C1112 � 3C1122�Z 3

Z6 � 2Z DF
V0
� 2C44Z 2 � 2

3
C4444Z 4 ;

t1 � ÿP� 2C155Z 2 ; t6 � 2C44Z� 4

3
C4444Z 3

Z1 � Z,

Z4 � 2Z

DF
V0
� ÿPZ�

�
1

2
C11 � 2C44

�
Z 2 �

�
1

6
C111 � 2C144

�
Z 3 �

�
1

24
C1111 � C1144 � 2

3
C4444

�
Z 4 ;

t4 � 2C44Z� 2C144Z 2 �
�
C1144 � 4

3
C4444

�
Z 3

Z1 � Z,

Z5 � 2Z

DF
V0
� ÿPZ�

�
1

2
C11 � 2C44

�
Z 2 �

�
1

6
C111 � 2C155

�
Z 3 �

�
1

24
C1111 � C1155 � 2

3
C4444

�
Z 4 ;

t2 � ÿP� C12Z�
�
1

2
C112 � 2C144

�
Z 2 �

�
1

6
C1112 � 2C1255

�
Z 3 ;

t3 � ÿP� C12Z�
�
1

2
C112 � 2C155

�
Z 2 �

�
1

6
C1112 � 2C1266

�
Z 3 ;

t5 � 2C44Z� 2C155Z 2 �
�
C1155 � 4

3
C4444

�
Z 3

Z4 � Z5 � Z6 � 2Z t1 � ÿP� 2�C144 � C155�Z 2 � 8C1456Z 3 ;

t6 � 2C44Z� 4C456Z 2 � 4

3
�C4444 � 6C4455�Z 3

* The remaining components of the énite strain components are zero.
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DF4

V0
� 1

24
C1111�Z 4

1 � Z 4
2 � Z 4

3 �

� 1

6
C1112

�
Z 3
1 �Z2 � Z3� � Z 3

2 �Z1 � Z3� � Z 3
3 �Z1 � Z2�

�
� 1

4
C1122�Z 2

1 Z
2
2 � Z 2

2 Z
2
3 � Z 2

1 Z
2
3 �

� 1

2
C1123Z1Z2Z3�Z1 � Z2 � Z3�

� 1

4
C1144�Z 2

1 Z
2
4 � Z 2

2 Z
2
5 � Z 2

3 Z
2
6 �

� 1

4
C1155

�
Z 2
1 �Z 2

6 � Z 2
5 � � Z 2

2 �Z 2
6 � Z 2

4 � � Z 2
3 �Z 2

5 � Z 2
4 �
�

� 1

2
C1255

�
Z1Z2�Z 2

4� Z 2
5 ��Z2Z3�Z 2

5� Z 2
6 �� Z1Z3�Z 2

4� Z 2
6 �
�

� 1

2
C1266�Z1Z2Z 2

6 � Z2Z3Z
2
4 � Z1Z3Z

2
5 �

� C1456Z4Z5Z6�Z1 � Z2 � Z3� �
1

24
C4444�Z 4

4 � Z 4
5 � Z 4

6 �

� 1

4
C4455�Z 2

4 Z
2
5 � Z 2

5 Z
2
6 � Z 2

4 Z
2
6 � : �B4�

Here, Cab... are the Brugger type isothermal elastic constants
of the corresponding order [see formula (7)] under pressureP.

Appendix C
Using expressions (B1)±(B4) for the change in the free energy
of a cubic crystal under strain and also using the thermo-
dynamic stress relation (12), we find expressions for DF=V0

and ti j for different deformation conditions. Table 4 lists a
number of simple strained states and their corresponding
combinations of elastic constants. The relations listed in the
table allow the total set of second-to-fourth-order elastic
constants to be calculated for a cubic crystal at a given
pressure.
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