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Abstract. We review some aspects of a major unsolved problem
in understanding astrophysical (in particular, accretion) disks:
whether the disk interiors can be effectively viscous in spite of
the absence of magnetorotational instability. A rotational
homogeneous inviscid flow with a Keplerian angular velocity
profile is spectrally stable, making the transient growth of
perturbations a candidate mechanism for energy transfer from
regular motion to perturbations. Transient perturbations differ
qualitatively from perturbation modes and can grow substan-
tially in shear flows due to the nonnormality of their dynamical
evolution operator. Because the eigenvectors of this operator,
also known as perturbation modes, are not pairwise orthogonal,
they can mutually interfere, resulting in the transient growth of
their linear combinations. Physically, a growing transient per-
turbation is a leading spiral whose branches are shrunk as a
result of the differential rotation of the flow. We discuss in
detail the transient growth of vortex shearing harmonics in the
spatially local limit, as well as methods for identifying the
optimal (fastest growth) perturbations. Special attention is
given to obtaining such solutions variationally by integrating
the respective direct and adjoint equations forward and back-
ward in time. The presentation is intended for experts new to the
subject.
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1. Introduction: modal and nonmodal analysis
of perturbations

A salient feature of disk accretion is that it is impossible
without a dissipation mechanism of the differential rotation
energy of matter. It is the internal friction in the disk, i.e.,
irreversible interaction of its adjacent rings, that leads to the
transformation of the gravitational energy of the accreting
matter into heat and electromagnetic radiation, which
simultaneously allows the matter to flow toward the center
and the angular momentum to flow outwards to the disk
periphery.

Direct dissipation is already possible due to the micro-
scopic viscosity of a gas (plasma); however, in astrophysical
conditions, it turns out to be absolutely insufficient for
explaining the observed properties of the disks. Essentially,
the disks are too large for the characteristic accretion time ¢,
to be explained by the microscopic viscosity. For example, in
protoplanetary disks with the typical size L ~ 10 a.u., where
the kinematic viscosity is estimated to be v,, ~ 107 cm? s~!,
the accretion time is #, = L?/v ~ 10'3 years (see Section 3.3.2
in [1]). Apparently, ¢, is several orders of magnitude longer
than the age of the Universe. At the same time, observations
of gas—dust disks around young stars suggest that their
lifetime is as short as only several million years (see, e.g.,
review [2]). A similar conclusion is obtained for hot accretion
disks, in particular, those around black holes in close binary
systems. In this case, for much smaller scales L ~ 10'° cm
and somewhat smaller viscosity of hydrogen plasma v,, ~
10° cm?s~!, we obtain ¢, ~ 3 x 107 years, which, for example,
by many orders of magnitude exceeds the duration of X-ray
Nova outbursts caused by nonstationary disk accretion (see
review [3]).

At the same time, it is known from statistical hydro-
mechanics (see a discussion of the Reynolds equations in [4],
vol. 1, ch. 3) that the presence of significant correlating
fluctuations of velocity components in a flow is equivalent
to the presence of a high effective viscosity that exceeds the
microscopic viscosity, because the mixing scale of matter in
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the flow is much larger than the mean free path of
individual particles. In turn, the high effective viscosity
enhances the angular momentum transfer toward the disk
periphery, thus decreasing ¢, to the observed values. The
perturbations under discussion can be regular in general: for
example, the accretion can be due to tidal waves generated
in the disk by the secondary companion of a binary system
(see [5]). But it is more natural to assume that these
perturbations are generated by turbulence in the fluid. The
turbulence, on the one hand, takes energy from the
rotational motion of matter on large scales, and on the
other hand, via the interaction of perturbation components
with different wave numbers, cascades this energy to small
scales, where its direct dissipation into heat occurs due to
microscopic viscosity.

It is important to recognize that energy transfer from
regular flow to perturbations must be mediated by some
linear mechanism that follows from the dynamics of small
perturbations described by linearized hydrodynamic equa-
tions. This can be rigorously proved for vortex fluid motion
using the Navier—Stokes equations (see [6], Section 1.4, as
well as [7]). Therefore, the first natural step in the theoretical
study of turbulence generation in some (stationary) flow is to
search for exponentially growing linear perturbations on a
steady-state background. Such perturbations are usually
referred to as modes, and the corresponding analysis is
called the modal or spectral analysis of perturbations,
because it is used to determine eigenvalues of the corre-
sponding dynamical operator of the problem, the (complex)
mode frequencies. Turbulence arising from growing modes is
called supercritical. In astrophysical flows with Keplerian
angular frequencies, the spectral (magneto-rotational)
instability and the corresponding supercritical (MHD)
turbulence have been found in analytic and numerical
calculations [8—10] (see also reviews [11, 12]) for disks with
a frozen seed magnetic field. But the magneto-rotational
instability does not operate in cold low-ionized disks.
Protoplanetary disks, accretion disks in quiescent states of
cataclysmic variables, and the outer parts of accretion disks
in active galactic nuclei provide examples. Hence, it would be
very important to show that differential rotation alone is
capable of exciting turbulence in Keplerian disks. This
property of Keplerian flows is universal, unlike the presence
of a seed magnetic field together with a sufficiently high
degree of ionization of matter, or the existence of flow
inhomogeneities due to a vorticity jump (see, e.g., [13]), or
the appearance of radial velocity gradients (see [14]) or of
vertical and/or horizontal gradients of some thermodynamic
values (see, e.g., [15, 16]).

But the generation of turbulence in a homogeneous
Keplerian flow without a magnetic field remains question-
able so far. The main difficulty here is that such a flow is
spectrally stable: the specific angular momentum for Kepler-
ian rotation increases with the radial distance from the center;
therefore, according to the Rayleigh criterion ([17] and [18],
vol. 6, paragraph 27), the growth of axially symmetric modes
is impossible; in turn, nonaxisymmetric modes cannot grow
because the necessary Rayleigh condition for the existence of
an extremum of vorticity in a background flow [19, 20] is not
satisfied. Nevertheless (as follows from laboratory experi-
ments and numerical simulations), turbulence arises in
spectrally stable flows as well. In this case, it is called
subcritical. A planar Couette flow provides the simplest and
most prominent example (see classic monographs [21, 22]).

In the theory of hydrodynamic stability, the transition of
some flow (with nonzero microscopic viscosity) to a turbulent
state is usually characterized by a set of critical Reynolds
numbers Re (see Section 1.3.2 in [6]). The smallest of them is
the number Reg such that at Re < Reg there are no initial
perturbations, irrespective of their amplitudes, whose energy
would grow at the initial instant ¢ = 0. Reg can be derived
from the Reynolds—Orr energy equation (see Section 1.4
in [6]). For the Couette flow, Reg ~ 20. For Re > Reg,
perturbations initially growing at ¢t = 0 arise, but as long as
Re < Reg, again, there are no initial perturbations with any
amplitude that would not decay as ¢t — oo. This is the
definition of the second critical number Reg > Reg. Finally,
at higher values Re > Reg, perturbations that can sustain
their amplitude at all times appear, and starting from some
Ret > Reg, the transition to a turbulent state is experimen-
tally observed. For the Couette flow, Rer ~ 360. The largest
of the critical Reynolds numbers is Rep, > Rer, starting from
which growing modes arise, i.e., the flow becomes spectrally
unstable. For the Couette flow, as well as for the Keplerian
flow of interest here, Rep = oo. However, the Keplerian flow
is different in that the value of Reg is currently unknown and
Ret has not been measured, either theoretically or experi-
mentally.

On the one hand, the general opinion emerged that for
Keplerian flows, Reg = Rer — oo. It is based on the indirect
argument that (locally) the action of the tidal and Coriolis
forces on a perturbation, which are absent in the Couette
flow, strongly stabilizes the shear flow (see Fig. 9 in [11],
where the results from [23] are shown). This conclusion is
supported by local numerical simulations [24, 25] and a series
of laboratory experiments [26-28], in which the stability of a
quasi-Keplerian flow was observed up to Re = 2 x 10°. Here,
we assume the quasi-Keplerian flow to be the so-called anti-
cyclonic flow (see, e.g., the definition in [29]), where the
specific angular momentum increases and the angular
velocity, in contrast, decreases toward the periphery.!

On the other hand, in a cyclonic flow, subcritical
turbulence is observed at finite, albeit large, values of Rer;
see [30, 31] on experiments with a spectrally stable Taylor—
Couette flow, as well as their analysis in the astrophysical
context in Zel’dovich’s paper [32] and later in [33]. In
addition, the negative results obtained in the numerical
experiments mentioned above can be explained by insuffi-
cient numerical resolution, as discussed in [34]. In a sub-
sequent paper [29], the dynamics of perturbations in cyclonic
and anti-cyclonic flows were compared numerically. It was
concluded that the required numerical resolution in the
second case is much higher than in the first case, and current
computational power is insufficient to discover turbulence in
a Keplerian flow; it is also impossible to argue that the
stabilizing action of the Coriolis force in this case rules out
the existence of a finite value Rer < oo. Last, another
laboratory experiment presented in [35, 36] shows the
appearance of subcritical turbulence and angular momen-
tum transfer to the periphery of a quasi-Keplerian flow. The
contradictory results claimed by different experimental
groups show the complexity of the experiment due to the
inevitable secondary flows induced by experimental tools.
Presently, the influence of axial boundaries on laboratory
flow is being discussed (see [37, 38)).

"'In a cyclonic flow, both these quantities increase with the distance from
the center.
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Anyway, it can be stated that of all types of homo-
geneous rotating flows, quasi-Keplerian (anti-cyclonic)
flows are the most stable with respect to finite-amplitude
perturbations. Nevertheless, the smallness of microscopic
viscosity in the astrophysical conditions mentioned above
simultaneously means that huge Reynolds numbers should
exist in the disks: for example, for the protoplanetary disk
discussed above, taking the thickness H ~ 0.05L = 0.5 a.u.
as the natural limiting scale of the problem, which
corresponds to the sound velocity in the disk at this radius
cs ~ 0.5 km s7!, yields Re =~ 10'°. In other astrophysical
disks, Re can be even higher. Apparently, considering all
negative results, there are still several orders of magnitude
for the possibility of turbulence in astrophysical Keplerian
flows: 10 < Rer < 10'°.

Searches for the critical value of Ret for Keplerian flows
continue, and in this paper we discuss in detail the necessary
condition for turbulence and/or the transfer of extra angular
momentum to the disk periphery — the transition of energy
from the regular flow to perturbations in such a flow. As
mentioned above, this transition must be mediated by a linear
mechanism. Because the Keplerian flow is spectrally stable,
only (small) perturbations different from modes can provide
such a mechanism. The existence of such transiently growing
nonmodal perturbations in shear flows was already suggested
by Kelvin [39] and Orr [40, 41]. In astrophysics, this problem
was studied in stellar dynamics (see [42, 43]). However, in the
context of hydrodynamic stability, the rigorous treatment of
such perturbations and methods for determining them were
elaborated only in the 1990s and were called the nonmodal
perturbation analysis. To stress the inapplicability of the
traditional modal analysis here, the corresponding concept
of the transition to subcritical turbulence due to transient
perturbation growth was called the bypass transition. The
nonmodal analysis of perturbations was formulated in [44—
47] (see also reviews [48, 49] and book [6]). These papers
showed that the nonmodal growth is mathematically due to
the nonorthogonality of perturbation modes. If modes with a
physically motivated norm are not orthogonal to each other,
their linear combinations can grow in norm even if each
separate mode decays, as in a spectrally stable flow (see Fig. 5
in Section 3.1). In turn, the modes are nonorthogonal due to
the nonnormality of the linear dynamical operator governing
the perturbation evolution (see the introductory information
about the operators in the same section). A nonnormal
operator does not commute with its adjoint operator, which
is due to a nonzero velocity shear in the regular flow (see the
concluding part of Section 3.4 below for more details). Here,
the higher Re is, the higher the degree of nonorthogonality of
modes to each other and, correspondingly, the greater the
probability of transient growth. Papers mentioned above
argue that the maximum possible transient growth of
perturbations by a fixed time, called the optimal growth, is
determined by the norm of a dynamical operator; this norm
can be obtained by calculating singular vectors of the
operator (see Section 3.1 for the details). Finally, the
operator norm is closely related to the notion of the operator
pseudospectrum (see [48] and book [6]).

Later, this method was applied to astrophysical flows in
[50-52], where different models were used to search for
optimal perturbations demonstrating the optimal growth. In
particular, it was shown that for the Keplerian velocity
profile, the growth can be substantial only starting from
Re ~ 10°, while in a similar setup for an isomomentum

profile and the Couette flow, the growth starts already at
Re ~ 103 (see the discussion in [52]). Here, papers [53, 54]
should also be mentioned, which discuss the transient
dynamics in the spectrally stable Taylor—Couette flow and
include both cyclonic and anti-cyclonic regimes. In [53], a
correlation was discovered between the experimentally
obtained stability boundary in a laminar flow (see [55]) and
the optimal growth value; it was found in [54] that for the
same Re number, the transient growth is minimal in the quasi-
Keplerian regime. Using the correlation from [53], the
authors of [54] estimated Rer ~ 10° for the quasi-Keplerian
regime. As in the numerical experiments [23-25] mentioned
above, the effective Re caused by numerical viscosity was
barely above ~ 10*—10%; it is not surprising that the
Keplerian profile was stable against perturbations in these
studies.

In addition, presently, there are many astrophysical
studies of the transient growth of local perturbations by the
Lagrangian method, where the transformation to a reference
frame comoving with the shear is done, and separate shear
harmonics are considered (see Section 2.2). It was found that
in the local space limit, there always exist vortex shear
harmonics with transient growth that at the instant of swing
(see Section 2.2) can emit different wave shear harmonics
(depending on the account for the compressibility or some
inhomogeneities in the flow), which also demonstrate non-
modal growth [56-68].

Finally, in [69, 70], the nonlinear transient dynamics of
three-dimensional perturbations was investigated with the
global structure of the flow taken into account in the model of
a geometrically thin disk with a-viscosity. As in [50], these
papers discussed the possibility of exciting nonmodal pertur-
bations by weak turbulence already present in the disk, which
gives rise to low effective viscosity parameterized by the
o parameter. In Section 2.3, we also consider the influence of
the effective viscosity on the transient growth of vortices with
different scales relative to the disk thickness. Hence, the
transient growth of perturbations can be discussed not only
in the context of the bypass transition of a laminar flow to
turbulence but also as a mechanism to enhance the angular
momentum transfer in a disk with pre-existing weak turbu-
lence producing low viscosity. In the last case, this turbulence
can be mathematically treated as an external stochastic
perturbation in a shear flow, which transits to a quasi-
stationary state with a significant increase in the amplitude
of perturbations due to the nonnormality of the linear
operator governing their dynamics (see [50]).

The purpose of this paper is to consider the transient
growth phenomenon in detail using the simplest example of
two-dimensional adiabatic perturbations in a homogeneous
rotating shear flow with a quasi-Keplerian angular velocity
profile. In Section 2, we present an analysis of shear vortex
harmonics that are responsible for the transient growth in a
spatially local treatment of the problem, and discuss the
mechanism of perturbation growth using them as an exam-
ple. Sections 3 and 4 are mainly devoted to methods for
studying nonmodal perturbation growth and to searches for
optimal perturbations with maximum growth. Two methods
for obtaining the optimal growth curve are presented: a
matrix one and a variational one. The variational method is
less in use, especially in astrophysical studies (see [71]);
however, it is essentially more universal than the matrix one.
For example, using this method, we here calculate one
optimal transient perturbation in a geometrically thin quasi-
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Figure 1. Contours of the most unstable perturbation mode with the azimuthal wave number m = 2 in the model of a quasi-Keplerian thin disk described
in Section 3.2. Parameters of the calculation: the characteristic disk aspect ratio 6 = 0.3, the inner and outer boundaries are at r; = 1 and r, = 4, the
polytropic index of matter is n = 3/2. The mode increment and phase velocity are Sw] 2 0.001 and R[w] ~ 0.26. Shown is the time (in units of the inverse
Keplerian frequency at the inner disk edge) after the conventional moment when the mode has the unit amplitude. The arrow shows the rotational
direction of matter in the disk. The calculation method is described in Section 4.2.
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Figure 2. Contours of the m = 2 perturbation demonstrating a maximum possible transient growth of acoustic energy at the time #,p, = 10 measured from
the beginning of the perturbation evolution in units of the inverse Keplerian frequency at the inner disk edge. The initial perturbation conventionally has a
unit amplitude; the model of the flow is the same as in Fig. 1. The calculation method is described in Section 4.2.

Keplerian flow with free boundaries (Fig. 2) and the most
unstable perturbation mode (Fig. 1), which we discuss in
detail in the concluding part of Section 4.2. A comparison of
Figs 2 and 1 shows that these two types of perturbations are
indeed qualitatively different: the transient spiral is wound up
by the flow and its amplitude increases, while the modal spiral
rotates as a solid body and demonstrates a monotonic but
very weak growth because of a low instability increment.
Here, the phase velocity of the modal spiral is such that its
corotation radius, at which the energy is transferred from the
regular flow, lies inside the flow.

2. Analytic solution for two-dimensional vortices

2.1 Adiabatic perturbations in rotational shear flow

We first consider the dynamics of small adiabatic perturba-
tions in a perfect fluid with an isentropic equation of state.
Perturbations are described using the Euler approach, i.e., in
terms of variations of physical quantities such as the density
p, the velocity v, and the pressure p at a given point in space at
a given time in the perturbed flow relative to the unperturbed
background.> We assume for simplicity that there are no
entropy gradients in the fluid. In the right-hand side of the

2 See [72] concerning applications of hydrodynamics to astrophysical
problems, in particular, the application of the theory of hydrodynamic
perturbations.

Euler equations, it is then convenient to pass from the
pressure gradient to the enthalpy gradient. Indeed, at
constant entropy, the enthalpy differential per unit mass is
dh=dp/p (see [73]), and this is valid in both the back-
ground and perturbed flows. For Euler perturbations, we
thus obtain 8(Vp/p) = Voh. Using this relation, we write
equations for 8p, 64, and dv (see also [18], paragraph 26) in
the form

% + (vV)dv + (dvV)v = —Vonh, (1)
Gl
a_tp + V(pdv) +V(Spv) =0, (2)

where we assume that v and p are the velocity and density in
the unperturbed background flow, which itself can evolve in
time. Equations (1) and (2) are linear because the perturba-
tions are small and all quadratic terms are omitted.

2.2.1 The model and basic equations. To write the correspond-
ing equations for scalar quantities, we specify the model we
wish to consider to illustrate the transient dynamics. First of
all, we assume that the background flow is stationary and is
purely rotational; this condition is satisfied well in astro-
physical disks. This implies that the flow is axially symmetric,
and it is convenient to use a cylindric coordinate system
(r, @, z) in which the velocity has only the azimuthal nonzero
component, v = (0,v,,0). Below, we also use the angular
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velocity of the flow Q = v, /r. It is important to note that the
isentropicity of the fluid (which is a particular case of
barotropicity) immediately implies that v, and € depend
only on the radial coordinate (see [74], paragraph 4.3). At the
same time, the density in Eqns (1) and (2) is a function of both
rand z: p = p(r,z). The case of a geometrically thin disk,
where H(r)/r < 1 and H is the disk half-thickness, is the most
common. This assumption is useful in finding how the density
p changes with the height above the equatorial disk plane. We
use the hydrostatic equilibrium condition in the background
flow,

oh

=2z, 3)
where the right-hand side is the vertical acceleration of gravity
due to the central gravitating body around which the disk
rotates. This acceleration is written here ignoring quadratic
corrections in the small parameter z/r. Integrating (3) with
the condition h(z = H) =0 yields the vertical enthalpy
distribution

(QH)* <1 - 2—22) . 4)

Next, due to the constant entropy assumption, p o« p’,
where y = 1 + 1/n is the adiabatic index of matter written in
terms of the polytropic index n. This means that the square of
the sound velocity in the background flow is > = yp/p, and
the density is mainly dependent on z as follows:

z? z2\"
a2o<<l—m>, poc(l—m> . (5)

Finally, for simplicity, we consider only perturbations in
which dv is independent of z. Generally, this very strong
assumption needs a justification. In particular, it is relevant
to ask: if we take initial perturbations with such a property, is
it conserved in further evolution, and if not, how rapidly is
this assumption violated? The answer depends on the vertical
disk structure. For example, it was shown in [75] that in the
particular case of an isothermal vertical density distribution
(n — 00), small perturbations with a velocity field homo-
geneous in z are exact solutions of Eqns (1) and (2). In the
more general case with a finite n, this is no longer the case;
however, for example, three-dimensional simulations of
barotropic toroidal flows indicate that the most unstable
perturbations there weakly depend on z (see [76]). This can
be related to the fact that when the angular velocity is
independent of z, the Reynolds stresses, responsible for the
energy transfer from the main flow to perturbations, do not
depend on the vertical component of the velocity perturba-
tion [77, 78]. Finally, a three-dimensional study of the
transient dynamics of vortices in a Keplerian flow [51] also
shows that the most rapidly growing perturbations in a
vertically nonstratified medium are almost independent of z
(see also [54]). Now, considering the vertical, radial, and
azimuthal projections of (1), we see that our assumption
implies the independence of 6/ from z, and therefore the right-
hand side of the vertical projection of (1) vanishes. Then, if we
additionally assume that initial vertical velocity perturbations
are absent, v, = 0, they do not appear later. Therefore, in the
perturbed flow, as well as in the background flow, vertical
hydrostatic equilibrium occurs. It can be shown that the
assumption of vertical hydrostatic equilibrium in the per-

h=

l\Jl'—‘

turbed flow is equivalent to the assumption that the velocity
perturbation field is homogeneous in z (one assumption
always follows from the other). On the other hand, if the
fluid is not isentropic and there is a radial entropy gradient in
the disk, the simplifying assumptions made above are not
sufficient to set dv. to zero.

Thus, we come to the conclusion that we can deal with a
flat velocity perturbation field, i.e., v = {dv;, dv,,0}, with
dv, and dv,, like 6/, being dependent on the radial coordinate
only. However, it is important to emphasize that this is not the
case with dp that enters continuity equation (2). Here, it is
convenient to use the relation between the pressure and
density variations in an isentropic fluid, dp = a* dp, which is
a consequence of the barotropic equation of state. Due to the
universal character of this relation, small Eulerian perturba-
tions are related in the same way, i.e., Op = a26p, where a is
the speed of sound in the background flow. Consequently,

P
8p = 25 oh, (6)

and this expression can be substituted in (2), after which only
background quantities in (2) depend on the radial coordinate.
When integrating Eqn (2) in its new form over z, we should
keep in mind that

T4 T(n)  p

| &= Vi iy e, 7
I'n+1)

J_ pdz=2 = Vr oSy P

where we use relation (5) and introduce the surface density 2.

Using the fundamental property of the gamma-function
I'(z+ 1) = zI'(z) in (2), we can explicitly write the system of
equations (1), (2) for azimuthal complex Fourier harmonics
dvy, vy, 8h o exp (img):

0dv, 06h
a[ = —lmQS’U, —+ ZQS’U(p — E s (8)
0dv, K2 . im
o1 = _E 61}, lmQSU(/, — 7 8/’1, (9)
0dh a? o ima*2 .
T 12 a (rZdv,) — . dv, — imQdh, (10)
wherea? = na (n + 1/2) and a.q is the background speed of

sound in the equatorial disk plane. In addition,

2= (2Q/r)d(Qr?)/dr is the square of the epicyclic fre-
quency, i.e., the frequency of free oscillations of the fluid in
the (r, @) plane, as can easily be verified by writing (8) and (9)
for 84 = 0 and substituting the solution dv,, dv, o exp (—iwt)
there. We note that reducing the three-dimensional problem
to an effectively two-dimensional one in a thin disk can clearly
be performed by simply replacing the volume density with the
surface density and the polytropic index with n + 1/2 in the
original equations that are not integrated over z, as was first
shown in [79].

2.1.2 Types of perturbations. System of equations (8)—(10)
describes the dynamics of two types of perturbations inside a
disk that are possible in the two-dimensional formulation of
the problem: vortices and density waves.> The separation
between them for transient perturbations is described below
in the local problem setup, which allows giving a simpler

3 Density waves are also frequently referred to as inertial acoustic waves.
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physical interpretation of the behavior of perturbations in a
differentially rotating flow. In addition, when there are free
radial boundaries in the background flow (for example, in a
disk of a finite radial extension such that X vanishes and the
shear acquires a super-Keplerian angular velocity gradient at
some inner and outer radii), surface gravity waves arise near
the boundaries (see [80—82]). This occurs because the presence
of any significant radial pressure gradient in the flow is
equivalent to a nonzero gravitational acceleration, which
gives rise to waves similar to ocean waves running over free
surfaces (or radial density jumps).

2.1.3. Perturbation modes. These types of perturbations were
studied in detail in the 1980s by the spectral method, where
system of equations (8)—(10) was solved for particular
temporal Fourier harmonics  exp (—iwt), called modes (see
reviews [83, 84]). In this analysis, the local dispersion relation
gives only real values of w in all astrophysically important
cases where Q(r) is such that the specific angular momentum
Qr? increases with the radius outwards. This implies a local
stability of the disks and prohibits exponential growth of
small-scale perturbations, which also agrees with the well-
known Rayleigh criterion in the particular case of axially
symmetric perturbations (see paragraph 27 in [18]). Unlike
this case, the global setup of the problem for axially
nonsymmetric modes, when the system of differential equa-
tions for the radial coordinate with the corresponding
boundary conditions at the inner disk radius and at infinity
(or at the outer disk boundary) is to be solved, yields a discrete
set of w, possibly including complex frequencies (see, e.g., [81,
82, 85-91]). The nonzero real part of the frequency corre-
sponds to the angular velocity of solid-body rotation of a
given mode in the flow. Generally, the solid-body azimuthal
motion of a constant-phase contour of perturbations with the
same azimuthal velocity R[w]/m at all r is the main feature of
modes that distinguishes them from other perturbations.
Here, 3 denotes the real part of a frequency . A nonzero
imaginary part of the frequency, $[w], means that the
canonical energy and angular momentum (see [92]) are
exchanged between this mode and either the background
flow [87, 93-95] or the mode with (canonical) energy with the
opposite sign [82, 96, 97]. In the literature, the first mechanism
is also referred to as the Landau mechanism, and the second
one as mode coupling. The energy exchange is resonant in
both cases, i.e., always occurs in the so-called critical layer at
the radius where = mR[Q], which is called the corotation
radius. We refer the reader to [98] for a detailed discussion of
the physics of these resonant mechanisms of mode growth
(decay). Nevertheless, in flows with almost Keplerian rota-
tion, both mode coupling and their interaction with the
background occur extremely slowly, and the corresponding
increments, even for a large disk aspect ratio H/r ~ 0.1, is
only one hundred thousandth of the characteristic Keplerian
frequency [99, 100]. This result led to the conclusion that at
least in the simplest barotropic disks, the modes cannot
underlie any hydrodynamic activity and, in particular,
cannot induce turbulence or another variant of enhanced
angular momentum transfer to the flow periphery.

2.1.4. Measuring the perturbations. To conclude this section,
we discuss the problem of measuring the perturbations. In
this paper, we are interested in how strongly some perturba-
tions can grow in a given time interval. To describe this
quantitatively, it is necessary to introduce a norm of

perturbations that would characterize the amplitude of duv,,
dv,, and Ok at a given time. It must be a real and positive
definite quantity. The total acoustic energy of the perturba-
tion in the disk

Sh?
EZRJZ<|5U,~|2+|8v(p|2+| | >"d", (11)

a;
where we integrate over the azimuthal coordinate, is the most
natural choice.

After taking the derivative of (11) with respect to time and
using (8)—(10), we obtain (also see expression (8) in [97])

)

dE dQ . X
Frl —2n J@ rZ R[ov,6v,] rdr — 2nrX R[dv,5h"]

Iy,

(12)

where the symbol * denotes complex conjugation and r; and
ry are the respective inner and outer boundaries of the flow.
Here, r, can be at infinity. Because ¥ — 0 at the flow
boundaries, the second term in the right-hand side of (12)
vanishes, and we see that E can change exactly in a
differentially rotating body. Without rotation or for solid-
body rotation, E remains constant in time. It is important to
note that the increase/decrease in £ would imply that the
average of the flow amplitudes dv,, v, and 6/ also increases/
decreases, because (11) contains squared moduli of these
quantities taken with the same signs. For modes, Eqn (12)
implies that

dE x exp (2[w]?),

T (13)

i.e., small increments obtained for quasi-Keplerian flows
allow us to conclude that the total acoustic energy of modes
there is E~const on dynamic (~Q7!) and sound
(~ (QH/r)™") time scales.

Our task is now to understand how E can change over the
same time intervals for arbitrary perturbations. To summar-
ize, introducing the perturbation vector q(¢) as the collection
of functions {dv,(r), dv,(r),8h(r)} taken at some time 7, the
norm of the perturbation can be chosen as

la0)|* = E(). (14)

2.2 Local approximation: transition to shear harmonics
The easiest solution of the problem formulated above can be
obtained in the local space approximation, where the
characteristic scale of perturbations A is assumed to be a
small fraction of some fiducial radial coordinate ry around
which the dynamics of perturbations are studied, A < ry. We
introduce the new radial variable x = r — 1y < rg and the new
azimuthal variable y = ro(¢ — Qo?) < ro, where Qy = Q(ro) is
the angular velocity of rotation of the new coordinate system.
In Eqns (8)—(10), only leading terms in small x are retained. In
practice, this means that only the dependence linear in x
should be taken into account in the angular velocity profile,

dQ
Q=— X:—q90£<907
dX o "o

(15)
where ¢ = —(r/Q)(dQ/dr)|,_,, and Q(x = 0) = 0 because we
are working in the frame rotating with the angular velocity
Qy. The corresponding linear background velocity is
U}{oc = l’()Q = —q.Q()X.
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Next, in the right-hand side of Eqns (8)—(10), we keep only
terms through the order ~ x/A and drop the terms ~ x/r¢ and
smaller terms. For clarity, we also write the coefficient before
dv, in the term in (9) that includes r 2:

K2 dQ x 9<%
—Ef—ZQ—rm—ZqQQ %‘i’(lo"’X)T
X
= 3q9Q r——|—qQO.
0

It suffices to take only the term ¢€, into account. Next,
bearing in mind that the new reference frame is not inertial, it
is necessary to add the perturbed Coriolis force components
2Qy6v,, to the right-hand side of (8) and —2Q(6v, to the right-
hand side of (9).

After substituting im — 0/0¢ in system (8)—(10), i.e., after
returning to an arbitrary dependence of the Eulerian
perturbations on ¢ and letting u,, u,, and W denote the
local analogs of perturbations of the velocity components, we
arrive at the equations

0 0 ow

(& — qQO.X a-y) Uy — 2901/ly = —a s (16)
0 0 ow

(& — qQOX a) uy + (2 — q)Q()Mx = —a y (17)
d o ) (ou, | du

System of equations (16)—(18) was first derived in [42] (see
also [102]), where it is described for different background flow
models.*

2.2.1 Transition to shear harmonics. A very convenient
property of system of equations (16)—(18) is that by a
change of variables corresponding to the transition to the
co-moving shear reference frame, it is possible to make it
homogeneous in both x and y, which, in turn, allows
separating arbitrary perturbation into individual spatial
Fourier harmonics (SFHs) with certain wave numbers k.
and k,. We introduce new dimensionless variables x' =
Qox/a., y' = Qy(y + qQoxt)/a., and t' = Qut.> Such a sub-
stitution corresponds to changing the partial derivatives as
a, 0 0 , 0 a, 0 0
__:_+qt_7 N AL T A
Qy 0x Ox' oy’ Qy 0y Oy’
4 0 0

[ p— /—_
O a T o T oy

(19)

Using (19), we obtain a system of equations in which all
coefficients depend only on ¢'. In this system, we now
substitute the SFHs written in the form

J=F (ks ky, o) exp (ikx' + ikyy'), (20)
where f is any unknown variable, f is its Fourier amplitude,
and k, and k, are dimensionless wave numbers along axes x’
and y’, expressed in units €/a.. Changing back to the
variables x and y in particular solutions (20) reveals that

4 Even earlier, in the context of lunar dynamics, the local approach was
used by Hill to study the motion of matter [101].

S Due to the vertical hydrostatic equilibrium in the disk, this means that we
express length in units of the disk half-thickness H = a../Qy.

they represent perturbations periodic in space whose phase
forms a plane front with the orientation depending on time
for k, # 0. The dimensionless wave number along x has the
form ky(f) =k, + gk,t and changes with time: the wave
vector turns during advection by the shear flow, which was
first noted by Kelvin [39] and Orr [40], and that is why the
SFHs are often called shear harmonics. We note from the very
beginning that for k, < 0, the wave vector is directed to the
interior of the disk, and on the global scale for Fourier
harmonics with a wave number m, this corresponds to the
so-called leading spirals, whose arms are turned to the disk
rotation direction. Conversely, the case k,, > 0 corresponds to
the trailing spirals, whose arms are turned oppositely to the
disk rotation. If k, < 0 at the initial instant, the arms of the
initially leading spiral are deformed and shortened by the
flow, and then the so-called swing moment 5 occurs when the
wave vector of the SFHs is strictly azimuthal and k. (¢) = 0,
after which the spiral becomes trailing, and its arms start
stretching due to their deformation by the flow (see Fig. 2).
This process is well known in the dynamics of stellar galactic
disks (see paragraph 6.3.2 in [103]).

Thus, for the SFHs, we arrive at the system of ordinary
differential equations

dux_zA .~ .

T = Zuy — lkx(t)W’ (21)
da, ik Wi

7:_(2—(])ux_lk}’W’ (22)
ds

%V — i (ku(0)ity + Kyt >

where 4, and i, are expressed in units @, and W in units a?.
Here and below, we omit the prime for the time variable
notation.

2.2.2 Potential vorticity. Equations (21)—(23) have an impor-
tant property: the quantity

I =ky(0)ity — kyity +1(2 — q) W (24)
is an invariant of motion, as can be easily verified by the direct
calculation of d//dz.

It turns out that I (up to the factor i) is an SFH of the
Eulerian perturbation of a potential vorticity. The potential
vorticity {, which is by definition the vorticity itself divided by
density, { = o/p (see [104]), is conserved in all fluid elements
in planar barotropic flows. Therefore, for its Eulerian
perturbation, we have

g\ ddg B
5(5) =g T (W) =0,

(25)
where {, is the potential vorticity of the background flow.
Because the velocity fields are planar in both background
and perturbed flows, the vorticity has only one nonzero
component, the z component, which we consider a scalar in
what follows.

Next, by definition (in a nonrotating cylindrical coordi-

nate system), the potential vorticity in the background flow is
2

no K _(2-99

U T A (26)

and must be constant in the local space approximation in use,
because the velocity shear is then constant [cf. (15)]. There-
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fore, the second term in the last equality in (25) vanishes, and
we see that 6( is indeed conserved. Clearly, the first two terms
in (24) arise due to a perturbation of the vorticity itself, which
is equal to the curl of the velocity perturbation, and the third
term emerges due to a nonzero density perturbation repre-
sented by the dimensionless quantity W [the coefficient 2 — ¢
here arises due to multiplication by a constant background
vorticity; cf. (26)].

2.2.3 Inhomogeneous wave equations. Density waves and
vortices. We now differentiate Eqn (22) with respect to ¢ and
use the relations following from the other two equations, (21)
and (23), as well as the definition (24), to obtain the new
equation
2~
% +K(D)iay = k(1)1

(27)
where K(1) = k2(1) + k}+2(2 - q). It follows that (27) is a
decoupled wave equation for the azimuthal velocity compo-
nent perturbation iy, with the inhomogeneous part ~ I[62].

In a similar way, from (21) and (23), we derive two
equations of the same type:

d?i, e

T K(t)ir, + 2igk, W = —k, I, (28)
dw s Yok — 0

W —+ K(t) W+ 21q yux = —2,1[7 (29)

which can be decoupled by changing the variables as
i = (it = W) /2 [64].

We consider Eqn (27), for example, in more detail. Its
general solution is the sum of the general solution of the
corresponding homogeneous equation and a particular
solution of the inhomogeneous equation. We first consider
both these solutions in the solid-body rotation limit, i.e.,
without the shear, ¢ = 0. Then all coefficients in (27) become
constant and

e the homogeneous equation has particular fundamental
solutions ﬁfw o exp (Fiwr) with the frequency o = VK,
corresponding to density waves propagating in opposite
directions,

e a particular solution with the nonzero right-hand side
can be taken as the constant i) = (k,/K) I. In other words,
u, corresponds to the zero frequency @ = 0 and represents a
static perturbation. This perturbation, as we can see, has a
nonzero vorticity and corresponds to a vortex (it can be
shown that the divergence of the velocity perturbation for this
solution vanishes by taking a similar solution for #, from
equation (28), iy, and verifying that ki) + kyu, = 0).

2.2.4 Amplification of density waves. With a nonzero shear
taken into account, the density wave frequency becomes a
function of time. For example, for leading/trailing spirals, this
frequency gradually decreases/increases with the simulta-
neous wavelength increase/decrease, which in the absence of
viscosity leads to a monotonic decrease/increase in the energy
and amplitude of the density waves. Such a growth of the
density wave amplitude was studied in [58, 105]. The reason
can be understood from the fact that due to the axial
symmetry of the background flow, the canonical angular
momentum of the wave, J., must be conserved (see [92]).
Hence, we find that in accordance with Eqn (522) in [92], the

canonical energy E. ~ wJ., linearly increases after from some
sufficiently late time, because w =K (see above). The
conservation of J; for the local perturbation considered here
is discussed in paragraph 3.2 in [64]. Unlike J., the canonical
energy itself is no longer conserved in this case because the
time-dependent frequency makes the problem inhomoge-
neous in time. This growth of (or decrease in) the energy,
despite the wave frequency o involved here, is already
essentially nonmodal because w is a function of time, which,
in turn, is connected exactly to the deformation of SFHs by
the shear flow.

In this paper, however, we are more interested in the
‘classic’ variant of nonmodal growth, which is called
’transient’ in the literature. In the simplest model considered
here, it is represented by the vortex solution, which for ¢ # 0
becomes dynamical and, in contrast to waves, is aperiodic.

2.2.5 Vortex existence criterion. Before discussing the beha-
vior of the vortex solution in detail, we analyze the
justification of the separation of perturbations into waves
and vortices made above in the presence of a shear. Indeed,
immediately after k, becomes variable, the solution ﬂ}Y no
longer satisfies Eqn (27) exactly because a nonzero second
derivative of u; appears. Moreover, as k, — 0, Eqn (27)
becomes homogeneous in the limit, and its solution describes
density waves only. The region in which k, — 0 corresponds
to the swing of the SFHs, and we thus see that the vortex
solution there becomes ill-defined: the vortex must share wave
properties. This means that we can no longer neglect the
second time derivative in Eqn (27) for slowly evolving
solutions. In other words, 12}" cannot be considered a solution
of Eqn (27), even approximately. We discuss the criterion of
the possibility of the decoupling of density waves and vortices
in a shear flow in more detail.

For this, we use the fact that the vortex dynamics are
possible only in subsonic flows (see [18], the end of paragraph
10). In the considered case of an infinite flow, this means that
the difference in the fluid velocity on the characteristic scale of
the problem must be smaller than the sound velocity. The
characteristic spatial scale is determined by the instant spatial
period of the SFHs in the radial direction, A, ~ H|kx|71.
Because infinitesimal perturbations are considered here, its is
sufficient to apply the condition of the vortex dynamics for
the background flow, and then the velocity difference is given
simply by the change in the flow azimuthal velocity; for a flow
with constant shear, we thus obtain

A 4y (30)
s |kV|

Hence, the spatial radial period of the vortex harmonics must
be smaller than the disk thickness. It is important to note that
condition (30) does not directly contain the azimuthal wave
number k,, and hence perturbations can be vortex-like even if
their azimuthal spatial scale exceeds the disk thickness. In this
connection, it is very important to consider the case of the
initially leading spirals, i.e., SFHs with k, < 0. For such
spirals, the swing occurs at

(31)

i.e., when IEX = 0. Clearly, if the initial spiral is vortex-like,
and therefore k, > 1, and its evolution is initially described by
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an approximate solution #", then the vortex approximation is
invalid in some time interval around #,, and the full equation
(27) must be integrated. We call this time interval ‘the swing
interval” and obtain the condition under which its duration is
much shorter than the characteristic time of evolution of the
SFHs determined by the time of the spiral unwinding, f
(see [71]).

The instant at which the vortex approximation breaks
down can be estimated from the limit case of the equality in
condition (30):

q
lSl«,SZ = [S<l :l:k_\> 5

whence we see that the swing interval is much shorter than the
evolution time of the entire vortex spiral, t;,, — ¢, < t, if

(32)

k| > 2q, (33)
which does not contain k,. Condition (33) implies that in
order to study the vortex dynamics, we can use the solution ﬁ}Y
whenever the spiral is sufficiently strongly wound at the initial
instant irrespective of the value of k), i.e., in both the truly
short-wave limit k, > 1 and the long-wave limit k,, < 1. In the
latter case, the vortices are referred to as ‘large-scale’.

Here, we exclude the case k, ~ 1 because, as was shown
numerically in [58, 62] and analytically studied in the WKB
approximation in [64], during the swing, the vortex then
additionally generates a pair of density waves corresponding
to trailing spirals and propagating inside and outside the disk.
This process is asymmetric because density wave generation is
only possible by vortices, and not vice versa. In [64], analytic
expressions for the amplitude and phase of the generated
wave were obtained. It was shown that its amplitude is
proportional, first, to the vortex vorticity 7 and, second, to
the combination € ~!/? exp (—4n/e) (see formula (53) in [64]).
Here,

gk,

‘ k2 + K2/Q} (34)
is the small WKB parameter, where, we recall, 2/ Q2 =
2(2 — q). Expression (34) implies that the excitation of
density waves is exponentially suppressed in both short-
wave and long-wave limits and is significant only for k, ~ 1
(we clarify that we do not consider the extreme cases where
g < 1 and therefore ¢ < 1even fork, ~ 1, or ¢ — 2 and hence
€2 levenfork, <1).

Thus, the vortex solution of Eqn (27) exists when
condition (33) holds together with the requirement k, < 1 or
ky > 1, which excludes density wave generation with nonzero
vorticity during the swing of a vortex SFH. At the same time,
these restrictions provide a criterion for the decoupling of
waves and vortices in the perturbed flow. Indeed, under such
constraints, density waves with zero vorticity propagate in the
flow independently of vortices and represent the high-
frequency branch of solutions of Eqn (27) with a zero right-
hand side. Similarly, for example, sound and wind exist
independently in Earth’s atmosphere.

2.2.6 Vortex solution. Below, we only consider the evolution
of a vortex SFH in a shear flow. To conclude Section 2.2, we
also obtain vortex solutions for #, and W. This can be done
most easily by neglecting second time derivatives of i, and W

in Eqns (28) and (29), as has been done with Eqn (27) to
obtain u}‘,’. Thus, for all three quantities, we have

. K+4q

A% — 7[
Uy K2+ 4q2k)? kul (35)
u} =% 1, (36)
. k2 —K
W —oi T (37)

i
'K+ 4g7k2

It is important to note that the existence of an aperiodic
vortex solution in form (35)—(37) is possible because of the
main simplifying assumption about the local constant
velocity shear, which provides the existence of the time
invariant /. This enables us to reduce the system of three
homogeneous first-order equations (21)—(23) to one inhomo-
geneous second-order equation (27) (other dynamical vari-
ables can be obtained from the known solution #,(¢)), which
gives two independent wave solutions (the general solution of
the corresponding homogeneous equation) and one aperiodic
vortex solution [particular solution (27)]. However, with the
velocity shear gradient in the flow taken into account, the
invariant 7 disappears, and the reduction of system of
equations (21)—(23) becomes impossible, and from this
system we need to obtain three independent solutions
directly, two of which, as before, correspond to the density
waves, and the third describes the vortex wave called the
Rossby wave (see the discussion in paragraph 4 in [62]).

2.3 Vortex amplification factor

To measure the growth of local perturbations, the average
density of their acoustic energy can be taken as a local analog
of norm (11):

p= g ()" + (a1 + O

)dxdy, (38)
where S is the area of the integration region S.

After substituting dimensionless SFHs (20) in (38) and
integrating over their spatial period, we obtain the local
variant of norm (14):

1

llall® = 5 (Iax* + [ay > + W) . (39)

|

Using the vortex solution for SFHs (35)—(37), we obtain the
norm in the form

k2 4+k;

2 X Y 2

= (24— )2, 4
HqH (Kz K2+4q2kf) ( 0)

In what follows, the main quantity characterizing the
perturbation dynamics is the growth factor

lla(o)[|’

la)[]”’

which is the perturbation norm divided by its initial value.

(41)

6 See book [106], paragraph 43, for a discussion of Rossby waves arising
due to the gradient of velocity shear (the gradient of vorticity) in an
incompressible rotating flow.
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Short-wave perturbations. For k,, > 1, we can in any case
omit the 4 in the numerator of the second term in (40), the
term 4¢2k? in the denominator of the second term, and the
term 2(2 — ¢) = k2/Q¢ in K. Then

k}+k;

~x Y 42
k2 +k}? (42)

g

which is the result obtained in [56] (also see formula 4 in [61]).
Expression (42) shows that the SFH initially taken as a
leading spiral with k; < 0 increases in amplitude until the
instant (31), and at the swing moment, when k, = 0, reaches a
maximum in the norm, and then decays. The energy transfer
from the background flow to perturbations is described in
detail in terms of fluid particles in [107] (see Fig. 2 therein). It
is based on the mechanism of entrainment of fluid particles by
the main flow as they move into the region with a different
shear velocity (see book [6], paragraph 2.3.3 for more details).
Here, the interaction of particles with each other is important,
which eventually results in the growth of their additional
velocity relative to the main flow.

2.3.1 On the transient growth mechanism. Here, we provide an
additional consideration clarifying the transient growth
mechanism. As mentioned in the Introduction and discussed
in Section 2.2, a differentially rotating flow shortens the
length of the leading spiral arms of a transiently growing
vortex until the swing instant (see Fig. 2). Due to the
barotropicity of the perturbed flow, the velocity circulation
along a fluid contour coinciding with the boundary of spiral
arms must be constant. Consequently, the contour shortening
must lead to a compensating increase in gas velocity along the
boundary of the spiral. We consider this heuristic argument
more rigorously in the local space limit (see the layout in
Fig. 3). We calculate the velocity circulation for the simplest
fluid contour. Without perturbations, this is naturally a
parallelogram with one pair of sides (call them the base of
the parallelogram) running along the background stream
lines, i.e., parallel to the y axis and symmetric on both sides
of the level x =0. The condition that these sides move
synchronously with the fluid automatically implies that the
entire contour is comoving with the background flow, since

v}l."c = —qQx y
D A}/‘ —_—
- O e
- L' u
= k
t>0

~ k\»(O)x+kl,y+n§

Eeltyx+kyy +
ke(0)x + kyy

k.\‘(t)x + k,\'y

Figure 3. Illustration of the physical reasons for the transient growth of
two-dimensional vortices in the local space limit (see Section 2.2). The case
of a short-wave (k, > 1) vortex SFH with k, < 0. Shown is a liquid
contour comoving with the background flow at two instants: the initial
time /=0 and the time of the SFH swing when l%x =0. At t =0, the
contour has the form of a parallelogram with one pair of sides along the
y axis symmetric with respect to x = 0 and the other pair along two SFH
fronts, with the phase difference m between them. u is the velocity
perturbation vector, ko and k show the SFH wave vector at different
instants. Ax and Ay are the parallelogram height and base.

the velocity in the flow is linear in x. We now pass to the
reference frame comoving with the shear, in which Eqns (21)-
(23) were written: in this frame, the background velocity and
the velocity circulation along the given contour are zero.
Next, with small perturbations taken into account, the
velocity circulation must change, strictly speaking, for two
reasons: first, a velocity perturbation u arises in the shear
reference frame and, second, even the contour taken at the
time 7 = 0 as a parallelogram starts being deformed due to
additional shifts caused by perturbations. But in the second
case, only the addition due to the corresponding change in the
background velocity circulation is important for small
perturbations considered here. But this addition is absent
because the background velocity is zero at all points in the
shear reference frame. Hence, all we need to do is to calculate
the circulation u along a contour comoving with the back-
ground flow. At the instant r = 0, we take it such that the
parallelogram sides coincide with the SFH front lines
separated by the phase m (see Fig. 3, where the initial front
direction is indicated by the wave vector K¢). In the shear
frame, by definition, an SFH has constant spatial phase front
lines, and hence it is clear that they continue to coincide with
the contour sides at times ¢ > 0. We next note that we are
considering the case k, > 1; therefore, WY — 0, and from
(23) we derive the orthogonality condition u_Lk. Conse-
quently, the velocity perturbation is directed along the
parallelogram sides and agrees with the chosen orientation
(the direction of going around the parallelogram). As regards
the parallelogram bases, their contributions to the circulation
cancel, because the projection of the velocity u does not
change along them, but the direction of going around is
opposite. Hence, the perturbed flow circulation in the
comoving shear frame for the left contour in Fig. 3 is

NG
lo=20(1455) oo

For the right contour in Fig. 3 taken at the spiral swing
instant, we similarly find

C ’[:rs: 2Ax ||, -
By equating these two expressions, we see that for a vortex
SFH with k, > 1, the circulation conservation law yields
Culw)) K24k
oK

8(xs) (43)

This coincides with the result following from (42) for the
spiral swing time.

Therefore, we are quite certain that the transient growth
of a vortex is in fact due to its perimeter shortening (its ‘size’)
by the background shear flow with a constant velocity
circulation, C = const, along its perimeter. It is important to
note that C, as well as the corresponding vorticity flux, is a
measure of the vortex rotation. Therefore, it is appropriate to
compare it with a contracting body whose angular momen-
tum is conserved, because in that case the body angular
velocity increases inversely with the moment of inertia,
Wrot X Irgtl , and the rotation energy Fyor = 1/ ZImtwfot x Irgl'
increases with time. In our case, the background flow
shortens the vortex size and imparts kinetic energy to the
vortex.

Finally, we also note that because the differential rotation
is purely shear, i.e., occurs with zero divergence of the



November 2015

Transient dynamics of perturbations in astrophysical disks 1041

background flow, the area subtended by the contour
considered above must remain constant. Indeed, the area of
the parallelogram is the product of its base (which is constant
because the flow is homogeneous in y) and its height (which is
constant because there is no radial background velocity).
Therefore, due to the constant C and, hence, the vorticity
perturbation flux through the contour, the vorticity perturba-
tion itself is constant. The same conclusion was obtained in
Section 2.2 in the discussion of invariant (24).

2.3.2 Estimation of the optimal growth. Knowing the physical
mechanism of the transient vortex growth, we return to
expression (42) for the growth factor in the short-wave case.
Clearly, the growth factor of an individual SFH is a function
of three arguments, g = g(ky, k,, t). However, it is possible to
consider a more general characteristic of the transient
dynamics, which is called the optimal growth G of perturba-
tions. By definition,

G =max {g}. (44)

Yk,
Formula (44) gives the maximum possible amplification
among all vortices with a given k, that can occur in a time
interval ¢. We note that below we use an analogue of (44) for
the global space problem described by system of equations
(8)—(10) [see formula (90)]. There, G is determined for
perturbations with a fixed azimuthal wave number m.

There are rigorous mathematical algorithms to search for
the optimal growth, which we discuss in the next section.
Here, for analytic estimates in the local space limit, it suffices
to recognize that because the growth factor g(ky,k,, ) of a
separate SFH has a maximum at k, = 0, it is reasonable to
assume that G can be estimated as

G =~ glky = —kyqt); (45)

in other words, we assume that, of all the SFHs with a given
ky, the harmonics that show swing at an instant ¢ reach
maximum growth by this instant.

Using definition (45), from (42) we obtain the simple
expression

G~ (q1)°, (46)
which can also be found in [61] [see formula (5) therein]. We
note that corrections to G; due to a nonzero vertical
projection of the wave vector and a finite value of k, were
also obtained in that paper. As we see, in a sufficiently long
time, it is possible to reach arbitrarily large amplitude growth
of small-scale vortices k, > 1. This growth, however, is
power-law and not exponential, as would be expected in a
modal instability of the flow.

Long-wave perturbations. We now turn to the other limit
case where k, < 1 and the azimuthal space period of an SFH
is much larger than the disk thickness (see [71]). In the second
term in (40), we then omit k2 in the numerator and 4¢°k? in
the denominator, and also assume that K = k2 +x2/Q¢.
Here, by virtue of condition (33), we see that ||q(0)||* ~ k2.

For the SFH growth factor, we then obtain

,  kX+4

T +

g~k

This quantity increases as /Ex decreases with time, i.e.,
similarly to short-wave vortices, the transient growth

occurs for k, < 0. We note that the maximum g attained
during the spiral swing is now proportional to the square of
ky itself, and not to the square of the ratio k./k,, as in the
case of short-wave vortices [cf. (42)]. In addition, another
important difference is that g now depends on the epicyclic
frequency as x~* Such a strong dependence can be
important in disks with a higher-than-Keplerian angular
velocity gradient: in thin disks, this can occur in the inner
regions of relativistic disks, where x — 0 in approaching
their inner boundary.

With definition (45), we obtain the corresponding optimal
growth factor from (47):

)

Gy~ oh kf(‘]’)z . (48)

We note that both (46) and (48) are valid only for sufficiently
large times, because we used the condition ky = —gk,t to
obtain this expression, but the condition &, > 1 must hold at
the same time, as is required by (33). Formula (48) shows
that for rotation profiles weakly differing form the Keplerian
one, when x ~ Q, for equal time intervals G, <€ G|, because
the azimuthal wave number explicitly entering the optimal
growth factor is small, k, < 1.7 Therefore, in the local space
limit considered here, small-scale vortices take energy from
the flow more efficiently than large-scale ones. However, it is
interesting to see which of them can display the highest
growth over the entire time interval. In an inviscid flow,
G1,» — oo, mostly due to small-scale SFHs, as we just noted.
Nevertheless, a shear flow can have noticeable effective
viscosity, for example, due to some weak turbulence. Then
the dependence G(¢) turns out to have the global maximum
Gmax corresponding to the maximum possible nonmodal
growth of perturbations irrespective of the time intervals
we have considered so far. Physically, the decrease in G(¢)
after some long time occurs because more tightly wound
spirals have larger swing times #;. This, in turn, means a
smaller radial scale of perturbations and hence a smaller
dissipation time of perturbations due to viscosity. Ulti-
mately, the leading transient spirals start decaying faster
than they grow due to the unwinding by the flow. It is the
values Gy in the cases k, > 1 and k,, < 1 that we compare
below.

2.3.3 Taking the viscosity into account. The effect of viscosity
on the maximum possible transient growth of vortices can be
estimated as follows. For sufficiently long time intervals
gt > 1, we have k, > k, for any of the two limits of k, we
are considering. Therefore, in a shear-free flow, the spiral
would decay in the characteristic viscous time Af, ~ /Ii/v,
where v is the kinematic viscosity coefficient. Using the
standard viscosity parameterization by the Shakura-
Sunyaev o parameter, v =oa.H, we find that At, ~
(Qy lak2)~" rapidly decreases with increasing |k.|. At the
same time, the larger |k,| is, the longer the transient growth
time of the spiral, Az, ~ |ky/(gk,)|. Simultaneously with the
shear arising in the flow, the spiral starts unwinding, and
therefore the viscous dissipation is delayed. Hence, the
equality of these characteristic times, At,, = At,, gives the

7 In Section 4.2 below, we calculate G in the global problem (see Fig. 11),
which implies that as m — 1, the difference in the transient growth rate
between vortices with an azimuthal wavelength shorter or longer than the
disk thickness is significantly smaller.
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Figure 4. Estimate of the maximum possible transient growth of acoustic
energy in a disk with the efficient viscosity o = 0.001. The respective
solid, dashed, and dotted lines correspond to ¢ = 1.5, 1.6, and 1.7. The
three curves to the right and left are obtained using respective formulas
(50) and (51).

lower bound for the duration of the transient growth of
vortices in a viscous flow. Using it, we obtain

max (Aty,) 2 oc’1/3(qky)72/3 . (49)
It can be verified that expression (49) reproduces the estimate
in [61] [see formula (81) therein].

The upper bound for the optimal growth time (49),
Gmax = G(max (Aty,)), is given by its inviscid value taken for
G or G,. We then work out that for k, > 1,

(Gmax)l ~ 06_2/3412/31(},_4/3 (50)
(see also formula (83) in [61]). At the same time, for k,, < 1, we
have

493 —2/3,2/31.2/3
g kg

(Gmax), ~ ey (51)

This result is shown in Fig. 4 for some small « and several
shears ¢: Keplerian and super-Keplerian. We see that even for
the Keplerian shear, when k = Q, for k, different from 1,
(Gmax); 2 (Gmax);- This occurs because the large-scale
vortices are much less dissipative, which more than compen-
sates for their low growth rate compared to low-scale vortices.
We also note that despite (Gmay ), decreasing with decreasing
ky, this occurs at a lower rate than when (Gpax); decreases
with increasing k,. As a result, the integral transient growth of
large-scale vortices at all k, increases in comparison with
small-scale ones. An even more significant advantage of
large-scale vortices appears for super-Keplerian shears,
when ¢ > 3/2, due to (Gpay), o k ~* [see the comment after
formula (47)]. Clearly, a deviation from ¢ = 3/2 by several
percent would increase the transient growth rate of perturba-
tions several-fold.

As discussed in [71], estimate (51) is in reasonable
agreement with exact calculations of the optimal growth
rate in thin disks in the global space limit for low azimuthal
wave numbers m. Thus, large-scale vortices are also able to
provide additional transportation of the angular momentum
to the periphery of a disk with weak turbulence already
present.

In Section 3, we provide a rigorous mathematical
justification of algorithms to search for the most rapidly
growing perturbations in shear flows. Such perturbations are
called optimal, and the corresponding amplification, as we
already mentioned, is referred to as the optimal growth G.
The solutions presented in the Introduction and shown in
Figs 1 and 2 were obtained using one of these algorithms. We
also provide another example of the calculation of G by
solving the general system of equations (8)—(10) in a
geometrically thin disk (see Fig. 11 below). When discussing
mathematical aspects of the nonmodal dynamics of perturba-
tions in shear flows, already in the introductory part to the
next section, we see that the transient growth phenomenon
can be treated as a consequence of the nonorthogonality of
perturbation modes, which is evident, in particular, from a
consideration of simple analogs presented in Figs 5 and 6.

3. Search for optimal perturbations

3.1 Definition and properties of singular vectors

General solutions of the initial value problem of the small
perturbation evolution described by general equations (1) and
(2) can be conveniently studied using abstract concepts of the
functional space of the so-called state vectors of the system, as
well as the notion of linear operators acting on these vectors.
In Section 2.1, in application to system of equations (8)—(10),
we introduced a particular case of the state vector as a set of
azimuthal Fourier harmonics (1) = {8v,(r), dv,(r), dh(r)} of
Eulerian perturbations taken at some fixed instant ¢. In this
section, we assume the initial general case where
q(z) = {dv(r),dh(r),dp(r)}. We consider some properties of
a dynamical operator Z acting in the Banach space of vectors
q and corresponding to system (1), (2). This operator trans-
forms the initial perturbation vector q(0) into a subsequent
vector q(7), and hence in the operator form, the system of
equations can be written as

q(1) = Z4(0). (52)
All functions entering q(¢) are assumed to be infinitely
smooth and to have a uniformly bounded derivative in their
domain. The last condition follows from physical considera-
tions: in realistic gas flows, there cannot be perturbations with
arbitrarily small wavelengths. In addition, due to the linearity
of the problem, all vectors q(0) are assumed to have the unit
norm at the initial instant.

In this section, we show that the general assumptions
given above imply important properties of the operator Z.
For example, we show that the norm of all initial vectors q(0)
can grow by the time ¢ only by less than some factor. We
present two methods for calculating this perturbation growth
limit. In addition, we show that in the space of initial
conditions, there is an orthonormal basis that can be found
by solving the eigenvalue problem for some operator different
from Z.

3.1.1 Continuity of the dynamical operator. Continuity is the
first important property of the operator Z. To see this, we
write the operator in the integral form:

t

Za(0) = q(1) = q(0) + L

(Ml (8)a(s) + Ma(s) a‘éi”) ds.
(53)
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Here, we introduce the matrices M (s) and M;(s) composed
of coefficients in the dynamical equations before the
corresponding spatial derivatives of q. The explicit form of
these matrices can be obtained from Eqns (1) and (2). The
number of rows and the number of columns in the matrices
are respectively equal to the number of quantities forming
the state vector q and the number of spatial variables.
Because the quantities describing the background flow are
bounded and continuous, all elements of the matrices M; (s)
and M;(s) are also bounded and continuous in the domain
of the operator Z. In addition, we note that if viscous forces
are included, one more term appears in Eqn (53) correspond-
ing to the second time derivative of q. This case can be
treated analogously.

We see that operator (53) is a superposition of continuous
maps (see [108], Ch. 1) and, hence, is itself a continuous map
(see [109], Ch. 2). This implies that it is bounded on bounded
sets (see [109], Ch. 4).

Thus, the map defined by (53) is continuous and bounded,
which implies that vectors q are uniformly bounded at any time
t. We now use this property.

3.1.2 Essentially continuous dynamical operator. The next
property of the operator Z is its essential continuity. We
recall the definition of this notion.

Definition 1 (essentially continuous operator). An opera-
tor Z. mapping a Banach space E into itself is called essentially
continuous if it takes any bounded set to a relatively compact set
([109], Ch. 4).

To prove the essential continuity of operator (53), it
suffices to prove the relative compactness of its range,
because the boundedness of its domain was postulated by
assuming that all q(0) have unit norm. We use the Arzela—
Ascoli theorem. According to this theorem, a sequence of
continuous functions defined on a closed and bounded
interval is relatively compact if and only if this sequence is
uniformly bounded and equicontinuous ([109], Ch. 4).

The uniform boundedness was shown above, and for a
sequence of differentiable functions to be equicontinous, it is
sufficient that their derivatives be uniformly bounded ([110],
Ch. 2), which was initially postulated. Thus, we see that the
range of the operator Z is relatively compact, and hence the
operator is essentially continuous.

Now, if we introduce an inner product [in physical
problems, as a rule, it is introduced such that the norm of a
vector coincides with the perturbation energy, as was done,
for example, in Eqn (14)], it is possible to define the adjoint
operator Z using the Lagrange identity for arbitrary vectors f
and g (see, e.g., [108], Ch. 1, for more details on the adjoint
operators):

(Zf.g) = (1. Z'g). (54)
Here, if the operator Z is essentially continuous, so are the

adjoint operator Z' and the self-adjoint composite operators
772" and Z'Z ([109], Ch. 4).

3.1.3 Linear operators: from the particular to the general.
There can be different linear operators, depending on their
properties. We list those that we need below, from the more
particular to the more general ones. We start from positive
definite operators, for which the scalar product (Zq,q) > 0
for any vector q. By definition, eigenvalues of a positive
definite operator are positive. Indeed, by multiplying both

sides of the equation Zq = Aq by q, we see that its left-hand
side is positive, and the right-hand side is the product of the
eigenvalue and a positive quantity; hence, the eigenvalue is
positive.

Self-adjoint (Hermitian) operators, which coincide with
their adjoint operators, Z = Z! ([111], paragraph 14.4), are
most frequently used in various physical problems. The
eigenvalues of a self-adjoined operator are real ([111],
paragraph 14.8).

Self-adjoined operators are a particular case of normal
operators. An operator Z is called normal if it commutes with
its adjoint operator: ZZ' = Z'Z ([111], paragraph 14.4). All
eigenvalues of a normal operator are complex conjugate of its
adjoint operator’s eigenvalues. Eigenfunctions of the opera-
tors Z and Z! coincide. Additionally, the eigenvectors of a
normal operator corresponding to different eigenvalues are
orthogonal ([111], paragraph 14.8). Therefore, to calculate
the operator norm of these operators, it is sufficient to find
their eigenvalues. We recall that the norm of an operator Z
mapping a Banach space H into itself is the number
[|Z]| = supyeq (11Zx]]/]|x]]) ([108], Ch. 1). The norm of the
master operator is very useful, because it allows calculating
the limit of the vector norm growth under the action of this
operator.

For a normal operator, this problem is solved quite
easily. To illustrate this, following [49], we consider an
important particular case where the operator Z can be
represented as an operator exponential: Z = exp (Af) (see
Section 3.3.1 for more details). The operator A is time-
independent, and its eigenvalues are traditionally denoted as
{—iwy, —iwy,...,—lwy}; here, w can take both real and
complex values. In this case, the eigenvalues of Z are
{exp (—iw1), exp (—iwat),...,exp (—iwyt)}. Now, we use
the definition of the eigenvectors and eigenvalues of an
operator by writing it in the matrix form

ZX = XP, (55)

where P is a diagonal matrix with the eigenvalues of Z and the
columns of X are the eigenvectors of Z placed in the order of
their eigenvalues encountered in P.

From (55), we find the decomposition Z = XPX ~'. Next,
we use the submultiplicativity of the operator norm ([111],
paragraph 14.2): ||Z]| < ||X|||P|| ||X"||. For orthonormal
eigenvectors, the matrix X is unitary, XX =1, and therefore
its norm is unit, [|X|| =1, and ||Z|| < ||P]| = exp (Omax?),
where Wmax = max; < v (Slw]).

Finally, the most general operators are those that do not
commute with their adjoint: ZZ' # Z'Z. Eigenvalues of these
operators can be both purely real and complex, and
eigenvectors are nonorthogonal to each other. The nonortho-
gonality of the eigenvectors complicates the calculation of the
operator norm, because the matrix X introduced above is no
longer unitary. For this reason, the energy of a combination
of modes is not equal to the sum of the energies of each mode,
i.e., the Parceval rule is not valid, and nonzero cross terms
appear. In other words, due to the interference in time
between nonorthogonal modes, perturbations described by
such an operator can increase even if there are no growing
modes. This energy growth of perturbations, which is
mathematically related to the nonnormality of the dynamical
operator, was called the transient growth of perturbations. In
the context of stability of hydrodynamical flows, nonnormal
operators and examples were discussed in [112], as well as in
Sections 3 and 4 in [6].
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3.1.4 Simple geometrical example of the nonorthogonality of
eigenvectors. A simple geometrical example can illustrate the
transient growth mechanism. On the plane (x,y), we intro-
duce two vectors symbolizing two perturbation modes. We
write them in the form of two complex numbers
fi = foexp (—iwy?) and f, = fyexp (—iwyt + i), where the
numbers w; > can also be complex. In this form, the analogy
between f) » and perturbation modes is the clearest. The real
and imaginary parts of each f| , yield the x- and y-vector
components. Clearly, R[w ] corresponds to the angular
velocity with which both vectors rotate in the plane, and
Sw]; , corresponds to the rate of change in their lengths.
Below, we assume that the imaginary parts of w, are
negative, which corresponds to the length shortening of f; ».
We recall that in the case of modes, real parts give angular
velocities of the solid-body rotation of the spiral pattern in the
flow (see Fig. 1), and imaginary parts give their decay rate, in
analogy with a spectrally stable flow. In addition, we assume
that at the instant ¢ = 0, the vectors have the same length f;
and the angle between them is .

We now take the vector q =f; +f, and calculate a
quantity similar to (41) that gives the rate of change with
time of the length of q squared:

g= [exp (2S[w1]t) + exp (23[wa]1)

1
2(1 + cos )

+ 2exp (o) + w)]t) cos (R[w — w]t + lP)} . (56)

This shows that for the angles i close to wr, the denominator in
(56) is small, and any insignificant increase in the numerator
leads to a large increase in g. We consider two particular
examples. In the first case, we assume that #[w; 2] = 0, and in
the second case, that Sfw; ] =0. For simplicity, we set
cosyy ~ —1 4 ¢, wheree < 1.

Then, with R[w; ] =0, we see that if we additionally
assume a large difference in decrements, |[S{w]| > |Sw2]l,
after some large time we have

_exp (2S[wa]1)
g~ ¢ ) (57)
which corresponds to g > 1 on time intervals such that
|S[w1]f] > 1 but simultaneously |S[w;]t| < 1. This means
that despite the decrease in the length of each individual
vector, in the case of strong nonorthogonality (which is
characterized by a significant difference between ¢ and 1),
their sum experiences a transient growth up to values ~ ¢!
(Fig. 5) and only at later times g decreases again at a rate
determined by the most slowly decreasing vector. A similar
effect takes place for transient perturbations, which can be

v q1

t>0

fi(7)

Figure 5. Increase in the sum of two nonorthogonal vectors, q = f; + >,
upon shortening their lengths but maintaining the angle between them. It
is assumed that ¢y = ¢» = 1.

q1 £,(0)

t>0

Figure 6. Increase in the sum of two nonorthogonal vectors, q = f; + >,
upon maintaining their lengths but changing the angle between them. It is
assumed that ¢g; = ¢, = 1.

represented as a sum of decaying modes with zero phase
velocity.

In the opposite case [w; ] =0, the following approx-
imate formula can be derived from (56):

1 —cos (R — mn]t)
€

: (58)

which is valid when the value of the cosine in the numerator is
not too close to unity. In contrast to the example with the sum
of nonorthogonal vectors with decreasing length (when the
length q first increases to a maximum and then monotonically
decreases to zero as t — o0), it follows that the length of the
sum of rotating vectors experiences oscillating growth by
returning many times to ever increasing values ~ ¢ ~! in equal
time intervals ~ |[Rw; — S?w2|_1, as is evident from the
illustration in Fig. 6. In contrast to the first case, it would be
inappropriate to refer to this second possible variant of the
mode superposition growth as ‘transient growth’, as we did,
for example, when analyzing local SFHs in Section 2.3.
Therefore, it is more appropriate to call it ‘nonmodal
growth’. One example of such nonmodal growth of a
superposition of neutral modes with nonzero phase velocities
was studied in [113] and is discussed in Section 3.2.

3.1.5 Singular vectors. We have just demonstrated how the
nonorthogonality of the modes leads to transient growth of
perturbations. In many physical and astrophysical problems,
the evolution of linear perturbations is determined just by
nonnormal operators with nonorthogonal eigenvectors.
Here, the nonnormality of Z is provided by a shear in the
background flow. We can justify this by deriving the system of
adjoint dynamical equations corresponding to the action of
the adjoint operator Z' (see Section 3.4.1).

It follows that knowing only the eigenvalues of a
nonnormal operator is insufficient in order to fully describe
the possible (transient) growth of perturbations in the system.
In addition, at least, the eigenvectors or, more precisely, the
pairwise scalar products (‘angles’) between the eigenvectors in
the chosen norm of perturbations must be known. One more
potential complication of the problem with a nonnormal
dynamical operator is that it is no longer possible to
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guarantee the completeness of the set of its eigenvectors and,
hence, to guarantee the validity of the solution of the problem
when using the eigenvectors as a basis for decomposing an
arbitrary perturbation.

For all these reasons, to compute the maximal transient
growth rate of perturbations, we use the technique of singular
values and vectors in what follows. As is to be shown, singular
vectors form a complete orthonormal system, which allows
using them as a basis to describe the evolution of perturba-
tions. Moreover, singular values, unlike eigenvalues, allow
calculating the perturbation energy growth by any given time
even for nonnormal operators.

Definition 2 (singular values and vectors). A nonnegative
real number o is called a singular number of a linear operator Z
if there are unit-length vectors u and v such that

Zv = ou, (59)

Za=ov.

The vectors u and v are called the respective left and right
singular vectors corresponding to the singular value o.

We note that the singular values and vectors are related to
the eigenvalues and eigenvectors of the composite self-adjoint
operators ZZ' and Z'Z. To see this, we act with Z' on the
vector Zv and with Z on the vector Z'u and then use the
definition:

7/ (Zv) = Z'(ou) = 6Z'u = ¢%v,
Z(Z'n) = Z(ov) = 6Zv = ¢*u.

Hence, vectors v and u are eigenvectors of the respective
operators Z'Z and ZZ'. The singular value squares are
eigenvalues of the composite operators.

The operators ZZ' and ZZ are positive definite because
for any vector f, the inequalities (f,ZZ'f) = (Z'f,Zf) > 0
and (f, Z'Zf) = (Zf, Zf) > 0 hold. Because all eigenvalues of
a positive definite operator are positive, the singular values
are real.

Because the operators ZZ' and Z!Z are self-adjoint and
essentially continuous, their limit spectrum consists of one
point, zero ([108], Ch. 4). Next, because the limit spectrum of
an operator is the union of all points of the continuous
spectrum, limit points of the discrete spectrum, and infinite-
multiplicity eigenvalues, the essential continuity of the
composite operators implies that for any small ¢ > 0, the set
of eigenvalues greater than ¢ is discrete.

Therefore, the set of singular values is bounded from
above due to the boundedness of operator (53), is discrete,
and has the limit point ¢ = 0. The singular vectors are usually
numbered in the order of their decrease [114], and therefore
the perturbation growth by a time ¢ is limited by the first
singular value by that time, and the first right singular vector
is the perturbation exhibiting this growth.

It hence follows that to calculate the maximum possible
perturbation growth rate, it suffices to calculate the first
singular value, called the optimal growth in the literature,
and the right singular vector corresponding to this value is
then the sought (optimal) perturbation demonstrating the
maximum possible growth rate. Below, we present two
methods for calculating singular values and the correspond-
ing singular vectors.

Another important consequence of the essential continu-
ity of the dynamical operator Z is the validity of the Hilbert—
Schmidt theorem for the operators ZZ' and Z'Z. The

theorem states that for any self-adjoint linear operator,
there is an orthonormal sequence {@,} of eigenvectors
corresponding to eigenvalues {/,} such that each element &
can be uniquely written in the form

E=) ko +8&,
where the vector &' satisfies the condition U&’ = 0; here,

UE = Jickoy, lim 7, =0.

It hence follows that the set of singular functions is
orthogonal and complete, as a sequence of eigenvectors of a
self-adjoint operator, and can be used as a basis for
decomposing any perturbation.

3.2 Matrix method for optimal solutions

The first method to calculate singular vectors is convention-
ally referred to as the matrix method. It is based on the
singular value decomposition of the matrix of the dynamical
operator. As a rule, the set of eigenvectors is used as the basis
for calculating the operator matrix.

We note that there is another possibility, which was used,
for example, in [50], when the space is covered by a grid of
points and each perturbation corresponds to a column of
numbers corresponding to the values of the perturbation at
these points. A dynamical operator corresponds to a matrix
obtained by the difference approximation of derivatives in the
dynamical equations. The singular value decomposition of
this matrix allows calculating the singular vectors at the grid
points. The large size of the operator matrix is a shortcoming
of this approach, which requires a long time to calculate the
singular value decomposition; an advantage is that it is not
necessary to calculate the operator eigenvectors. In this
section, we describe the matrix method in the eigenvector
basis.

The problem is to find a linear combination of the
dynamical operator modes whose norm exhibits the largest
growth by a given time. We assume that the sequence of
eigenvectors {f|,f,,f;...fy} and the corresponding eigenva-
lues {exp (—iw 1), exp (—iw;t), exp (—iwst), ..., exp (—iwyt)}
of the operator Z are known. In the space of linear
combinations of the eigenvectors, an arbitrary perturbation
vector can be represented in the form (see paragraph 4.3.2 and
Section 4.4. in [6] for more details)

N . A
a=> «'f;,
=

where the numbers {x', x?2, « , iV} are coordinates of
the vector q in the eigenvector basis. We note that the time
dependence of q is contained in its coordinates.

The scalar product of two vectors q and g in this
representation can be calculated from the known coordi-
nates using the metric matrix M:

(0.8) = (¢")'M;;g’,

(62)

3
N

(63)

where the elements of the metric matrix are equal to the scalar

products of eigenvectors,
Mi; = (£, 1) . (64)

The matrix M is positive definite because the norm of a
nonzero vector is always positive.
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Now, the problem of calculating the maximum possible
perturbation growth reduces to finding the x/ at which the
growth of the perturbation norm determined in accordance
with (62) is maximal by a given time moment.

The representation of an operator Z in the eigenvector
basis can be easily calculated by letting this operator act on a
basis element:

Zf; = 1(x) = exp (~i;0) ;. (63)
Therefore, in the set of its basis eigenvectors, an
operator can be represented by a diagonal matrix P
with complex exponentials on the main diagonal: P =
= diag {exp (—iw; 1), exp (—iw,7), exp (—iws7), . .., exp (—iwyT)}.
We next use the first equality in Definition 2, Zv = ou, and
rewrite it in matrix form:

P=UZV'. (66)
The matrix X is diagonal, with the singular values on its
diagonal, X =diag{s,,02,03,...,0x}. Columns of the
matrices U and V respectively represent right and left
singular vectors.

We now write the scalar product of two arbitrary singular
vectors q and g as

(a,8) = (a)'M; g’ = ((F)')'(Fg)’, (67)
where the matrix F is the Cholesky decomposition of the metric
matrix, M = FT F. Because M is positive define, its Cholesky
decomposition always exists and is unique.

Systems of singular vectors are orthonormalized; there-
fore, the following relations for the matrices V and U hold:

VIFTFV =1,
U'FTFU =1,

where I is the identity matrix. The inverse matrices to V and U
are expressed in terms of their Hermitian conjugates as

V!'=VIF'F, (70)

U '=U'FTF. (71)
Using these relations in (66) yields

P=UXV'FTF=F 'FULV'FTF. (72)
We rewrite this in the form

FPF~' = (FU)X(FV) = Uz V', (73)

It is clear that the right-hand side of this equality coincides
with the so-called singular value decomposition of the matrix
FPF~'. We remind the reader that the singular value
decomposition is a factorization of a matrix in the form
UZ V', where U and V are orthogonal matrices and X is a
diagonal matrix with positive numbers on the main diagonal
[115]. This factorization exists for any real matrix and is
unique. It can be easily ascertained that the matrices U,V,and
X satisfy the conditions for singular value decomposition,
and therefore, to calculate singular values and vectors, it
suffices to perform this decomposition for the matrix FPF ~!.
The singular value decomposition procedure is a standard
tool in many linear algebra software packages.

The original matrices U and V are calculated using F !
U=F 'Uand V = F~'V. The maximum of the numbers on
the diagonal of X is the first singular value by the time #, and
the corresponding column of the matrix V is the first singular
vector in the eigenvector basis.

3.2.1 Nlustration of the matrix method. The matrix method to
search for optimal perturbations has been used in many
studies on the stability of laboratory flows (see, e.g., [45, 47,
53, 54, 116, 117]) and in astrophysical papers [51, 52, 118].
Here, we illustrate it with a simple semi-analytic study [113],
where the eigenvector basis® was calculated in the WKB
approximation in a geometrically thin and barotropic quasi-
Keplerian torus with free boundaries. For simplicity, only the
modes whose corotation radius lies outside the outer
boundary of the torus were considered. (See Section 2.1 for
a discussion of the energy exchange mechanism between the
modes and with the background flow at the corotation radius
in the context of the spectral problem corresponding to
Eqns (8)—(10).) When the corotation radius is outside the
flow, the energy of the modes is conserved. This means that
they do not show exponential growth or decay, i.e., their
frequencies w are real [see expression (13)]. These are referred
to as neutral modes. Nevertheless, due to their mutual
nonorthogonality, in other words, due to the nonorthogon-
ality of eigenvectors of the dynamical operator of the system
of perturbations, we expect a nonmodal growth of their linear
combinations (see the analogy in Fig. 6 and the comment on it
in the text).

The modes we wish to obtain below physically corre-
spond to inertial-acoustic waves that form a solid-body
rotating pattern on the disk, i.e., that have the azimuthal
projection of the wave vector constant in time and space. As
we see from the WKB analysis in what follows, their
characteristic radial wavelength is close to the disk thick-
ness H. Their characteristic azimuthal scale A, can be both
larger and smaller than H, depending on the azimuthal
wave number m entering system of equations (8)—(10).
Results concerning the optimal perturbation growth are
presented below in the case 4, > H (see Fig. 7). We see in
what follows that the optimal perturbation is then not a
spiral unwinding by the flow, which we discussed in the
context of the transient growth of vortices (see Fig. 2), but a
wave packet initially located at the outer boundary of the
torus and further propagating toward its inner boundary.
At the instant of reflection from the inner boundary, its
total acoustic energy reaches a maximum and then decreases
when the packet goes back to the flow periphery. After the
reflection from the outer boundary, the process repeats.
Thus, the nonmodal growth in this case is not transient but
oscillating, as must be the case according to the analogy
shown in Fig. 6.

3.2.2 Background flow. We consider a toroidal flow of a finite
radial extension as a model background flow. The azimuthal
velocity component corresponds to the power-law angular
velocity radial profile

—-q
n3)"
ro

8 Here, the eigenvectors of Z multiplied by the eigenvalues, i.e., by the time
dependence exp (—iwt), are referred to as perturbation modes.

(74)
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where r is the distance to the gravity center in the equatorial
plane of the torus at which the rotation occurs with the
Keplerian frequency Qp, 2 > ¢ > 3/2. We assume that the
matter moves in the external Newtonian gravitational
potential produced by a central point-like mass:

2.3
b= — Qyrg
(r2 +Zz)l/2 '

As is to become clear below, the parameter ¢ then char-
acterizes the torus thickness, which tends to zero as the
angular velocity profile approaches the Keplerian one. As in

Section 2.1, we here use the polytropic equation of state and
write the force balance for the flow using the enthalpy 4,

%:er_ﬁ_gp7

a}’ a}" (75)
on_ oo

oz 0z’

where the two equations correspond to projections of the
Euler equation on the radial and vertical directions. The joint
integration of (75) yields

2.3
Qrg

(r2 +22)1/2

2.2
Qqry

h(r,z) = N—-g

rz(l—’l) + C7

where the integration constant C is determined from the
condition that A(r;,0) =0 at the inner boundary of the
torus ry < ryg.

In dimensionless coordinates X = r/rg and y = z/rg, we
then obtain

h = (Qo?’o)z ()ACZ +)A/2)71/2 — )2?1_1

U 200 _ o-2-1)
—i—z(q_])(x1 % ) (76)
where X; = r/r¢. Enthalpy distribution (76) also determines
the outer radial boundary of the torus X; > 1, where
h(X2,0) = 0. The quantity X4 = X, — X is called the radial
extension of the flow.

It is now easy to pass to the case of a quasi-Keplerian,
geometrically thin torus of interest here: ¢ = 3/2 +¢2/2,
€ < 1. Using this assumption, the enthalpy profile can be
simplified to

ho_m 0 (3Y
Qg 2%° H) |’
where H(x) is the dimensionless thickness of the torus
expressed in units of ry:

(77)

fc1(1+1nfc)fc(l+lni'1)}l/2' 78)

H=05%
‘{ %1 —1—Ink

Here, we introduce the small parameter

- 1+ Ing) "2
5;H(fc=1)=2'/2c(1—ﬂ> <1,

X1

which is clearly interpreted as the characteristic aspect ratio of
a disk-like torus with § < X4. It can be verified that expression
(77) coincides with (4).

Equations (77) and (78) completely determine the quasi-
Keplerian background flow that we use to illustrate the
matrix method of calculation of nonmodal growth of the
perturbation mode superposition. In the next section, we
solve the spectral problem for such a flow, i.e., find the
perturbation mode profiles.

3.2.3 Modes. Modes are nonstationary perturbations with an
exponential time dependence o exp (—iw?). They are also
solutions of operator equation (52) for the evolution of a
linear perturbation in the flow. This means that the modes are
state vectors that we obtain by acting with the operator Z on
its eigenvectors f;:

fi(l) = Zf, = €xp (—iwt) fl' .

We repeat that the numbers exp (—iwt) are eigenvalues of Z,
which we have to find along with its eigenvectors.

In practice, we do not use the equation exactly in form
(52), but instead derive an equivalent ordinary differential
equation of the second order in the radial coordinate for a
Eulerian enthalpy perturbation. As everywhere in this paper,
we assume that the hydrostatic equilibrium holds, i.e.,
dv, = 0. Because we are dealing with a torus thinin z, § < 1,
our perturbations taken initially in the form of azimuthal
Fourier harmonics o exp (ime) satisfy system of equations
(8)—(10), which contains the background variables integrated
over z (see Section 2.1). The transition to the mode analysis
means the substitution 0/0¢ — iw, after which we find from
(8) and (9) that the complex Fourier harmonics of the
Eulerian velocity perturbations, which are denoted here as v,
and v, are expressed in terms of the Fourier harmonics of the
enthalpy perturbation, denoted here as W, as

i /_dW 2mQW
1 (k%2 dW  modW
Vw*ﬁ(ﬁ@‘—x ) (80)

where D = k% — @?%, k% = (2Q/x) d(Q%?)/dx is, as usual, the
epicyclic frequency squared, and @ = o — mQ is the shifted
frequency. In the rest of this section, we assume that all
frequencies are taken in units of the frequency @ and time in
units Q.

Substituting (79) and (80) in continuity equation (10), we
obtain the equation for W

D 4 (2dW\ [ D d (0
X2 dx\ D dx o xXdx\ D
2

2
IND m
+<H+E>E :2:|W:0,

+ (81)
where
H 2\ i
Z(r):JindzocH()ﬁ) , h*:25¢3 . (82)

Here, A, is the dimensionless background enthalpy in the
equatorial disk plane [cf. (77)]. To reproduce the surface
density dependence of X on r given above, it is enough to
recall that X ~ Hp|._,, and p ~h" for the polytorpic
equation of state. Equation (81), as well as its more general
analog for three-dimensional perturbation modes, is fre-
quently used in the literature. Their derivation and analysis
can be found, e.g., in [77, 88, 90, 91, 119].
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As we already noted, solving Eqn (81) is complicated by
resonances: the corotation one, where @ =0, and the
Lindblad one, where D = 0. These points are singular for
Eqn (81). However, to illustrate the matrix method of
optimization, we restrict ourselves to calculating only some
of the modes with resonances outside the outer boundary of
the flow X,. The condition that the inner Lindblad resonance
lies at X > X, implies that

o< (m—1)Q(x,), (83)
where we set k &~ Q in the condition D = 0 because of the
almost Keplerian angular velocity profile in a thin torus. We
also recall that w is a real quantity. We note that for m = 1,
the inner Lindblad resonance is at ¥ = 0, and hence there are
no modes with m =1 satisfying condition (83). For this
reason, we consider only modes with m > 1. Hence, under
the restrictions made, the term o< D/h, ~ 0 ~2 is large every-
where in the flow, and therefore the solution of the equation
can be sought in the WKB approximation.

A WKB solution of Eqn (81) can be written as

W = CyS| cos (So + QDO) , (84)
where Sy ~ 0 ! and S| ~ 6°. Substituting (84) in (81) yields
its expansion in J. By collecting terms with like powers of 9,
namely, 572 and 67", we find the explicit form of the
functions Sy and S;:

% I\ =D m21'2 R
SO—J\XI|:<”Z+§) h* *)22:| an
. ;D 1/2 Jrl —Dimz —1/4
TGz "T3) h 32 '

The phase ¢, is fixed by the boundary conditions.

WKB solution (84) is irregular at the boundary points x;
and X, at which /i, — 0. Itis possible to find a solution that is
regular at the boundaries by the WK B method (see [120]), but
we here use the traditional matching of (84) to an approx-
imate regular solution of the original equation (81) near X;
and X,. This matching should yield a discrete set of
eigenfrequencies w, as well as the value of ¢,.

To find the regular solution near X; and X;, we pass to the
new radial coordinate ¥ = |X — %1 »| and expand Eqn (81) in
the leading order in the variable X < 1. Technically, this
means that all variables in (81) that are nonzero at X, are
set to their values exactly at the points x| . The disk half-
thickness, vanishing at the boundaries, is approximated as
H=H le/z where the constant A  is

1/2

~ N 111&1 2
Hyy =081 2|55
1 +Inx;, — X1,2

We obtain the following near-boundary equation:

~<12w dw
X m + (n +1/2)

where

+ E Y)W =0, (85)

(21’1 + 1)(*D1_2)Xﬁ2
H{, ’

Ei =

and D) ; are the values of D at the points x| .

The solution of (85) that is regular at X = 0 has the form

W=Ciox Ay, (), (86)
where = 2,7 31/,

We note that Eqn (85) at X — 0 is equivalent to the
boundary condition for the enthalpy perturbation at the free
boundary of the flow, which states that the Lagrangian
enthalpy perturbation vanishes at the boundary points % ,
Ah|,, , =0 (see, e.g., [81]).

Because the denominator of Z contains the small §, we
have Z > 1 at some distance from the boundary points under
the condition X < 1. In this region, W has asymptotic form
(86) for a large argument:

WrC o x " (4nPE ) cos<2E1{/§xl/2 - %) (87)

Matching (87) to the WK B decomposition of the solution
near X; and X, yields the zeroth phase ¢, = —nmn/2in Eqn (84)
and the dispersion equation

So) _D# 2\ 1/2
J ((2n+1) Hf —m—2> dt =n(n+p),

88
. 3 (88)
where p is an integer. Solving (88) for different p yields a
discrete set of w entering D. This is the sequence of
eigenfrequencies of neutral modes we are interested in.

The mode profiles themselves are given by Eqns (84) and
(86) with the relations between the corresponding constants
taken into account:

G ﬁ2n+l 1/2
C_1_ (2nx3” (- D1)> ’

9 _ (_l)p |:(§>3n1 & (]:Il)2n+1:| 1/2 .

C X D \ A,

After obtaining the profile W(%) for a given w;, the
corresponding complex Fourier harmonics of the Eulerian
velocity perturbations v,(%) and v,,(X) can be calculated from
(79) and (80). Thus, we find the complete eigenvector
fi = {v,, v,, W} of the operator Z corresponding to its
eigenvalue exp (—iw;?).

(89)

3.2.4 Optimal growth. Knowing the eigenvectors of the
dynamical operator allows calculating the optimal growth,

e., finding a linear combination of these vectors that
demonstrates the maximum increase in the norm by a given
time. The optimal growth by a time ¢ has the form

G(t) = max . 90
" a0 [1g(0)|* 0
This is a generalization of (44) to the spatially global case.
The scalar product of two vectors from the linear span of
N eigenvectors of the operator Z is introduced such that the
square of the corresponding norm is coincident with the
acoustic energy of perturbation (14):

T2

() = [ =[(Gun) 0+ @) Gun)

(o) 0
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Figure 7. (a) The optimal growth curve G(7) (solid curve) as a linear combination of slow modes in a thin disk for 6 = 0.002. The dashed lines show the
growth factor of the total acoustic energy g(7) of individual optimal perturbations as a function of time. These perturbations are optimal for time instants
t = 250, 290, 390 expressed in units of the characteristic Keplerian period ZTtQU’l. (b) The curves G(¢). The solid, dashed, and dotted lines correspond to
0 =0.001, 0.002, 0.003, respectively. The linear combination shown has the dimensionality N = 20; the parameters are xq4 = 1.0, m = 25, and n = 3/2.

(Figure from [113].)

where the indices f or g indicate the relation of some physical
variable to the vector f or g. We recall that dv,, dv,, and Ak
here denote the azimuthal Fourier harmonics of the corre-
sponding Eulerian perturbations of the velocity components
and the enthalpy.

We now apply the procedure for calculating the optimal
combination of eigenvectors described above. With the
eigenvectors in analytic form, the matrix M can be obtained
by simple numerical integration of the combination of
elementary functions using scalar product formula (91):

Mi; = (£, 1) . (92)

Next, we perform the Cholesky decomposition M = FTF and
then the singular value decomposition of the matrix FPF !,
Both these procedures are standard in numerical methods of
matrix algebra.

As an example in Fig. 7a and 7 b, we show the dependence
of the maximum possible energy growth G(z) among all
superpositions of 20 neutral modes by the time #; ~ (590)71
on a time scale of the order of the sound time ¢, and
ty ~ (590)71. Figure 7a also shows the energy growth of the
optimal mode combinations g(¢). Clearly, the curves g(7)
touch the common optimal growth curve G(z), as must be
the case, each at its own optimization time. The optimal
growth itself in this model has a quasi-periodic form, reach-
ing maxima at times ~ 5, and the thinner the torus, the higher
g the mode superposition can reach.

3.2.5 Angular momentum flux. In Section 3.2.4, we have
shown that some combinations of modes can demonstrate a
significant growth in the acoustic energy. We consider in
more detail what the optimal perturbation is. The perturba-
tion amplitude growth suggests that the main flow transfers
energy to perturbations. The first term in the right-hand side
of (12) is responsible for this, and the integrand there is
sometimes referred to as the Reynolds force power (see [77]),
denoted here by Fr. It turns out that Fy is simply related to
the density of the specific angular momentum flux F related
to perturbations: Fr = —(dQ/dx) F (see Sections 2.3 and 4
in [97]). Clearly, for Keplerian rotation, Fg and F have the
same sign: when the perturbation energy increases, ' > 0, an
angular momentum flux to the torus periphery occurs, and
vice versa.

We use the expression

F = %X (3v,0v,) (93)
to calculate the evolution of the profile of F for the optimal
mode superposition presented by the curve g(¢) for 1 = 290 in
Fig. 7 a. Figure 8 shows how the radial distribution F changes
in the interval (X, X,). We see that F is first localized in the
radial direction, and its localization region moves with time:
during the perturbation amplitude growth phase, it shifts
toward the inner torus boundary, and during the amplitude
decay phase, it shifts back to the outer boundary. Therefore, a
nonmodal growing perturbation is here represented by a wave
packet containing a sequence of neutral modes (each of
which, as we recall, solid-body rotates with an angular
velocity that is smaller than the angular velocity of the flow).
Initially, this wave packet is localized near the outer boundary
of the torus and moves toward the inner boundary. This
causes an angular momentum outflow to the disk periphery,
because F > 0, and its acoustic energy increases. At the
instant of reflection from the inner boundary, the sign of F
and the direction of motion of the wave packet reverse, which
later leads to a decrease in its acoustic energy, and the angular
momentum inflows back to the inner parts of the torus.
Because there is no viscous dissipation and the background
flow is stationary, it is evident that if we continue to track the
evolution of the optimal mode superposition, then this
scenario must recur: the wave packet, after reflecting from
the outer boundary, goes back toward the inner boundary.
We also note that the form of G(¢) obtained suggests that
during the evolution of this particular type of perturbation,
there are epochs (time intervals measured from the conven-
tional start of the perturbation evolution) during which no
combination of modes can be amplified. These epochs
correspond to minima on the G(¢) curve (see Fig. 7b). This is
because only wave packets localized near the outer disk
boundary can exhibit significant growth. At the same time,
the velocity of their radial motion is determined by the speed
of sound in the flow, and hence the time intervals ‘favorable’
to nonmodal growth are always ~ X4/0.

If, on the plane (r, ¢), we plot the constant-phase lines of
perturbations corresponding to the wave packet discussed, it
turns out that at the growth stage they correspond to a trailing
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Figure 8. Radial profiles of the azimuthally averaged angular momentum flux density F of the optimal perturbation g(¢) shown in Fig. 7a for the
optimization time 7 = 290. (a) Profiles of F at time instants ¢ = 50, 100, 150, 200, 240 before the g(7) maximum. Each profile has one large maximum,
shifting from the outer disk boundary x; to the inner disk boundary x; as ¢ increases. (b) Profiles of F at time instants ¢ = 290, 350, 400, 450 after the
maximum of g(¢). Each profile, similarly, has one pronounced minimum, whose position is shifted from the inner boundary of the disk at x; to the outer
boundary at x; as 7 increases further. The linear combination shown has the dimensionality N = 20, the parameters are 6 = 0.002, x4 = 1.0, m = 25, and

n = 3/2. (Figure paper [113].)

spiral. It has the maximum opening at the initial time, but
while propagating toward the inner boundary, it winds up
stronger and stronger. After reflection from the inner
boundary, it transforms into a tightly wound leading spiral,
and in the process of motion back toward the outer boundary,
the degree of winding decreases. This behavior of the optimal
perturbation is similar to the process of enhancement/
weakening by a shear flow that we discussed in Section 2.2
in the context of a spatially local problem.

3.3 Alternative: the variational approach

Singular vectors can be found differently by the variational
method. This method is a generalization of the method of
power iterations for matrix eigenvalues and eigenvectors with
finite dimensions (see, e.g., [115]). The variational method
requires less computational power than the matrix method
[121] and, importantly, can be applied for nonstationary
background flows, as well as used to solve nonlinear
problems of the transient dynamics of finite-amplitude
perturbations. Unlike the matrix method, it does not require
a discrete representation of the dynamical operator, for
example, the expansion of perturbations in proper eigenvec-
tors, whose calculation in a shear flow encounters a known
difficulty when bypassing the corotation and Lindblad
resonances (see [122]).

For the linear dynamics, the variational method turns out
to be equivalent to solving the simpler problem of finding the
maximum eigenvalue of the operator Z'Z (see Section 3.1
and, for example, [123]), and we therefore start with solving
exactly this problem, and postpone the derivation of the
variational method directly from the variational principle
until the generalization to the nonlinear case.

3.3.1 Linear autonomous operators. In Section 3.1, after
introducing the notion of singular values, we discussed that
the first singular value is simultaneously the maximum
eigenvalue of the composite operator ZZ, and the first right
singular vector is the corresponding eigenvector of this
operator. Here, we try to understand what the action of Z'Z

on the initial state vector q(0) is equivalent to. The action of
the first (right) part of the composite operator is known from
its definition (52): this is the integration of equations of the
perturbation dynamics, for example, system (8)—(10), which
we symbolically rewrite here as

%

ot :Aqa (94)

until the time ¢ with the initial condition q(0). We note that
due to the linearity of the problem, the operator A in (94) does
not depend on q.

The subsequent action of the operator Z' on q(7) is easy to
understand if the operator A is autonomous, i.e., time-
independent [112]. The solution of Eqn (94) can then be
written in operator form: q(¢) = exp (Ar) q(0), which means
that A and Z are related as

Z =exp (A?). (95)
The right-hand side of (95) is called the operator exponential
and is to be understood as the infinite series
I+ Ar+ (A)*/2+....

The operator adjoint to Z can also be written in terms of
the operator exponential Z' =exp (A7), where A" is the
operator adjoint to A defined by the Lagrange relation
(Aq,q) = (q,A'q), and q and q are arbitrary vectors. This
expression for Z' follows by taking the adjoint of the infinite
operator series given above. We now consider the scalar
product

(?;zl’ ‘i) = (Aq,q) = (q,A"q).

On the other hand,
(59) =5 @a-(a
~(a8)- (()aﬁ(exp(zﬂ) i)~ (a5). o7

(96)

6_(1) == (exp (A7) q(0), q)
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Combining (96) and (97) yields the identity

(q(O), % (exp (A7) fl)) - <q7 %) = (¢, ATq).  (99)

It is easy to see that if q and 0q/0r are related as

oq 4.

o A
then q(z) = exp (—A'7) q(0) and identity (98) is satisfied for
any q.

Thus, the action of the operator Z!=exp(A'r) is
equivalent to the integration of Eqn (99) backward in time
from the instant 7 with the initial condition q(7) to the instant
t = 0. Equation (99) is called the adjoint equation.

We note additionally that although the operator Z can be
represented as Z = exp (A7) and Z' as Z' = exp (A'7), the
composite operator cannot be represented as Z/Z =
exp ((AT+A) 7). To see this, it is sufficient use the series
expansion of the operator exponential.

The action of the composite operator ZZ on the initial
vector q(0) is therefore equivalent to the integration forward
in time of the original equation (94) with the initial condition
q(0) up to the instant ¢, and then to the integration of adjoint
equation (99) backward in time to the initial instant with the
initial condition in the form of the vector q(7) we obtained by
integrating (94).

Any vector for which the action of the composite operator
Z'Z is equivalent to multiplication by a constant is a right
singular vector of the dynamical operator, and the constant is
the square of the corresponding singular value: Z'Zv = ¢2v.
However, we need only the first, i.e., the largest, right singular
vector. To calculate it, we consider an iteration procedure of
applying the composite operator ZfZ with the subsequent
normalization of the result to unity. To show the convergence
of iterations to the first singular vector, we consider the
decomposition of an arbitrary state vector in terms of
singular vectors q(0) = > 27, qxvk(0) and act on it by the
iteration operator, Z'Zq(0) = S22, a2qxvi(0).

It is easy to see that the iteration operator increases the
weight of each singular vector in proportion to the square of
the singular value. Therefore, the limit (ZZ)"~*q(0), where
p is a natural number, for an arbitrary initial state vector q(0)
is equal to the first right singular vector, because it
corresponds to the maximum singular value. The rate of
convergence depends on the difference between the singular
vectors.

We note that to converge exactly to the first singular
vector, the initial approximation must not be orthogonal to it,
because if the weight of the first singular vector in the
decomposition of q(0) is zero, g = 0, then the action of the
iteration operator does not increase this weight: o2¢; = 0.
The iteration scheme in this case converges to the singular
vector with the maximal singular value of all vectors that have
a nonzero weight in the initial approximate decomposition.

Thus, to find the first right singular vector, it is necessary
to apply an iteration procedure that includes the integration
of the original equation (94) forward in time and of the
adjoint equation (99) backward in time, with the subsequent
normalization to unity after each iteration.

(99)

3.3.2 Linear nonautonomous operators. In the case of a time-
dependent operator Z' (so-called nonautonomous operator;
see [124]), the action of A also corresponds to the integration

of Eqn (99) backward in time, which can be verified as
follows.

For a nonautonomous operator A, the action of the
operator Z can be factored into the product of infinitesimal
operators:

Z(7) = lim ﬁexp (A1) 8¢, (100)

where 8t =1/n, (j— 1) 8t < t; < jdt (see [124]). Taking the
adjoint of the product of operators yields

(101)

1
— 1 T
Zi(1) = lim /llexp (AT(z;)) 8¢
Clearly, at each time interval &z, the integration is performed
backward in time, and the intervals themselves are arranged
in the order of decreasing j; therefore, the action of Z! is again
equivalent to the integration of (99) backward in time.

Thus, as in the case of autonomous operators, the
application of Z!Z is equivalent to the consecutive integra-
tion of (94) forward in time and of (99) backward in time.
Accordingly, the iteration procedure to seek the first singular
vector presented above is applicable to nonautonomous
operators as well.

3.3.3 Calculation of the next singular vectors. Singular vectors
form an orthogonal set of functions and can be used as a basis
for the decomposition of any linear perturbation. Hence, it
can be useful to calculate not only the first but also the
consecutive singular vectors; below, we briefly describe their
calculation by the variational method.

In order that the iterations described above converge not
to the first singular vector but to the Nth vector, it is sufficient
that the domain of the iteration operator be the complement
of the subset of linear combinations of the preceding N — 1
vectors, or, equivalently, that the initial approximation be
orthogonal to the singular vectors already calculated, i.e., the
condition (q(0), v;(0)) = 0 be satisfied for j < N. In this case,
the action of the iteration operator is orthogonal to the
calculated singular vectors:

(21Z4(0).%,(0)) = (z*ziqkwoxvj(m)
k=N
~ (S etatwonvo) =0, (0
k=N

Therefore, if we decompose some vector with respect to
singular vectors as

a0) = " g"(0), (103)
k=1

then changing the initial condition in the iteration procedure
by q(0) — Z,{Y;ll q"vi(0) provides the convergence of direct
iterations to the Nth singular vector. Thus, from known N — 1
singular vectors, it is always possible to calculate the next
one.

3.3.4 Generalization to the nonlinear case. In the case of
nonlinear dynamics, the justification of iteration calculations
of optimal growth presented in the two preceding sections
becomes invalid; however, in a somewhat generalized form, it
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can be obtained from the variational principle, as we show
below.

The problem is formulated as a search for the initial
condition demonstrating the maximum growth of the norm
by a given time. In other words, it is required to find a vector
q(0) such that the functional

lla(n)lI®
lla(0)|*

reaches a maximum if the vector q satisfies the dynamic
equations written in operator form (94). For this, a technique
similar to the well-known method of Lagrange multipliers for
finding the conditional extremum of a function is used.

The Lagrangian needed to find the conditional extremum
in this case includes two terms: the functional whose
maximum is being sought and the so-called ‘penalty’ term,
which is nonzero only when q stops satisfying dynamic
equations (94) (see also [125, 126] and review [49]):

G(r) = (104)

(105)

The penalty term is written in (105) as the scalar product of
the Lagrange multipliers entering q, additionally integrated
over time, and Eqn (94). In contrast to the well-known
problem of finding the conditional extremum of a function,
the Lagrangian in this case is a functional defined for all
possible values of q, and the Lagrange multipliers themselves
are functions.

The extremum of (104) is reached when variations of the
Lagrangian with respect to Q and q vanish simultaneously.
These variations are defined as (see book [127])

OL S — fim LA+ 00.0) ~ £(0.4) (106)
0 c—0 €
% 5 = lim L(q,q+ 6&61) —£L(q,9) 7 (107)

where dq and 8q are arbitrary functions at any time.
The variation with respect to the indefinite multipliers is
clearly given by

oL N N
55 —gg%zjo(ﬁq,q—A(q)q)dr

- L’) (54,9 — A(q) q) dr. (108)

Equating (108) to zero, by virtue of the arbitrariness of 6q, we
obtain Eqn (94). To compute variations with respect to the
state vectors, we use the Lagrange identity (q, Aq) = (A'q, q)
(see, e.g., [128] for more details about adjoint operators in
nonlinear problems) and integrate the penalty term by parts,
after which the Lagrangian becomes

t

£(q,q) = G(q) — (109)

@,9) + J’ (@+A'@)d,q)dr.

0

0

Using the smallness of ¢ and the real-valuedness of the scalar
product,” we calculate the variation with respect to state

9 The real-valuedness of the scalar product is additionally required only in
this section to obtain constraints (114) and (115) in a simple form; see
below.

vectors:
oL 1 [lla@)+esq)> lla@l® -
= dq=lim ~ - — , €0
5 9% [ om0 39

+ (4(0),cdq(0)) + J; (q+A'(q)q,edq) dr (110)

Here, the first term can be rewritten in the form

i 1 a0 + eda(o)]
0 ¢ [|q(0) + c3q(0)]1°
i L laOI*+c(3a(1), a(1) +<(a(1), 3q(1) (111
0 ¢ [q(0)|*+¢(84(0), 4(0) +¢((0), 34(0))
Because the scalar product is real-valued, we have

(5q(1),q(1)) = (q(t),3q(¢)), and therefore the transformation
can be continued:

{IIQ(I + edq(1)|? I(I(I)IIT
lim — 5 5
<0 ¢ 1||q(0) + e3q(0)[|”  la(0)]]

)
)

{MII+kSM0AM)HM0V]
a(0)|[* + 2¢ &1(0),(1(0)) lq(0)|*

1
0€

|
ig

LE

i 1 256qt
€ €

19 (0) Hq(O)

:2®Mﬂﬂ0»_25 0t
o 2Ca0-a@)

which ultimately gives the variation

oL . 2(3q(1),q(1)) la(o)ll”
T oq =N 5 (5q(0), q(0
T RTTTE (3a(0). a(®)) lla(o)I*

~ (@(0).3q(0) + (3(0).5(0)) + f@+MUmmwr
(113)

The variation of dq is independent at different time
instants, and therefore equating (113) to zero at one time
yields an equation for indefinite multipliers (99), which
provides the vanishing of the Lagrangian variation in the
interval 0 < 7 < ¢, and additional relations between q and q,
which are needed for the vanishing of the Lagrangian
variations at the instants t = 0 and 1 = r:

2

i) =——q(1), 114

q(?) MO q(1) (114)
lq(o)I* _ T

q(0) = a0 5 q(0) (115)

For the vectors q and q satisfying Eqns (94) and (99) and
constraints (114) and (115), the Lagrangian variations vanish,
and hence functional (104) reaches an extremum at these
vectors.

As in linear systems, the joint solution of equations can be
sought by the power iteration method schematically shown in
Fig. 9. This issue is further discussed in [129-131].

We note once again that for linear perturbations, the
optimization of functional (104) reduces to seeking the
maximal eigenvalue of the composite operator Z'Z.
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adjoint equations:

1(0) 0do, .o K? 0dh
= —1mQ &7, 3y — —, 118
TR T R (118)
060 . i ~

al;w = 2085, — imQ2 85, — 17’” 5, (119)

L O q,(7) = exp(AT)q,(0) o5 20

B - ima?

4n1(0) =3 la,(DIF 0,(0) = rZ 3 (rXév,) — —= 80, — imQ 3h. (120)
T Passing to the local space limit in (118)—(120) [as we did in
B q,(T) Section 2.2 to obtain system (16)—(18) from Eqns (8)—(10)],
G,(0) = exp(AT1)g,(T) | = a,(7) =2 lq,(0)] we obtain the explicit form of the equations adjoint to (16)—

Figure 9. Flow chart of the iteration loop to seek the optimal perturbation
for a time instant 7 satisfying the general system (94) (see review [49]).

3.4 Adjoint equations

3.4.1 Derivation of the adjoint equations. To obtain the explicit
form of the equations adjoint to (8)-(10), we use the norm
identical to the total acoustic energy of perturbations (14).
The scalar product corresponding to this norm coincides with
formula (91), which we already used. Using it, we represent

(9,Aq) as

(@.Aq) =m J Uz {Sv (imQ Sv; +2Q8v] — %)
Tin r
oh*
+61~)¢< = Sv’ +imQ Sv +lm )
dh( a2 d o ima? o, . .
+a_3 (_E ar (rXév)) + p 61)(/) +imQ Sh )} rdr.
(116)

Using the Lagrange identity (§, Aq) = (A'q,q) and Eqn (99)
in the left-hand side of this expression, we represent the scalar
product in accordance with formula (91). The right-hand side
can be rearranged to show the dependence on the components
of 8q in factored form. Here, the spatial derivatives are
calculated using integration by parts. We obtain

Fout o, . 00y . Oh
Tan Zrdr{ dv) E—qu o —oh GI}

=1 er 2rdr {Bv: <imQ 80, — 20 80, + S

K2 o8k )

+ 80 (29 81 + imQ 8%, + 6/%)
r

10 ime _ -
+oh* <26 (1261),)4——61)(/, a*z 6/1)]

Tout Tout

— rEShdv|  — mrZdv, dh* (117)

The substitutions in the right-hand side of (117) vanish
because ~ — 0 at the boundaries.

Components of the variation dq are arbitrary and
independent, and therefore (117) is transformed into three
independent equalities, each corresponding to one of the
components of 8q. These equalities result in a system of

(18):

) 9\ - N ow

(61 q0x 6y> iy — (2 — q) Qotiy, = T (121)
) ) ow

(az 90 > ) iy, + 2Qoily = o (122)
) O\ ;5 o0y Qiiy\

(§—q90x@> W+a*<ax+a>_o, (123)

where tildes above u,, u,, and W mean that these quantities
compose an adjoint state vector.

Finally, passing to the comoving reference frame in (121)—
(123) yields the adjoint equations for separate SFHs:

dd_t — Q= q)iy, — k()W (124)
dit, P

d_;: i, — ik, W, (125)
s 5

! (Fex(t) tax + kytty) - (126)

By applying the power iteration method jointly to (8)—(10)
and (118)—(120) for global azimuthal Fourier harmonics of
two-dimensional perturbations or to systems (21)—(22) and
(124)—(126) for local SFHs, we automatically arrive at the
optimal initial profiles of the enthalpy and velocity compo-
nent perturbations that maximize the total acoustic energy
growth in a given time interval. For Keplerian flows, this
problem was solved in [71].

3.4.2 Nonnormality condition for Z. Here, we show that the
nonnormality of the dynamical operator determined by
system of equations (8)—(10) is a direct consequence of the
angular velocity gradient in the flow. We already discussed
this in Section 3.1, where we introduced the notion of singular
vectors. We can now prove this rigorously in a very general
case, because the explicit form of the operator A’ determined
by system (118)—(120) is known. First, we calculate the
commutator of A and A':

[A,AT]
1604 — x* im ) 3
T 0 20 4 )
_ 0 k4 —160Q* 4Q° -2 2
402 2Q or
a2 2 )
mag . > 4052y 4 E 20 402 a _ o
o ) n (29(” 42 )> +29(K 9% 5, 0

(127)
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It is easy to see that [A,Al] vanishes for x = 2Q, which
corresponds to solid-body rotation. In this case, the commu-
tator [Z,Z'] = [exp (A1), exp (AT7)] can easily be calculated,
because for commuting operators, the product of their
operator exponentials is equal to the exponential of their
sum, which can easily be verified by writing the operator
exponentials as the corresponding infinite series:

[exp (At),exp (AT7)] = exp (A1) exp (ATr)
—exp (A't) exp (A1) = exp ((A + AT) 1)

—exp (AT +A)7) =0. (128)

Thus, the operator Z becomes normal for solid-body
rotation.

The converse statement is also valid: if Z is normal for any
time instant ¢, the rotation is solid-body. To see this, we use
the Campbell-Baker—Hausdorff formula ([132], Ch. 25) to
represent the composite operators ZZ and Z1Z:

12
exp (A7) exp (A7) = exp ((A + AN+ 5 [A,AT]

r? L At t
+3 (A, [A,AT]] -5 (AT, [A,AT]] +> (129)

exp (A7) exp (A1) = exp ((AT +A)r+ ; (AT, A]
RN r i
+ AL AL - L (A A A +>

_ t 2 ho ot t
—exp<(A +A)z—5[A,A]+§ (A, [A,AT]]

3

-5 (130)

[AT,[A,AT]] + > .
The equality [exp (At),exp (A'z)] = 0 is satisfied for any #;
therefore, the terms with the same powers of ¢ must be
independently equal to zero, which is possible only if
[A,AT] = 0. The last equality is valid only for solid-body
rotation.

This implies that solid-body rotation is necessary and
sufficient for the dynamical operator Z of the system of
equations (8)—(10) to be normal. Hence, any deviation from
solid-body rotation, i.e., the appearance of an angular
velocity gradient in astrophysical disks, makes the dynamical
operator nonnormal and perturbation modes nonorthogonal
to each other.

4. Optimal perturbations in Keplerian disks

In the concluding section of this paper, we briefly discuss the
examples of using the variational method for seeking optimal
perturbations in astrophysical disks. These last are under-
stood as geometrically thin disks with an almost Keplerian
azimuthal velocity profile in a background flow. In numerical
calculations, we consider a radially infinite disk with only the
inner (free) boundary and a thin quasi-Keplerian torus with
inner and outer radial boundaries. The latter configuration
was used in the analysis of superpositions of neutral modes in
Section 3.2 in studying the superpositions of neutral modes to
illustrate the matrix method of optimization. However, for
methodological purposes, we start with the simplest analyti-
cally tractable problem of the transient growth of local short-
wave perturbations with k, > 1, which we discussed in detail
in Section 2.3.

4.1 Local approximation

We apply the power iteration method to system (21)—(23),
(124)—~(126) in the limit k, > 1 corresponding to an incom-
pressible fluid. In this limit, system (21)—(23) can be reduced
to one equation for i,:

dii, ke

X ogk, —X g, = 131
which has the analytic solution
k2 +k?
(1) = 0:(0) =——2L | 132
x(1) ‘()k3+/cﬁ (132)

which, of course, repeats (35) for k,, > 1.

At the same time, adjoint equations (124)—(126) in the
limit of a quasi-incompressible fluid suggest that the quantity
il conjugate to iy is time-conserved:!?

=0.
d¢

(133)

~ Obviously, after p iterations of an arbitrary initial profile
i (ky, ky,t = 0), we find that it is multiplied by the factor

2 2 P
[%} . (134)
(k(1))” + k7
With the solution renormalized at each iteration, factor (134)
at p — oo suppresses all SFHs composing @ (ky, k,, ¢ = 0)
except the optimal SFH corresponding to the maximum of
(134) as a function of k. For a fixed time interval ¢, this k, is

key = % ke (=gt — ((q1) +4)'%).

Substituting (135) in the SFH growth factor (42) yields the
sought optimal growth G, which for the local problem is
defined as (44):

(q0)* + qt[(qt)” + 4]
(q1)* — qt[(qt)” +4]

(135)

1/2+4

G(t) = .
+4

7 (136)

Expression (136) gives the first singular value to which the
iteration cycle for short-wave local vortices converges.
Clearly, for large time intervals gz > 1, it gives G =~ (qt)z,
which reproduces the approximate estimate of G in formula
(46).

We also note that the exact result in (136) could be
obtained in this simple example directly from the expression
for growth factor (42) by calculating the maximum of g as a
function of k, at a fixed ¢.

For an arbitrary k,, the optimal growth can be obtained
by numerical forward—backward integration of the full
system of direct and adjoint equations, which are ordinary
differential equations for the SFHs.

4.2 Global problem

When the azimuthal scale of perturbations is comparable to
the horizontal disk scale, it is necessary to solve the system of
partial differential equations (8)—(10) and (118)—(120)

10 Tt can be verified that the quantity /, which was conserved for direct
equations (21)—(23), becomes time-dependent in adjoint equations (124)—
(126) (see the appendix in [71]).
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Figure 10. Illustration of the numerical setup for the integration of the
system of equations (8)—(10) and (118)—(120).

numerically, which was done in [71] using a second-order
explicit difference procedure (leap-frog) (see, e.g., [76]). In this
difference procedure, each equation is separated into real and
imaginary parts, and four grids are introduced on the plane
(r, 7). Unknown variables are calculated at the nodes of these
grids using the corresponding differences (Fig. 10). The nodes
are shifted with respect to each other by half the time step
At and/or by half the radial step Ar. This allows using the
central approximation to calculate derivatives with respect
to r and ¢, which provides an accuracy of the order of (Ar)2
and (At)z. The time step is determined by the radial step
using the Courant condition that follows from a local
dispersion relation and can be obtained from the equations
being integrated.

4.2.1 Comparison of the transient growth of vortices in global
and local space limits. As a background flow, we consider an
unbounded Keplerian disk that has only an inner boundary at
r = r1. To see how the axial symmetry of the disk and, mainly,
the exactly Keplerian angular velocity law Q=
Q(rl)(r/rl)%/2 affect the transient growth, we assume for
simplicity that all other quantities in the equations for
perturbations are constant:

2 = const,

(@), - (137)

14
doq = —F—
eq \/ﬂ

As shown in [71], taking a more realistic distribution of X
and acq (for example, as in standard accretion disks) does not
change the qualitative conclusions presented below. The
results of local and global calculations of optimal perturba-
tions by the variational method are shown in Fig. 11.

Here, we compare the transient growth of vortices with
azimuthal scales both smaller and larger than the disk
thickness. The main qualitative conclusion is that the growth
rate of low-scale vortices (4, < H) decreases much faster on
scales of the order of the radial distance (m ~ 1) than that of
large-scale vortices. It can be verified that in the limit case of
global perturbations with m = 1, the values of G for low-scale
and large-scale vortices differ by a factor of 1.5-2 only for the
given parameters on time intervals up to ¢ =~ 20. On the other
hand, for local vortices, the values of G for A, < H and
/o > H differ by several orders of magnitude. Thus, this
calculation suggests that global large-scale vortices in thin
Keplerian disks can also exhibit a tenfold increase in very
short time intervals of the order of several Keplerian periods
at the inner disk boundary. In turn, this may imply the
importance of the transient growth of perturbations for the
angular momentum transfer on scales much larger than the
disk thickness.

. 100 /
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E ALt - I — /I
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Figure 11. Comparison of the optimal growth for small-scale and large-
scale vortices (see Section 2.3) in the global and local space limits. The
respective solid and dotted curves are calculated for the local SFHs using
formula (44) by the iteration cycle for Eqns (21)—~(23) and (124)—(126) for
ky, =12.5 and k, = 0.125. Harmonics with m =5 are taken as global
perturbations. The optical perturbations are calculated using formula (90)
by the iteration cycle for Eqns (8)—(10) and (118)—(120) with the polytropic
index n = 3/2. Using the relation (m/r) H ~ k,, for the respective similar
large-scale and small-scales vortices, a disk with 6 = 0.05 (dashed-dotted
line) and a formally thick disk with ¢ = 5 (dashed line) were considered. In
both cases, the time is in units of Q(r;)™".

4.2.2 Transient spirals and modes in a quasi-Keplerian torus.
To conclude, we return to the disk model considered above to
illustrate the matrix method for obtaining optimal perturba-
tions (see Section 3.2). As is well known (see, e.g., [81, 82, 96],
as well as [100]), this flow demonstrates a weak spectral
instability, because there are exponentially growing inertial—
acoustic modes. Their increments, as we already mentioned in
Section 2.1, rapidly decrease with decreasing the relative
geometrical thickness of the torus, i.e., when Q approaches
the Keplerian profile. Perturbations can then grow only due
to the transient mechanism of shortening of the leading
spirals by the shear flow (see the discussion in Section 2.3),
which occurs on short time scales of the order of several
Keplerian periods in the flow. However, in the intermediate
case, where the pressure gradient in the torus is sufficiently
high, both nonmodal and modal perturbation growth can
occur simultaneously but at different time scales. The
exponential growth of modes always dominates over the
transient growth starting from some large time intervals.
Interestingly, this essentially means that by calculating the
first singular value of the dynamical operator by the
variational method, i.e., the optimal growth for a given time
interval ¢, the curve G(r) should become exponential starting
from some time, corresponding to the most unstable mode
growth. Also, the iteration cycle, which always converges to
the optimal initial perturbation vector q(z = 0), must now
yield not a leading spiral but a mode. If at a time ¢ > 0 the
spiral starts being deformed by the shear flow and is enhanced
due to perimeter shortening (see the discussion in Section 2.1),
the mode solid-body rotates with the angular velocity
coinciding with Q at the corotation radius inside the flow,
because its amplitude increases exactly due to the resonance
energy exchange with the flow at this radius. Thus, the
method of optimization of perturbations can be applied
both to studying the transient perturbation growth and to
finding the profiles and increments of the most unstable
modes in arbitrary complex shear flows, i.e., to solving the
spectral problem as well.

An example of the calculation of a transient spiral and an
unstable mode in one toroidal flow by the joint solution of
systems (8)—(10) and (118)—(120) by the variational method
was presented in Figs 1 and 2 in the Introduction. We see here
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that already at 6 = 0.3, the maximal increment is very low,
and it takes ~ 10 Keplerian periods for the amplitude of the
most unstable mode to at least double. On the other hand, the
transient growing spiral increases by a factor of 6 already
after several rotational periods at the inner disk boundary.

5. Conclusion

This paper is devoted to the transient dynamics of perturba-
tions, which is of special interest in the theory of astrophysical
disks, in particular, accretion disks. If there are no conditions
for the magneto-rotational instability in a homogeneous
inviscid Keplerian flow, there are no exponentially growing
perturbations. Nevertheless, observations suggest that even
in this case, an angular flux outwards should somehow occur
in the disk. This means, at the very least, that there should be
some mechanism of energy transfer from the regular rota-
tional motion to hydrodynamical perturbations. In spectrally
stable flows, this can be the transient perturbation growth.
Here, we discussed it in terms of the simplest two-dimensional
vortices and came to the conclusion that the reason for their
growth is the shortening of the length of leading spirals by the
differential rotation of the flow (see Figs 2 and 3). Physically,
the energy growth in vortices is due to their angular
momentum conservation, which in the local limit is
expressed by the conservation of their potential vorticity
and the existence of the invariant 7 (see Section 2.2). Here,
we considered both low-scale (k, > 1) and large-scale
(ky, < 1) vortices and compared their optimal growth, with
the nonzero effective viscosity in the disk taken into account
(see Fig. 4). Importantly, the transient growth of large-scale
vortices increases greatly for a super-Keplerian rotation,
which can be significant in relativistic disks with ¢ > 3/2.
Special attention in this paper was given to the mathematical
aspects of nonmodal analysis and to methods of searching for
optimal perturbations. We have discussed in detail that the
transient growth is a consequence of the nonnormality of the
governing dynamical operator of the problem and the
nonorthogonality of its eigenvectors — perturbation modes
(see Figs 5 and 6). Therefore, the growth of arbitrary
perturbations can be properly studied by calculating the
singular vectors, not eigenvectors, of this operator. We have
considered two methods, a matrix one and a variational one,
and applied them to a specific problem (see the corresponding
results in Figs 7 and 11). The matrix method requires a
discrete representation of the dynamical operator, for
example, in the basis of its eigenvectors. The variational
method reduces to iterative integration of the system of
direct and adjoint equations forward and backward in time.
We have emphasized that the variational method is more
universal and can be applied to studying nonmodal dynamics
of perturbations in nonstationary flows, as well as to non-
linear problems.

As was discussed, transient growth of perturbations is
used in the concept of bypass transition to turbulence in
laminar flows. It can also be important as a mechanism of
additional angular momentum removal and the accretion rate
enhancement in weakly turbulized disks. We note that
turbulence due to the bypass mechanism is fundamentally
different from °‘classical’ turbulence, in which the energy
transfer from the background flow is mediated by modes
exponentially growing on large spatial scales, and nonlinear
interactions redistribute this energy between modes with
other wave vectors k (the so-called direct or inverse

cascade). This means that an energy flux er(k) arises in the
phase space, which (in the case of direct cascade) brings the
kinetic energy of perturbations to small scales where viscous
dissipation occurs. In this scenario, the mode direction
distribution in the phase space k is of minor importance,
and et can be nonzero only along the direction of change of
the modulus of k. An entirely different situation must occur
when the transient perturbation growth is responsible for the
energy redistribution from the background flow. This linear
mechanism manifests itself as leading spirals in the disk, i.e.,
spatial Fourier harmonics corresponding to only such values
of k that k,/k, < 0. In a spectrally stable flow, where there is
no energy supply to the leading spirals, initial perturbations
inevitably decay, because the leading spirals turn into trailing
ones. Hence, the turbulent state is here possible only due to a
positive nonlinear response, which can be the appearance of a
nonzero et in the direction of the positional change of k, i.e.,
in the phase space angles, when the trailing spirals give part of
their energy back to the leading ones, a part sufficient to
sustain the transient growth. Simultaneously, another part of
the energy in the trailing spirals dissipates to heat due to their
transition to higher k. Here, the heat dissipation can be due
not to the direct cascade but to a purely linear winding of the
trailing spiral by the flow, i.e., due to the increase in the ratio
ky/ky, > 0 with time at k,, = const. As we see, the transverse
cascade is an essential part of the alternative picture of
turbulence in a shear flow, which is the angular redistribu-
tion of spatial Fourier harmonics of perturbations (see, e.g.,
the appendix in [59]). Maintaining the transient growth of
small perturbations by the transverse cascade was studied in
detail in [113] for a two-dimensional Couette flow. Such
dramatic changes in the concept of the possible structure of
turbulent flows should affect both analytic estimates of the
turbulent viscosity coefficient (see, e.g., [134]) and numerical
simulations of turbulence in astrophysical disks (see, e.g.,
[135, 136], where mostly spectral properties of the turbulence
averaged over directions of k were studied). We note that we
deliberately cited numerical simulations in disks with a
magnetic field, in which the modal growth of perturbations
due to magneto-rotational instability occurs. The point is that
recent studies [137, 138] show that even in Keplerian flows,
where the magneto-rotational instability operates, the opti-
mal transiently growing perturbations are dominant over
exponentially growing modes on short time-scales. As in an
unmagnetized flow, these transient perturbations are locally
represented by shear harmonics. Therefore, the nonmodal
dynamics of perturbations can also be essential in taking
energy from the background flow in MHD turbulent
accretion disks. This can also be suggested by recent paper
[139], which, like [133], studied the transverse cascade of shear
harmonics in a spectrally stable planar magnetized flow
numerically and demonstrated that two-dimensional turbu-
lence arises due to a positive feedback with linear transient
growth of shear harmonics. The planar Poiseuille flow
provides another example of shear flow in which the bypass
transition to turbulence turns out to be preferable to the
‘classical’ mechanism despite the presence of growing modes.
Here, we can cite papers [140, 141], which numerically studied
some scenarios of turbulence generation from regular initial
small perturbations of different types, not the developed
turbulence (as is usually done in most papers on MHD
turbulence in Keplerian flows) (see also Ch. 9 in [6]). It turns
out that the popular early scenario of the flow transition into
the turbulent state due to the secondary instability of
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saturated modes requires much more time and/or signifi-
cantly higher initial perturbation amplitudes in the form of
so-called streaks growing due to the transient mechanism. We
also note that as follows from Fig. 1 in [140], the time of
turbulence development from regular initial perturbations
strongly depends on their amplitudes. This is not surprising,
however, because shear spatial Fourier harmonics of a
smaller amplitude require more time to saturate when the
secondary instability comes into play that directly leads to the
breakaway to turbulence. Clearly, the time of such a
transition can be as long as hundreds of characteristic shear
times; nevertheless, this does not affect the properties and
power of turbulent motions later. Although we presently have
only the results of studies of planar flows, in the future they
can be obtained for quasi-Keplerian flows with high Rey-
nolds numbers, because locally such flows differ from planar
ones only by the presence of the Coriolis force stabilizing the
flow. A wuseful illustration here could be simple finite-
difference dynamical models of nonnormal systems with
positive feedback that illustrate basic properties of the
transition to turbulence in spectrally stable shear flows (see
[48, 142]). For example, in Fig. 10 in [48], it can be seen that
the time for such a simplified scenario to reach the same
‘turbulent’ state increases with decreasing the perturbation
amplitude and ultimately becomes infinite.

To conclude, we note once again that here we have not
considered three-dimensional perturbation dynamics. There
are indications that taking the natural inhomogeneity of the
disk due to vertical density and pressure gradients into
account gives a qualitatively new picture of both the
transient growth of perturbations and the subsequent transi-
tion to turbulence (see [143]). Here, the perturbation
dynamics are essentially three-dimensional, and it can be
shown that for three-dimensional transient vortices, there is
a time-conserved analog of the invariant of motion 7 (see [60,
63]). New numerical calculations carried out in [144] also
point out that taking the vertical inhomogeneity of the disk
into account can result in its destabilization in the subcritical
regime at high Reynolds numbers, in contrast to the case
observed in a homogeneous flow (see [25]).
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