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Abstract. One of the most topical and promising areas in pre-
sent-day physics is the study of the physical properties of
metallic few-atom contacts, which are attractive not only for
their application prospects, but also because of the possibility to
verify with their aid various theoretical approaches through
theory-vs-experiment comparison. This review mainly focuses
on theoretical approaches to understanding the formation pro-
cesses and properties of metallic atomic contacts.

Keywords: metallic nanowires, metallic nanocontacts, quan-
tum conductance, nanomagnetism, spintronics

1. Introduction

One-dimensional metallic structures have recently become an
object of extensive research, because they provide a promising
nano-scale material for manufacturers of electronic compo-
nents hoping to utilize them for the further miniaturization of
their products. One-dimensional atomic nanostructures on
the metal surfaces may be instrumental in promoting
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technological advances in electronics and other sectors [1-3].
Therefore, a priority task now consists in creating metallic
one-dimensional atomic structures with controllable proper-
ties.

By one-dimensional atomic structures on a metal surface
are meant atomic contacts (an atom or a chain of several
atoms connecting two macroscopic electrodes) and nano-
chains (linear chains of atoms on a metal surface).

The present review is confined to the description of the
properties of metallic atomic contacts. Why exactly metallic?
We hope that our review will just give the reader an answer to
this question. Briefly, metallic contacts are especially attrac-
tive for at least two reasons. First, nanocontacts connecting
two electrodes exist in a free space. The properties of long
atomic contacts, similar to those of surface clusters, are only
weakly influenced by the surface, which makes them attractive
in terms of the possibility to compare the theoretical and
experimental data yet obtained. Second, such nanocontacts
connect two metal electrodes and therefore can be used for
direct measurement of their electrical properties.

The creation of atomic contacts in an experiment was first
reported in Ref. [4], where gold atomic contacts with
conductance equal to conductance quantum Gy = 2e?/h
were obtained and existed for a few minutes at a low
temperature. The quantum behavior of conductance had
also been demonstrated in earlier studies [5-9], but the
authors of Ref. [4] not only reached a minimal conductance
of (12.9 kQ)_1 for nanocontacts but were the first as well to
propose an experimental method for elucidating their atomic
structure. The possibility of forming atomic contacts more
than one atom in length opened up new prospects in both
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basic and applied physics. Before that, the structure of atomic
contacts had been determined by comparing experimental
conductance histograms and theoretical findings.

At present, the properties of atomic contacts are investi-
gated by scanning tunneling microscopy (STM) [7, 10, 11], the
mechanically controllable break junction (MCBJ) technique
[12-15], high-resolution transmission electron microscopy
(TEM) [4, 16-19], and atomic force microscopy (AFM) [11,
20]. Sometimes, a combination of these experimental methods
is applied for simultaneous investigation of, say, the structure
and conductance [4] or mechanical properties [21]. In most
cases, however, different types of microscopes are employed
individually for technical reasons.

As far as theoretical approaches to the study of atomic
contact properties are concerned, most of them are based on
ab initio calculations or molecular dynamics (MD) simulation
[22-28]. The kinetic Monte Carlo method (KMCM) has
found application only in recent work for the study of atomic
contact formation [29, 30].

It should be mentioned for readers unfamiliar with the
research area in question that atomic contacts were shown to
possess unique physical properties, such as ballistic quantum
conductance, ballistic magnetic resistance, and giant mag-
netic anisotropy. Moreover, atomic contacts, like other low-
dimensional structures, are very strong. In this review, we
describe the most characteristic properties (mechanical,
electronic, magnetic) of one-dimensional quantum struc-
tures and discuss the peculiarities of their formation. Also,
we shall try to analyze and evaluate the advantages and
disadvantages of different theoretical approaches to the
investigation of nanocontact properties based on a compar-
ison of available theoretical and experimental data.

2. Formation of atomic contacts

2.1 Experimental methods for the creation

of atomic contacts

Currently, STM, AFM, TEM, and the mechanically con-
trollable break junction technique are the most extensively
used methods for the formation of atomic contacts. Let us
consider them in more detail.

STM and AFM are actually employed as powerful
universal tools for obtaining a deeper insight into nanos-
tructure properties and formation. Specially prepared needles
are used in scanning microscopes, the characteristic distance
between the tip of the needle and the surface under study
being 0.1-10 nm. In a normal scanning regime, the needle
surveys the surface without forming atomic contacts. Two
scanning regimes are feasible: the constant tunneling current
mode, and the constant average distance mode. However, the
tip-sample spacing is so small that surface scanning some-
times gives rise to atomic contact. This feature of scanning
microscopes suggests the possibility of their application not
only for structural research at the atomic level but also for the
formation of new structures.

Specifically, STM was exploited for creating linear atomic
contacts [4, 31]. To this end, the miniature needle of the
scanning microscope was dipped into a gold cluster and
moved slowly under the control of an electron microscope.
The movement of the needle caused gradual reduction of the
nanocontact width (Fig. 1a). Its break was preceded by the
formation of a linear atomic chain connecting two electrodes
(Fig. 1a). It took a few seconds to form a linear atomic chain
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Figure 1. Formation and conductance of gold nanocontacts. (a) The
structure of a gold nanocontact upon stretching for different time intervals
(0-2.2 s). The nanocontact is formed between the STM needle (top) and
the gold surface (bottom) [4]. (b) Relative conductance G/ Gy as a function
of displacement d of two electrodes during atomic contact formation at
42 K[12].

sometimes composed of up to 10 atoms [31]. The use of STM
made it possible to form atomic contacts both at low and
room temperatures.

It should be noted that the stretching of metallic contacts
results in a discrete reduction of conductance by 2e2/h, as
follows from the graph of relative conductance for a gold
nanocontact (Fig. 1b). The length of the plateau with
conductance 2e?/h at low temperatures (Fig. 1b) is roughly
2 nm. These two characteristic features give evidence that,
first, a linear atomic contact is formed and, second, it is rather
stable at low temperatures and therefore amenable to further
stretching.

Another method for the formation of metallic atomic
contacts is the so-called mechanically controllable break
junction technique. In this method, a notched thin wire of
the sample metal (some 0.1 mm in diameter) fixed on a
substrate is bent with a piezoelement till it breaks. The
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experiment is carried out in a vacuum at a low temperature,
which not only prolongs the lifetime of the nanocontact but
also guarantees the absence of impurities. The method allows
atomic contacts to be formed and their properties, e.g.,
conductance, to be investigated [12—15]. Its sole disadvan-
tage lies in the fact that it does not permit the atomic structure
to be visualized.

TEM is currently the only method suitable for application
in nanocontact technologies. With this method, an electron
beam is used to burn two nearby holes in a thin metal film
with a narrow (1-2 nm) passage between them. The passage
then breaks down as a result of self-organization of atomic
positions in the absence of any external impact [16]. Video
images of the process are analyzed after it terminates. The
contact created by TEM does not elongate. Thinning of the
contact is due exclusively to atomic diffusion inside it [29, 30,
32]. TEM makes it possible to form atomic contacts from
practically all 3d-, 4d-, and 5d-metals at room temperature.
By way of example, nanocontacts have been formed from Co
[33], Cu [34, 35], Rh [36], Pd [33], Ag [37], Pt [32, 33], and Au
[38, 39] and their properties investigated.

2.2 Simulation of the atomic contact formation

by the molecular dynamics method

With recent progress in computing technology, simulation
has become a most important research tool in modern
physics. In scattered instances, simulation is the sole method
allowing the answer to certain questions to be obtained,
which accounts for one of its main advantages over experi-
ment. Simulation of atomic contact formation in Refs [22, 23]
showed that elongation of a nanocontact is associated with
the breaking of atomic bonds inside it. The contacts
themselves are formed from surface atoms.

One of the simplest and most frequently applied methods
for simulation of nanocontact formation is the molecular
dynamics method. The following protocol is usually used to
simulate dynamic stretching of nanocontacts: atomic con-
tacts composed of several atoms are positioned between two
electrodes, each having a few fixed layers (in other words, a
contact is placed between two bulk crystals). All atoms
initially occupy the crystal lattice sites. If a metal has the
face-centered cubic (fcc) crystal lattice, an almost circular
cross section of the nanocontact is chosen as energetically
preferred for such contacts. The nanocontact is stretched by
altering the spacing between the two electrodes in a stepwise
fashion. Both the step and the time are determined by the
chosen stretching speed. If stretching occurs at a given
temperature, a proper thermostat is needed to maintain it at
the desired level.

When running the molecular dynamics method, special
care should be taken to choose the potentials [24] describing
interatomic interactions. Figure 2a—c presents the structures
of a gold nanocontact at room temperature obtained with the
selection of three different semiempirical potentials, viz. the
Cleri—Rosato potential [40], glue model potential [41], and
embedded atom method potential [42]. The figure demon-
strates that the structure of the nanocontact being stretched
depends on the choice of the potential. The criterion for the
correct choice of potentials for the study of the properties of
metallic nanocontacts is agreement between the contact
configuration energy and the energy calculated in the frame-
work of the density functional theory.

The influence of the choice of potentials on the gold
nanocontact structure is illustrated by Fig. 2d, which
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Figure 2. Structure of an Au(001) nanocontact upon stretching with the
use of the (a) Cleri-Rosato potential, (b) glue model potential, and
(c) embedded atom method potential. (d) Energy variation upon nano-
contact stretching versus results of ab initio calculations for three
potentials: Cleri-Rosato (curve /), embedded atom method (curve 2),
and glue model (curve 3) [24].

compares energies obtained with the use of the Cleri-Rosato
(curve /), embedded atom method (curve 2), and glue model
(curve 3) potentials. The energy values calculated by the
pseudopotential method in the framework of the density
functional theory [24] are taken to be zero. The data
presented in the figure indicate that the Cleri—-Rosato
potential is the best choice for simulating the formation of
gold nanocrystals, even though the use of the embedded atom
method potential also yields a good result, unlike the glue
model potential [24]. Moreover, simulation of nanocontact
formation implies taking into consideration that its stretching
rate in experiment is 107® m s~! or much lower than in the
MD method (102 m s~!). Disregarding this fact does not
allow taking into account diffusion processes in the system.
Atomic diffusion in metallic nanocontacts is practically
absent at low temperatures, and the results obtained by the
MD method are then in excellent agreement with experi-
mental data.

The direction of nanocontact stretching is of importance
for the formation of an atomic chain. It was shown in
experiment that direction [110] is the preferred orientation
for the formation of atomic contacts at low temperatures by
the mechanically controllable break junction technique [4, 37].
The advantage of stretching in the [110] direction over that in
the [100] and [111] directions is due to the fact that atoms of
the nanocontact in the [110] case are less densely packed,
which enables them to extend to a greater length due to the
smaller number of bonds that need to be broken [43].
Moreover, the surface energies for the (110) direction in
many 3d-, 4d-, and 5d-metals are higher than for (100) and
(111) [44]; therefore, it is more difficult for a nanocontact
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Figure 3. Dependence of the structure and elastic force Femerged in a wide
gold contact stretched along the [100] direction on the distance between
electrodes [26].
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Figure 4. Mean potential energy per atom as a function of the inverse of the
palladium nanocontact radius for (100), (110), and (111) orientations of
electrode surfaces [47].

stretched in the [110] direction to maintain its structure than
for nanocontacts stretched in the [100] and [111] directions.

Stretching nanocontacts is accompanied by their struc-
tural changes [25-27]. By way of example, Fig. 3 presents the
dependence of the elastic force on the distance between
electrodes for a gold nanocontact with a diameter of 6 A
composed of several hundred atoms [26]. Prior to stretching,
the contact had the fcc structure. The dependence of the
elastic force on the distance between electrodes is of an
oscillatory character (see Fig. 3). The elastic force first
grows linearly upon stretching and sharply decreases there-
after, as in the case of an atomic contact [27], which, however,
does not lead to the breakdown. It increases again upon
further stretching but finally falls down. Such oscillatory
behavior of the elastic force depending on the extent of
stretching d is observed until d reaches the value correspond-
ing to the break; it is related to structural changes in the
contact being stretched. The linear increase in the elastic force
depending on d corresponds to the elastic phase of stretching;
in this case, the contact has the fcc structure. Further
stretching gives rise to the inelastic phase associated with the
formation of a disordered structure and a sharp decrease in
the elastic force.

Thus, the process of contact stretching consists of a
sequence of elastic and inelastic phases. Notice that contacts
stretched in different directions [100], [110], [111] exhibit
different behaviors [27, 28, 39, 45, 46]. Calculations for
different metals, such as palladium [27], copper [28], and
gold [39, 45], show that the [110] direction turns out to be
especially ‘flowable’ because the number of elastic force
jumps (phase changes) for the [110] direction is greater than
for the [100], [111] directions. For this reason, the inelastic
phase predominates in this case.

The probability of formation of atomic contacts prior to
atomic chain breaking strongly depends not only on their
chemical composition but also on the direction of stretching.
Let us consider first the formation of nanocontacts at low
temperatures when atomic diffusion is practically absent. In
this case, a change in contact properties needs to be taken into
account due to diminishing of the contact diameter upon
stretching. This situation is exemplified by a palladium
nanocontact [47].

Figure 4 shows the dependence of the potential energy per
atom on the inverse of the nanocontact radius. All three
straight lines must intersect at a common point corresponding
to the binding energy in a perfect crystal, while the angles of
their slope depend on the surface energy of the facets making
up the palladium nanocontact [48]. It follows from Fig. 4 that
the mean potential energy per atom, when the nanocontact is
located between two electrode surfaces oriented in the (110)
direction, is minimal for all lateral sizes of the nanocontact.
Therefore, stretching may cause spontaneous structural
rearrangement of the contact having a finite radius and
located between electrode surfaces oriented in a direction
other than (110); such a rearrangement will most likely lead to
its breakdown. On the one hand, palladium nanocontacts
placed between electrode surfaces oriented in the (110)
direction feature the highest stability upon stretching; on the
other hand, they are at the highest risk of breakdown without
formation of atomic contacts. The energy is higher for other
orientations of the electrode surfaces, and the potential
barrier for the formation of atomic contacts is lower. This
means that temperature must be such that it enables the
system to overcome the barrier without breaking the
nanocontact.

Of no small importance is information on those metals in
which atomic contact form and in which they are not. A
variety of parameters are used to identify metals more or less
suitable for the formation of atomic contacts. The authors of
Ref. [49] proposed using the ratio of the breaking force for an
infinite chain to the bond breaking force in a crystal as such an
estimation parameter. In a later study [47], the ratio of the
atomic binding energy in a one-dimensional chain to thatin a
crystal was used as the criterion for the formation of atomic
contacts. Both criteria show how strong the bonding is in one-
dimensional structures compared with that in a perfect
crystal. Thus, the higher the estimation parameter, the
greater the probability of formation of linear atomic con-
tacts. The propriety of the application of these parameters
was confirmed both in experiment [50] and by computer
simulations [47]. The sole difference is that the former
parameter fails to account for the high probability of
formation of palladium atomic contacts. Moreover, the
latter parameter is simpler to calculate, because the computa-
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Table 1. Breaking force values (in nN) for metallic atomic contacts with
electrode surface orientation in the (100), (110), and (111) directions for an
infinite chain and a perfect crystal.

Metal (100) | (110) | (111) | Chain Crystal
Cu  [35,47] 1.1 1.2 1.3 1.4 0.5
Rh  [47] 1.6 1.6 1.5 1.9 1.1
Pd  [47] 1.7 1.6 1.9 1.2 0.6
Ag [47,51] 1.0 1.1 1.2 1.3 0.5
Pt [47] 2.6 2.5 2.9 2.6 0.9
Au  [24,25,39,45]| 1.5 2.2 1.6 2.1 0.7

tion of the binding energy for nanocontacts is less laborious
than the computation of their breaking force. According to
these criteria, gold and such 5d-metals as iridium and
platinum are much more suitable than silver and copper for
the formation of linear atomic contacts at low temperatures
[47, 49, 50].

It was mentioned in a preceding paragraph that diffusion
processes at a low temperature can be disregarded, but the
physics of atomic structure formation changes radically as it
rises (see below). Notice that the atomic contacts of many
metals, including 3d- and 4d-ones, are known to form at room
temperature [33—35]. Therefore, we shall discuss here only the
formation of atomic contacts immediately before breaking.

One of the parameters determining the probability of
atomic contact formation is the breaking force. Calculations
reveal that bond breaking forces of linear atomic contacts
differ for different metals and depend on the orientation of
electrode surfaces (Table 1) [24, 25, 35, 39, 45, 47, 51]. For
example, a linear contact from copper atoms is especially
strong between the electrodes oriented in the (111) direction
and becomes very weak in the (100) orientation. The strength
of linear atomic contacts in gold is minimal between electrode
surfaces oriented in the (110) direction.

These observations are confirmed by the results of
experiments at room temperature indicating that the prob-
ability of forming copper [35] and gold [39] linear atomic
contacts depends on the orientation of the electrode surfaces.
The preferred orientation for metals is that associated with
the highest breaking force of linear atomic contacts. This fact
can be explained as follows. Atomic diffusion at room
temperature results in the rapid formation of a single-atom
contact, with the metal near the contact having the same
crystalline structure as the electrodes. Then, the nanocontact
with the maximum breaking force provides the highest
probability of forming a linear atomic contact upon further
stretching, in excellent agreement with experiments [35, 39].

The probability of forming atomic contacts can be
enhanced by introducing various impurities, such as oxygen
[52] and hydrogen [53] molecules, that change the electronic
properties of the nanocontacts [54] and thereby affect their
atomic structure and other physical characteristics. The
impurities can promote both destruction and stabilization,
i.e., strengthening, of the nanocontact [52-54].

2.3 Simulation of the atomic contact formation

by the kinetic Monte Carlo method

Ongoing theoretical studies of the formation of atomic
contacts are mostly carried out by two methods: MD with
the use of semiempirical potentials [27, 38, 47], and calcula-
tions in the framework of the density functional theory [45,
55]. Both techniques reduce to the simulation of a decrease in
the cross section and a break of the nanocontact upon its

elongation. However, a contact formed by TEM avoids
elongation, and the cross section of the nanocontact
decreases due to atomic diffusion alone. Moreover, it takes,
as a rule, about 1 minute to form the nanocontact [16]. To
simulate such a long process, some 10'¢ steps of the MD
method need to be performed, which is impossible, in
principle, at the modern level of computing technology.
Thus far, the MD method has permitted simulating evolu-
tion of nanocontacts no longer than 20 fs in length [56].

Moreover, it was shown in experiment that conductance
of nanocontacts strongly depends on the mode of their
formation, i.e., either by stretching or self-organization [57].
The same factors determine the time of their existence. A
nanocontact formed by stretching at room temperature was
shown to exist for 0.01 s, in contrast to the lifetime of 15 s for a
contact formed through self-organization. These observa-
tions suggest different mechanisms of formation of atomic
contacts depending on the method by which they were
obtained; hence, the necessity of an integrated approach to
the formation simulation of atomic contacts.

It was proposed to address this issue by exploiting such a
powerful tool for simulation of the formation of metallic
nanocontacts as the kinetic Monte Carlo method (KMCM)
[29, 30]. In so doing, the energy barriers for the main diffusion
events were determined by the MD method. Such a combined
approach to the investigation of surface atomic diffusion and
self-organization of various nanostructures has recently
found wide application for the study of both homogeneous
and heterogeneous systems [58—60].

The process of nanocontact formation by TEM is
arbitrarily divided into four steps [29, 30]. Let us consider
them in more detail using a gold nanocontact as an example.

The narrow passage between two holes in the gold film
immediately after their burning is an fcc crystal with (100),
(110), and (111) facets that can have, in general, all possible
edges between them. However, not all atomic positions in
such a crystal are equivalent. Atoms located at the edges
between (110) and (110), between (100) and (110), or between
(100) and (100) facets have the lowest binding energy (3.53 eV,
3.54 eV, and 3.65 eV, respectively). Therefore, low-barrier
events bearing the responsibility for the atomic transfer from
these edges to crystal facets occur at the first stage of a
nanocontact formation. Due to this, by the end of the first
stage of nanocontact formation, the contact surface is made
up of a combination of the (100), (110), and (111) facets
arranged so that the aforementioned unstable edges are
absent. Part of this contact surface is depicted schematically
in the left part of Fig. 5a.

Figure 5. Schematic (a) and detailed (b) representation of part of a gold
nanocontact in the course of its evolution. Part of the cross section normal
to the [110] direction is shown [30].
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At the second stage of nanocontact formation, the area of
the (100) facets decreases, because they become energetically
least favorable. This process (Fig. 5a) is related to the high
mobility of gold atoms in the direction parallel to the edge
between the facets, because the energy barrier for an atom
jump, 0.32 eV, is much lower than other energy barriers.
Moreover, it is energetically more advantageous for the
atoms located at the edge to move to the (110) surface than
to the (111) one. A gold atom must overcome an energy
barrier of 0.70 eV to pass from the edge to a clear (110)
surface, or a barrier of 0.65 eV if this surface is occupied by
an atom. After this, the atoms move along the edge and leave
the nanocontact region. If one or more atoms are already
absent on the edge, it is easier for neighboring atoms to pass
to the (110) surface. In the end, all atoms of a given edge
leave the nanocontact region for 5 x 10~ s; in this way, they
free up a similar edge between the (111) and (110) facets.
This process continues till all the atoms from the upper layer
of the (111) surface leave the contact region, as shown in
Fig 5b. Meanwhile, the area of the (110) and (100) facets
decreases, while that of the densely packed surface (111)
increases.

The second stage of nanocontact formation ends when the
contact loses all (110) facets. At room temperature, this stage
lasts about 1 s.

It is worthwhile to note that the direction of atom
migration during the formation of atomic contacts is
possible to control by an electric field. A recent experiment
revealed that a nanocontact undergoes nonuniform deforma-
tion in the presence of an electric field [61]. The negatively
charged electrode is slightly stretched, while the positive one is
compressed; as a result, atoms migrate from the rarified
region to the contracted one, i.e., toward the positively
charged electrode.

The edges between (111) and (110) and between (111) and
(111) facets in an fcc crystal are oriented in the [110] direction.
If the narrow passage between the holes is initially oriented in
the same direction, too, the self-organization leads to the
formation of a nanowire, i.e., a nanocontact of uniform
thickness. Any other orientation of the initial passage gives
rise to a contact in the form of two ‘pyramids’ with over-
lapping vertices. This simulation-assisted prediction is con-
sistent with experimental data for nanocontacts obtained at
room temperature by TEM and other methods [9, 16, 32, 38].

At the third stage of nanocontact formation, they
gradually become thinner as atoms move from the edges
between (100) and (111) facets onto these facets. In the
framework of the model being considered, such events prove
impossible if the (100) and (111) facets have no defects,
because the final state of the atom is unstable and it returns
to the initial position. Therefore, thinning of the contact
occurs either near its end or in the middle, where it is
especially thin. The number of atoms capable of taking such
jumps being much smaller than at the second stage, the third
stage lasts an order of magnitude longer (around 1 minute). It
ends in disintegration of the nanocontact crystal structure.

The fourth stage of nanocontact evolution occurs in the
noncrystalline phase and continues till a single-atom nano-
contact is formed. Disintegration of the crystal structure is
accompanied by a manifold increase in the number of
possible diffusion events. Also, it gives rise to low-barrier
events leading to a rather rapid formation of a single-atom
contact, which takes less time than thinning of a contact with
the crystal structure.
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Figure 6. Formation of gold nanocontacts oriented along [100] (a, ), [110]
(b, g), and [111] (c—e, h). Images of experimentally obtained nanocontacts
(a—e) are borrowed from Ref. [16].

Figure 6 compares the results of computer simulations and
an experimental study of the formation of gold nanocontacts.
The best agreement between theory and experiment was
achieved when the contact was oriented along the [110]
direction (Fig. 6b, g). In this case, the nanowires being formed
retain the crystal structure. If the contacts have the [100]
(Fig. 6a,f) or [111] (Fig. 6e, h) orientation, an atomic contact
is formed between the vertices of two pyramids. The crystal
structure of contacts oriented in the [100] direction (Fig. 6f)
undergoes much more pronounced disturbance than that of
contacts oriented in the [111] direction (Fig. 6h). This result is
also in excellent agreement with experiments [9, 16].

An analysis of the simulation of nanocontacts formed by
the MD and KMCM methods gave evidence that formation
by stretching and by hole burning in thin films is essentially
different. In the former case, periodic alternation of crystal-
line and noncrystalline phases takes place, whereas in the
latter case the noncrystalline phase occurs only at the end of
evolution of the narrow passage. One more characteristic
difference lies in the fact that the formation of atomic contacts
simulated by the MD method involves surface atoms,
whereas that simulated by KMCM recruits internal atoms.
Thus, it is not always correct to compare experimental data
obtained separately by TEM method and the mechanically
controllable break junction technique.

3. Mechanical properties of nanocontacts

3.1 Nanocontact bonding length and geometry

It was mentioned in Section 2 that the break of a wide
contact sometimes gives rise to an atomic contact. Detailed
structural analysis showed that prior to the break atomic
contacts can form by two independent mechanisms of
nanocontact evolution [45]. In the first case, the elastic
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phase transforms into the ‘sliding phase’ in which the atomic
contact is stretched out and atoms lack strict ordering. In the
second case, the elastic phase with its ordered atoms (as in a
crystal) is followed by the ‘defect formation phase’ char-
acterized by a regular crystalline organization of atoms and
the appearance of defects due to bond breaking in the
nanocontact upon its stretching. The nanocontact acquires
a triangular cross section upon further stretching (‘triangular
phase’), which eventually gives rise either to a multiatomic
contact or to the ‘planar phase’ in which atoms are arranged
in two rows in the same plane. Sometimes, such structures
are called zig-zag contacts [31, 55, 62-65]. The difference
between zig-zag and planar contacts lies in the fact that all
atoms in the former simultaneously build up linear atomic
contacts during stretching. In the latter case, such contacts
evolve as atoms gradually, one after another, gather into a
linear structure in the course of stretching. The linear atomic
contacts constitute metastable systems that undergo disin-
tegration with time or when heated. Heating makes atoms of
nanocontacts oscillate first only along the chain axis and
thereafter in three directions, which gradually destroys the
contact.

The zig-zag geometry of purely metallic nanocontacts
awaits elucidation. Ab initio calculations suggest the possibi-
lity of emerging zig-zag geometry, but it is rarely observed in
experiment, where it is attributed either to precession of one
atom around the contact axis [65] or to the presence of an
impurity that is difficult to resolve by an experimental
technique [66, 67]. MD calculations revealed that the break
of a zig-zag nanocontact occurs upon a small change in one of
the two parameters, either temperature or the distance
between the electrodes, because the energy barrier for the
formation of the energetically advantageous zig-zag config-
uration of atomic contacts is higher than the energy needed to
break it [68].

Structural analysis of atomic contacts evidenced two
peculiar features, one being different interatomic distances
in a contact and an ideal crystal, the other the nonuniform
bond length distribution in atomic contacts [69]. As the
number of atoms in a contact increases, the bond length
distribution in the contacts becomes more uniform and the
lengths themselves approach those in an infinite atomic
chain.

Surprisingly, the interatomic distances in a contact can be
much longer than in a crystal. For example, the atom—-atom
distance in gold contacts may be as large as 4.0 A, compared
with only 2.9 A in a crystal (Table 2) [4, 21, 31, 37, 50, 51, 63,
68—74]. However, such a difference is not inherent in all
metals (see Table 2).

Table 2. Experimental (dex,) and theoretical (acac) bond lengths. Dis-
tances between the nearest neighbors in a perfect crystal are presented for
comparison.

Length Au Ag Pt Ir
dexp, A |3.5-4.0 [4] |33-3.6 37| 28 [21] 22 [50]
2.5-4.0 [31] 23 [11] 22 1]
2.8-3.5 [69]
2.5 [50]

dae A | 31 721 31 (73| 28 (74| 23 [63]
25-29 [68] | 32 [51]
29-3.1 [70]

bou, A | 2.9 2.9 2.8 2.7

3.2 Mechanical stresses in atomic contacts

Another important aspect of nanocontact research includes
investigation of mechanical properties, such as strain and
strength. The surface layers of a crystal may lower the
system’s energy due to relaxation of atomic layers in the
direction normal to the surface or a change in the crystal
lattice structure. In the former case, only the interplane
distance is altered, while in the latter case periodicity of the
crystal structure is disturbed. The surface of any crystal has
surface tension. Mechanical stress on the surface is different
from zero but vanishes in the bulk. Surface tension is
sometimes so high that it may be energetically advantageous
to decrease it by rearranging the surface structure or creating
surface defects.

Thus, the distribution of strains and stresses is one of the
main factors influencing the formation of surface nanostruc-
tures. The application of the notions ‘strain tensor’ and ‘stress
tensor’ in relation to surface nanostructures has some
peculiarities. In calculations, the specific stress tensor per
atom or hydrostatic stress p, is used; the latter parameter is
given by the formula [75]

Paztr{_L{w

Q() my.

N-1
+ % ZO: () (raa); + (fk/),»(l‘kl),')j| } ) (1)

I#k

where fy; is the force acting from atom / on atom k, ry; is the
distance between atoms k and /, N is the number of atoms in
the system, Q is the specific volume per atom, and m;, and p;
are the mass and momentum of atom k, respectively.

Figure 7 exemplifies the dependence of mean hydrostatic
stress on the distance between electrodes in a copper 5-atom
contact. At the spacing between electrodes equal to 1.1 nm
(point A in Fig. 7), the contact is contracted, which accounts
for negative mean hydrostatic stress. Contact stretching
causes a linear growth of the stress and changes its sign,
while the distance between the electrodes increases (point B in
Fig. 7). As a result, the nanocontact passes from the
contracted state to the stretched one. The stress drops
sharply at a certain interelectrode distance (point C in
Fig. 7), and the contact breaks down. For a nanocontact
with the distance between electrodes at which mean hydro-

Number of atoms
| |

1.1 1.2 1.3 1.4 1.5
d, nm

Figure 7. Mean hydrostatic stress (p,) in a coper contact. The inset
shows hydrostatic stress on individual atoms of the contact at points A,
B, and C [76].
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Figure 8. Displacement of copper atoms in electrodes upon contact
stretching. Curves /, 2, and 3 correspond to the interelectrode distances
1.1, 1.2, and 1.35 nm, respectively, and dy = 1.8075 A. Lower and upper
insets depict the electrode surface for curves 7 and 3, respectively [76].

static stress vanishes, the forces acting on the chain atoms are
very small, and the system is energetically more stable than
any other one.

Notice the slight inhomogeneity of the local mechanical
stress on the atoms of the chain (see the inset to Fig. 7) that is
due to the nonuniform distribution of interatomic distances.
The bond length, and therefore the stress in the chain, become
uniform immediately before the break.

Stretching of a nanocontact is accompanied by deforma-
tion of the electrode surface [76]. Figure 8 depicts the
displacement of copper atoms in electrodes spaced apart by
different distances upon contact stretching. The surface
beneath the contact is uneven. When the interelectrode
distance equals 1.1 nm, the contact is contracted and its
surface becomes concave (curve / in Fig. 8). Stretching alters
the structure of both the contact and the electrodes. The
electrode surface becomes more even when the interelectrode
distance is 1.2 nm (curve 2 in Fig. 8). It becomes convex
immediately before the break (curve 3 in Fig. 8).

3.3 Young’s modulus of nanocontacts

and atomic contact breaking force

Evidently, information about elastic characteristics, such as
Young’s modulus of nanocontacts and atomic contact break-
ing force, is needed for the practical application of nanocon-
tacts in electronic components. Both quantities strongly
depend on geometric dimensions of nanocontacts and
temperature [21, 28, 31, 77, 78]. For example, Young’s
modulus for a gold nanocontact is unrelated to its cross
section diameter larger than 30 nm [78] but increases if the
diameter decreases from 30 to 1 nm. This change is due to the
higher ratio of the number of surface atoms in nanocontacts
to the number of bulk atoms at which the surface properties
predominate in such systems.

It was found in experiment that Young’s modulus for
gold nanocontacts varies in the range from 47 to 116 GPa
[31]. This means that the maximum value of Young’s
modulus for a gold nanocontact is 1.5 times that for
macroscopic bodies (78 GPa), whereas the inverse is true for
Pt[21] and Ag[77].

A wide scatter of Young’s modulus values is attributable
to the formation of nanocontacts with different structures
and crystallographic orientations. Calculations confirm the

dependence of Young’s modulus on the crystallographic
direction along which the nanocontact is stretched out [28].
Young’s modulus was shown to decrease with temperature,
meaning that nanocontacts tend to undergo plastic strain
with rising temperature.

The breaking force of an atomic contact depends on
surface orientation and is significantly different from that of
a perfect crystal (see Table 1) [45, 47, 51], because the
coordination number of the terminal atom depends on the
electrode surfaces between which the atomic contact is
situated. A change in the coordination number results in an
alteration of electronic structure of the atomic contact and, as
a consequence, of its interaction with the surface. Therefore,
the distance between the terminal atom and the surface, as
well as the contact breaking force, may differ for different
surfaces [47]. For example, the breaking force for an atomic
contact between Au (110) surfacesis 2.2 nN or 3 times that for
a crystal (0.7 nN, Table 1). This suggests that the bond
strength in metallic contacts is greater than in crystals.

4. Quantum effects in one-dimensional
nanostructures

4.1 Density of states in a one-dimensional crystal

Let us consider, before discussing the electronic properties of
atomic contacts, such an idealized system as a one-dimen-
sional (1D) crystal in which electrons move freely without
interacting with the nuclei (free electron gas).

Let electrons move freely only along the x-axis. The electron
energy is quantized in the transverse direction (yz-plane) and
takes on discrete values E,, (electron movements are
described, as any two-dimensional motion, by two quantum
numbers, 1, and 7). In this case, the total spectrum is discrete
continuous, too, but has only one continuous degree of
freedom:

272
E=E,, + hzll;x . (2)

The number of the allowed states on a 2dk-long segment
for one subzone is equal to the number of cells 2rt/L in length,
where L is the crystal length. Therefore, the number of
allowed states is defined as

dN:2%dk, 3)

where the factor 2 takes account of two admissible values of
the spin quantum number for each allowed k value.

Expressing the right-hand side of Eqn (3) through energy
yields

1
AN = —

2m
— dE. 4
mwh V E (4)

The density of states per unit volume for one subzone can
be written out using Eqn (4) as

1 2m
PID(E):E \/; (5)

As mentioned above, there are two limiting directions, y
and z, for a one-dimensional system. Therefore, expression
(5) needs to be summed over all quantum numbers, n,, n.;
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hence, one has

plD(E) _ \/277 Z @(E— Em.‘n:)

where @(E — E,_) is the Heaviside function.

The density of states in the one-dimensional case grows
discretely and thereafter falls to the next energy level as E /2.
Such an abrupt increase in density of states and its subsequent
decrease occur at each level.

(6)

4.2 Density of states in atomic contacts

Let us consider the density of states in atomic contacts.
Variations of the structure and size of atomic contacts result
in an alteration of their electronic properties. The size of
atomic contacts depends on the number of atoms and the
interatomic distance. Currently available experimental meth-
ods do not permit measuring the density of states in atomic
contacts; it has to be found by calculations. Let us consider
their results.

To demonstrate the relationship between the contact
structure and electronic properties, the authors of Ref. [76]
calculated the local density of states in the atoms of a copper
contact for its three different states, viz. contracted, stretched,
and intermediate. The most pronounced change of the local
density of states was observed for s- and d-electrons, whereas
that of p-electrons remained virtually unaltered. Therefore,
Fig. 9 presents only s- and d-components of the density of
states for all atoms of the contact subjected to stretching.

It follows from Fig. 9 that the density of states of atoms in
a nanocontact first grows sharply but then gradually
decreases. As stressed in Section 4.1, such a behavior of the
density of states corresponds to that in an idealized one-
dimensional crystal. However, the energy density of atomic
states in the nanocontact is more smeared (wider resonance
curves) than in the idealized case, since the contact has a finite
length and the atoms interact with the electrodes. Figure 9

demonstrates that maxima of the resonance curves are shifted
to lower energies. Therefore, nonoccupied electronic states
shift to the Fermi level. The shifts are proportional to L2,
where L is the interelectrode distance. This dependence is easy
to explain in terms of the particle residing in a quantum box.
This model does not exactly describe the particle’s behavior in
the quantum box, but it explains the shift of the peaks toward
low energies with contact elongation.

As pointed out above, density-of-state peaks are shifted
toward the Fermi level upon stretching the nanocontact and
intersects this level before its break (Fig. 9a). Therefore, the
charge density of s-electrons increases, especially in the central
atom, which accounts for the enhanced conductance of the
nanocontact before its break [79, 80]. States of d-electrons for
the atoms of a contracted copper contact are close to the
Fermi level and smeared due to strong interatomic interac-
tions (Fig. 9b). Both d- and s-states shift toward lower
energies as interelectrode distances increase. The interatomic
interaction in a stretched contact is rather weak and the local
density of states in terminal atoms is close to that of an atom
adsorbed on the surface (adatom) [81].

Thus, d-electrons play the key role in the conductance of
contracted copper atomic contacts, whereas s-electrons have
a dominant role in the stretched state. In contacts with a small
number of atoms, d-states are located closer to the Fermi level
than in longer contacts. Moreover, interaction with the
surface makes these states smeared in terms of energy. In
other words, the number of electrons determining conduc-
tance in short contacts is greater than in longer ones, and their
conductance is higher. Such a behavior of electronic states is
also observed in other atomic contacts possessing a similar
electronic configuration, e.g., in gold contacts [80].

Another way to alter the contact length is to vary the
number of atoms in it, which changes the density of states in
contact atoms. By way of example, Fig. 10a plots the density
of states for the central atom of atomic contacts composed of
1-6 copper atoms. It can be seen that the density of states
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Figure 9. (Color online). Local density of states (LDOS) of s-electrons (a) and d-electrons (b) in copper atoms of a 5-atom contact for interelectrode
distances of 1.1 nm, 1.2 nm, and 1.3 nm. Black, blue, and red curves correspond to the local density of states in the terminal atom, central atom, and the

atom between the central and terminal ones [76].
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Figurel0. (a) Quantum dimensional effect: evolution of the one-dimensional electronic structure in copper contacts; only s-states are presented [76].
(b) Conductance spectra for Au chains of different lengths on the NiAl(110) surface [82].

above the Fermi level increases as the number of atoms in the
contact rises. An increase of atoms in the nanocontact gives
rise to the number of vacant electronic states and an increased
density of states at the Fermi level (Fig. 10a). The observed
changes in the density of states suggest the relationship
between electronic and mechanical properties of nanocon-
tacts. To recall, similar effects are inherent in other one-
dimensional nanostructures, e.g., atomic chains on metallic
surfaces [82].

Conductance of Au chains of different lengths on the
NiAl(110) surface are shown in Fig. 10b. All the spectra are
taken in the center of the chains. The presented experimental
and calculated data demonstrate the dependence of electronic
properties of the system on its geometry. When comparing
these data, the atomic contacts should be considered for
equilibrium configurations corresponding to the local mini-
mum of the system’s energy rather than prior to break. In so
doing, the density of states acquires an oscillating character,
as the number of atoms increases in both copper and gold
contacts [80, 83].

To sum up, there is correlation between quantum effects
and mechanical properties on the atomic scale. Variations of
the density of states at the Fermi level related to changes in the
contact length strongly affect the conductance of atomic
contacts (see Section 5.4 below).

4.3 Spin filter
In recent times, manufacturers of electronic components have
undertaken attempts to create devices in which electron spin
is utilized as an information carrier. For this purpose, new
materials with high spin polarization are needed to function
as spin filters that transmit only electrons of a certain spin
orientation. The latest publications [84-86] showed that
magnetic atomic contacts can be promising materials for
spin filters. A quantitative estimation of spin polarization of
electron transport through atomic contacts and wires is based
on evaluating such characteristics as the degree of spin
polarization:

I -1,

S R 7
T, + T, ()

where T and 7| are the transmission coefficients for spin-up
and spin-down electrons, respectively.

It was shown in Ref. [84] that spin-polarized conductance
for two-atom Co and Ni contacts is 14 and 45%, respectively,
given their ferromagnetic ordering, because in both cases the
spin-up electronic states are filled up and their density at the
Fermi level is low. At the same time, densities of spin-down
electronic states for Co and Ni are at the Fermi level and spin-
down electrons make a major contribution to the contact
conductance.

Figure 11 exemplifies the density of states in an atomic
nickel contact with ferromagnetic and antiferromagnetic
ordering of the atoms. Clearly, the density of states at the
Fermi level in the latter case markedly increases for spin-up
electrons. Moreover, for antiferromagnetic ordering of
atoms, the electronic states for a single spin-up atom coincide
with those for another, spin-down, atom, which results in the
spin polarization vanishing. Such behavior is characteristic of
any symmetric system.

The degree of spin polarization of atomic contacts can be
enhanced by mixing atoms of 3d- and S5d-metals. For
example, Ref. [85] reported that spin polarization of con-
ductance for atomic Pt—Fe wires amounts to 99%. However,
it was practically impossible to create nanocontacts with a

LDOS, number of states per eV

Figure 11. Local density of states in a two-atom Ni contact situated
between Ni(001) electrodes for ferromagnetic (FM) and antiferromagnetic
(AFM) ordering of atoms in the contact [84].
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sequence of Pt—-Fe—Pt—Fe atoms. Therefore, the simplest way
to increase spin polarization is to form contacts in a gaseous
medium. In this case, atoms of gas molecules are built into the
contact at the stage of forming the atomic contact and alter its
electronic structure (hence, conductance). Even such non-
magnetic metals as Au and Cu may be suitable to create spin
filters when they interact with oxygen. Spin-polarized con-
ductance for atomic Au and Cu wires in the presence of
oxygen atoms amounts to 17 and 99%, respectively [86].

5. Quantum transport in nanocontacts

5.1 Relationship between electric conductance

and transmission function

The classical theory of conduction is inapplicable to one-
dimensional systems since it states that conductance G (the
inverse of resistance) of a macroscopic conductor is propor-
tional to its cross section area S and inversely proportional to
its length L:

=22, (8)

where conductivity ¢ is a characteristic of the conductor
material.

If the characteristic size of a system is much greater than
the electron mean free path, the diffusive conduction regime is
described by Ohm’s law (8). However, classical Ohm’s law is
not fulfilled for mesoscopic systems, where quantum effects
predominate as, for example, in nanocontacts with a char-
acteristic size much smaller than the electron mean free path.
Conductance of such contacts corresponds to the ballistic
regime.

Electrons freely propagate in electrodes and resistance
is much different from zero only in contacts. The conduc-
tance of such nanocontacts is unrelated to their length and
is described by the Landauer formula [87]. In the diffusive
conduction regime, the length dependence of resistivity in
Ohm’s law appears as a result of electron scattering in the
conductor.

Let us discuss in more detail the ballistic conduction
regime [88]. We will consider a one-dimensional conductor
(nanocontact) placed between two massive electrodes, a left
(‘source’) one and a right (‘sink’) one. Current is generated in
such a system (contact) only when both the source and the
sink reside in local equilibrium and have different electro-
chemical potentials u. In this case, the source and the sink are
described by two different Fermi functions

1

Ji2(E) = So(E = o) = exp [(E — i) /ksT] +1°

©)

where kg is the Boltzmann constant. The difference between
electrochemical potentials is proportional to voltage V-
U, — p; = —eV. Under such conditions, the number of
electrons in the source is described by the function f;(E),
and in the sink by the function f;(E ). In the stationary state,
the number of electrons in the contact is described by a
certain intermediate distribution function. Thus, electrons
enter the contact through the source, and leave it through the
sink. Each contact seeks to restore local equilibrium. This
gives rise to a current flow in the external circuit. For the
current carried by electrons in the states with positive group
velocity vy, the following expression can be written, taking

account of spin degeneracy:

I :2—5 kZUUk (fi1(Ex) = f2(Ex)) =

Jvk (/i (Ex)—f2(Er)) dk,

(10)

e
T

where L is the contact length, and ¢ is the electron spin. For a
long conductor, summation in formula (10) can be replaced
by integration over k. The group velocity is defined as
dispersion relation gradient:

hv(k) = ViE(K) ; (11)
therefore, for the one-dimensional systems being considered,
one obtains v(k) = (1/h) 0E(k)/0k and the current will be
given by the expression

=5 [ (e - pe) ae (12)

showing that each mode per unit energy in a nanocontact
carries over current equal to 2e/h. The total current is zero in
equilibrium, because the states with positive and negative
velocities are filled equally. The applied voltage V alters the
population of energy levels in the interval Ep £ (eV//2), which
leads to a nonequilibrium situation. Evidently, the total
current reaches a maximum when the states with positive
group velocity are filled to the level with energy Er + (eV/2),
while the states with negative velocity are filled to the level
with energy Er — (eV/2). Therefore, in the energy range

eV eV
FEr——< E< Ffr +—
F 3 < E<EfF+ 5

(13)
only states with positive velocity well remain. Expression (12)
for a conductor with a single energy level takes the form
I=GyV, where conductance quantum Gy = 2e2/h is a
fundamental constant equal to (12.9 kQ)™".

In a preceding paragraph, the current in the contact was
defined as the difference between input and output currents.
However, it is useful to consider this current as the difference
between two oppositely directed flows coming from the
source and the sink. It will give an expression for the current
with the use of the transmission function. This approach,
sometimes referred to as the Landauer method [88, 89],
reduces expression (12) to the following:

+00
1= TE) (e - pE) . (14)
where the quantity
T(E) =1tr [FlAz} =1r [F2A]}
:tr[rlGF2G+]:tr[F2GF1G+] (15)

is called the transmission function (or coefficient), I', 4, G,
and G stand for the broadening matrix, spectral function,
and retarded and advanced Green’s functions, respectively
[88]. In this case, a given structure can be regarded as a
semipermeable membrane separating two electrodes, and
function T(E) as describing the penetrability of this
membrane for electrons with energy E.

Suppose that a contact connects two uniform electrodes
regarded as quantum wires with a large number of modes or
energy subzones with well-defined dispersion dependences.
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Such an approach makes it possible to determine the S-matrix
of the structure, as is done in microwave waveguide problems,
where element ¢,,, of the T-matrix describes the transforma-
tion amplitude of the mth mode incident on the first electrode
and transmitting through the structure into the nth mode at
the second electrode. It can be shown that the current is
defined in this case by relation (14), with the transmission
function expressed as

TE)=YY" ltwl =tr[tr™].

This approach allows the transmission function to be
calculated by studying electron scattering. R W Landauer
was the first to apply the theory of scattering as a fundamental
tool for conduction research and to demonstrate the relation-
ship between electric conductance and the transmission
function: “Conduction is transmission” [87-89]. In this
context, the current in a nanocontact assumes, taking
account of formulas (9) and (14), the form

(16)

=2 P E ()~ fE- ) (7

In equilibrium, the current is zero, because u; = u,. Low
voltage applied to two electrodes changes each of the 7, u,
and i, functions. As a result, in the first approximation one
arrives at

2e

5 Jx ST(E) (fo(E — ) —folE — ) dE

2 [T E ) hlE- w) 4B (9)

)

The first integral on the right-hand side of the last formula is
zero, while the second one can be presented as

22V [To° ofo(E) .
h 4[ <_ OF )EudE7

therefore, conductance is described by the Landauer formula

(19)
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where function Fr(E — p) defines thermal broadening. Func-
tion Fr has a sharp peak of width kg7 near E = u, meaning
that conductance is proportional to the transmission function
averaged over the energy interval equal to a few kg T near the
equilibrium chemical potential u.

The maximum value of the transmission function (there-
fore, conductance ) is reached when each of the M subzones or
modes of one electrode ideally transfers charges into the other
electrode. In this case, matrix [f#"] is a diagonal matrix
M x M in size with unities on the main diagonal, and the
transmission coefficient is M. In other words, the maximum
transmission coefficient is equal to the number of modes
inherent in the electrode.

5.2 Changes in nanocontact conductance upon stretching

An increase in the interelectrode distance up to the value at
which nanocontacts break down results in a change to both
their structure and conductance. Alteration of conductance
and elastic forces in gold nanocontacts upon their stretching

at 4.2 K is demonstrated in Fig. 12a showing a discrete
variation of conductance, with each of its values (plateaus)
being a multiple of conductance quantum Gy = 2e¢?/h. Each
such transition is accompanied by a jump of the nanocontact
elastic force. The last plateau is equal to Gy and corresponds
to a linear atomic contact. Such conductance behavior of the
nanocontact is characteristic of all metallic nanocontacts
[4, 15, 21, 33, 34, 36, 71].The jump-like behavior of nano-
contact conductance is largely due to the rearrangement of
the atomic structure. Results of calculations of nanocontact
conductance using the MD method to determine the contact
structure reveal a correlation between elastic force oscilla-
tions and changes in conductance upon stretching [26, 38, 90—
92]. Further experimental observations have every time given
a different length of the conductance plateau, since it has
proven impossible to control an atomic configuration in the
contact.

The transition from one conductance plateau to another
at a low temperature depends on the direction in which the
distance between electrodes changes and has the form of a
hysteresis loop (Fig. 1b). Conductance hysteresis is observed
within a narrow range of interelectrode distance variations
(on the order of tenths of an angstrom) and vanishes as the
temperature rises [12, 15], since each conductance plateau
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Figure 12. (a) Conductance and elastic force measured while stretching a
gold nanocontact at 4.2 K [25]. (b) Typical conductance curves obtained
upon stretching nanocontacts with different rates. (¢) Conductance
histogram of gold nanocontacts obtained for the break of 1000 nanocon-
tacts at a rate of 10 nm s~ [93].
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corresponds to a specific local minimum. The higher the
energy barrier between two atomic configurations, the
higher the temperature at which conductance hysteresis
disappears. Hysteresis is absent in constant conductance
regions, when the nanocontact is in the elastic phase and can
return to the original configuration along the same path.
Moreover, hysteresis is not observed at room temperature.

It is difficult to prepare nanocontacts with equal intera-
tomic distances under experimental conditions. Therefore,
experimentally obtained contacts have different atomic
configurations, which makes it impossible to study the
dependence of their conductance on the interatomic dis-
tance. For this reason, a statistical approach to constructing
conductance histograms is usually employed for more
objective analysis of the available data. To this end, a large
number of conductance measurements have been made upon
contact stretching [37]. Since the sample size is large, all
atomic configurations or effective dimensions of nanocon-
tacts are equally probable. Therefore, conductance peaks can
be expected to occur for those configurations that form more
frequently than others.

The interatomic distance dependence of conductance
illustrated by Fig. 12 [25, 93] suggests that peaks in the
conductance histogram (Fig. 12¢) correspond to the dis-
tances at which the conductance plateau is observed.
Although this approach fails to completely characterize the
nanocontact, it makes possible investigation of quantum
effects of conductance at both low and room temperatures.
Usually, thousands of conductance curves like those pre-
sented in Figs 12a,b are measured for certainty. The figure
shows that the time of existence of an atomic contact strongly
depends on its stretching rate.

To recall, statistical analysis of results with the aid of
conductance histograms was first applied by Russian
researchers [94], although a later publication by Olesen et al.
[95] is usually cited.

5.3 Characteristic time dependences of metallic atomic
contact conductance
Transition from one conductance plateau to another is
possible by jump-like variation of conductance, as shown in
Fig. 13a. Such variation occurs at both low [96] and room
[91, 97] temperatures. In certain cases (Fig. 13b), a more
gradual transition from one conductance plateau to another
is observed [98-100]. Sometimes, the time dependence of
nanocontact conductance is accompanied by shot noise
(Fig. 13c) [98, 101, 102]. Shot noise with a high amplitude
close to Gy for a superconducting Nb nanocontact was shown
in Ref. [102] to be related to the reversible opening of the
conduction channel, which is, in turn, associated with a
change in the density of states during dimerization of
nanocontact atoms. Such conductance behavior in gold
atomic contacts is due to fluctuations of the system between
its metastable states having different conductance [101].

Results of computer simulation indicated that stretching a
nanocontact [98] or the formation of atomic contacts in the
course of self-organization [29, 30] may give rise to two
system’s states with similar energy and different conduc-
tances. This, however, is not always possible to observe in
experiment, first of all due to timing constraints on con-
ductance measurements. Such phenomena can be explained
in terms of three important temporal characteristics.

The first such characteristic, the time of transition g
between two metastable atomic configurations of the nano-
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Figure 13. Characteristic time dependences of conductance of gold atomic

contacts: (a) a jump in conductance upon transition from one plateau to

another [91]; (b) gradual transition from one plateau to another upon

stretching at a rate of 100 nm s~!, and (c) shot noise in the time dependence
of conductance.

contact, is described by the expression
t ! € Ev
= — €X _——_—
SW o p kB T/

where Ey is the energy barrier between metastable atomic
configurations, vy is the frequency pre-factor, and 7T is
temperature.

The second temporal characteristic is the measuring time
tsa- The third one is time ¢, during which metastable atomic
structures exist, given by the ratio of the change in the
nanocontact length to the stretching rate.

The relationship among these three variables determines
the character of the measured conductance. The timing
diagram in Fig. 14 illustrates three characteristic shapes of
time dependence of conductance for gold nanocontacts
undergoing stretching. The first region is the largest one,
and the time of existence of metastable atomic configurations
in it, f., is shorter than the time of transition between them,
tsw, Or shorter than conductance measurement time, £,. Such
a relationship between characteristic times obeying inequal-
ities

(1)

Isa > lc > lew,
lsw > e > Isa,
(22)
lsa > lsw > Ic,

lsw > lsa > I



946 A L Klavsyuk, A M Saletsky

Physics— Uspekhi 58 (10)

10> g
faes =
0 | ;
3 E
e 3
1074 [reeeeeeeeremmmmemmaeenns ; 4 ta
E 1 E
10—8 E~’i’|”|unl sl ool vvoond vl vvewnd voomel vl vl ) |||||?
1078 10-¢ 1074 10-2 10° 10
i, S

Figure 14. Timing diagram (fsy, fsa, and ¢.) illustrating three characteristic
conductance regions. Diagonal line ty = f., vertical line g, = t., and
horizontal line f5y, =f5, are plotted. The insets show schematically the time
dependences of conductance for gold atomic contacts in a given region [98].

is associated with sharp variations of conductance. In the
second and third regions, the time of existence of metastable
atomic configurations, f., is longer than the time of transition
between them, fg,, and longer than conductance measure-
ment time, ¢;,. Moreover, conductance measurement time g,
in the second region is shorter than time ¢z, of transition
between atomic metastable configurations, namely

e > tow > lea - (23)

In this case, shot noise appears in the time dependence of
conductance. The third region is given by the inequality

te > tsy > low, (24)

and a gradual transition from one conductance plateau to
another is observed in it, because mean conductance is
recorded in experiment.

5.4 Atomic contact conductance

Now, let us consider at greater length the characteristic
features of atomic contacts. Figure 15 presents a histogram
of platinum atomic contact lengths, where the solid curve
traces an approximation of experimental data by the
Gaussian function. The lower part of the figure illustrates
the dependence of conductance on the length of atomic
contacts composed of 3 to 6 atoms. Obviously, the conduc-
tance of metallic atomic contacts decreases with an increase in
the number of atoms, as was reported for the first time in
experimental papers [21, 71] and explained theoretically in
Refs [83, 103]. Such a conductance behavior is related to the
overlapping of electron shells in contact atoms (the smaller
the number of atoms, the greater the electron shell overlap in
both contact and electrode atoms). When the number of
atoms in the contact increases, their interaction with electrode
atoms diminishes, which leads to a decrease in the number of
conduction channels and, therefore, of conductance itself.
After a further increase in the number of atoms, only one or
two conduction channels remain, and the conductance no
longer varies. Notice that conductances calculated for
nanocontacts with flat electrodes [104] are significantly
different from those for contacts with pyramidal-shaped
electrodes [103].
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Figure 15. Histogram of the number of atoms in an atomic contact (top)
and the dependence of conductance of a Pt atomic contact on its length L
(bottom) [21].

Calculations in the framework of the density functional
theory and the one-dimensional model of free electrons have
revealed fluctuations of conductance with an amplitude of
3% depending on the number of atoms [71, 80, 83]. For
example, the slightest change in the structure of atomic
contacts composed of univalent atoms (Na, Cu, Ag, Au,
etc.) alters the density of states at the Fermi level. It was
shown in Ref. [83] for a copper atomic contact that the
maxima in the density of states (therefore, of conductance)
at the Fermi level occur in contacts with an odd number of
atoms, and minima in contacts with an even number of atoms.
The physics of this effect is related to quantum interference of
electron waves propagating through the atomic contact and
waves reflected from the contact—electrode interface.

In the foregoing, we considered systems with the degen-
erate energy state of electrons having different spin orienta-
tions in atomic contacts, which accounted for equal partial
spin-polarized currents and a resultant jump in conductance
equaling 2e?/h. Spin degeneracy is removed in magnetic
atomic contacts and the density of states at the Fermi level
differs for electrons with different spin orientations. In this
case, the probability of tunneling in an external magnetic field
for electrons with different spin orientations is different, too,
and the motion of electrons with unidirectional spins to which
jump e?/h corresponds predominates.

Unexpectedly, the conductance of 3d-, 4d-, and
5d-electron metallic atomic contacts was found to equal e? /A
in the absence of a magnetic field at room temperature, which
suggests the flow of spin-polarized current through these
structures [21, 33, 105]. Even more surprising is the fact that
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nonmagnetic Au, Pd, and Pt form atomic contacts with
conductance e?/h, which gives indirect evidence that they
become magnetic. Low-temperature experiments carried out
in the absence of an external magnetic field have failed to
show a conductance peak of e2 /1 for nanocontacts composed
of Fe, Co, Ni, and Pt atoms [106]. Such conflicting results
gave reason to conclude that the atomic contacts under
consideration contained not only metal atoms from which
they were formed but also impurities [57, 106, 107]. The
conductance of metallic nanocontacts containing atomic
impurities proved much lower than Gy [108-112]. It did not
decrease at low temperatures if it was possible to store
samples free from impurities during a long enough period.

A different explanation of such fractional conductance in
nonmagnetic contacts was proposed in theoretical studies
[113, 114]. The authors considered a one-dimensional model
of quantum ballistic contact represented in the form of a
potential barrier with electron—electron interaction localized
init. They showed that strong enough interactions gave rise to
a state with spontaneous spin polarization [114]. This state
was metastable, which enabled the system to remain in this
state only at high temperatures.

Of no small importance is the influence of a magnetic field
on the conductance of nanocontacts. The occurrence of
ballistic anisotropic magnetoresistance in ferromagnetic
contacts was predicted in Ref. [115]. It is due to electron
scattering anisotropy as a result of spin—orbit interaction. The
ballistic anisotropy of magnetoresistance for Ni nanocontacts
is estimated at 17%, which is an order of magnitude higher
than for bulk ferromagnets.

The first experimental measurement of ballistic anisotrop-
ic magnetoresistance in Co nanocontacts was reported in
Ref. [116]. A Co nanocontact was placed here on a silicon
substrate (Fig. 16a) and rotated about its axis in a magnetic
field. The conductance changed abruptly as the angle between
the magnetic field direction and the sample plane varied
during the rotation. The changes in conductance equaled
e?/h, 2e?/h, and sometimes 4e?/h.

The dependence of nanocontact conductance on the angle
between the magnetic field direction and the sample plane is
illustrated in Fig. 16b. It was shown in the framework of the
tight-binding model that the said jumps of conductance result
from a change in the number of electron subzones intersecting
the Fermi surface and associated with alteration of the band
structure in the magnetic field [116]. Such an effect of jump-
like variation of conductance upon a slight change in
magnetization direction can be used in memory sensors and
magnetic memory devices.

2.22 2.24 2.26 2.28
f,s

Figure 16. (a) Layout of experiment. (b) Dependence of conductance on
time and angle 6 measured with respect to the electrode plane. Angle 0
changes from 0 to n. Magnetic field induction B =1 T, and the period of
rotation of the sample 7' = 20 s [116].

6. Magnetism in one-dimensional nanostructures

According to Lieb and Mattis theorem [117], the ground
state of 1D systems is nonmagnetic. However, neither atomic
nanowires nor nanocontacts are strictly one-dimensional
systems. Therefore, some of them are magnetic. The coordi-
nation number and the interatomic distance are two main
parameters determining the magnetic moment of a nanosys-
tem. A decrease in coordination number or an increase in
interatomic distance are responsible for the enhancement of
the magnetic moment of nanocontact atoms. In certain cases,
variation of these parameters may be exploited (see below) to
convert nonmagnetic metals of a perfect crystal into magnetic
ones in atomic contacts.

6.1 Magnetic properties of atomic contacts in 3d-metals
To begin with, let us consider the magnetic properties of
infinite nanochains. Calculations in the framework of the
density functional theory have shown that the magnetic
properties of one-dimensional nanochains are closely depen-
dent on interatomic distances, while their changes depend on
the electronic structure [62, 118, 119]. Table 3 presents spin
magnetic moments for the atomic chains of 3d-, 4d-, and
S5d-metals in which the interatomic distances correspond to
the system’s energy minimum [55, 62, 63, 74, 118-121]. Of all
3d-metals, only Cr and Mn atoms exhibit antiferromagnetic
ordering in wires. All other metals experience ferromagnetic
ordering of atoms [62].

The interatomic distance dependence of spin and mag-
netic moments for the atomic chains of 3d-metals has the
following form. A wire with small interatomic distances is

Table 3. Spin magnetic moments (in ug units) for infinite atomic chains of 3d-, 4d-, and 5d-metals.

3d 5d
Ti 0.45 [62] Zr 0.63 [63] Hf 2.60 [63]
\% 1.00-1.57  [62, 118, 120] Nb Ta —
Cr 1.95 [62] Mo [63] w 1.47 [63]
Mn 4.06-4.40  [62,118, 119] Te [63] Re 1.73 63]
Fe 326-330  [62,118,119] Ru 1.11-1.12 63, 121] Os —
Co 2.18-226  [62,118, 119] Rh 0.30-0.33 63, 121] Ir 0.66 [63]
Ni 1.14 [62, 118] Pd 0.68-0.70  [55,63, 121] Pt 1.10 [74]
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paramagnetic due to a strong overlap between 3d-orbitals; in
other words, its magnetic moment is zero [119]. A further
increase in the interatomic distance turns the nanowire into a
ferromagnetic structure and enhances the magnetic moment
of atoms. At very large interatomic distances, the atoms
become free, and their magnetic moments correspond to the
magnetic moments of free atoms. For example, the spin
magnetic moment of atoms in a Co atomic wire with
interatomic distances smaller than 1.5 A is zero. It increases
to 2.3 up for the interatomic distance of 2.2 A, corresponding
to the equilibrium configuration of the wire [119], but remains
lower than 3 ug in a free Co atom.

Low-dimensional structures are known to have a well
apparent direction in which their physical properties are
significantly different from those in other directions. For
this reason, strong magnetic anisotropy is most likely to exist
in such structures, an example being linear atomic wires with
two characteristic directions: one along the wire axis, the
other across it. In this connection, let us consider the
anisotropy of magnetic properties of atomic wires.

The anisotropy of the spin magnetic moment for the
3d-wire atoms is negligibly small, and the difference between
spin moment projections onto the axis of light and heavy
magnetization directions is 0.001 pg [122]. The absence of spin
magnetic moment anisotropy is also characteristic of the
atoms of small surface clusters [123]. Unlike spin magnetic
moment anisotropy, the anisotropy of the orbital magnetic
moment of the atoms in wires fabricated from 3d-metals is
rather high [122] due to its, as a rule, maximum projection
onto the light magnetization axis in transition metals with a
more than half-filled d-subshell. For example, projections of
the orbital moment onto the direction parallel to the axis of
Fe and Ni wires are 0.42 ug and 0.45 ug, respectively, or
several times those onto the direction perpendicular to the
axis (0.15 ug and 0.12 ug). For all 3d-metals, except Ti, Mn,
and Co, the light magnetization axis coincides with the wire
axis. The magnetic anisotropy energy of 2.65 and 5.19 meV
per atom for Co and Fe atomic wires, respectively [122] is
several-fold higher than that for Co and Fe monolayers on
the surface of the metals (1.86 and 0.20 meV per atom)
[124]. Ni atomic wires have the highest magnetic anisotropy
energy of 11.44 meV per atom [122]. It has recently been
shown that the magnetic anisotropy energy for Co atomic
wires can be increased from 2.65 to 140 meV per atom by
mixing Co and Au atoms [125]. Therefore, atomic Ni wires
and mixed CoAu wires are the most promising materials for
producing magnetic memory devices with a high recording
density.

However, an atomic wire represents too idealized one-
dimensional system, because the real surface influences the
properties of atomic structures. The magnetic properties of an
atomic contact composed of Co atoms residing between
copper electrodes are described in Ref. [126]. A change in
the interelectrode spacing alters interatomic distances in the
contact differently in the center and between the terminal
atom and an electrode. Lengthening of the contact is largely
due to the growing distance between the terminal atom and an
electrode, whereas the interatomic distance in the center of the
contact increases insignificantly.

The results of calculations in the framework of the density
functional theory, obtained in Ref. [126], indicate that atoms
in the vicinity of electrodes have smaller spin magnetic
moments than central atoms by virtue of their higher
coordination numbers. Interaction between the d-states of

a cobalt atom and the sp-states of the nearest copper atoms of
an electrode lowers the spin magnetic moment. Due to
enhanced hybridization with electrode atoms, the Co atoms
are more sensitive to variations of the interelectrode distance.
In an atomic contact being stretched, the increase in the spin
magnetic moment of an atom close to the electrode is more
pronounced than in the central atom. Such changes of bond
lengths and spin magnetic moments are also inhered in
longer contacts. The length of interatomic bonds in the
center is 2.3-2.4 A, the distance between an electrode and
the terminal atom varies from 1.8 to 2.1 A, and spin magnetic
moments are 2.2 and 1.8—2.0 ug, respectively. For compar-
ison, the spin magnetic moment of an adatom and atoms in
small Co clusters on the Cu(100) surface equals 1.8 ug. This
means that spin magnetic moments of atoms in the contact
are higher than on the surface but lower than those of free
atoms.

A detailed analysis of the density of states revealed
marked changes in the electronic states of magnetic atomic
contacts as the number of their atoms increased [126]. A
comparison of d-states for a monatomic Co contact and the
central Co atom in a three-atom contact showed that the d-
states for spin-up electrons are filled in both cases, and the
densities of these states are virtually identical. At the same
time, the density of spin-down states for cobalt is at the Fermi
level; it accounts for a marked change in the density of these
states. Decreased interaction of the central atom with the
neighboring atoms and electrode atoms results in a split of the
density of spin-down states at the Fermi level for the central
atom of a three-atom contact. Therefore, the slightest change
in the structure or the interatomic distance may significantly
alter the density of spin-down states.

The variation in the density of spin-down and spin-up
electrons at the Fermi level is depicted in Fig. 17a. It can be
seen that changes in the density of spin-down electrons are
especially well apparent and occur periodically. The density
of states for contacts with an odd number of atoms has a
minimum and that for contacts with an even number of atoms
exhibits a maximum due to the formation of dimers in the
contacts. In the case of an odd number of atoms, the central
position is occupied by an atom, and in contacts with an even
number of atoms by a dimer. The formation of dimers
changes the position of the density of states for spin-down
electrons and increases the density of states at the Fermi level.
Oscillations of the density of states lead not only to
oscillations of conductance in atomic contacts but also to
the alteration of spin magnetic moments of the central atom
in the range of (1.9—2.2) ug (Fig. 17b).

6.2 Magnetic properties of atomic contacts

in 4d- and 5d-metals

Because both theoretical and experimental research have
shown that nonmagnetic 4d- and 5d-metals become mag-
netic as free clusters and small clusters on the surface of
noble metals [127, 128], it is of interest to study the
magnetic properties of one-dimensional systems based on
4d- and 5d-metals.

Magnetism in 4d and 5d systems strongly depends on such
characteristics as symmetry, coordination number, and
interatomic distance. An example is provided by magnetism
in Pd atomic contacts. A palladium cluster on a copper
surface is a nonmagnetic entity, just likes nanocontacts, but
their stretching gives rise to an atomic contact whose atoms
acquire a magnetic moment [55, 126, 129]. Notice also that the
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Figure 17. (a) Local density of states for spin-down electrons (curve /) and
spin-up electrons (curve 2) at the Fermi level of the central atom in a
contact composed of 1-5 Co atoms. (b) Magnetic moment of the central
atom in a contact composed of 1-5 Co atoms [126].

influence of atomic relaxations on 4d-system magnetism is
much stronger than in 3d systems due to the greater extent of
4d-wave functions.

Let us begin with considering an infinite chain of Pd
atoms. The authors of Ref. [129] were the first to show
theoretically in the framework of the generalized gradient
approximation that the spin magnetic moment of atoms
spaced 2.3-3.4 A apart in an atomic wire can be as high as
0.7 ug, and the energy of the ferromagnetic state (12 meV per
atom) is lower than the energy of the paramagnetic state [129].
The values of spin magnetic moments in wires of other 4d-
and 5d-metals are listed in Table 3.

However, later authors questioned the existence of
magnetism in an infinite chain of Pd atoms on the grounds
that the paramagnetic state is energetically more advanta-
geous in terms of the local density approximation [130]. Such
a discrepancy in the magnetic properties of atomic palladium
wires arises from the fact that interatomic distances corre-
sponding to the equilibrium configuration of a system differ
in the framework of different approximations. For example,
it was shown in Refs [53, 55] that the equilibrium interatomic
distance in the wire equals 2.34 A in the framework of the
local density approximation, but 2.44 A in the framework of
the generalized gradient approximation. In other words, the
difference between interatomic distances explains why a wire
is magnetic in one approximation, and nonmagnetic in
another [55].

Spin magnetic moment anisotropy for 4d- and 5d-metallic
atomic wires has acquired significance, unlike that for 3d
ones, with the difference between the spin magnetic moments

amounting to 0.2 ug [63]. The projection of the atom’s orbital
momentum in the wire onto the light magnetization axis is
several times that onto the heavy magnetization axis, as in
3d-metals. Simultaneously, the energy of magnetic aniso-
tropy in atomic wires of 4d- and 5d-metals is an order of
magnitude higher than in 3d-metals. For example, the
energies of magnetic anisotropy for Ru and Rh are 12 and
7 meV per atom, compared with 60 and 11 meV per atom for
Re and Ir, respectively [63].

To continue discussing the magnetic properties of
palladium atomic contacts, we refer to Refs [55, 126], where
their magnetic properties were considered for the first time
taking account of atomic relaxation. The spin magnetic
moment of the central atom in the three-atom contact is
0.3 ug, while the distance between the central and terminal
atoms is 2.5 A. The spin magnetic moment of surface atoms
(0.1 pup) is one third that of the central atom. The diminishing
of the magnetic moments of the terminal atoms is due to
interaction with electrodes.

Analyses of charge distribution in atomic contacts
show that the existence of magnetic moments is caused
by sd-hybridization which abruptly diminishes the number of
d-electrons around a palladium atom. Similar property is
characteristic of free palladium clusters as well [127]. Calcula-
tions of the total energy of three-atom palladium contacts
demonstrate that the difference between energies of ferro-
magnetic and paramagnetic states is only +6 meV per atom,
when the contact is located between copper electrodes [126],
and —3 meV per atom when the contact resides between
palladium electrodes [55]. Nanocontacts being metastable
systems, even slight structural changes, a rise in tempera-
ture, or other factors may cause a transition of the palladium
contact from the nonmagnetic to the magnetic state and vice
versa. It is possible to increase the difference between the
energies of ferromagnetic and paramagnetic states, and
thereby to enhance the stability of the magnetic contact, by
introducing impurities [64].

As far as other metals are concerned, the energy of a
rhodium ferromagnetic contact is by 67 meV per atom lower
than that of a paramagnetic contact [126]; in other words, the
difference is much greater than for palladium. The magnetic
moment for the central atom of a rhodium atomic contact is
1.47 ug. For comparison, the atoms of an atomic wire in the
absence of electrodes have a spin magnetic moment of 0.30 up
(see Table 3). The magnetic moment of atoms close to the
electrodes drops to 0.38 ug, i.e., becomes one quarter of the
central atom.

To recall, atomic relaxations and interactions with
electrodes result in the nonuniform distribution of magnetic
moments inside a contact; moreover, the magnetic properties
of the contacts in a relaxed geometry [55, 126] are substan-
tially different from those of idealized contacts [129].

7. Conclusion

The analysis of numerous experimental data presented in this
review showed that TEM constitutes the simplest method for
the formation and visualization of atomic contacts, whereas
the mechanically controllable break junction technique is
most suitable for electric conduction research. However, the
latter method does not guarantee the formation of good
atomic contacts for all metals. Therefore, TEM is thus far
the sole available method for creating atomic contacts for
technical applications.
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The molecular dynamics method is the main tool for
simulating atomic contact formation allowing calculations
for cells with tens of thousands of atoms to be made. An
important disadvantage of this method is that it cannot be
used to simulate the evolution of nanocontacts less than 10 fs
in duration. Although the kinetic Monte Carlo method is
extensively used to simulate self-organization of nanostruc-
tures on metallic surfaces, it has only recently found wide
application in research concerning the formation of atomic
contacts, in the first place because strain in nanocontacts is
much more pronounced than in nanostructures on the metal
surface. Combining these two methods made it possible to
obtain new data; specifically, it revealed different mechanisms
underlying the formation of atomic contacts upon stretching
a nanocontact and the evolution of a narrow passage between
two holes.

Both experimental and theoretical studies of the mechan-
ical properties of nanocontacts have shown that stretching a
contact triggers a sequential formation of elastic and inelastic
phases. In this case, interatomic distances in metallic atomic
contacts can be much greater than in crystals, and the
breaking force for an atomic contact can be several times
that for a crystal.

The analysis of atomic contacts demonstrated a correla-
tion between quantum effects and mechanical properties. For
example, the jump-like conductance in nanocontacts is due to
rearrangement of the atomic structure in which the character
of transition depends on the relationship among atomic
configuration lifetime, transition time between atomic con-
figurations, and conductance measurement time. The accom-
panying oscillations of conductance are related to an increase
in the number of atoms in the contact, and to oscillations of
the density of states at the Fermi level. It is possible to control
conductance in magnetic nanocontacts not only by varying
their length but also by applying an external magnetic field.

The energy of magnetic anisotropy in atomic contacts is
several-fold higher than in monolayers and small clusters at
the surface. The conductance of magnetic atomic contacts is
spin-polarized, with the degree of spin polarization being
45%. It is possible to increase the magnetic anisotropy energy
of an atomic contact by an order of magnitude and the degree
of spin polarization up to 99% by introducing impurities in
the form of atoms of other metals or light gases.

Further progress in atomic contact research requires
substantial improvement of both experimental techniques
and computation methods. Advances in nanocontact tech-
nology imply the development of contacts with fully pre-
dictable chemical compositions. The mainstream develop-
ment path for computer-assisted investigations into the
properties of atomic contacts is associated with the exploita-
tion of supercomputers.

The unique properties of atomic contacts make them a
promising material for technological applications. Specifi-
cally, the large magnetic anisotropy of atomic contacts opens
up prospects for their use in magnetic memory devices with
high recording density. Atomic contacts with a high degree of
spin polarization may find application for the creation of spin
filters, while the anisotropic magnetoresistance effect can be
employed for the development of sensors. However, practical
applications of atomic contacts are hampered by their poor
stability. Therefore, prolonging the lifetime of nanocontacts
is a priority task facing researchers in this field.
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