
Abstract. Some properties of particulate-filled polymer nano-
composites, including structural features, are reviewed. Novel
effects found in these materials, such as nanoadhesion and
reinforcement mechanisms, are discussed. A structural analy-
sis is performed using a fractal analysis procedure and the
cluster model of the structure of a polymer in an amorphous
state. The application prospects of these materials are exam-
ined in comparison with other polymer nanocomposites.
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1. Introduction

At present, polymer nanocomposites are considered to be one
of the most promising structural materials [1]. There are three
main classes of these nanomaterials, viz. particulate-filled
polymer nanocomposites, polymer/organoclays, and poly-
mer/carbon nanotubes (nanofibers). Despite the similarity
of the basic principles to describe them, the structural features
of these nanofillers in a polymeric matrix are essentially
different and should be taken into consideration in any
detailed description of concrete nanocomposites, especially
in the case of aggregation of nanofiller particles. This makes it
impossible to define the difference between particulate-filled
nanocomposites and nanocomposites with anisometric parti-

cles. For all that, the three aforementioned classes of polymer
nanocomposites do differ, which in the most general physical
terms lies in the dimensionality of nanofiller particles. This
factor necessitates an individual description of each class of
polymer nanocomposites.

Thus far, the emphasis has been placed on nanocompo-
sites filled with layered silicates (organoclays) [2±6] or
nanotubes (nanofibers) [7±10], whereas particulate-filled
polymer nanocomposites have attracted much less attention.
However, the potential of the latter class of polymermaterials
is far from exhausted [5, 6, 11±17]. To begin with, methods for
their analysis are poorly developed, despite a very large
number of their known species and a wide variety of
industrial applications. This is the main factor restricting the
possibility of predicting the limiting characteristics of such
materials [1, 7±11].

The present review is designed to describe certain specific
structural features and properties of this class of polymer
nanocomposites that have been given insufficient attention,
despite their theoretical and practical importance. Also
considered in the review are prospects for the application of
particulate-filled polymer nanocomposites in comparison
with other classes of analogous materials.

2. Structural features of particulate-filled
polymer nanocomposites

2.1 Nanoadhesion effect
The leading role in the formation of properties of multiphase
materials is played by the level of interfacial interaction [18],
which fully applies to polymer composites (nanocomposites).
The authors of Ref. [19] have demonstrated that a rise in the
filler content of polymer composites with well apparent
interfacial adhesion increases the modulus of elasticity,
whereas the absence of interfacial adhesion in the polymer
matrix±filler structure leads to its decrease. However,
determination of the adhesion level in polymer composites
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by experimental methods encounters some difficulties. For
example, adhesion strength measured by standard methods
may be significantly different due to a number of overlooked
effects in real composites, such as aggregation of filler
particles [20±22], changes in the polymer matrix structure
caused by introduction of the filler [23±26], and some other
factors. Interfacial phenomena influence practically all
properties of polymer composites. As a practical matter,
therefore, an evaluation of interfacial adhesion from the
macroscopic properties of a composite by the available
methods (see, e.g., Refs [27±31]) appears to be the most
convenient method for the determination of this parameter
in bulk composites. The authors of Refs [32±35] determined
the level of interfacial adhesion and factors affecting it in
particulate-filled phenylone/aerosyl nanocomposites based
on observations of their thermal expansion.

An isophthalic acid-based linear heterochain homopoly-
mer and phenylone C-2 (aromatic amorphous polyamide)
were used as polymeric binders for the nanocomposites being
considered, whereas aerosyl with a mean particle diameter of
25 nm and a specific surface of 300 m2 gÿ1 served as a disperse
nanofiller. The nanofiller was introduced into the polymer
matrix in a rotating electromagnetic field with the aid of
nonequiaxial ferromagnetic particles with the length-to-
diameter ratio of 4±5. The volume of these particles charged
into the reactor was 0.04±0.05 of the field action volume;
electromagnetic induction of this field varied from 0.08 to
0.12 T.Under these experimental conditions, the optimal time
of nanocomposite treatment in the electromagnetic field
ranged within 270±300 s.

The treatment of powdered phenylone/aerosyl compos-
ites in the rotating magnetic field (MF) allows aggregation of
nanofiller particles to be suppressed (or reduced). To verify
the realization of this effect, the specimens of phenylone/
aerosyl composites were prepared by simple mechanical
mixing of the two constituents. In what follows, samples of
such nanocomposites obtained in the rotating electromag-
netic field are designated phenylone/aerosyl-MF, and those
prepared by mechanical mixing are referred to as phenylone/
aerosyl.

The solid lines 1±3 in Fig. 1 illustrate three main types of
the dependence of linear thermal expansion coefficients of the
nanocomposites of interest, ac, on the nanofiller volumetric
filling degree jn. The straight line 1 shows the case of the
absence of adhesion between two phases of the nanocompos-
ite, as am > an (am, an are thermal expansion coefficients of
the polymer matrix and the nanofiller, respectively); this
inequality is always fulfilled for inorganic fillers (nanofillers)
[36]. In the absence of permanent compressive strain, the
polymeric matrix expands upon heating regardless of the
nature of nanofiller particles; in such a case, ac � am [36].
Straight line 2 corresponds to the simple mixture rule [36]:

amix
c � am�1ÿ jn� � anjn ; �1�

where amix
c is the thermal expansion coefficient of themixture.

Rule (1) holds only for an ideal case when each phase
expands independently of the other. Finally, curve 3 corre-
sponds to the Turner equation [36]

aT
c �

am�1ÿ jn�Km � anjnKn

�1ÿ jn�Km � jnKn
; �2�

where Km and Kn are the bulk moduli of the polymer matrix
and the nanofiller, respectively.

Formula (2) was derived by P S Turner on the following
assumptions: homogeneous composition, the absence of
residual stress across the entire volume, identical relative
deformation in the matrix and the filler, and the absence of
shear strains. A disadvantage of this formula is that it was
obtained on the assumption that the thermal expansion
coefficient depends on the filler volume fraction alone.
Clearly, this assumption is in conflict with experimental
data: both the size and the shape of the filler particles exert
an appreciable influence on the effective thermal expansion
coefficient of the composite. This disadvantage can be
neglected for an isotropic filler and a small variation of its
size. The remaining assumptions are met to a certain degree
for each real composite (nanocomposite), the criterion for
validity of the theoretical formula being its agreement with
experiment that is close enough for the Turner equation [36].

The points in Fig. 1 denote experimental ac values,
including those for phenylone (ac � am). Notice that the
Turner equation contained the values of Young's modulus E
instead of the bulk modulus K. As is known [36], such a
substitution permits determining the lower bound of quantity
ac for polymer composites. It follows from Fig. 1 that the
values of ac for both series of aerosyl-filled nanocomposites
lie much below the curve calculated from Turner's equation,
i.e., they are significantly smaller than the lower limiting ac
values for polymer composites. Moreover, ac for phenylone/
aerosyl-MF nanocomposites are much lower than the
respective values for phenylone/aerosyl nanocomposites. In
other words, suppression (or reduction) of aerosyl particle
aggregation markedly decreases ac.

Let us consider the physical basis of the above changes in
ac for phenylone/aerosyl nanocomposites. The interaction
between the polymer matrix and the filler (the interfacial
adhesion level) can be evaluated using parameter ba found
from equation [36]:

ac � amix
c ÿ ba�amix

c ÿ aT
c � : �3�

The greater parameter ba, the greater the interfacial
adhesion level. For a large enough number of polymer
composites with different matrices and fillers, ba varies from
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Figure 1. Dependence of linear thermal expansion coefficient ac on

nanofiller volumetric filling degree jn. 1Ðthe absence of interfacial

adhesion, 2Ðthe mixture rule, 3ÐTurner's equation, 4±6Ðexperimen-

tal data for phenylone (4), phenylone/aerosyl (5), and phenylone/aerosyl-

MF (6) [33].
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ÿ0:19 to 1.39 [36]. The calculations from Eqn (3) for the
nanocomposites being considered showed that ba � 12 for
phenylone/aerosyl-MF, ba � 6 for phenylone/aerosyl, and ba
varies from � 5:40 to 0.35 for phenylone/silicon±yttrium
oxynitride (SYON), decreasing with increasing jn (Fig. 2)
[32]. In other words, the level of polymer matrix±nanofiller
interaction in these nanocomposites may be significantly
higher (by an order of magnitude) than in microcomposites.
Following Ref. [37], the authors of Refs [32±35] called this
effect nanoadhesion. To recall, Ref. [37] reports measurement
of adhesion in two-layer polystyrene films at the micro- and
nanolevels. It turned out that the adhesion strength in the
latter case was considerably higher than in the former. The
authors of Ref. [37] attributed this effect to the difference in
the degree of completion for the formation of the interface
layer between the two polystyrene films.

The cause of nanoadhesion in nanocomposites lies in the
small value of contact area between the polymer matrix and
the nanofiller. The small contact area between an individual
particle of the nanofiller and the polymer matrix suggests a
large contact area per unit volume of a nanocomposite due to
its multiple interfaces [38], as confirmed by numerous
observations. It has recently been revealed [17] that the
thickness of the intermediate (interfacial) layer in polymer/
carbon nanotube nanocomposites varies within � 125±
225 nm, i.e., by an order of magnitude greater than the
nanotube diameter proper. Notice that the interfacial adhe-
sion level in nanocomposites is controlled by two factors:
(1) the number of contacts between the polymer matrix and
the nanofiller particle (particle aggregate) surface, and (2) the
strength of physical and/or chemical interactions between
these constituents.

The first of these factors is actually related to the
aforementioned multiple interfaces in nanocomposites. In
what follows, it will be shown that the adhesion effect is
only manifested when the size of disperse particles is below
80 nm, i.e., only in the case of nanoparticles. It follows from
the comparison of aerosyl and SYON particles (mean
diameter 64 nm) and the data of Fig. 2 that the value of ba
depends at least on two factors, namely, the size of filler
particles and the degree of their aggregation, i.e., the size of
nanoaggregates in the end. The value of ba for aerosyl is

higher than for silicon±yttrium oxynitride (particle sizes 25
and 64 nm, respectively). For phenylone/aerosyl-MF nano-
composites, ba is twice that for phenylone/aerosyl nanocom-
posites, because an aggregation level of aerosyl particles
decreases when the powdered phenylone/aerosyl mixture is
treated in a rotating electromagnetic field (see above).
Moreover, the decrease in ba with increasing jn for pheny-
lone/SYON nanocomposites (see Fig. 2) is also due to the
enhancement of aggregation of silicon±yttrium oxynitride
particles with the growth of their content.

Micrographs of the surface of phenylone/aerosyl
(Fig. 3a±c) and phenylone/aerosyl-MF (Fig. 3d±f) samples
containing 1 mass% aerosyl, which were obtained with the
use of a Zygo New View 5022 surface structure analyzer,
demonstrate suppression of aggregation in the latter series of
nanocomposites. Figure 3d is especially remarkable in this
context, since it shows up a `cloud' of aerosyl particles that
failed to aggregate after their preliminary treatment in the
electromagnetic field. In contrast, themicrographs in Fig. 3a±
c show the well apparent aggregation of aerosyl particles into
sufficiently large structures.

These data confirm the earlier conclusion that the
observed nanoadhesion effect is a purely dimensional or true
nanoeffect [38]. As is well known, it is impossible to achieve
perfect contact between the surfaces of a pair of different
materials when measuring the adhesion strength. Such
contact is only realized through certain surface protrusions,
which accounts for the small contact area and decreases the
adhesion strength [39]. Large protrusions and depressions are
hardly possible on the rather small (nanoscale) contact area,
which accounts for a sharp rise in the adhesion level. This
condition can be expressed more specifically: nanoadhesion
shows its worth when the participants, i.e., nanoparticles and
a macromolecular coil, are of the same scale [34].

The dependence of parameter ba on the mean surface
area Sp of nanofiller particles (shaped like spheres) for
phenylone/aerosyl-MF, phenylone/aerosyl, and phenylone/
SYON nanocomposites is illustrated in Fig. 4. Clearly, ba or
the interfacial adhesion level decrease as Sp (the size of filler
nanoparticles) increases; at Sp � 2� 104 nm2, corresponding
to a particle diameter of� 80 nm, this dependence asymptot-
ically tends to ba � 1, i.e., to perfect microadhesion (ac�aT

c ),
as follows from Eqn (3).

The nanoadhesion effect strongly affects the macroscopic
properties of polymer nanocomposites. It follows from Fig. 1
that the introduction of 1 mass% of aerosyl into phenylone
results in a roughly threefold decrease in ac (for phenylone/
aerosyl-MF nanocomposites). For a similar decrease in ac in
microcomposites, the filler volume fraction must be jn �
0:3ÿ0:7 [36], i.e., almost two orders of magnitude higher. A
twofold decrease in ac in polyamide-6/Na�-montmorillonite
nanocomposites is reached by introducing 4.7 mass% of
organoclay [40]. A comparative analysis of the influence of
nanoadhesion on the mechanical and thermal properties of
nanocomposites will be presented in respective Sections 3 and
4 below.

To sum up, the above data demonstrate the nanoadhesion
effect in particulate-filled polymer nanocomposites in the
form of a markedly enhanced polymer matrix±nanofiller
interaction. This effect is of a purely dimensional nature,
being realized for filler nanoparticles less than 80 nm in
diameter. The nanoadhesion effect exerts a strong influence
on the macroscopic properties of those nanocomposites in
which it occurs [32±35].
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Figure 2. Dependences of parameter ba on nanofiller volumetric filling

degree jn for phenylone/aerosyl-MF (1), phenylone/aerosyl (2), and

phenylone/SYON (3) nanocomposites. Horizontal dashed line indicates

the upper limiting value ba for microcomposites [32].
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2.2 Theoretical description of nanoadhesion effect:
fractal models
The authors of Ref. [41] undertook a theoretical study of the
factors that are responsible for the nanoadhesion effect in
particulate-filled polymer nanocomposites and determined its
magnitude. It is known [29] that the polymer±filler interplay
in polymer composites (nanocomposites) depends on two
groups of factors: physical and/or chemical and structural
ones. The surface of disperse particles of a nanofiller, with
which the polymermatrix interacts, represents a fractal object

[42, 43], which means that the number Nu of contact sites
depends on the dimension of the nanoparticle surface du
accessible (unshielded) for such a contact and is defined as
[44, 45]

Nu � r dup ; �4�

where rp is the radius of a nanofiller particle.
Dimension du, in turn, is related to fractal dimension ds of

the nanofiller particle surface and is governed by equation
[38]

du � ds ÿ 1� dÿ ds
dw

; �5�

where d is the dimension of an Euclidean space in which the
fractal is considered (in our case, d � 3), and dw is the
dimension of a random walk on the fractal that can be
estimated based on the Aharony±Stauffer argument [44]:

dw � ds � 1 : �6�

Dimension ds is calculated from equation [46]

Su � 410

�
Dp

2

�dsÿd
; �7�

where the particle specific surface Su is given in m2 gÿ1, and
the particle's diameter Dp in nm.

It was shown for du > 1:50 [47] that the effective quantity
d eff
u of this dimension decreases as its nominal value increases.
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Figure 3. Electron micrographs of phenylone/aerosyl (a±c) and phenylone/aerosyl-MF (d±f) nanocomposite surfaces [33].
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The observed behavior is described by the following equation

d eff
u � 2ÿ du : �8�

Relation (4), with the substitution of d eff
u for du, is

obtained for a single nanofiller particle, while the number of
such particles per nanocomposite unit volume can be
calculated as [48]

Np � jn

Vp
; �9�

where Vp is the particle's volume found from its diameter Dp

on the assumption of the spherical shape of such particles.
Taking jn � const yields the equation for the calculation

of the total number of contact sites between the polymer
matrix and the nanofiller, N sum

u (N sum
u � NuNp) [48]:

N sum
u � cpc

r 3ÿdup

; �10�

where the constant cpc is introduced because relation (4)
contains a proportionality sign that by its meaning is an
indicator of the level of physical and/or chemical interactions
between the polymeric matrix and the nanofiller [29].
Evidently, this constant is different for various polymer
matrix±nanofiller combinations. From this point on, the
quantity cpc will be chosen to be constant for a fixed polymer
matrix±nanofiller pair in order to satisfy the following
approximate condition [5]:

ba � N sum
u ; �11�

because the last parameter is given in arbitrary units on
account of the method used to calculate it.

Calculations utilizing Eqn (10) showed that, with such a
choice of constant cpc, parameters ba and N sum

u are roughly
equal for both series of nanocomposites being considered, but
different constants cpc for phenylone/aerosyl and phenylone/
SYON nanocomposites (317 and 882, respectively) are
needed to arrive at the common linear relationship
ba�N sum

u � in Eqn (10). This points to the fact that the level of
physical and/or chemical phenylone±SYON interactions is
three times that of phenyloneÐaerosyl interactions. The
dependence ba�N sum

u � for the nanocomposites of interest
proved linear and passed through the origin of coordinates

(Fig. 5a). This condition is needed to ensure that the above
correlation is correct: it is understandable that interfacial
adhesion cannot also be realized as a phenomenon (ba � 0) in
the absence of polymer matrix±nanofiller contact sites or
N sum

u � 0 [6].
Importantly, the data of Fig. 5a suggest that the

interfacial adhesion level for a phenylone±aerosyl pair is
substantially higher than for a phenylone±SYON pair,
despite the significantly higher cpc value for the latter. This
emphasizes the significance of structural factors determining
the interfacial adhesion (nanoadhesion) level in polymer
composites. Such a relationship between cpc and structural
factors follows from Eqn (10): if parameter ba is directly
proportional to cpc, its dependence on rp and du has a power-
like, i.e., a stronger, form. The structural parameters include
the size of nanofiller particles, characterized by their radius rp,
the nanofiller particle surface structure, characterized by
dimension ds, and the degree of nanofiller particle aggrega-
tion, characterized by aggregate radius Rag. Let us consider
the influence of these structural parameters.

Figure 5b displays the dependences of parameter ba on the
nanofiller particle radius in the range rp � 7:5ÿ80 nm at
three fixed ds dimensions: 2.0 (Euclidean surface), 2.5, and
3.0, which were calculated from Eqn (10) taking account of
the condition ba � N sum

u . As expected [32], the nanoadhesion
effect can be realized only in the range of rp � 7:5ÿ40 nm,
although this interval for particles with a very rough surface
(ds � 3:0) is somewhat wider even if at relatively low ba values
in a range of 2±3 [5].

Dependences ba�ds� calculated in a similar way for two
fixed values of rp � 20 and 40 nm (Fig. 5c) confirm in essence
the conclusions drawn from the data of Fig. 5b. Indeed, a
marked increase of ba with increasing ds occurs for small
nanofiller particles with radius rp � 20 nm, whereas a weak
nanoadhesion effect can be realized at the limiting value of
rp � 40 nm only for large ds (ds > 2:7).

Reference [32] demonstrates the strong influence of
SYON particle aggregation in phenylone/SYON nanocom-
posites as an example on the ba value, apparent as its marked
decrease with increasing jn (see Fig. 2). It was shown for
polyhydroxyether/graphite polymer composites that aggre-
gation of the filler particles obeys the following relationship
[49]

Rag � j 1=2
n ; �12�
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Figure 5. (a) Dependence of parameter ba on the numberN sum
u of unshielded contact sites on the nanofiller particle surface for phenylone/aerosyl (1) and

phenylone/SYON (2) nanocomposites [41]. (b) Dependences of parameter ba on radius rp of nanofiller particles having surface dimension ds � 2:0 (1),

2.5 (2), and 3.0 (3). Horizontal dashed line in Figs 5 b±d indicates the level of perfect microadhesion (ba � 1) [41]. (c) Dependences of parameter ba on the

surface dimension ds of nanofiller particles having radius rp � 20 (1) and 40 (2) nm [41]. (d)Dependences of parameter ba on nanofiller volume fractionjn

for phenylone/SYON nanocomposites, obtained in experiment (1) and calculated from Eqns (11) and (12) (2) [41].
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where Rag and jn are the aggregate radius of graphite
particles and their volume fraction, respectively.

Given that relationship (12) is equally correct for the
description of SYON particle aggregation and the propor-
tionality constant in this relationship is found from the
condition Rag � 32 nm at jn � 0:0009 (i.e., on the assump-
tion that aggregation does not occur at the minimum jn

value), it is possible to calculate the quantity ba � N sum
u from

Eqn (10) at cpc � 882 and compare it with the experimental
data presented in Fig. 2 [32]. Such a comparison showed an
excellent agreement between experiment and theory (calcu-
lated by the above method) (Fig. 5d). Worthy of note is the
strong influence of aggregation on ba apparent as a 14-fold
decrease in ba or the level of interfacial adhesionwith a 50-fold
increase in the silicon±yttrium oxynitride content, which
results in approximately a seven-fold rise in Rag compared
with rp.

Thus, the above results obtained by applying notions of
fractal analysis indicate that the level of interfacial adhesion
(nanoadhesion) in particulate-filled polymer nanocomposites
depends on three factors, viz. the size of the filler particles, the
degree of their aggregation, and the structure of their
surfaces. As expected, the strongest influence on the realiza-
tion of the nanoadhesion effect is exerted by the first two
factors, because this effect is of dimensional origin [32±35].
Moreover, the level of physical and/or chemical interconsti-
tuent interaction has a certain effect on parameter ba for
different polymer±nanofiller pairs [41].

In Refs [50, 51], theoretical investigations into the
nanoadhesion effect in particulate-filled polymer nanocom-
posites were conducted in the framework of the thermody-
namic fractal approach [52]. The authors of Ref. [52]
considered the thermodynamic model of sorption phenom-
ena on fractal objects and showed that volume # occupied by
a fractal object with unit mass is defined by the equation

# � rÿ10 m
1ÿ3=ds
0 ; �13�

where r0 is the nanofiller density, and m0 is the nanofiller
particle mass. For polymer nanocomposites, the polymer
layer adsorbed by a nanofiller particle can be regarded as
the interfacial layer, and volume # as the volume of the
nanoparticle proper and the interfacial layer. In this case, the
ratio between volume fractions of the interfacial layer (jint)
and the nanofiller (jn) can be written in the form

jint

jn

� #

#0
� m 1ÿ3=ds

rm0=r0
� 1

m
3=ds
0

; �14�

where r is the polymer matrix density.
Let us consider methods for the evaluation of parameters

entering in Eqn (14). The value of m0 for an unaggregated
nanofiller was estimated as the mass of a sphere of density r0
[53]:

r0 � 0:188�Dp�1=3 �kg mÿ3� : �15�

Then, the relationship between jint and jn in thermo-
dynamic interpretation can be written out as [50]

jint � kjn ; �16�
where

k � m
ÿ3=ds
0 : �17�

Another relationship between jint and jn, obtained in the
framework of fractal analysis [33], has the form

jint � cjnba ; �18�

where c is the coefficient of proportionality between jint and
jn under the conditions of perfect microadhesion, i.e., at
ba � 1. For phenylone-based nanocomposites filled with
unaggregated aerosyl (phenylone/aerosyl-MF), aggregated
aerosyl (phenylone/aerosyl), SYON, and b-sialon (a solid
Al2O3 and AlN solution in b-Si3N4), the values of c are 1.08,
0.26, 0.29, and 0.17, respectively. The values of ba for the same
nanocomposites are 15, 6, 2.7, and 2.4 [5]. The dependences of
k and cba on the nanofiller particle diameter Dp for these
nanocomposites are presented in Fig. 6a. Because Eqns (13)
and (14) give the value of # in arbitrary units due to the use of
the noninteger dimension ds, k is assumed to equal 50=m

3=ds
0 .

The data of Fig. 6a suggest a close correspondence between
k�Dp� and cba�Dp� dependences calculated in the framework
of the thermodynamic and fractal concepts, respectively. The
values of k and cba very rapidly decrease as Dp grows, which
suggests a lowering of interfacial adhesion. A dependence of
this type indicates that the nanoadhesion effect under
consideration is a true nanoeffect [38]. This inference is
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Figure 6. (a) Dependences of parameters k (solid line) and cba (triangles)

on nanofiller particle diameterDp [50]. (b) Dependences of parameter k on

nanofiller particle diameter Dp, calculated at the limiting values of

dimension ds � 2 (1) and 3 (2) [51].
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supported by calculations of k�Dp� dependences, where k
equals 50=m

3=ds
0 , for two limiting values of ds � 2 and 3. These

dependences (Fig. 6b) are so close that they can be
approximated for practical purposes by a single correlation
(cf. Fig. 5b). Thus, the key factor determining the magnitude
of the nanoadhesion effect is the particle diameter Dp, which
supports the earlier conclusion about the dimensional origin
of this effect [5].

The above findings confirmed once again that the
nanoadhesion effect is of a purely dimensional nature, i.e., a
true nanoeffect. Its description in the framework of the
thermodynamic and fractal concepts revealed their excellent
correspondence. An important factor influencing the inter-
facial adhesion level is the aggregation of nanofiller particles.

To conclude this section, let us estimate the temperature
dependence of the interfacial adhesion level characterized by
parameter ba for particulate-filled phenylone/aerosyl nano-
composites. The authors of Ref. [54] obtained the following
generalized correlation between the difference Dac in the
values of thermal expansion coefficient ac for nanocompo-
sites and am for matrix polymer (phenylone), nanofiller
contentWn (in mass%), and parameter ba:

Dac
Wn
� 2:5� 10ÿ4ba ; �19�

which permits us to calculate the temperature variation of ba.
Figure 7 depicts dependences ba�T � for two phenylone/
aerosyl nanocomposites, allowing us to reach the following
conclusions. First, the interfacial adhesion level in phenylone/
aerosyl-MF nanocomposites with suppressed aerosyl particle
aggregation is much higher than in phenylone/aerosyl
nanocomposites where such aggregation occurs. Second, a
rise in temperature leads to a reduction in ba; the value of ba
for phenylone/aerosyl nanocomposites at high temperatures
T falls to that in microcomposites. Third, a sharp rise in ba at
vitrification temperature Tg is observed only in the case of
nanoadhesion, which means that the sharp increase in
molecular mobility at Tg can elevate the interfacial adhesion
level only in the case of complete contact between the polymer
and the nanofiller [54].

2.3 Practical aspects of realization of nanoadhesion effect
Let us touch upon the practical aspects of the realization of
the nanoadhesion effect in polymer nanocomposites. The
`effective clay particle' concept that has been proposed for
polymer/organoclay nanocomposites concerns not only the
layered nanofiller proper but also the adjacent layers of the
polymer matrix (or those enclosed between intercalated
silicate plates) [2]. A similar approach was applied by the
authors of Refs [3, 55] to describing the reinforcement of
polymer nanocomposites in general. The degree of reinforce-
ment En=Em of polymer nanocomposites is described in the
framework of the percolation theory by the following
equation [56]

En

Em
� 1� 11j 1:7

n ; �20�

where En and Em are the elastic moduli of the composite and
the initial matrix polymer, respectively.

A variant of relationship (20) modified with respect to
nanocomposites has the form [5]

En

Em
� 1� 11�jn � jint�1:7 : �21�

This equation implies that the concept dealt with in
Ref. [55] considers a nanoparticle proper and the surround-
ing interface layer as the `effective nanofiller particle',
regardless of its nature. Then, the sum (jn � jint) should be
regarded as the effective volumetric filling degree j eff

n [57].
The fractal model of interface layer formation in polymer

nanocomposites leads to a simple relationship between
parameters jint and jn [58]:

jint � cjn ; �22�

where coefficient c can vary in a rather broad range,
depending on nanofiller particle geometry and surface
structure, and also on polymer matrix molecular character-
istics. A very important aspect of the problem is worthy of
note. Both the effective clay particle concept [2] and the
fractal model of interface layer formation [58] imply perfect
adhesion between the polymer matrix and the nanofiller. In
the context of the interpretation made in Section 1, perfect
adhesionmeets the condition ac � aT

c or the criterion ba � 1:0
[to proceed from Eqn (3)]. In fact, the two interpretations
disregard the influence of interfacial adhesion on the proper-
ties of polymer nanocomposites. It is their major disadvan-
tage for the aforementioned reasons [18]. As shown in
Ref. [37], the thickness of the interfacial layer is proportional
to the adhesion strength, which makes it possible to take into
account the interfacial adhesion level using the simple
equation (18).Then, the effective volumetric filling degree
j eff
n can be written out in the following form [59]

j eff
n � jn � jint � jn � cbajn � jn�1� cba� : �23�

The last equation clearly demonstrates the influence of the
adhesion (nanoadhesion) level on the nanocomposite proper-
ties. A simple calculation shows that a rise in ba from 1 to 15 at
equal c, i.e., realization of the nanoadhesion effect, increases
j eff
n by roughly one order of magnitude.
In the last 15 years, much attention has been given to

polymer/organoclay nanocomposites [60], which have the key

15

ba

Tg
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5

0
323 448 573 T, K

Figure 7. Dependences of parameter ba on the test temperature T for

phenylone/aerosyl-MF (1) and phenylone/aerosyl (2) nanocomposites.

Vertical dashed line indicates vitrification temperature Tg [54].
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advantage of a roughly tenfold lower filler content than
traditional composites, to which it imparts the same proper-
ties. The above estimate shows that nanocomposites exhibit-
ing the nanoadhesion effect (at high enough ba > 10) match
up with polymer/organoclay nanocomposites exactly as the
latter do with traditional composites. To substantiate this
inference, Table 1 presents the main characteristics of phenylone/
aerosyl-MF nanocomposites containing 0.3 mass% of aerosyl,
and polymer/organoclay nanocomposites with rather similar
molecular characteristics of the polymer matrix and pheny-
lone, which contain from 3.0 to 4.7 mass% of organoclay. It
follows from a comparison of variations in elastic modulus
ba > 10, temperature T5% for the onset of thermal destruc-
tion, thermal expansion coefficient ac, stress-at-break ef, and
impact toughnessAp for phenylone/aerosyl-MF nanocompo-
sites, on the one hand, and polybutylene-terephthalate/
montmorillonite (PBT/MMT), polyamide-6/montmorillo-
nite (PA-6/MMT), and polypropylene/montmorillonite
(PP/MMT), on the other hand, that these characteristics are
commensurate for such pairs of nanocomposites, although
the aerosyl content in the former one is 10 times ormore lower
than the MMT content in polymer/organoclay nanocompo-
sites.

It should be noted that the reduction in the thermal
expansion coefficient has practical implications. First, this
parameter is intrinsically high in polymers and can be an
order of magnitude higher than in other materials [36].
Therefore, polymer articles operating in contact with such
materials asmetals or concretemay undergo deformation and
decomposition under the effect of varying temperature.
Second, the discrepancy between thermal expansion coeffi-
cients of the filler and the polymeric matrix in polymer
composites causes deformation of interfacial layers and
thereby negatively affects the properties of such composites.
Evidently, the introduction of small amounts of a disperse
nanofiller under conditions of realizing the nanoadhesion
effect may eliminate or weaken this undesirable effect [59].

2.4 Interfacial regions as a reinforcement element
of polymer nanocomposites
Equation (21) suggests that interfacial regions, along with the
nanofiller proper, serve as a reinforcement element of the
polymer nanocomposite structure. It is a purely theoretical
conjecture based on the postulate of `freezing' the molecular
mobility of the nanofiller particles near the polymer matrix
surface [61]. This postulate was verified experimentally in
Ref. [62] by modern nanoscopic techniques by the example of
butadiene±styrene rubber (BSR) samples filled with the

nanoscale fullerene-containing mineral nanoshungite [63].
The nanostructure of the BSR/nanoshungite nanocomposite
was studied using Nano-DST (Pacific Nanotechnology,
USA) and Easy Scan DFM (Nanosurf, Switzerland) atomic-
force microscopes by the semicontact method in the force
modulation mode. The results of atomic-force microscopy
were processed with the aid of a specialized SPIP software
package (scanning probe image processor, Denmark) [62, 63].

Figure 8 presents the results of calculations of elastic
moduli for the components of the BSR/nanoshungite
nanocomposite (matrix, nanofiller particles, and interfacial
layers) based on interpolation of nanoindentation data. SPIP
processing of an image of the polymer nanocomposite
containing shungite nanoparticles allows the determination
of the thickness lint of the interfacial layer from the
experimental data, which is represented in Fig. 8b as steps at
the elastomer matrix±nanofiller interface. The measurement
of the widths of 34 such steps (interface layers) in the SPIP-
treated images of interfacial layer cross sections yielded the
mean experimental value of lint � 8:7 nm. Moreover, the
results of nanoindentation (MPa values to the right in
Fig. 8b) indicated that the elastic modulus of interfacial
layers is only 23±45% lower than that of the nanofiller but
6.0±8.5 times higher than the modulus of elasticity of the
polymer matrix. These experimental data confirm that the
interfacial layer of the nanocomposite being studied serves as
a reinforcement element, like the nanofiller proper [5, 61].

Then, the authors of Ref. [62] theoretically found the
value of lint by two methods and compared it with experi-
mental data. One method simulated the interfacial layer in
polymer composites as a result of the interaction of the
polymer matrix with the nanofiller surface [20, 24]. In this
case, there is a single linear scale l determining the interpene-
tration depth of these two fractals [64]. The filler elastic
modulus being much higher (eleven-fold) than that of rubber
(see Fig. 8b), their interaction reduces to the penetration of

Table 1. Variations in the properties of phenylone/aerosyl-MF nanocom-

posites containing 0.3 mass% of aerosyl and polymer/organoclay nano-

composites [59].

Property
Nanocomposite

phenylone/aerosyl-MF polymer/organoclay

Ec, MPa
T5%, K
ac, %
ef, %
Ap, %

239
35
33
56
6.1

390 for PBT/®®´-3.0 [60]
17 for PBT/®®´-3.0 [60]
52 for PA-6/®®´-4.7 [40]
62 for PP/®®´-2.5 [4]
15 for PA-6/®®´-4.7 [40]

Note: numerals with the conventional notations of polymer/organoclay

nanocomposites denote Na�-montmorillonite content expressed in

mass%.
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Figure 8. (a) A SPIP-treated image of butadiene±styrene rubber/na-

noshungite nanocomposite, obtained by the force modulation method,

and (b) mechanical characteristics of structural components according to

the data of nanoindentation (150-nm strain) [62].
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the filler surface into the polymer matrix, resulting in l � lint.
In this case, the following relationship holds [64]:

lint � a

�
rp
a

�2�dÿds�=d
; �24�

where a is the lower linear scale of the fractal behavior
assumed to be equal for polymers to the statistical segment
length lst [65], and rp is the nanofiller particle (or more
precisely particle aggregate) radius (167.5 nm for nanoshun-
gite) [63].

Length lst is defined as follows [66]:

lst � l0C1 ; �25�

where l0 is the skeletal bond length in themain chain, equaling
0.154 nm for the two BSR blocks [67], and C1 is the
characteristic ratio standing for the statistical flexibility of
the polymer chain [68]. For BSR, one has C1 � 12:5 [62].

The fractal dimension ds of the nanoshungite surface can
be found by using Eqn (7), and the specific surface Su of this
nanofiller from formula [56]

Su � 3

rnrp
; �26�

where rn is the density of nanoshungite particle aggregates
calculated from Eqn (15).

Calculations from Eqns (7), (15), and (26) give ds � 2:44.
The use of estimated parameters thus obtained and Eqn (24)
yields the theoretical value of the interfacial layer thickness
l theorint � 7:8 nm fairly close to the experimental one, the
discrepancy in lint ÿ l theorint being � 10%.

The second approach to the estimation of l theorint consists in
using two equations [69]

jint � �ds ÿ 2�jn ; �27�

jint � jn

��
rp � l theorint

rp

�3

ÿ 1

�
; �28�

where jint and jn are the relative volume fractions of the
interfacial regions and the nanofiller, respectively. Combin-
ing these equations allows the following formula for l theorint to
be obtained [62]:

l theorint � rp
��ds ÿ 1�1=3 ÿ 1

�
: �29�

Calculating according to formula (29) gives the result
l theorint � 10:8 nm for the nanocomposite of interest, in excel-
lent agreement with the experiment as well (the discrepancy
between lint and l theorint is � 19%).

To conclude, an important experimental finding should
be mentioned that follows from the SPIP-treated results of
scanning the nanocomposite surface (Fig. 8b). It can be seen
that a single surface of a nanoshungite particle may have from
one to three (mean: two) steps structurally identifiable as
interfacial layers. Characteristically, the width of these steps
(or lint) is roughly equal to the width of the first (nearest to the
surface) step. This means that two (on the average) interfacial
layers are formed in elastomer nanocomposites. One is due to
the interaction between the nanofiller particle surface and the
elastomer matrix resulting in freezing molecular mobility in
this layer and its turning into a vitreous state. The other arises

from the interaction between the vitreous interfacial layer and
the elastomer polymer matrix. Of practical importance in this
case is to elucidate if only one or both interfacial layers serve
as the reinforcement element of the nanocomposite. The
following calculations were needed to answer this question.
The degree of reinforcement of polymer nanocomposites
(En=Em) is given by Eqn (21) in which the sum (jn � jint), in
accordance with Eqn (27) equals [62]

jn � jint � jn�ds ÿ 1� ; �30�

if only one interfacial layer (nearest to the nanoshungite
surface) is the reinforcement element, and

jn � 2jint � jn�2ds ÿ 3� ; �31�

if both interfacial layers serve as the reinforcement element.
Calculations using Eqns (30) and (31) gave En=Em values

of 4.60 and 6.65, respectively. The experimental value of
En=Em � 6:10 being close to that found from Eqn (31), this
means that the reinforcement element in the nanocomposites
of interest is formed by the two interfacial layers. For this
reason, numerical coefficient 2 should be introduced into
equations, e.g., Eqn (24), for determining lint in nanocompo-
sites with an elastomer matrix. To recall, Eqn (24) was
initially derived as a relationship with the sign of proportion-
ality, i.e., without fixing the proportionality coefficient [64],
and the authors of Ref. [70] obtained coefficient 1.2 for the
disperse filler.

Thus, the nanoscopic techniques employed by the authors
of Ref. [62] made it possible to estimate not only the structural
features of the interfacial layer in polymer nanocomposites
but also this layer's size and properties. It was shown for the
first time that particulate-filled elastomer nanocomposites
form two or more consecutive layers that serve as the
reinforcement element for these materials. Theoretical meth-
ods for the estimation of the interfacial layer thickness,
developed in the framework of fractal analysis yield results
in excellent agreement with available experimental data.

2.5 Nanofiller structure in a polymer matrix
It is well known [71, 72] that nanofiller particles make up
linear spatial structures (chains) in particulate-filled elasto-
mer nanocomposites (rubbers). At the same time, filler
particles (or their aggregates) in polymer composites filled
with disperse microparticles (microcomposites) form the
backbone with fractal properties determining the structure
of the polymer matrix (the analog of the fractal lattice in
computer simulations) [24]. This difference accounts for
different mechanisms underlying the formation of the
polymer matrix structure in micro- and nanocomposites.
The presence of the fractal particle (particle aggregates)
backbone in the former leads to `perturbation' of the
polymer matrix structure, apparent as the enlargement of its
fractal dimension df [24, 25]. In the latter case, variations of
the nanofiller content do not affect the df value, which
remains equal to the fractal dimension of the polymer matrix
structure [5]. As expected, the difference between the structure
formation mechanisms in these two classes of composite
materials determines changes to their properties, e.g., degree
of reinforcement.

A fewmethods (both experimental [73, 74] and theoretical
[24]) are currently available for the study of the filler structure
(distribution) in a polymer matrix. The data obtained by all
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these methods indicate that this distribution is characterized
by the fractal dimension DB of the nanofiller particle back-
bone. However, the correct definition of the fractal (Haus-
dorff ) dimension of any object includes three compulsory
conditions. The first is the aforementioned definition of the
numerical value of the fractal dimension which should differ
from the topological dimension of the object. Any real
(physical) fractal is known to possess fractal properties only
in a certain scale range [75]. Therefore, the second condition
concerns the proof of the object's self-similarity within this
range [76]. Finally, the third condition covers the correct
choice of the measurement scale range itself. It is shown in
Refs [77, 78] that the minimum range must contain at least
one self-similarity iteration.

The authors of Ref. [79] estimated the dimensionDB both
experimentally and theoretically and tackled the problem of
fulfillment of the two aforementioned conditions [77, 78], i.e.,
they obtained strong evidence of the fractal backbone of filler
particles (or their aggregates) in particulate-filled polymer
nanocomposites exemplified by polypropylene/calcium car-
bonate (PP/CaCO3).

Figure 9a demonstrates an electron micrograph of the
cleavage plane in a PP/CaCO3 nanocomposite with a mass
content Wn � 4 mass% of CaCO3. It clearly shows the
presence of the filler particle (aggregate) distribution in the
size range from � 80 nm (individual CaCO3 particles) to
360 nm (aggregates), which dictates the necessity of the
quantitative characterization of this distribution that was
undertaken in Ref. [73] with the aid of dimension DB.

The first method for the experimental determination of
dimension DB makes use of the following fractal relationship
[80, 81]:

DB � lnN

lnr
; �32�

where N is the number of particles with size r.
The particle sizes were determined by electronmicroscopy

(see Fig. 9a). At least 200 particles of a PP/CaCO3 nanocom-
posite were measured. They were allocated to 8 groups for
which mean N and r values were derived. Then, the linearity
of N�r� dependence in double log-log coordinates was
established and this allowed the value of DB to be calculated
from its slope (Fig. 9b). Obviously, the fractal dimension DB

is determined in this method in the two-dimensional Eucli-
dean space, whereas the real nanocomposite needs to be

considered in a three-dimensional Euclidean space. The
following equation can be applied to recalculate DB for a
three-dimensional space:

D3 � d�D2ÿ ��dÿD2�2 ÿ 2
�1=2

2
; �33�

whereD3 andD2 are the fractal dimensions in three- and two-
dimensional Euclidean spaces, respectively, and d � 3.

DimensionDB calculated by this method amounts to 1.44,
i.e., it characterizes more or less branched structures (chains)
of nanofiller particles or their aggregates within a polymer
nanocomposite. To recall, the value of DB for particulate-
filled polyhydroxyether/graphite microcomposites varies
from � 2:30 to 2.80 [24]; in other words, the filler particle
backbone in these materials exhibits a spatial rather than
linear structure [75].

Another approach to experimental determination ofDB is
the so-called `box-counting technique' [83]. In this method, a
grid composed of square boxes with a side length ai ranging
within 4.5±24 mm and a constant ratio ai�1=ai � 1:5 is
imposed on the magnified micrograph of a nanocomposite
(see Fig. 9a); then, the number of boxes Ni into which
nanocomposite particles fall is counted, either wholly or in
part. Five arbitrary grid positions with respect to the
micrograph were chosen for each measurement. The follow-
ing equation must be satisfied if the nanofiller particle
backbone has a fractal dimension [83]:

Ni � S
ÿDB=2
i ; �34�

where Si is the box area equal to a 2
i .

Figure 9c shows the Si dependence of Ni in double
logarithmic coordinates for a PP/CaCO3 nanocomposite,
corresponding to relation (34). As may be seen from this
figure, the linearity of the dependence allows DB to be
determined from its slope. Its value of 1.23 suggests good
correspondence of DB dimensions measured by the two
methods, with the discrepancy being � 15% after their
recalculations for a three-dimensional space according to
Eqn (33).

It was shown in paper [84] that the following condition
should be fulfilled for self-similar fractal objects when
relationship (34) is used:

Ni ÿNiÿ1 � SÿDB

i : �35�

5

3

1

lnN

3 4 5 6
ln r

4.5

4.0

3.5

lnNi

lnSi

3.0 5.0 7. 0

15

N
i
ÿ
N

iÿ
1

10

5

S
ÿDB=2
i � 103

0 5 10 15

a b c d

Figure 9. (a) Electron micrograph of a cleavage face of PP/CaCO3 nanocomposite with the nanofiller content Wn � 4 mass%. (b) Dependence of the

numberN of nanoparticles on their size r in a PP/CaCO3 nanocomposite withWn � 4 mass%. (c) Dependence of the number of covering squaresNi on

their area Si corresponding to relation (34) for a PP/CaCO3 nanocomposite withWn � 4 mass%. (d) Dependence ofNiÿNiÿ1 on S
ÿDB=2
i corresponding

to relation (35) for a PP/CaCO3 nanocomposite withWn � 4 mass% (taken from Ref. [79]).
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Figure 9d illustrates the dependence corresponding to
relation (35) for the PP/CaCO3 nanocomposite being con-
sidered. Evidently, this linear dependence passes through the
origin of coordinates, which confirms, in accordance with
Eqn (35), the statistical self-similarity of the particle chains or
aggregates in the chosen range of ai [84].

Given the magnified micrograph in Fig. 9a, the data of
Fig. 9d suggest a self-similarity interval of � 427ÿ2180 nm
for CaCO3 chains. In due course, the distance l between
nanofiller particles can be calculated as follows [5]:

l �
��

4p
3jn

�1=3

ÿ 2

�
Dp

2
; �36�

where jn is the volume content of the nanofiller, andDp is the
diameter of its particles.

The calculation using Eqns (15) and (36), where quantity
jn is defined as [5]

jn �
Wn

r0
; �37�

gives l � 95 nm, i.e., the self-similarity interval of the
nanofiller particle backbone includes, as expected, a few
particles (or their aggregates).

It was shown in Refs [77, 78] that the minimum
measurement scale range Si must contain at least one self-
similarity iteration. This being the case, the condition for the
ratio of maximum (Smax) to minimum (Smin) covering square
areas must be fulfilled [78]:

Smax

Smin
> 22=DB : �38�

Therefore, in the case being considered, Smax=Smin �
576=20:25�28:4 or is higher than 22=DB � 2:07 for the PP/
CaCO3 nanocomposite. This means that the measurement
scale range was correctly chosen [77].

The number m of self-similarity iterations can be estimated
from the inequality [78]�

Smax

Smin

�DB=2

> 2 m : �39�

Using the above values of parameters in inequality (39)
gives m � 2:30 for the PP/CaCO3 nanocomposite, meaning
that the number of self-similarity iterations under the
experimental conditions of Ref. [79] is higher than unity,
which confirms once again the correctness of DB evalua-
tion [74].

Let us consider the physical causes responsible for lower
DB values in polymer nanocomposites than in analogous
microcomposites, i.e., the causes behind the formation of
the first branched chains (aggregates) of the nanofiller
particles. The value of DB can be found theoretically in
accordance with the equation [24]

jint �
DB � 2:55d0 ÿ 7:10

4:18
; �40�

where jint is the relative fraction of interfacial regions, and d0
is the dimension of the initial nanofiller particle surface.

The d0 values were estimated using Eqns (26), (7), and
those of jint from formula (27). The theoretical value of DB

found from Eqn (40) is � 1:10, in fairly good agreement with
the above experimental estimates of this parameter. Equation
(40) unambiguously indicates the causes of lower DB in

nanocomposites than in microcomposites: high d0 � 2:60
(compared with 2.17 [42] for graphite microparticles), and
low jn, which accounts for small jint values [see Eqn (22)].

Thus, the above findings indicate that branched chains of
nanofiller particles (particle aggregates) in polymer nano-
composites are physical fractals within a self-similarity (and,
consequently, fractality [81]) range from � 4:27 to 2180 nm.
The dimension DB of their structure in this range can be
estimated both in experiment and theoretically in accordance
with relations (32), (34), and (40). The small dimensions of the
filler particle (aggregate) backbone structure in polymer
nanocomposites are due to the high fractal dimension of the
initial nanofiller particle surface and the low nanofiller
content.

2.6 Aggregation of nanofiller particles
At present, one of the most reliable and cost-effective
methods for the improvement of the mechanical properties
of polyethylenes is their doping with various organic or
inorganic fillers. One of them is calcium carbonate, which
has long been used for this purpose, largely in the production
of various polyolefin films applied in a variety of ways to
optimize equipment performance, impart the properties of
whiteness or dullness to all kinds of surfaces, and facilitate
overprinting. However, calcium carbonate with micrometer-
size particles is an inert filler and only weakly influences the
mechanical properties of the nanocomposites thus obtained.
The introduction of CaCO3 nanoparticles, even together with
a binding agent, does not necessarily improve the situation
[85±87]. It was shown inRef. [88] that the relatively low degree
of reinforcement of polymer nanocomposites filled with
CaCO3 nanoparticles is due to the low interfacial adhesion
level and nanoparticle aggregation. The authors of Ref. [89]
studied nanofiller aggregation and its influence on the level of
interfacial adhesion in low-density polyethylene/calcium
carbonate (LDPE/CaCO3) nanocomposites.

The authors of Ref. [90] considered the threemain cases of
the dependence of reinforcement degreeEc=Em (whereEc and
Em are the moduli of elasticity of the composite and the
matrix polymer, respectively) on the nanofiller volume
content jn. They distinguished the following main types of
Ec=Em�jn� dependences:

(1) perfect adhesion between the nanofiller and the
polymer matrix described by the Kerner equation, which
can be approximated by the following equation

Ec

Em
� 1� 11:6jn ÿ 44:4j 2

n � 96:3j 3
n ; �41�

(2) zero adhesion strength with a large friction coefficient
between nanofiller and polymer matrix, satisfying the equa-
tion

Ec

Em
� 1� jn ; and �42�

(3) complete absence of interaction and an ideal slip
between nanofiller and polymer matrix when the modulus of
elasticity of the composite actually depends on the polymer
cross section and is related to the degree of filling by the
equation

Ec

Em
� 1ÿ j 2=3

n : �43�
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Figure 10a compares Ec=Em dependences computed from
Eqns (41)±(43) and obtained in experiment for LDPE/CaCO3

nanocomposites. Asmay be seen, at a lowCaCO3 content (up
to Wn � 15 mass% or jn � 0:185, inclusive), the experi-
mental data agree with Eqn (41); the discrepancy becomes
apparent at higher Wn (or jn) and increases with increasing
Wn.

The discrepancy between theory and experiment may be
due to two causes: either aggregation of the initial CaCO3

particle or a decreased interfacial adhesion level. Let us
consider both of them. The degree of aggregation of initial
nanofiller particles can be estimated in the framework of the
dispersion strength theory [91], where the yield stress tn per
nanocomposite shear is defined as

tn � tm � GbB
l

: �44�

Here, tm is the yield stress per polymer matrix shear, G is the
shear modulus, bB is the Burgers vector, and l is the distance
between nanofiller particles.

In the case of nanofiller particle aggregation, Eqn (44)
assumes the form [91]

tn � tm � GbB
k�r� l ; �45�

where k�r� is the aggregation parameter.
The parameters entering in formulas (44) and (45) are

defined as described below. The general ratio of normal stress
s to shear stress t has the form [92]

t � s���
3
p : �46�

Young's modulus E and shear modulus G are related as
[69]

G � E

df
; �47�

where df is the fractal dimension of the nanocomposite
structure, defined by the equation [75]

df � �dÿ 1��1� n� : �48�

Here, d is the dimension of the Euclidean space in which the
fractal is considered (in our case, obviously, d � 3), and n is

the Poisson's ratio estimated from the results of mechanical
tests using the relationship [93]

sy
En
� 1ÿ 2n

6�1� n� ; �49�

where syis the nanocomposite yield stress.
The Burgers vector bB for polymer materials is deéned as

follows [94]:

bB �
�
60:5

C1

�1=2

�A� � ; �50�

where C1 is the characteristic ratio related to dimension df
through the equation [94]

C1 � 2df
d�dÿ 1��dÿ df� �

4

3
: �51�

Figure 10b shows the dependence of aggregation para-
meter k�r� onjn for LDPE/CaCO3 nanocomposites. It can be
seen that k�r� begins to rapidly grow for jn > 0:185, which
suggests a sharp rise in aggregation of initial nanofiller
particles provided their content is sufficiently high. The
distance l between nanofiller particles can be found from
Eqn (36), while the combination of Eqns (15), (36), and (37)
allows the following relationship to be obtained:

k�r� l �
��

0251pD 1=3
ag

Wn

�1=3

ÿ 2

�
Dag

2
; �52�

which makes it possible to determine the true diameterDag of
CaCO3 aggregates taking into account the aggregation of
nanofiller particles. Then, Eqns (15) and (37) can be used to
calculate the real values of r0 (rn) and jn, respectively. Next,
the use of real jn values permits us to obtain theoretical
dependence En=Em�jn� in accordance with Eqn (41). Such a
dependence and the respective experimental data for
LDPE=CaCO3 nanocomposites are presented in Fig. 10c.
Thus, this computational method yields excellent agreement
between theory and experiment over the entire range of Wn,
which suggests perfect (in terms of Kerner's model) adhesion
between LDPE and CaCO3, regardless of the degree of
nanoparticle aggregation.

The degree of nanofiller particle aggregation is also
possible to evaluate from the mean number np of initial
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CaCO3 particles per aggregate using the equation [56]

Rag �
�
npSp

pZ

�1=2

; �53�

where Rag is the radius of an aggregate of nanofiller particles
determined from Eqn (52), Sp is the cross section area of an
initial nanoparticle, and Z is the packing density equal to 0.74
for monodisperse rings [56].

Figure 10d depicts the dependence of np on CaCO3 mass
contentWn for LDPE/CaCO3 nanocomposites. As expected,
a sharp increase in np originates at Wn�15 mass%, while at
Wn�50mass% the mean number of nanoparticles per
aggregate already exceeds 40.

Let us analyze here the alteration of the interfacial
adhesion level for the nanocomposites of interest. The
authors of Ref. [89] evaluated this variable using parameter
bf found from the equation [95]

s n
f � sm

f Kv ÿ bfjn ; �54�

where s n
f and sm

f are the fracture stresses of the nanocompo-
site and polymer matrix, respectively, and Kv is the stress
concentration coefficient. Obviously, because an increase in
bf, unlike that of parameter ba in Eqn (3), leads to sn

f

decreasing, it implies that the interfacial adhesion level
decreases, too [96].

The quantity sm
f is assumed to be equal to the strength of

the matrix polymer (for LDPE, sm
f � 12 MPa), and quantity

Kv is determined from the equation [96]

s n
f � sm

f �1ÿ j 2=3
n �Kv : �55�

Figure 11a exhibits the dependence bf�Wn� for LDPE/
CaCO3 nanocomposites, which suggests even a slight
decrease in bf (increased interfacial adhesion level) at Wn �
1ÿ3 mass%, after which bf remains roughly constant and
equal to � 39. To recall, this is a high enough level of
interfacial adhesion. Thus, the value of bf varies from 36 to
132 for polypropylene/organoclay nanocomposites with
binding agents [3]. A similar calculation for LDPE/CaCO3

nanocomposites with stearic acid as the binding agent [85]
gave bf � 136. This confirms the conjecture made by the
authors of Ref. [88] that a relatively low interfacial adhesion
level may be the cause of the low reinforcement degree in
CaCO3-filled nanocomposites. Moreover, a comparison of
the data in Figs 10a, b, d and Fig. 11a points to the fact that
the sole cause of lowering the experimental reinforcement
degree relative to the theoretically possible value is the
aggregation of nanofiller particles, which is from a practical
standpoint equivalent to a fall in jn (twofold for Wn �
50 mass%) [89].

Let us next consider the practical aspect of using
disperse particles as nanofillers. Figure 11b illustrates
dependences of the reinforcement degree En=Em on the
nanofiller mass content Wn for polypropylene/Na�-mon-
tmorillonite (PP=MMT) [4] and LDPE/CaCO3 nanocompo-
sites. It follows from a comparison of these dependences that
at lowWn (< 25 mass%) the PP/MMTnanocomposites have
higher En=Em ratios at equalWn, but the situation reverses as
Wn increases further. Moreover, it should be borne in mind
that particulate-filled nanocomposites are easier to process
and cheaper to produce. Exfoliation of organoclay in an
amount over 10 mass% encounters difficulty; therefore, the
dependence En=Em�jn� for polymer/organoclay nanocom-

posites rapidly comes to asymptotic branch, as shown in
Fig. 11b. Notice that suppression of disperse nanofiller
particle aggregation may produce an even greater effect
(Fig. 11b, curve 3) and that there are some methods currently
available in order to do so [5, 26, 97]. The relationship of
dependences En=Em�jn� for particulate-filled polymer nano-
composites and polymer/organoclay nanocomposites illu-
strated in Fig. 11b was predicted theoretically in paper [98].

Thus, the above results give evidence that a decrease in the
reinforcement degree in LDPE/CaCO3 nanocomposites
compared with the attainable theoretical value is due to
initial nanofiller particle aggregation alone. In this case, the
interfacial adhesion level remains rather high and roughly
constant. From the practical standpoint, particulate-filled
polymer nanocomposites are might be competitive with
polymer/organoclay nanocomposites, especially if produced
by simple enough and effective methods for the suppression
of initial nanofiller particle aggregation.

3. Mechanical properties

3.1 Reinforcement degree
A variety of methods are currently in use to describe the
reinforcement degree in polymer nanocomposites, i.e., the
increase in the elastic modulus of amicrocomposite compared
with a matrix polymer. They include micromechanical [57,
96], percolation [56], and fractal [5, 24] models that are
essentially different in that the first one involves the
calculation of reinforcement degree by taking account of the
nanofiller modulus of elasticity, whereas the last two
disregard this parameter. The authors of Ref. [99] employed
one of the many micromechanical models to describe the
dependence of reinforcement degree on nanofiller content for
propylene/carbon nanotube (PP/CNT) nanocomposites.

The reinforcement degree En=Em was described based on
the Counto model (100):

En

Em
� �1ÿ j 1=2

n � �
Em��1ÿ j 1=2

n �=j 1=2
n

�
Em � Ef

; �56�

where Ef is the nanofiller modulus of elasticity.
Equation (56) implies perfect (in terms of the Kerner

model) adhesion between the nanofiller and polymer matrix;
it demonstrates that an increase in nanofiller modulus of
elasticity Ef decreases its role in determining En=Em of a
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nanocomposite. This observation is particularly true of CNTs
characterized by a very high modulus of elasticity amounting
to 1000 GPa [9], but also holds for other (in particular,
disperse) inorganic nanofillers. Thus, estimates based on
Eqn (56) showed that the use of only the first term on the
right-hand side of this equation at En � 1:40 GPa, Em �
0:95 GPA, and jn � 0:060 gives as small an error as 0.1%.
In other words, parameter Ef has practically no influence
on the reinforcement degree in PP/CNT nanocomposites.
The error increases as Ef decreases. However, it does not
exceed � 10% even at Ef � 10 GPa (typical of disperse
nanofillers) and other aforementioned values of the para-
meters.

Figure 12a compares experimental (dots) and theoretical
[calculated from expression (56)] dependences En=Em�jn�.
Evidently, experimental En=Em values at a low CNT content
(jn 4 0:020) exceed theoretical ones; this relationship
becomes inverted for jn 5 0:040. Let us consider the causes
behind such a discrepancy. In the framework of the percola-
tion theory, the value of En=Em is given by Eqn (5):

En

Em
� 1� 11�2:86jnba�1:7 ; �57�

where ba is the parameter characterizing the interfacial
adhesion level [see Eqn (3)].

Calculations according to Eqn (57) revealed a decrease in
ba from 5.09 to 0.21 within the range ofjn � 0:003ÿ0:060 for
PP/CNT nanocomposites. Therefore, realization of the
nanoadhesion effect for jn 4 0:020 results in high En=Em

values [see Eqn (57)]. Atjn � 0:030, regarded in the literature
as the optimal CNT content [9], perfect adhesion is achieved,
when theory and experiment give the sameEn=Em values. For
jn 5 0:040, the interfacial adhesion level ba falls to below 1.0,
and theoreticalEn=Em values calculated on the assumption of
perfect adhesion exceed experimental ones.

This suggests a small role of the nanofiller elastic modulus
even when micromechanical models are applied, and the
assumption of perfect adhesion adopted in such models may
result in a serious error in the calculation of the reinforcement
degree [99].

Polymer/polymer composites (nanocomposites) represent
a specific variety of this class of polymermaterials with poorly
known properties [3, 5, 6]. The authors of Ref. [101]
considered the reinforcement mechanism operating in the

polymer/polymer type composite low-density polyethylene/
ultrahigh molecular weight polyethylene (LDPE/
UHMWPE).

The simplest way of evaluating moduli of elasticity of
composites reduces to using parallel and sequential models
that specify the upper and lower bounds of the elastic
modulus Ec, respectively. The parallel model implies homo-
geneous deformation in two composite phases, and the value
of Ec is found from the following equation [96]

Ec � Efjn � Em�1ÿ jn� ; �58�

where Ef is the filler (UHMWPE in the case at hand) elastic
modulus, and jn is the filler volume content.

Because polyethylene density is close to 1000 kgmÿ3 [102],
the volume andweight contents of the filler can be regarded as
equal to each other. Figure 12b compares experimental and
theoretical [according to formula (58)] dependences Ec�jn�
for LDPE/UHMWPE composites. Evidently, they are in
excellent agreement, which suggests that the upper limiting
Ec values for these composites are reached, and therefore the
homogeneous deformation in LDPE and UHMWPE is
attained. To recall, for polymer composites filled with high-
modulus (Ef 4Em) inorganic filler, the upper bound of Ec

described by Eqn (58) is practically never reached, and the
real Ec value is several-fold lower than that predicted by
formula (58). Specifically, the experimental En value for
PP=CNT nanocomposites is approximately 44 times lower
than the one predicted by formula (58). The lower bound of
Ec is defined in accordance with the sequential model as [96]

Ec � EfEm

Ef�1ÿ jn� � Emjn

: �59�

For PP/CNT nanocomposites, Ec � 1:23 GPa, in accor-
dance with Eqn (59), and Ec � 1:40 in experiment (only a
12.5% difference). This means that the high elastic modulus
of a filler (nanofiller) is not beneficial for the realization of a
high reinforcement degree in composites (nanocomposites)
for the obvious reason that the above difference between Ef

andEm precludes attainment of homogeneous deformation in
both phases of a composite (nanocomposite). However, it is
possible for the composites of interest, especially if deforma-
tion in the devitrified amorphous phase of LDPE and
UHMWPE polymers is taken into account.

Another variant is a purely composite one, and Ec is
calculated based on the principles of fractal analysis. Such
calculation is possible to make using the equation [24]

Ec � �8:1Df ÿ 10:8� sy ; �60�

where Df is the dimension of the regions where the excess
energy is localized, and sy is the yield stress.

This model implies [24] that a change in Ec is due to a
change in the polymer matrix structure, and dimensions Df

and df are related through the equation [75]

Df � 1� 1

3ÿ df
; �61�

where the quantity df can be found from equation (48).
Figure 12b compares experimental and theoretical

[according to formula (60)] dependences Ec�jn� and demon-
strates their excellent agreement, suggesting that the growth

a

ì 2

1

1.4

1.2

1.0
0.03 0.06

jn

0

E
n
=E

m

b

ì 1
ì 2
ì 3

4
500

E
c
,M

P
a

300

100
0.2 0.4

jn

0

Figure 12. (a) Dependences of reinforcement degree En=Em on nanofiller

volumetric fillingdegreejn forPP/CNTnanocomposites:1Ðcalculation in

accordancewith Eqn (56), and 2Ðexperimental data [99]. (b) Dependences

of elastic modulus Ec on nanofiller content jn for LDPE/UHMWPE

nanocomposites: 1±3Ðcalculation in accordance with Eqns (58), (60),

and (20), respectively, and 4Ðexperimental data [102].

46 G V Kozlov Physics ±Uspekhi 58 (1)



ofEc with increasingjn is due to structural changes in LDPE/
UHMWPE composites.

An important aspect needs to bementioned in conclusion.
In accordance with Eqns (20) and (21), the En=Em ratio can
not be higher than 12, regardless of the filler modulus of
elasticity. Such a result was obtained by the authors of
Ref. [103] in experiments with hybrid composites filled with
organoclay and short fibers.

An essential difference between micromechanical and
percolation or fractal models describing the reinforcement
degree in polymer nanocomposites lies in the fact that the first
one takes into account the filler (nanofiller) modulus of
elasticity, whereas the last two do not. Both the percolation
[56] and fractal [5] reinforcement models suggest that the role
of the filler (nanofiller) reduces to modification and fixation
of the matrix polymer structure. Such a point of view is quite
natural, bearing inmind the difference between elastic moduli
of the filler (nanofiller) and the matrix polymer. For example,
the elastic modulus of the aforementioned LDPE/CaCO3

nanocomposite equals approximately 85 MPa [104], and
that of the nanofiller amounts to tens of GPa [96], i.e., the
difference is over two orders of magnitude. Evidently,
deformation of calcium carbonate under such conditions is
practically zero, whereas the behavior of the nanocomposite
in mechanical tests depends on the behavior of the polymeric
matrix [99].

It has recently been proposed to regard the structure of
amorphous polymers as a natural nanocomposite [105, 106].
Specifically, it has been supposed in the framework of the
cluster model that the amorphous polymer structure consists
of local-order regions (clusters) embedded into a loosely
packed matrix in which the whole free volume of the polymer
is concentrated [65, 94]. The clusters, in turn, consist of a few
collinear densely packed statistical segments of various
macromolecules, i.e., they are amorphous analogs of
extended-chain crystallites. It was shown in books [5, 6] that
clusters represent objects of the nanoworld (true nanoparti-
cles or nanoclusters), and when polymers are represented as
natural nanocomposites, the clusters play the role of
nanofillers, while a loosely packed matrix serves as the
nanocomposite matrix. Characteristically, the nanocluster
dimension effect is identical with that of disperse nanofillers
in polymer nanocomposites: a decrease in the size of both
nanoclusters [105] and disperse nanoparticles [97] results in a
sharp increase in the reinforcement degree (elastic modulus)
of the nanocomposite. These observations pose questions,
viz. how does the introduction of a disperse nanofiller
influence the size of nanoclusters, and how do its variations
influence the elastic modulus of the nanocomposite? The
authors of Ref. [107] searched for the answers using an
LDPE/CaCO3 nanocomposite [104] as an example.

The answer to the first question comes from determining
the number ncl of statistical segments per cluster and its
variation with changes in the CaCO3 content. Calculation of
ncl includes the following stages. First, the fractal dimension
df of the nanocomposite structure was found from Eqn (48),
then the fraction jcl of nanoclusters was estimated using the
expression [94]

df � 3ÿ6
�

jcl

C1S

�1=2

; �62�

where the characteristic relation C1 is derived in accordance
with Eqn (51), and the cross section area S for LDPE particles

is assumed to be 14:9 A
� 2 [108]. The cluster network density ncl

of macromolecular entanglements can be calculated as [94]

ncl � jcl

C1l0S
; �63�

where l0 is the length of the skeletal bond in the main chain,
equaling 1:54 A

�
for polyethylenes [67].

Thereafter, the molecular mass Mcl of the chain segment
between nanoclusters was determined in accordance with the
equation [94]

Mcl �
rpolNA

ncl
; �64�

where rpol is the polymer density for the LDPE composite,
equaling 930 kg mÿ3 [102], andNA is the Avogadro constant.

Finally, quantity ncl was found from the formula [94]

ncl � 2Me

Mcl
; �65�

whereMe is the molecular mass of the chain segment enclosed
between traditional linkage nodes (macromolecular `over-
laps'), equal to 1390 g molÿ1 for LDPE [66].

Figure 13 plots the dependence of LDPE/CaCO3 elastic
modulus En on ncl, which reveals a rise in En with decreasing
ncl. Such a behavior of LDPE/CaCO3 nanocomposites is
identical with that of natural nanocomposites [105, 106, 109,
110].

Reference [111] reports the theoretical dependence of En

on the parameters of a clustermodel for natural nanocompos-
ites:

En � c
jclncl
ncl

; �66�

where c is a constant assumed to be 1:15� 10ÿ26 m3 for the
LDPE nanocomposite.

Figure 13 also presents the theoretical dependence En�ncl�
calculated from Eqn (66) for the nanocomposites under
consideration, which is in good agreement with experiment
(the discrepancy between theory and experiment averages
� 15% and is comparable with the experimental error in
mechanical tests). Thus, increasing the mass content Wn of
CaCO3 within a range of 0±50 mass% results in a decrease in
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Figure 13. Dependences of elastic modulus En on the number ncl of

statistical segments per nanocluster in LDPE/CaCO3 nanocomposites:

1Ðcalculation in accordance with Eqn (66), and 2Ðexperimental data

[107].
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ncl from 36.0 to 5.2, and the accompanying growth of LDPE/
CaCO3 elastic modulus En from 85 to 340 MPa.

Let us consider the physical basis behind a decrease in the
parameter ncl with increasing nanofiller content in LDPE/
CaCO3 nanocomposites. As was shown in Ref. [112], the
maximum fractionjpack of densely packed polymer regions is
given by the following percolation relation in a thermal
cluster model:

jpack �
�
Tm ÿ T

Tm

�bT
; �67�

where Tm and T are the melting and test temperatures,
respectively (for LDPE, Tm � 398 K [102], and T � 293 K),
and bT is the order parameter of a thermal cluster, equal to
0.55 for polymers [113].

Evidently, filling the matrix polymer space with a
nanofiller, especially to a high content (up to 50 mass%),
decreases the volume fraction of the polymer matrix in the
nanocomposite structure. Therefore, the reduced quantity
jpack (j

red
pack), defined as [5]

j red
pack �

jpack

1ÿ jn

; �68�

needs to be used.
The following sum should be assumed to represent

densely packed regions of the nanocomposite structure [5]:

jpack � �1ÿ K �jcl � jint ; �69�

where K is the degree of crystallinity, and jcl and jint are
volume fractions of nanoclusters and interfacial regions,
respectively.

The jint can be evaluated using the percolation relation
(21). Figure 14a plots dependences jred

pack�Wn� for LDPE/
CaCO3 nanocomposites. It can be seen that j red

pack values
determined in accordance with Eqns (67)±(69) are in
excellent agreement. Equation (68) gives cause for the
decrease in ncl with increasing Wn (or jn): the reduced
fraction of the polymer matrix, together with the decreased
in parallel jcl, are responsible for the lowered ncl value in
accordance with Eqn (63), increased Mcl in accordance with
Eqn (64), and decreased ncl in accordance with Eqn (65).

As expected, constant c in Eqn (66) is a function of matrix
polymer characteristics. Figure 14b depicts the dependence of
constant c on the elastic modulus Em of matrix polymer for

two LDPE species, polypropylene (PP) and polycarbonate
(PC). It can be seen that c grows as Em increases and is
described by the empirical expression [107]

c � 9:71� 10ÿ26Em ; �70�

where Em is given in GPa.
To sum up, the above results demonstrate the general

reinforcementmechanism in natural and artificial (containing
inorganic nanofiller) polymer nanocomposites that consists
in reducing the number of statistical segments per nanocluster
with increasing nanofiller content. The physical basis of this
effect is the decrease in the polymer matrix volume fraction in
the nanocomposite structure upon increasing the amount of
the nanofiller.

3.2 Yielding
The yield process characterized in the first place by the yield
stress sy attracts great attention from researchers interested in
the physics of polymer materials [114] due to the fact that
stress sy of plastic polymer materials determines the upper
bound of their application range. It accounts for striking
differences in the behavior of thesematerials above and below
the yield stress. In the latter case, a material loses its shape as
the stress grows, i.e., resists deformation, while in the former
one the same effect is observed at a constant stress that is even
lower than the yield point (in the presence of a `fluidity
tooth'), due to which this part of the stress±strain curve is
frequently referred to as the cold flow. For fragile materials,
the upper bound of their application range constitutes the
fracture stress. For plastic polymers, the fracture stress is
several-fold higher than the yield stress, and this criterion
becomes inapplicable. Therefore, yield stress is used as the
upper (even if arbitrary) bound of the application range of
plastic polymer materials. As is well known, a certain
`reliability factor' lowering the upper bound is used in
engineering practice.

There is an opinion [115] assuming that sy is proportional
to the modulus of elasticity E. However, later studies (see,
e.g., Refs [5, 24]) demonstrated that it is not true in all cases.
The proportionality of sy and E does occur in particulate-
filled polymer nanocomposites with a glassy amorphous
matrix having a stable structure identical with the structure
of the matrix polymer [5]. In contrast, it is absent in
particulate-filled polymer microcomposites in which the
structure of the polymer matrix changes with variation of
the filler content [24, 25]. This situation can be accounted for
by the following fundamental fact: due to departure from
thermodynamically equilibrium structure of polymers in
general, and of the composite polymer matrix in particular,
a physically correct description of any of their properties
requires at least two order parameters [94]. In general, no
proportionality between sy andE can be observed for calcium
carbonate-filled polymer nanocomposites. Indeed, a rise in
the nanofiller content in PP/CaCO3 nanocomposites from 0
to 40 mass% results in a 1.5-fold increase in the modulus of
elasticity, whereas sy increases only by 10% [87]. The authors
of Ref. [116] considered the structural basis of yield stress
variations in LDPE/CaCO3 nanocomposites as an example.

The LDPE/CaCO3 nanocomposites in question are
characterized by an even greater difference between the
magnitude of changes in elastic modulus En and yield stress
sy; specifically, En increases roughly 4-fold as the CaCO3

content grows from 0 to 50 mass%, whereas yield stress
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increases only by 23%. The authors of Ref. [116] explained
this discrepancy based on the fractal concept of the fluidity
process [117], which implies its realization in separate
portions of the material rather than in the entire volume. In
this case, the Poisson's ratio ny at the yield point, i.e., when sy
is reached, can be estimated as ]117]

ny � nw� 0:5�1ÿ w� ; �71�

where n is the Poisson's ratio in the elastic strain region,
and w is the relative fraction of the elastically deformable
material.

Assuming ny � const � 0:43 [118] leads to a change in w
from 0.184 to 0.70 associated with the rise inWn mass content
of CaCO3 from 1 to 50 mass%. The quantitative estimation
of the yield stress sy is possible based on the equation [94]

sy �
���
3
p

EnbB�rd�1=2
4p�1� n� ; �72�

where bB is the Burgers vector, rd is the density of linear
defects in the structure (analog of dislocations), and n is the
Poisson's ratio.

The values of bB and n are calculated in accordance with
formulas (50) and (49), respectively. Finally, rd can be defined
as [94]

rd �
1ÿ w
S

; �73�

where S is the cross section area of amacromolecule, equaling
14:9 A

� 2 for polyethylenes [102].
Figure 15a compares experimental and theoretical

[calculation in accordance with Eqn (72)] correlations of
sy�En� for LDPE/CaCO3 nanocomposites. It demonstrates
excellent agreement between theory and experiment, with the
discrepancy between the two averaging � 11:6% (compar-
able with the error of mechanical tests).

Let us consider the physical basis of such a small increase
in sy for the nanocomposites of interest. It follows from
Eqn (72) that a significant increase in En is compensated for
by the respective decrease in bB and rd [or (1ÿ w)]. It can be
speculated that a decrease of (1ÿ w) or an increase of (w) is
due to a change of the nanocomposite structure after the
introduction of the nanofiller. The magnitude of this change
can be estimated using the stress concentration coefficient Kv

[119] defined by equation (55).

Figure 15b plots the Kv dependence of the elastically
strainable structure fraction w for LDPE/CaCO3 nanocom-
posites. As expected, w grows or (1ÿ w) decreases with
increasing Kv or the degree of nanocomposite structure
alteration in comparison with the matrix polymer.

Figure 15c illustrates the relationship between w and the
sum (jn � jint) calculated in accordance with Eqn (21) for the
same nanocomposites. Clearly, the structural characteristics w
and (jn � jint) are roughly similar, which suggests that
plastic deformation can be realized only in the polymer
matrix [116].

The dispersion strength theory [91] provides one more
explanation for the very slight increase in sy in particulate-
filled polymer nanocomposites with an amorphous-crystal-
linematrix. It follows fromEqns (44), (45), and (47) that a rise
in En for the nanocomposites being considered is compen-
sated for by an increase in df and a decrease in bB, although
the main contribution to this effect comes from k�r�. For
example, in the absence of aggregation of the initial nanofiller
particles, l decreases from 201 to 9.7 nm as Wn increases
within a range from 1 to 50 mass%. The aggregation of these
particles in an LDPE/CaCO3 nanocomposite [89] (see also
Section 6) leads to a much slighter decrease of k�r� l in the
aboveWn range from 438 to 226 nm.

It is then possible to calculate the theoretically attainable
sy value for the nanocomposites under consideration in the
absence of aggregation of initial filler particles: sy will equal
46.3 and 81.9 MPa according to Eqns (72) and (44),
respectively. In both cases, it is much higher than in
experiment (sy � 14:8 MPa).

Consequently, wemay conclude that the introduction of a
disperse nanofiller into a polymer amorphous-crystalline
matrix markedly alters its structure in comparison with a
matrix polymer. The change consists in diminishing the
fraction of nanocomposite structure in which plastic defor-
mation is attained. In the end, it results in a weak increase in
the yield stress that is not proportional to the elastic modulus,
with the growth of nanofiller content. The main factor
responsible for this effect is the aggregation of initial
nanofiller particles. It has been revealed that yield stress can
be significantly increased by suppressing aggregation.

3.3 Failure
It is well known [120] that embrittlement represents one of the
main unwanted properties of polymer composites. As a rule, a
rise in the nanofiller content impairs composite plasticity, as is
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Figure 15. (a) Comparison of theoretical [equation (72)] (1) and experimental (2) correlations between yield stress sy and elastic modulus En for LDPE/

CaCO3 nanocomposites. (b) Dependence of elastically deformable fraction w of the structure on stress concentration coefficient Kv for LDPE/CaCO3

nanocomposites. (c) Relationship between elastically deformable fraction w of the structure and total relative fraction (jn � jint) of nanofiller and
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apparent from lowered ultimate strain or impact toughness.
However, this general tendency does not hold for nanocom-
posites. For example, the plasticity of particulate-filled
polymer nanocomposites [86, 121] and carbon tube-filled
nanocomposites [122, 123] increases considerably with a rise
in the nanofiller content. This motivated the authors of
Ref. [124] to develop a fractal model for the quantitative
description of enhanced plasticity (strain to failure) of
particulate-filled poly(vinyl) chloride/calcium carbonate
(PVC/CaCO3) nanocomposites prepared by in situ polymer-
ization [86].

Tensile testing of PVC/CaCO3 nanocomposite samples
revealed an extreme enhancement of their plasticity char-
acterized by ultimate strain ef with increasing jn (Fig. 16a).
The limiting draw ratio lf (lf � 1� ef) of polymermaterials is
estimated by fractal analysis in accordance with the relation-
ship [125]

lf � CDchÿ11 ; �74�

where C1 is the characteristic ratio, and Dch is the fractal
dimension of the chain segment between its fixation points.

The value of C1 was evaluated from Eqn (51), and
dimension Dch from the relationship [94]

Dch � ln nst
ln �4ÿ df� ÿ ln �3ÿ df� ; �75�

where nst is the number of statistical segments over the chain
segment between the clusters, calculated from the formula
[94]

nst � 1

jcl

: �76�

Figure 16a compares theoretical [calculated fromEqn (74)]
and experimental ultimate strains ef as a function of CaCO3

content jn for PVC/CaCO3 nanocomposites. The two
parameters are in excellent qualitative and good enough
quantitative agreement, with the discrepancy between experi-
mental and calculated ef values averaging � 16%. In other
words, equations (48), (49), (51), and (74)±(76) give a clear
physical picture of the enhanced plasticity of PVC/CaCO3

nanocomposites. This effect is due to the increase in the elastic
modulus En of nanocomposites with increasing jn in the
range from 0 to 0.050 and its subsequent decrease at

jn � 0:075 associated with the aggregation of CaCO3

nanoparticles that results in an extreme df�jn� dependence
in accordance with Eqns (48) and (49). Dimension df being the
principal structural characteristic of a nanocomposite that
determines its main structural parameters [see Eqns (51), (62),
and (75)], the behavior of df ultimately determines any
modification of nanocomposite properties including ef [124].

The dependence ef�df� presented in Fig. 16b indicates that
ef � 0 at df � 2:66, i.e., an ideally brittle failure of PVC/
CaCO3 nanocomposites takes place. This means that the
failure of these nanocomposites in the df 4 2:66 range largely
occurs through cracking at all stages of this process [75].
Extrapolation of the linear dependence ef�df� to themaximum
value of df � 2:95 for real solids [75] gives the maximum
ultimate strain emax

f � 1:28 for the nanocomposites being
considered.

Thus, the above results indicate that a variation of
plasticity in PVC/CaCO3 nanocomposites (an extreme
increase with jn) is due to a similar change in the elastic
modulus, with the yield stress remaining roughly constant.
This effect can be described in quantitative terms in the
framework of fractal analysis. The reduction in the modulus
of elasticity caused by aggregation of nanofiller particles
upon an increase in their content accounts for the impaired
plasticity of nanocomposites.

The authors of Refs [121, 126] revealed that the introduc-
tion of a disperse nanofiller CaCO3 into high-density
polyethylene (HDPE) increases the impact toughness Ap of
HDPE/CaCO3 nanocomposites by approximately 20% over
that of the parent polymer. Detailed fractographic analysis of
this effect in Refs [121, 126] provided an explanation for the
observed enhancement of Ap as being due to a change in the
plastic deformation mechanism in HDPE/CaCO3 nanocom-
posites compared with that in the original HDPE polymer. It
should be noted, without going into the particulars of this
analysis, that its correctness is open to question.

Figure 17 presents load vs time (Pÿt) schematic diagrams
illustrating two cases of the failure of polymer materials by
unstable (a) and stable (b) cracks in instrumental impact tests.
The quantity Ap is known to be characterized by the area
under the Pÿt curve, giving the mechanical energy needed to
destroy the samples [127]. The macroscopic failure process in
polymer materials caused by the main crack propagation
originates at a maximum load P. It follows from the Pÿt
diagrams that the failure process proper hardly affects Ap in
the case of unstable crack propagation and only slightly
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Figure 16. (a) Dependences of calculated from Eqn (74) (1) and experi-

mental (2) ultimate strain ef on nanofiller content jn for PVC/CaCO3

nanocomposites. (b) Dependence of ultimate strain ef on structure fractal

dimension df for PVC/CaCO3 nanocomposites. (Taken from Ref. [124]).
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Figure 17. Schematic of load vs time (Pÿt) diagrams illustrating destruc-

tion by unstable (a) and stable (b) cracks in instrumental impact tests [129].
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affects it in the case of a stable crack. The authors ofRefs [121,
126] performed instrumental impact tests, allowing them to
obtain Pÿt diagrams, but did not present them in their
articles.

Moreover, the structural aspect of the failure process was
considered in Refs [121, 126] with the use of secondary
structures (shift zones, crazes, etc.). Their relationship with
the structure of the starting intact material is purely
speculative. Evidently, this analytical method does not
permit obtaining the quantitative structure±property rela-
tionships (which is the main task in polymer physics) [128].
Therefore, the authors of Refs [129, 130] performed the
quantitative structural analysis of the results of impact tests
of HDPE polymers and HDPE/CaCO3 nanocomposites in
the framework of fractal models.

As is well known [131], fractal dimension df carries most
general structural information about an object (in our caseÐ
a polymer). Indeed, it is a true structural characteristic
describing the spatial arrangement of structure elements. It
can be determined according to Eqn (62) in which parameter
jcl is estimated from the following percolation relation [113]:

jcl � 0:03�1ÿ K��Tm ÿ T �0:55 ; �77�

where K is the degree of crystallinity, equaling 0.48 and 0.55
for the parent HDPE and the HDPE/CaCO3 nanocomposite
(containing 5mass% of the nanofiller), respectively [126], Tm

is the melting temperature of these materials (� 406 K) [126],
and T is the test temperature.

To recall, the value of df calculated from Eqn (62) agrees
with those obtained by other methods. For example, it can be
calculated using an alternative equation (48). The values of df,
in accordance with Eqns (62) and (48), are 2.73 and 2.68,
respectively, for HDPE, compared with 2.75 and 2.73 for the
HDPE/CaCO3 nanocomposite. Clearly, these estimates are
in excellent agreement: the discrepancy between the fractional
parts of df carrying the main structural information does not
exceed 7%.

Figure 18a plots the Ap�df� dependence for these polymer
materials that proved to be linear an common to the parent
HDPE and the HDPE/CaCO3 nanocomposite. This depen-
dence is described by the following empirical correlation
[129]:

Ap � 13:5�df ÿ 2:5� �kJ mÿ2 � : �78�
It follows from the last expression thatAp � 0 at df � 2:5.

This fractal dimension corresponds to the ideal brittle failure
condition [75] that leads to the condition Ap � 0. The

maximum fractal dimension of the structure of real solids
amounts to 2.95 [75], whichmakes it possible to determine the
maximum Ap value from formula (78) as equaling
� 6:1 kJ mÿ2.

It was shown by Kausch [132] that energy dissipation
induced by an impact increases with increasing molecular
mobility in a polymer material. In the framework of fractal
analysis, the level of this mobility can be characterized by
fractal dimension Dch of the polymer chain segment between
its fixation points [94]. This analytical method was success-
fully used in describing quantity Ap for particulate-filled
phenylone/b-sialon nanocomposites [133]. The value of Dch

can be found from Eqn (75).
Figure 18b depicts the dependence of impact toughnessAp

on fractal dimension Dch for the above materials. As
expected, Ap grows as Dch increases; this interplay is
analytically described by the relation [130]

Ap � 6:75�Dch ÿ 1� �kJ mÿ2 � : �79�

The last equation allows the maximum Ap value for the
materials of interest to be determined as 6.75 kJ mÿ2 at
Dch � 2:0. This estimate is close to that obtained above from
Eqn (78), the discrepancy being, on average, less than 10%.

Let us consider conditions for attaining zero impact
toughness at df � 2:5 but not at df � 2:0 (2:04 df < 3:0)
[75]. As is well known [134], the structure of any polymer,
including HDPE, reaches quasiequilibrium state when the
growth of jcl, regardless of its cause, becomes balanced by
entropic tension of polymer chains and stops. Reference [134]
reports that the structural dimension of the HDPE quasie-
quilibrium state is equal to � 2:50. Calculation according to
Eqn (75) indicates that, in this case, Dch � 1:0, which means
that the polymer material becomes ideally brittle.

Equations (78) and (79) allow estimating the theoretical
values of impact toughness A theor

p and comparing them with
experimental Ap. Such a comparison is drawn in Fig. 19,
showing good agreement between theory and experiment.
The discrepancy between A theor

p and Ap averages 3.5% and
3.9% if Eqns (78) and (79) are used, respectively, for the
calculations. These values are significantly lower than the
routine experimental error amounting to� 10%when impact
toughness is determined.
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Let us consider the physical basis of the impact toughness
enhancement for HDPE/CaCO3 nanocomposites in compar-
ison with the matrix polymer HDPE. The plots in Fig. 18a, b
give evidence that a rise in Ap is due to increased df and Dch

dimensions, respectively. At the same time, it follows from
Eqns (62) and (75) that an increase in these dimensions is
related to decreased jcl, because the molecular characteristics
C1 andS are assumed to be constant. It follows fromEqn (77)
that a decrease in jcl depends only on the increase in the
degree of crystallinity K, since quantity Tm is practically
identical for HDPE polymer and HDPE/CaCO3 nanocom-
posite. This means that an increase in Ap for the HDPE/
CaCO3 nanocomposite, as opposed to that for the matrix
polymer HDPE, is due to the action of CaCO3 as a nucleator
promoting the growth of K [121, 126].

It follows from the foregoing that fractal analysis makes it
possible to construct a quantitative impact toughness model
for high-density polyethylene and a particulate-filled nano-
composite containingHDPE, taking account of the structural
characteristics of these materials. The increase in impact
toughness is due to the action of the nanofiller as a nucleator
of crystallization and the resulting alteration of the amor-
phous phase structure. Calculations revealed excellent agree-
ment between theory and experiment.

3.4 Microhardness
As is well known [135±137], microhardness HB specifies a
property sensitive to morphological and structural changes in
polymer materials. An additional important factor for
nanocomposite materials is the presence of a filler whose
microhardness ismuch higher than that of the polymermatrix
[138]. After sharp-pointed (conical or pyramidal) indenters
are introduced into a polymer, the stress becomes localized
within a rather small microvolume. Such testing is supposed
to help a researcher to `grope his/her way' towards the real
structure of polymer materials [139]. The complex structure
of polymer nanocomposites [5] poses the question of what
structural component responds to indentation and how its
reaction changes after a disperse nanofiller is introduced.

Another aspect of the problem is the relationship between
microhardness determined by testing in a strongly localized
microvolume and such macroscopic properties of polymer
materials as elastic modulus E and yield stress sy. At present,
there are many theoretically and empirically derived relation-
ships among HB, E, and sy [140, 141]. The authors of
Ref. [142] described microhardness in terms of fractal
analysis and elucidated its relationship with the structure of
HDPE/CaCO3 nanocomposites as an example [143, 144].

Let us consider the relationship between microhardness
HB and other mechanical characteristics, such as yield stress
sy for HDPE/CaCO3 nanocomposites [143, 144]. Tabor [145]
derived the following relation between HB and sy for metals
regarded as hard, perfectly plastic solids:

HB

sy
� c ; �80�

where c is a constant roughly equal to 3.
Relation (80) suggests that pressure under the indenter

applied inmicrohardness tests is higher than the yield stress in
quasistatic tests due to constraints imposed by the unstrained
polymer surrounding the indenter. However, a number of
authors [137, 140, 141, 143, 146] demonstrated that the c value
may be significantly different than 3 and vary in a fairly wide

range of � 1:5ÿ30. It was revealed in Ref. [143] that in
HDPE/CaCO3 nanocomposites c varies from 1.80 to 5.83,
depending on the strain rate _e and the type of quasistatic tests
for determining sy (stretching or compression). The HB=sy
ratio approaches c � 3 only in the case of a minimal _e and the
use of sy values obtained in compression tests. Based on these
findings, the authors of Ref. [143] concluded that the value of
c � 3 can be reached only at comparable strain rates in
microhardness tests and in quasistatic tests in the presence
of intact polymer±filler interfaces.

To extend the analysis to a wider circle of solids, it was
proposed to consider the role of elasticity in indentation. The
following equation was derived for a solid with elastic
modulus E and Poisson's ratio n [140):

HB � 2

3

�
1� ln

E

3�1ÿ n� sy

�
sy ; �81�

with the empirical Marsh equation having the form [140]

HB �
�
0:07� 0:6 ln

E

sy

�
sy : �82�

Equations (81) and (82) allow theHB=sy ratio for HDPE/
CaCO3 nanocomposites to be estimated [144] provided
quantities E and sy are known, while n can be calculated
using relation (49).

Figure 20a presents the dependences of HB=sy on the
strain rate _e calculated from equations (81) and (82) for the
HDPE polymer and HDPE/CaCO3 nanocomposites with
CaCO3 particles 70 nm in size [144]. Notice that in this case
sy values are obtained in tensile tests. Evidently, equations
(81) and (82) giveHB=sy values close to 3 for both the parent
HDPE and the HDPE/CaCO3 nanocomposite with a CaCO3

content jn � 0:10 [deviation of the calculated HB=sy from
c � 3 is less than 10%, in excellent agreement with the
approximate character of Eqn (80)].

Let us consider the physical nature of HB=sy deviation
from constant c � 3 in Eqn (80) using the Marsh relationship
(82) as the simplest one. As is well known [75], the fractal
dimension df of the nanocomposite structure can be calcu-
lated from Eqn (48). Combining formulas (48), (49), and (82)
leads to the following relation [142]

HB

sy
� 0:07� 0:6 ln

3df
3ÿ df

: �83�
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Figure 20. (a) Dependences of HB=sy ratio calculated in accordance with

Eqns (81) (1, 3) and (82) (2, 4) on strain rate _e in logarithmic coordinates

for HDPE (1, 2) polymer and HDPE/CaCO3 nanocomposite (3, 4).

(b) Dependence of HB=sy ratio on structure fractal dimension df
calculated in accordance with Eqn (83). Horizontal dashed line indicates

Tabor's criterion HB=sy � c � 3. (Taken from Ref. [142].)
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It ensues from the last relation that theHB=sy ratio is only
determined by fractal dimension df. Figure 20b demonstrates
the dependence of HB=sy on df, suggesting that the value of
HB=sy � c � 3 is reached at df � 2:93. To recall, the value of
df for real solids cannot be higher than 2.95 [75]. In other
words, the equality c � 3 in Eqn (80) is only fulfilled for
Euclidean (or close to Euclidean) bodies having a dimension
approaching 2.95. Calculations using Eqns (48) and (49)
showed that df for HDPE/CaCO3 nanocomposites varies
from 2.878 to 2.920, which explains the closeness of the ratio
HB=sy to 3 in these materials (Fig. 20a). For phenylone/
silicon±yttrium oxynitride nanocomposites, one has df � 2:42
[147], which givesHB=sy � 1:60, in accordance with Eqn (83).
This value is consistent with the HB=sy ratio of � 2 for these
nanocomposites, obtained in experiment [146]. This line of
reasoning makes it clear why Tabor obtained the value of
c � 3 just for metals that are actually Euclidean objects [75].

To sum up, the above results indicated that the micro-
hardness/yield stress ratio for polymer materials only
depends on their structural state characterized by a fractal
dimension. The constant in Tabor's equation equals 3 only
for solids having a structure that is close to Euclidean.

4. Thermophysical properties

The authors of Ref. [148] considered the synergetic effect of
the specific thermal conductivity of hybrid nanocomposites
based on amorphous polyamide (phenylone C-2) and filled
with short carbon fibers and a disperse nanofiller. Hybrid
composites are usually termed those containing two or more
different nanofillers [149]. The authors of Ref. [149] pro-
posed introducing two types of nanofillers, rubber and glass
disperse particles, into a brittle epoxy matrix for different
functional purposes: the rubber particles enhance the
plasticity of the fragile epoxy polymer, while the glass
particles increase its hardness. The authors of Ref. [103]
proposed a new form of hybrid reinforcement, namely the
reinforcement of polyamide-6 with short fibers and organo-
clay (Na�-montmorillonite), i.e., micro- and nanofiller. The
introduction of such fillers considerably enhances both the
hardness and the thermal stability of hybrid nanocomposites
under study.

In Ref. [148], polymer matrix reinforcement was achieved
using uglen-9 carbon fibers with the surface modified by
chlorine (UC) and amino groups (UAG). The fiber content
was 17 mass%. The refractory ultradisperse silicon±yttrium
oxynitride Si3N4 ±Y2O3 (SYON) powder with a particle size
of 80±120 nm, specific surface of 42.5 m2 gÿ1, and SYON
content of 1 mass% served as disperse nanofiller.

Table 2 lists experimental specific heat conductivities lT
for matrix phenylone C-2, phenylone/UC and phenylone/
UAG microcomposites, the phenylone/SYON nanocompo-

site, and phenylone/UC-SYON and phenylone/UAG-SYON
hybrid nanocomposites containing the aforementioned
amounts of UC, UAG, and SYON. Evidently, short fibers
and a disperse nanofiller introduced separately cause only a
slight (less than 20%) rise in lT, whereas the introduction of
the hybrid UAG±SYON filler increases phenylone lT by
80%. Let us consider this synergetic effect in more detail.

In the framework of fractal analysis, a system of filler
particles (particle aggregates) is described in terms of the
fractal dimension DB of the filler particle backbone that
characterizes the spatial density of polymer matrix filling
with particulates or fibers [24, 26]. The fractal model next
considers a randommixture of components A and B contain-
ing well and poorly conducting portions [150]. This model
fully corresponds to polymer composites in which the heat
conductivity of the filler and the polymermatrixmay differ by
three orders of magnitude [151]. Two limiting cases of this
problem deserve special attention [150]:

(1) random resistor network (RRN). It is assumed that
sites occupied by a poor conductor B have zero conductivity;

(2) random superconductor network (RSN). It is assumed
that the conductivity of a good conductor A is infinite.

The authors of Refs [152, 153] demonstrated in the
framework of the above general model that the two main
cases hold for polymer composites filled with short fibers. For
DB < 2:62 (RSN limit), the dependence lT�DB� is approxi-
mated by the following equation

lT � 0:90�DB ÿ 2� �W mÿ1 Kÿ1� ; �84�
while for DB 5 2:62 (RRN limit), the approximation of
lT�DB� dependence has the form

lT � 0:51�DB ÿ 2� �W mÿ1 Kÿ1� : �85�
Worthy of attention is the fact that the numerical

coefficient in Eqn (84) also exceeds by approximately 80%
the analogous coefficient in Eqn (85). Such compatibility
between the increase in lT for hybrid nanocomposites and the
same value for composites filled with short fibers alone needs
quantitative verification.

Quantity DB is related to the surface dimension d0 of
initial filler particles (fibers) by Eqn (40), from which the
volume fraction of interfacial regions can be determined in
the following way. First, the fiber orientation factor Z is
calculated using the formula [154]

s c
f � Zty

�l
�d
jn � sm

f �1ÿ jn� ; �86�

where s c
f and sm

f are the fracture stress of the composite and
the polymer matrix, respectively, ty is the yield stress of the
polymer matrix in the shearing test, �l= �d is the mean fiber
length-to-diameter ratio, and jn is the volumetric filler
content.

Quantities s c
f and sm

f (sm
f is assumed to equal the matrix

phenylone toughness) can be found based on the results of
mechanical tests (see Fig. 21 as an example), the �l= �d ratio for
uglen (with a content 17 mass%) is � 11 [155], and ty is
determined from formula (46).

The values of Z for the four short fiber-filled composites
with and without SYON were estimated using Eqn (86) to be
close to 0.145. The quantity jint can then be determined from
the equation [26]

jint � 1:09Z : �87�

Table 2. Comparison of experimental thermal conductivities lT of

phenylone-based composites with those (l theor
T ) calculated from Eqns

(84) and (85) [148].

Composite lT, W mÿ1 Kÿ1 l theor
T , W mÿ1 Kÿ1

Phenylone
Phenylone/SYON
Phenylone/UC
Phenylone/UAG
Phenylone/UCëSYON
Phenylone/UAGëSYON

0.29
0.30
0.33
0.35
0.46
0.52

ì
ì
0.34
0.34
0.50
0.50
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Next, the estimation of quantity d0 for relatively smooth
uglen-9 fibers yields 2 [26]. Its value for SYON can be
calculated using Eqn (7), which gives d0 � 2:48ÿ2:52 (mean
2.50). If d0 � 2 for composites filled with uglen-9 fibers alone
(UC or UAG), then d0 for hybrid nanocomposites can be
estimated according to the mixture rule, giving d0 � 2:04 for
hybrid fillers UC±SYON and UAG±SYON. Calculations
with the use of Eqn (40) then showed that DB � 2:66 for
phenylone/UC and phenylone/UAG composites, while
DB � 2:56 for hybrid nanocomposites. It is readily seen that
in accordance with the aforementioned classification,
DB > 2:62 for phenylone/UC and phenylone/UAG micro-
composites, which corresponds to the RRN limit [Eqn (85)].
For hybrid nanocomposites, on the contrary, DB < 2:62 and
they correspond to the RSN limit [Eqn (84)]. The results of a
theoretical calculation of thermal conductivity lT (l theor

T )
using the above equations are presented in Table 2, demon-
strating their excellent agreement with experimental data (the
average discrepancy between lT and l theor

T being less than
5%).

Such a substantial increase in lT upon introducing only
1 mass% of SYON is due to the closeness of theDB value for
phenylone/UC and phenylone/UAG composites to its
boundary value 2.62. Nevertheless, it is possible to vary DB

in a wider range, either by increasing disperse nanofiller
content or by supplying an alternative nanofiller with a
higher d0.

To conclude, an improvement in the thermophysical
properties of polymer composites, including heat conductiv-
ity, has important practical implications. Enhanced thermal
conductivity markedly improves heat removal from local
sources and thereby extends the scope of applications of
polymer composites. In other words, the introduction of a
hybrid filler substantially increases the traditionally low
thermal conductivity of polymers (by approximately two
orders of magnitude lower than that in metals) [151].
Characteristically, this effect is realized by virtue of the main
property of nanomaterials, i.e., the enlargement of the
polymer matrix±filler interface surface after introducing
SYON to the matrix [38].

Thus, the above results demonstrated that the introduc-
tion of hybrid fillers into polymers gives rise to creating
polymer composites with improved working properties, such

as enhanced thermal conductivity. The introduction of
1 mass% of a disperse nanofiller produces the same effect as
filling with � 20 mass% of short fibers. The theoretical
explanation of this effect should be looked for in the
framework of the fractal concept of random mixture con-
ductivity.

Inorganic nanofillers are also found wide utility in
producing polymer nanocomposites [5]. However, the prop-
erties of polymer melts for the nanocomposites of interest are
insufficiently known. As a rule, the application of nanofillers
is a matter of compromise among the improvement in their
solid-phase mechanical properties, the enhancement of melt
viscosity during treatment, nanofiller dispersion, and cost-
effectiveness. In this context, elucidation of the relationship of
nanofiller concentration and geometry with nanocomposite
melt properties is an important aspect of investigations into
the structure of thesematerials.With this inmind, the authors
of Refs [156, 157] undertook research and a theoretical
description of the dependence of HDPE/CaCO3 nanocompo-
site melt viscosity [104] on nanofiller concentration.

Two simple relations among melt viscosity Z, shear
modulus G in the solid state, and volumetric filling degree
jn were obtained for polymer microcomposites, i.e., compo-
sites with micrometer-size fillers. The relation between Z and
G has the form

Z
Z0
� G

G0
; �88�

where Z0 and G0 are the melt viscosity and shear modulus of
the matrix polymer, respectively.

Moreover, an increase in microcomposite melt viscosity
can be estimated as follows (for jn < 0:40) [158]:

Z
Z0
� 1� jn : �89�

Figure 22a plots the dependences of Gn=Gm amd Zn=Zm
rations (Gn and Zn are the nanocomposite shear modulus and
melt viscosity, while Gm and Zm are the same parameters for
the starting matrix polymer) on the CaCO3 mass contentWn

for HDPE/CaCO3 nanocomposites, where the inverse melt
flow index (MFI) is used as a measure of melt viscosity Z. The
data in Fig. 22a clearly demonstrate that relation (88) is
neither qualitatively nor quantitatively fulfilled for the
nanocomposites being considered: a drop in the Zn=Zm ratio

2

1

0 5 10

Wn, mass%

2.0

G
n
=G

m
,Z

n
=Z

m

1.5

1.0

a

2

1

1.00 1.05 1.10 1.15

1� jn

Z n
=Z

m

2.0

1.5

1.0

b

Figure 22. (a) Dependences of the ratios of shear moduli Gn=Gm (1) and

melt viscosities Zn=Zm (2) for nanocomposite (Gn, Zn) and matrix polymer

(Gm, Zm) on nanofiller mass content Wn in HDPE/CaCO3 nanocompo-

sites. (b) Dependence of the ratio Zn=Zm of nanocomposite and matrix

polymer melt viscosities on volumetric nanofiller content (1� jn) (1) for

HDPE/CaCO3 nanocomposites. Straight line 2 corresponds to a 1:1 ratio.

(Taken from Ref. [157].)
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Figure 21. Stress±strain (sÿe) diagrams for uniaxial compression of

phenylone (1), phenylone/UC±SYON (2), and phenylone/UAG±SYON

(3) hybrid nanocomposites [148].
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with the growth of Wn corresponds to an increase in Gn=Gm,
and the absolute Zn=Zm values are much higher than the
respective Gn=Gm values.

Figure 22b compares Zn=Zm and (1� jn) parameters for
HDPE/CaCO3 nanocomposites. Here, experimental data
and the results calculated from relation (89) again disagree:
there is a discrepancy between the absolute values of Zn=Zm
and (1� jn), and an increased 1� jn corresponds to a
decreased relative viscosity of the melt. The plot in Fig. 22b
was constructed using the nominal value ofjn that disregards
aggregation of nanofiller particles and can be estimated from
Eqns (15) and (37).

Thus, the data of Fig. 22b demonstrate that relationships
(88) and (89), satisfiable in the case of polymer microcompo-
sites, are incorrect for nanocomposites. Let us consider this
case in more detail. If relation (88) is correct and the Kerner
equation is applied to calculate G, the lower viscosity limit Zn
can be found in accordance with the expression [158]

Zn
Zm
� 1� 2:5jn

1ÿ jn

: �90�

Since the quantity Z is inversely proportional toMFI, such
an interpretation allows Eqn (90) to be rewritten as [157]

MFIm
MFIn

� 1� 2:5jn

1ÿ jn

; �91�

where MFIm and MFIn are the MFI values for the matrix
polymer and the nanocomposite, respectively.

Three methods are available to estimate jn in Eqns (90)
and (91). One (yielding the nominaljn value) was described in
the preceding paragraphs. Another is usually employed for
microcomposites, when block filler density is used as r0, i.e.,
r0 � const � 2000 kg mÿ3 in the case of CaCO3. The third
method also makes use of Eqns (15) and (37) but takes
account of nanofiller particle aggregation; in this case, the
diameter Dp of particles of the starting nanofiller in Eqn (15)
is substituted by the diameter Dag of their aggregate. The
degree of aggregation of CaCO3 nanoparticles and, therefore,
Dag can be estimated in the framework of the dispersion
toughness theory [91] [see Eqn (52)]. Calculation according to
Eqn (52) revealed an increase inDag (corresponding to that of
k�r�) from 320 to 580 nm in the range ofWn � 1ÿ10 mass%.
Furthermore, Eqn (15) can be used to calculate the real r0
value for an aggregated nanofiller, and Eqn (37) to evaluate
the real volumetric filling degree jn.

Figure 23 compares MFIn�Wn� dependences (experimen-
tal and calculated according to formula (91) with tapping the
jn values estimated with the help of the above methods).
Evidently, there is neither qualitative nor quantitative
agreement between theory and experiment.

This disagreement necessitates application of an alto-
gether different approach to the description of polymer
nanocomposite melt viscosity, such as fractal analysis,
which enabled the authors of Ref. [159] to propose the
following relationship for estimating the fractal fluid viscos-
ity Z:

Z�l � � Z0l
2ÿdf ; �92�

where l is the characteristic linear flow scale, Z0 is a constant,
and df is the fractal dimension.

In the present case, l should be regarded as the radius of an
aggregate of CaCO3 particles, Dag=2. Because the surface of
this aggregate is in contact with the polymer,Df was chosen to

be represented by its fractal dimension ds which can be
calculated from Eqns (26) and (7). As before, Z is considered
the inverse quantity of MFIn, and constant Z0 is put equal to
�MFIm�ÿ1. Under these conditions and upon the substitution
of the equality sign in relation (92) for the proportionality sign
the possibility appears for calculating the value ofMFIn ifDag

is expressed in micrometers. Figure 23 compares the calcu-
lated MFIn with the measured MFIn�Wn� values, which
suggests excellent agreement between theory and experiment.

Relation (92) allows a few conclusions to be drawn. To
begin with, an increase in Dag, i.e., enhanced aggregation of
initial nanoparticles, under the above conditions causes
nanocomposite melt viscosity to decrease, while the
enhanced nanoparticle surface roughness increases melt
viscosity. At ds � 2:0, i.e., when nanofiller particles have a
smooth surface, the melts of the matrix polymer and the
nanocomposite have similar viscosities. Interestingly, extra-
polation of the dependence of experimental MFIn on the ds
values calculated from Eqn (7) gives MFIn � 0:602 g/10 min
at ds � 2:0, which is practically equal to experimental
MFIn � 0:622 g/10 min. These factors, critical for nanofil-
lers, are disregarded in the continual interpretation of
polymer composite melt viscosity [see Eqn (90)].

Thus, the above results showed that the models developed
to describe microcomposite rheological properties do not
ensure an adequate interpretation of melt viscosity for
particulate-filled polymer nanocomposites. A correct descrip-
tion of nanocomposite rheological properties is possible in the
framework of the fractal model of viscous fluid flow.
Characteristically, such an approach is essentially different
from those employed to describe microcomposites. For
example, aggregation of nanofiller particles reduces both
melt viscosity and the nanocomposite elastic modulus in the
solid state. In contrast, a rise in melt viscosity for micro-
composites results in an enhanced modulus of elasticity.

5. Application prospects of particulate-filled
polymer nanocomposites

At present, three main types of nanofillers for polymers are
distinguished, viz. disperse particles, organoclay, and carbon
nanotubes. These nanofillers have already been employed to
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Figure 23.Dependence of melt flow index (MFI) on filler mass contentWn

for HDPE/CaCO3 nanocomposites: 1Ðexperimental data; 2±4Ðcalcu-

lation in accordance with Eqn (91) taking (3) and not taking (2) account of

nanofiller particle aggregation and under condition of r0 � const (4), and

5Ðcalculation in accordance with Eqn (92) [157].
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produce awide range of polymer-based nanocomposites [5, 6],
and still more high-modulus polymer nanocomposites are
expected to come with a broader application of carbon
nanotubes. These hopes appear justified in view of the very
high elastic moduli (up to 1000 GPa [9]) of CNTs and
theoretical interpretations of nanocomposite properties in
the framework of numerous micromechanical models [96].
These models include a relevant parameter of the filler in the
calculation of the composite elastic modulus and take
account of the relationship between the two characteristics.
However, some of the recently proposedmodels mentioned in
Section 3, e.g., percolation [56] and fractal [24] models,
disregard the filler elastic modulus. Moreover, micromecha-
nical models also ignore such important (sometimes critical)
parameters of polymer composites as the interfacial adhesion
level and aggregation degree of initial nanofiller particles. The
authors of Refs [160, 161] undertook a theoretical analysis of
the prospects for applying the nanofillers considered in the
present review to the manufacture of structural polymer
nanocomposites for which the reinforcement degree (i.e., the
degree of enhancement of the nanocomposite elastic modulus
relative to that of thematrix polymer) is the principal measure
of efficiency.

In the framework of the modified percolation model, the
reinforcement degree of polymer nanocomposites, En=Em,
can be described by Eqn (21). To recall, the validity of
interpretation of interfacial regions as a reinforcement
element in nanocomposites was confirmed in experiments
with particulate-filled polymer nanocomposites exemplified
by butadiene-styrene rubber/nanoshungite using nanoscopic
techniques The elasticity modulus of interfacial regions in
these material is only 20% lower than in nanoshungite but six
times that in the polymer matrix [162] (see Section 2.4 for
details). In this interpretation, the surface structure of
nanofiller particles (particle aggregates) is of special impor-
tance; it is characterized by fractal dimension ds determining
in fact both the volume fraction of interfacial regions jint [see
Eqn (27)] and the reinforcement degree En=Em [5]:

En

Em
� 18

�
1ÿ �dÿ ds�1=1:7

�
; �93�

where d is a dimension of the Euclidean space in which a
fractal is considered (clearly, d � 3 in our case).

It is easy to see that Eqns (27) and (93) predict an increase
in the reinforcement degree with increasing dimension ds, the
value of which can be found theoretically from Eqn (7).
Calculation of d theor

s for organoclay (Na�-montmorillonite)
using this equation gives 2.77, versus 2.78 observed in
experiment [163]. This confirms the adequacy of the pro-
posed method.

However, there is an important aspect of the formation of
interfacial layers (or polymer absorption) on fractal surfaces.
In the case being considered, the effective quantity ds (d

eff
s )

depends on the ability of macromolecules of the matrix
polymer to copy (`reproduce') them rather than on the
roughness proper of the nanofiller surface. A macromolecule
modelled by a sequence of stiff statistical segments � 1 nm
long `perceives' the fractal surface havingmolecular (atomic)-
scale roughness as a much smoother one [5], in accordance
with the following equation [47]:

d eff
s � 5ÿ d theor

s : �94�

This relation actually reflects the known dependence of
specific surface Ssp on the cross section area s of absorbed
molecules [36]:

Ssp � s �2ÿd
eff
s �=2 : �95�

Table 3 presents the values of d theor
s calculated in

accordance with Eqn (7), as well as d eff
s values obtained

from Eqns (27) and (93). It follows that the relationship
between these dimensions is fairly well described by Eqn (94).

Micrometer-size filler particles in a polymer composite are
known to build up a spatial backbone structure with
dimension DB �24DB 4 3�, which is an analog of the
fractal lattice on which the polymer matrix structure forms
[24, 26, 164]. This effect results in a change to the matrix
structure, characterized by fractal dimension df, in compar-
ison with the structure of the matrix polymer. Parameters jint

and DB are related by Eqn (40).
The relationship between jint andjn for different types of

nanofillers can be obtained in the following way. First, the
interfacial layer thickness lint is calculated using Eqn (24),
then the resulting relation gives Eqn (28), which is reduced to
a simpler form [formula (22)] in which coefficient c equals
0.260 for disperse particles withDp � 80 nm, 1.910 and 0.955
for exfoliated and intercalated organoclay, respectively, and
1.86 for CNT [5].

It is known that the dimension of any real fractal cannot
be higher than the dimension of the enveloping Euclidean
space [165]. Therefore, substituting the quantity cjn in Eqn
(40) forjint and assumingDB � d � 3 give the estimate of the
maximum volumetric filling degreejmax

n for the nanofillers of
interest. These jmax

n values are also included in Table 3. The
physically unreal value of jmax

n � 2:33 (jn < 1) for particu-
late-filled polymer nanocomposites means that condition
DB � 3 is unattainable for these materials. Because jmax

n is
defined by the condition [5]

jmax
n � 1ÿ jint � 1ÿ 0:26jmax

n ; �96�

it gives jmax
n � 0:794. Substituting this jmax

n value into
Eqn (40) yields the limiting value of DB � 1:33. In other
words, disperse nanoparticles in a polymeric matrix cannot
form a spatial backbone (DB 5 2) but give rise to more or less
branched chains, i.e., they produce an effect well known for
elastomer (rubber)-based particulate-filled nanocomposites
[72] (see also Section 2.5). Due to chain formation, nanofillers
of any type do not change the structure of thematrix polymer,
and fractal dimension df of the nanocomposite structure is
equal to this parameter for the parent matrix polymer [5].

Finally, combining equations (21) and (22) makes it
possible to estimate the limiting degree of reinforcement
�En=Em�max at jn � jmax

n for the nanofillers of interest. The

Table 3. Characteristics of the main types of polymer nanocomposites

[160].

Nanoéller d theor
s d eff

s , equa-
tion (27)

d eff
s , equa-
tion (93)

jmax
n �En=Em�max

Disperse particles
Organoclay
(exfoliated)
Organoclay
(intercalated)
Carbon nanotubes

2.60
2.78

2.78

2.73

2.20
2.30

2.15

2.27

2.33
2.13

2.34

2.23

2.33
0.246

0.374

0.239

12.0
7.23

7.21

6.76
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estimates of �En=Em�max presented in Table 3 demonstrate
that the maximally possible value of �En=Em�max � 12 for a
composite can be reached only for particulate-filled nano-
composites, because this value for other types of polymer
nanocomposites is much lower than 12. Effects realizable
under condition of jn > jmax

n can be illustrated most simply
by the example of organoclays using a combination of
Eqns (40) and (22). Coefficients c � 1:910 and 0.955 for
exfoliated and intercalated organoclays, respectively, are
obtained by the following line of thought [5]. The formation
of a `stack' (tactoid) consisting of two plates of organoclay
suggests that only two interfacial layers form on each side of
the plate rather than four layers (two on each plate or one on
each its side). This means that coefficient c � 1:910 decreases
twofold in the former case, threefold in the case of a three-
plate tactoid, etc. Because the right-hand side of Eqn (40)
remains unaltered (at DB � 3), an increase in jn on its left-
hand side of this equation leads to a decrease in c or (as
follows from the above discussion) aggregation of organoclay
plates [5].

Let us consider the influence of anisotropy of nanofiller
particles on DB. The level of anisotropy can be defined as the
Lp=Dp ratio, where Lp is the particle length, and Dp is the
nanofiller particle diameter (or thickness of organoclay).
Figure 24 shows the DB�Lp=Dp� dependence, suggesting a
linear increase in DB with growing the anisotropy level.

To sum up, the application of various methods for
nanoparticle dispersion (the use of binding agents [166],
mixing components in an electromagnetic field [5], ultra-
sound [167], etc.) does not change the above estimates, since
in any case DB 4 d. As soon as DB exceeds d, nanofiller
density begins to increase [i.e., aggregation occurs; see
Eqn (15)] because it does not `fit' into a three-dimensional
space [168]. This well-known effect is similar to blood
coagulation [169] and globule formation in cross-linked
epoxy polymers [120].

6. Conclusion

It has been shown in the foregoing that the fractal dimension
of a nanoparticle surface having a strong influence on the
formation of the interfacial layer in polymer nanocomposites
depends on the ability of polymer macromolecules to
`reproduce' the relief of this surface. The spatial backbone
of nanoparticles can form only in anisotropic nanofillers
(organoclays and carbon nanotubes). Disperse nanofillers

make up chains of particles without alteration of the polymer
matrix structure, in contrast to a matrix polymer.

A fundamental difference between percolation and fractal
models of the reinforcement of polymer nanocomposites and
macromechanical models lies in the fact that the former take
no account of the nanofiller elastic modulus. They assume the
interfacial regions to be a reinforcement element of the
structure, just the same as the nanofiller proper. Each type
of nanofiller is characterized by a limiting degree of filling
that eventually determines the limiting reinforcement degree
of the nanocomposite. Disperse nanofillers are considered to
be the most efficacious materials for the production of
engineering polymer nanocomposites.

An important factor responsible for the end-use proper-
ties of nanocomposites is noticeable aggregation of initial
filler particles due to their small sizes and, therefore, large
specific surfaces. This effect accounts for a 3±5-fold decrease
in the yield stress of a nanocomposite compared with the
theoretically attainable value.

The well-known Tabor equation giving a microhardness-
to-yield stress ratio equal to 3 holds only for Euclidean solids.
The fractality of the polymer matrix structure in a
nanocomposite decreases this ratio.

The introduction of a disperse nanofiller into the polymer
matrixmay substantially improve the thermophysical proper-
ties of the nanocomposite being formed. The nanoadhesion
effect is responsible for the sharp (several-fold) decrease in the
thermal expansion coefficient, whereas the creation of a
proper filler structure in the polymer matrix permits enhan-
cing the heat conductivity of nanocomposites. An important
technological factor for nanocomposites distinguishing them
from microcomposites is constant (or even decreasing)
viscosity of the melt in response to a rise in the nanofiller
content. This effect can be quantitatively described only in
terms of fractal models.
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