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Abstract. Crystalline lattices can become unstable to uniform
shear strains, which may lead to a structural transformation to
less symmetric structures. Transitions of this type are called
elastic phase transitions. In this paper, elastic phase transitions
in metals with cubic and hexagonal structures are considered.
The relation between the elastic constants of second, third, and
fourth order corresponding to the case of a first-order elastic
phase transition are given. As an example, the structural trans-
formation in vanadium, which is experimentally observed at
P ~ 69 GPa, and the possibility of structural transformation
in molybdenum at P higher than 700 GPa are analyzed.

1. Introduction

Structural phase transitions under high pressures (compar-
able in magnitude to the bulk modulus) are becoming the
subject of intense research [1-3], because diamond anvil cell
pressures of 500-600 GPa [4] are already available and
because, with the structure identification methods using
synchrotron X-ray diffraction, the real-time structure mon-
itoring of high-pressure phases has become possible. Such
structural changes are special because, in contrast to low
pressure, where transitions occur to a close-packed high-
symmetry structure [5], high-pressure phases in ultra-high
pressure experiments are often less symmetric and less densely
packed [1, 2]. A possible explanation is that increasing the
pressure makes the crystal lattice unstable to small uniform
deformations. It was shown in [6] using the density functional
method that under high compression, the shear elastic
constants of Na and K exhibit a strong softening behavior,
resulting in the transition to a spontaneous deformation state
of lower symmetry than the initial phase.

Yu Kh Vekilov, O M Krasilnikov, M P Belov, A V Lugovskoy National
Research Technological University ‘MISiS’,

Leninskii prosp. 4, 119049 Moscow, Russian Federation

E-mail: omkras@mail.ru; andrey.lugovskoy@gmail.com

Received 3 December 2013, revised 19 December 2013
Uspekhi Fizicheskikh Nauk 184 (9) 967973 (2014)

DOI: 10.3367/UFNr.0184.201409d.0967

Translated by E G Strel’chenko; edited by A M Semikhatov

Although elastic deformations are almost a universal
feature of solid-state phase transitions, deformation is in
most cases not an order parameter but rather a quantity
related to the order parameter via striction interaction. In the
structural transformations to be discussed here, deformation
does represent an order parameter. To emphasize this point,
the term ‘elastic phase transitions’ was introduced by
Khmel'nitskii [7] (see also [8]). In these transitions, the
number of atoms in a unit cell remains unchanged, the point
symmetry group of the new phase is a subgroup of the point
group of the initial phase, and translational symmetry is
preserved [9]. It is shown in [7, 10] that critical phenomena in
elastic phase transitions are strongly suppressed, and Lan-
dau’s phase transition theory [11] is therefore applicable with
finite deformation tensor components as order parameters. A
considerable body of literature is available [8, 12] on
temperature change (at atmospheric pressure) as another
possible cause of elastic phase transitions (martensitic trans-
formations). Here, we discuss the details of pressure-induced
elastic phase transitions.

2. Crystal lattice stability
and deformation phase transitions

Landau’s theory of phase transitions assumes that a thermo-
dynamic potential near the transition point can be expanded
in a power series in order parameter components. For a
system at a temperature T and pressure P, the relevant
thermodynamic potential is the Gibbs free energy G.
Structural transformations involve small, but finite lattice
deformations, and therefore, to include the entire range of
nonlinear effects, a convenient choice for the order parameter
is the components of the Lagrange finite deformation tensor
n;;[13]. We expand G in terms of ,; near the equilibrium state
at given P and T. We assume the spontaneous deformations
n;; to be isothermal. Then the change AG = G(P,T,n)—
G(P, T,0) per unit volume in the initial state (V) has the form

AG 1 -
70 = 3 Cijki Nij M + 3 Cijctmn Nij it Mmn

1
+ ﬁ Ci/’klmnpq 771’_/' Nt Minn ﬂpq +...
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Table 1. Strain-induced phase transitions under pressure in crystals of a cubic (1-3) and hexagonal (4-6) structure.

No. Spontaneous strain q v w Symmetry change
at transition
1 =N =~ =053 =1 6(Cii — Cia) 3(Ciiy = 3C112 4 2C103) 3(Cri —4C112 4+ 3C1Hn) I.—Ty
r/,ry—ry
2 N = —Np =1 2(Cyy = Cn) 0* (Citni — 4C12 +3C1) /3 I'c =Ty
/Ty —r¢
3 Ny =13 =1p3 =1/2 3Cuy 3Cus (Cuaaas + 6Cuass) /2 T, T/ TY - T
4 Ny =—Nn =1 Ci—Cn 2(Cryy — Con) /3 2Cs666/3 Iy — I
5 Mm3(ms) =1 Cu 0 2Cu444/3 I'n — Iy
6 N =1 Ci—Cp 0 2Cs666/3 | R

* Due to deformation symmetry.

Here and hereafter, summation over repeated indices from 1
to 3 is implied. The linear term is absent because the system is
in equilibrium. Here, the quantities

~ 1 0"G
ah:—C———ﬂ 2
Kl VO al/lu ank[ -/ ( )

are the nth-order (n =2,3,4) isothermal effective elastic
constants of a loaded crystal under a fixed loading at a
temperature 7 [14]. In the absence of loading, Cjjp, . are
identical to the usual elastic constants. When using C’,-,-kl,,_,
all the equations of elastic theory remain the same, indepen-
dent of whether the crystal is under loading. In particular, the
stability equations for a uniformly deformed loaded crystal
are identical to the well-known Born conditions.

At given P and T, the system is in equilibrium if the
quadratic form in Eqn (1) is positive definite. As a result,
for the three most common metallic structures— body-
centered cubic (bec), face-centered cubic (fcc) and hexago-
nal close-packed (hcp)— the following stability conditions
are obtained for uniform hydrostatic compression and shear.
For a cubic crystal, we have

611+2€12>0, (3a)
611 — 612 > 07 (3b)
C44 > 0. (30)
Similarly, for a hexagonal crystal,

633(611 +(~:'12)—26]23 >07 (43.)
611—612>0, (4b)
Ca >0, (4c)
T

Ces = % >0. (4d)

Here, C,p are the effective second-order elastic constants in
the Voigt notation; o and f§ can take values from 1 to 6 in
accordance with the rule 11 — 1, 22 — 2, 33 — 3, 23 — 4,
13 — 5,12 — 6. We note that conditions (4) also hold for the
tetragonal lattice, except that Eqn (4d) becomes Ces >0
because in that case, Co¢ # (C11 — C12)/2.

Varying pressure and temperature can violate conditions
(3) and (4), resulting in a structural transition to a sponta-
neously deformed state that depends on the nonlinear
elasticity of the material (the anharmonic expansion terms

of the second, third, and higher orders) for its stability. Thus,
the amount of spontaneous deformation that characterizes
the new equilibrium structure is determined by the higher-
order nonlinear contribution to the Gibbs energy. As shown
by calculations, conditions (3a) and (4a), which correspond to
the hydrostatic expansion compression, can only break down
at negative pressures [15]. The spinodal instability at P < 0,
when the lattice expansion is uniform, can be realized either in
shock wave experiments [16] or by doping the crystal with
atoms that exceed the host ones in size [17]. Therefore, the
discussion that follows concerns conditions (3b) and (3¢c) and
(4b)—(4d), which determine the stability of a crystal lattice
toward shear.

Expansion (1) for the cubic and hexagonal lattices can be
constructed using the results in Refs [18, 19], where all
nonzero second-to-fourth order elastic constants for each of
the 32 point symmetry groups were presented.

Table 1 lists different versions of spontaneous deforma-
tion that correspond to the situation where cubic and
hexagonal crystals lose their stability when these conditions
are violated. In the cases under consideration, thermo-
dynamic potential expansion (1) takes the form

AG(P,n, T) 1

1 1
2 3 4
- = ~ - 4 e e . 5
. zqﬂ +3'U7[ +4M17 + ()

The values of the coefficients ¢, v, and w for each of the cases
are given in Table 1, where Qﬁ are the isothermal effective
elastic constants of the corresponding order at a pressure P in
Voigt’s notation. Also shown in the table are transformations
that are possible in accordance with the group theoretical
analysis of Bravais lattice symmetry properties for bec, fcc,
and hep lattices losing stability to shear [20]. If the cubic term
in expression (5) is zero (cases 2, 5, and 6 in Table 1), then a
second-order phase transition can result from the violation of
the corresponding stability condition.

We next see what happens if the cubic term in Eqn (5) is
different from zero. Elastic constant calculations show that
far from the point of stability loss, ¢ and w are usually positive
and v is negative. Equation (5) contains three parameters,
each of which depends on P and 7, thus complicating the
analysis of the equation. However, after the two sides of this
equation are divided by Go = v*/w3, it is reduced to a
dimensionless single-coefficient form [21]

2 3 4
X X X
4= - (6)

Slax) =’y =+
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Figure 1. Dimensionless Gibbs potential for various values of the
coefficient a: (I)a=1/4;(2)a=2.1/9;(3)a=2/9; (4) a = 1.4/9.

where

AG w qw
= X =— 1 7
VoGo' [v] Toa=e (7)

f(a,x)

The coefficient a accounts for the variation of the second-,
third-, and fourth-order elastic constants with pressure and
temperature, and its value determines the minimum-max-
imum pattern of Eqn (6) (Fig. 1). The positions of the minima
and maxima are determined from the condition 0 f/0x =0,
leading to the equation ax — x* + x? = 0, which is solved by
x=0and x = (1+£+v1—4a)/2. It hence follows that for
a > 1/4, the function f(a, x) has only one minimum at x = 0,
corresponding to the original phase. If a = 1/4, there is one
minimum at x = 0 and an inflection point at x = 1/2 (Fig. 1,
curve /). For 2/9 < a < 2/8(1/4), the curve f(a,x) has two
minima: one stable at x=0 and one metastable at
x=(01++v1-4a)/2, and a local maximum at
x= (1 —-+1—4a)/2 (Fig. 1, curve 2).

The value of a corresponding to a first-order phase
transition is found by solving the system of equations
f(a,x) =0 and 0f/0x =0, to give a = 2/9. For this value,
function (6) has two minima corresponding to f(a,x) = 0 at
x=0and x =2/3 and a maximum at x = 1/3 (see Fig. 1,
curve 3). The height of the potential barrier and the jump of
the order parameter under this transition are estimated from
Eqns (6) and (7), giving

AG 1 v?

AG 1 o7 _ 2k
Vo 324 w3’

T 3w

(8)
We now find the entropy change

1 (OAG
AS = —— (=X
s=—5(57),

under the transition between two states related by the
deformation # = 2|v|/(3w). Substituting the value of 7 in
Gibbs potential (5), taking the derivative with respect to the
temperature, and expanding to the fourth order in the order
parameters results in

20 [(quv? 4 9 [v*
AS=—--—|— —— = .
S 9 6T<w2>},+81 8T<w3)},

Table 1 lists expressions for ¢, v, and w for all the cases
considered. Knowing the entropy change AS, it is easy to
find the latent transition heat AQ = TAS. Thus, the height
of the potential barrier, the jump of the order parameter,
the change in entropy, and the latent transition heat are
determined by relations between the third- and fourth-order
elastic constant, i.e., by the nonlinear elasticity of the crystal
lattice. From the expression for the parameter « in Eqn (7),
we see that if the value of v is close to w (i.e., the third-order
anharmonism and the fourth-order anharmonism contri-
bute comparably), then a first-order phase transition can
occur at sufficiently large values of ¢ (the corresponding
second-order elastic constant). The change in the unit-cell
volume is a second-order effect in 5 because AV/Vy =
—2(nfy + 13 +n33) + 8npai3iy (see Ref. [15]). Thus, the
distortion of structure occurs in parallel with a small
(second-order in deformation) but negative change in
volume.

For 0 < a < 2/9, in addition to the metastable minimum
atx =0, f(a, x) also shows a stable minimum at x > 2/3 with
a maximum f(a,x) > 0 for x between these minima (curve 4
in Fig. 1). We have a first-order phase transition close to a
second-order transition because the potential barrier
decreases as a decreases.

The range of values of a allowing a first-order phase
transition is 0 < a < 2/9 or, in terms of elastic constants,
0 < gw< (2/9)2

Thus, analyzing deformation phase transitions requires
data on the second-to-fourth order elastic constants for
different pressures. Unfortunately, high-pressure experi-
mental data on crystal elastic constants of different orders
are virtually absent, because the megabar range is a
difficult one to measure the speed of sound in different
crystallographic directions and to generate the second
harmonic or Raman scattering normally used in determin-
ing elastic constants. Currently, the way to obtain suffi-
ciently accurate second- and higher-order elastic constants
at different pressures is by first-principle calculations within
the electron density functional framework. This methodol-
ogy is briefly discussed in Section 3 (see our paper [14] for
the details).

3. Effective elastic constants

With the density functional method, it is possible to calculate
the total energy of the crystal for any atomic volume (i.e., for
any pressure). Accordingly, we express AG/ ¥V in terms of the
change in the Helmholtz free energy AF. At a hydrostatic

pressure P, we obtain
AG AF AV
—=—+4+P— 9
AR ©)

where AV =V — V) is the change in the atomic volume due
to the applied strain specified by the components of the
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Table 2. éx/gv__ —Cyp... relations.

Cp Copy Capyo
Chi=Cy—P Cii = Ciy + 3P Cin = Ciiy — 15P Cusas = Caass — 3P
Co=Cp+P Cin=Cin—P Ciip = Cip + 3P Cuss = Caass — P
Cyy=Cy—P Cos =Gt P Ciin =Cin+P Ces66 = Cosos — 3P

Canp = Copp + 3P

tensor 1;;. The quantity AF/V) can be written as [13]

AF 1 1
—=—Pp; + 3 Cijier i M + 3 Cijictrn Nij Mt Nan

Vo
1
+ ﬁ Cijklmnpq Mij Mt Mimn ’7pq ’ (10)
where
1 o"F
Cin. =— <7> . 11
Y Vo \on;;0mg---/ (an

The constants C;j;.. are the extension of nth-order elastic
constants introduced by Brugger [22] to the case of a loaded
state and, while not determining the elastic properties of a
crystal under loading completely [23], they can, unlike Cijk/.“a
satisfy the Cauchy relations. ~

We express the effective nth-order elastic constants Cjj..
under hydrostatic load in terms of the corresponding Brugger
elastic constants Cjj.. and the pressure P. We note that
AV/Vy=J— 1, where J = det |a;;| [13]. Here, o; = Orx/OR;
is the deformation gradient, and r; and R; is the respective
Cartesian coordinate of the selected point in the deformed
and the original crystal. To obtain the required relations
between C’,-,-k,m and Cjj,..., we express o;; in terms of nij- The nij
are related to o;; by [13]

1
Nij = B (Ofkiak_j - 5ij> )

where §;; is the Kronecker symbol. In turn, «;; can be

(12)

expressed in terms of the displacement gradient
uij = Oui/OR; (ui = ri — Ry):
oij = 5,~j+ui‘,-. (13)

As aresult, n;; = (u;; + w;i + ugiug;) /2. Because the deforma-
tions we consider in what follows are ‘pure’ (no rotations,
Uij = l/l_/‘,'), we find that

(14)

1
nij = uij + 3 UjejUj -
Inverting relation (12) using Eqns (13) and (14) and
keeping terms through the fourth order in #;; yields

1 1 5
%ij = 5ij + 1’]” - E Nii r]k/ + E Wi Myi nkj - g nkj ke Winn Mni +
(15)

From Eqns (2), (9), (11), and (15), the relations between C‘ijk;m
and C;j,.. are derived. The results obtained for the elastic
constants from Table 1 are shown in Table 2 (in which the
second-, third-, and fourth-order elastic constants are given in
Voigt’s notation).

To summarize, Ciﬁm of any order can be calculated using
expansion (10), in which the linear term determines the value

of the pressure and the higher-order terms determine the
corresponding elastic constants C,pz. (Brugger elastic con-
stants). This is followed by using the relations in Table 2 to
find the effective elastic constants of the desired order.

4. High-pressure structural transformations
in vanadium

Experimental studies of the structure of vanadium under
pressure [24] have revealed a room temperature becc—rhombo-
hedral phase transition at P = 69 GPa. The experimenters
ascribed the transition to the softening of the elastic constant
Cus and believed it to be of the second order due to the lack of
ajump in volume. There is a vast first-principle literature [25—
27] pointing to the Cy4 softening behavior (i.e., to the elastic
constant becoming negative) in the pressure range consid-
ered. We can use the calculations in Ref. [27] of the second-to-
fourth order elastic constants for different pressures at
T =0 K to take a closer look at the structural transition
from the bece to the rhombohedral phase. Row 3 of Table 1
lists the necessary elastic constants. Knowing the values of
these constants, it is possible to determine the coefficient a [see
Eqns (6) and (7)] for various pressures in the neighborhood of
the phase transition point (50-70 GPa). The results are:
P =55 GPa, a=3.9; P=63 GPa, a=1.4; P=068 GPa,
a =0.21. Thus, for P ~ 68 GPa, the coefficient a becomes
equal to the critical value a = 2/9, and the bcc structure (I'})
can undergo a transition to the rhombohedral phase (I'y;,) (see
Table 1, row 3). From Eqn (8), we find the jump in the order
parameter at this transition, 7, =1#;3 =1y» =n/2=
(1/3)|v|/w = 0.0075. The small value of the order parameter
indicates that although the phase transition in vanadium is of
the first order, it is close to a second-order transition. The
results of this analysis agree with the available experimental
data [24].

Density functional theory calculations in Refs [27, 28] of
vanadium phonon dispersion at different pressures show that
both branches of transverse modes (directions I'-H and
I'—N) related to the elastic constant Cyy exhibit strong
softening near the center of the Brillouin zone (I point) at
pressures from 70 GPa to 75 GPa. With further increasing the
pressure, both branches continue decreasing in slope near this
point. At the same time, the other transverse branch in the
direction I'—N [the branch related to the elastic constant
C' = (Cn - Clz)/2] actually remains unchanged in this
pressure range. Hence, the way the dispersion curves change
with pressure agrees with the data on elastic constants.

5. Softening of the effective elastic constant C’
in molybdenum at high pressure

Figures 2-5 show our results [29] on the elastic constants and
phonon dispersion relations in bcc molybdenum in the
pressure range 0—1400 GPa (7 = 0 K). We see from Fig. 2
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Figure 2. Pressure dependence of the shear elastic constants of bee Mo
C’ = (Cy1 — C12)/2 (squares) and Cyq (triangles).

Figure 4. Elastic constant C’ versus pressure for bee (squares), fec (circles),
and hcp (triangles) molybdenum.
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Figure 3. Elastic constant Cy versus pressure for bee (squares), fec
(circles), and hep (triangles) molybdenum.

that for P > 500 GPa, C' shows strong softening (a precursor
of a phase transition) and passes through zero at
P =~ 1400 GPa (V/V, = 0.42). At these pressures, molybde-
num can undergo a deformation phase transition to a
tetragonal or orthorhombic crystal structure [stability condi-
tion (3b) is violated)]. However, according to Refs [30-33],
already at a pressure P ~ 700 GPa (T = 0 K), bcc molybde-
num becomes thermodynamically unstable and must change
to fcc or hcp. Estimates show that at these pressures, the
coefficient a [see Eqn (6)] greatly exceeds 2/9, the critical
value for the first-order deformation phase transition.
Figures 3 and 4 show the calculated stability criteria
(3b), (3¢c) and (4b), (4¢) for bec, fee, and hep molybdenum. It
is seen that at atmospheric pressure, both fcc and hcp
molybdenum structures are unstable to shear (C44 < 0 and
C’ <0), and it is only at the respective high pressures
P > 300 GPa and P > 150 GPA that they stabilize. From
the standpoint of stability to uniform deformations in a phase
transition, Figs 3 and 4 indicate the hexagonal structure to be
preferable.

Figure 5 presents calculated phonon dispersion curves for
bce molybdenum in the pressure range 900-1050 GPa. We see
that the transverse mode branch Tjj;4[{ (0] in the direction
I' — N related to the elastic constant C’ (the marked branch in
Fig. 5) softens considerably near the I' point at 900 GPA.
Moreover, strong softening is also observed for the lon-
gitudinal branch L[({{] in the direction H—P. As the
pressure increases further and reaches P = 1050 GPa, the

120

100

80 -

40 -

Frequency, meV

20 H )

dhep

r H P r N

Figure 5. Phonon dispersion curves of bcc molybdenum under 900 GPa
(solid curve) and 1050 GPa (dashed curve). Negative values correspond to
imaginary values.

frequencies of these branches become imaginary near the
vibrational modes

11 222
T[ITO] |:ZZO:| and L|:§§§:| .

It is shown in [17] that the instability of the bcc lattice to the
vibrational mode T7yg)[1/4 1/4 0] (shown by an arrow in
Fig. 5), combined with the softening of the shear elastic
constant C’, can lead to a transition between bec and double
hep (dhep) structures. B

Because of the small value of C’, the energy barrier for
such a structural transformation is low. The transition itself is
of the first order and occurs before the phonon mode in the
original lattice becomes unstable. Thus, the structural
transition in Mo to the double hcp phase should occur before
the constant C’ becomes zero.

6. Conclusions

We have analyzed the stability of the crystal lattice to shear
and examined elastic phase transitions at high pressures.
Stability criteria against shear for cubic and hexagonal
structures under pressure are expressed in terms of second-
order effective elastic constants. Situations where these
structures lose stability under hydrostatic pressure are
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considered, and the Bravais lattices of higher-pressure phases
resulting from elastic phase transitions are indicated. These
phases depend on the nonlinear lattice elasticity for their
stability. A criterion is given that indicates at what relation
between the second-, third-, and fourth-order elastic con-
stants a first-order elastic phase transition is possible. The
jump in the order parameter and the height of the potential
barrier at the transition are determined by the third- and
fourth-order elastic constants. The elastic bce-to-rhombohe-
dral phase transition observed in vanadium at P ~ 69 GPa is
analyzed, as are possible structural transformations in
molybdenum at P > 700 GPa. We note that a similar
analysis can be carried out for temperature-changing elastic
phase transitions (martensitic transformations) if informa-
tion is available on the second-to-fourth order elastic
constants at around the transition temperature. Generally,
elastic instability studies are important for explaining
structural phase transitions in solids. A typical example is a
pressure-induced transition in stishovite from the tetragonal
structure to the orthorhombic CaCl,-type structure [34].
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