
Abstract. Coherent states (CSs) were first introduced and
studied in detail for bound motion and discrete-spectrum sys-
tems like harmonic oscillators and similar systems with a quad-
ratic Hamiltonian. However, the problem of constructing CSs
has still not been investigated in detail for the simplest and
physically important case of a free particle, for which, besides
being physically important, the CS problem is of didactic value
in teaching quantum mechanics, with the CSs regarded as
examples of wave packets representing semiclassical motion.
In this paper, we essentially follow the Malkin±Dodonov±
Man'ko method to construct the CSs of a free nonrelativistic
particle. We give a detailed discussion of the properties of the
CSs obtained, in particular, the completeness relations, the
minimization of uncertainty relations, and the evolution of the
corresponding probability density. We describe the physical
conditions under which free-particle CSs can be considered
semiclassical states.

1. Introduction

Coherent states (CSs) play an important role in modern
quantum theory as states that provide a natural relation
between quantum mechanical and classical descriptions.

They have a number of useful properties and, as a conse-
quence, a wide range of applications, e.g., in semiclassical
descriptions of quantum systems, in quantization theory, in
condensed matter physics, in radiation theory, and in
quantum computations (see, e.g., Refs [1±7]). Although
there are numerous publications devoted to constructing
CSs of different systems, a universal definition of a CS and a
workable scheme to construct them for an arbitrary physical
system is not known. However, we believe that the problem of
constructing CSs for systems with quadratic Hamiltonians of
the general form was completely solved by Dodonov and
Man'ko, using Malkin's and Man'ko's integral of motion
method (see [6±8]). It should be noted that extracting concrete
sets of CSs and their properties (for a given quadratic system)
from their general results sometimes requires additional
technical efforts. In this article, we turn our attention to the
CSs of a free particle. Besides their physical importance, there
is a didactic advantage of using free-particle CSs in teaching
quantum mechanics, regarding them as examples of exact
wave packages representing semiclassical particle motion. In
this relation, we note that CSs were first introduced and
studied in detail for systems with bounded motion and a
discrete spectrum, like a harmonic oscillator or a charged
particle in a magnetic field. However, for such a simple and
physically important system as a free particle, the problem of
CS construction was not solved at that time. We believe that
this situation is explained by the fact that the free particle
represents unbounded motion with a continuous energy
spectrum, and a generalization of the initial (Glauber)
scheme of constructing the CSs of a harmonic oscillator was
not so obvious in this case. Although CSs of a free particle, in
principle, could be extracted from the abovementioned
general results of Dodonov and Man'ko, many authors
(ignoring or simply unaware of their results) keep trying to
construct CSs of a free particle, inventing their own ways.
Describing these attempts, we have to cite Refs [9±12] devoted
to this problem. In our opinion, no single one of these studies
completely solves the problem under consideration. The
authors of Ref. [10] have quite closely approached the goal,
choosing a particular case of initial states for their CSs. But
even for such initial states, they did not derive an explicit form
of time-dependent free particle CSs and did not study their
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properties. In fact, their program was realized in [9], but the
author did not identify his states with some kind of CSs. In
[11], the authors consider the limit of zero frequency in the
CSs of a harmonic oscillator, deriving a sort of CSs for a free
particle. Their CSs are expressed in terms of sums of Hermite
polynomials, and the complicated forms of the CSs hampers
their interpretation, study, and application. Another study
[12] treats free-particle CSs in the framework of a general
approach to constructing CSs for systems with a continuous
spectrum. The approach is based on using nonnormalizable
fiducial states and involves quite complicated techniques. The
authors do not present free-particle CSs well defined for any
time instant.

In this article, in fact following the Dodonov±Man'ko
method, we construct different families of generalized CSs of
a free massive nonrelativistic particle. We discuss the proper-
ties of the constructed CSs in detail, including completeness
relations, minimization of uncertainty relations, and evolu-
tion of the corresponding probability density in time. We
describe physical conditions under which free-particle CSs
can be considered semiclassical states.

2. Constructing time-dependent CSs
of a free particle

2.1 Basic equations
For simplicity, we consider one-dimensional quantum
motion of a free nonrelativistic particle of mass m on the
whole real axis R� �ÿ1;1�. This motion is described by the
Schr�odinger equation

i�hqtC�x; t� � ĤxC�x; t�, x 2R , (1)

where the Hamiltonian Ĥx and the momentum operator p̂x,

Ĥx � ÿ �h 2

2m
q 2
x �

p̂ 2
x

2m
; p̂x � ÿi�hqx ; �2�

are self-adjoint on their natural domains [13].
It is useful to introduce the dimensionless variables

q � xlÿ1; t � �h

ml 2
t : �3�

Then Eqn (1) takes the form

Ŝc�q; t� � 0 ; Ŝ � iqt ÿ Ĥ ; Ĥx � �h 2

ml 2
Ĥ ;

Ĥ � p̂ 2

2
; p̂ � ÿiqq ; c�q; t� �

��
l
p

C
�
lq;

ml 2

�h
t
�
; �4�

with jC�x; t� j2 dx � jc�q; t� j2 dq. We call the operator Ŝ the
equation operator.

In terms of creation and annihilation operators

â � q̂� ip̂���
2
p ; â y � q̂ÿ ip̂���

2
p ; �â; â y� � 1 ;

the Hamiltonian Ĥ is a quadratic form:

Ĥ � 1

4

�
â yâ� ââ y ÿ �â y�2 ÿ â 2

�
: �5�

It cannot be reduced to the first canonical form for a
quadratic combination of creation and annihilation opera-
tors, which is the oscillator-like form, by any canonical
transformation; this indicates that the spectrum of Ĥ is
continuous (see, e.g., [14]).

2.2 Integrals of motion linear
in canonical operators q̂ and p̂
We construct an integral of motion Â�t� linear in q̂ and p̂. The
general form of such an integral of motion is

Â�t� � f �t� q̂� ig�t� p̂� j�t� ; �6�

where f �t�, g�t�, and j�t� are some complex functions of the
time t. For the operator Â�t� to be an integral of motion, it
has to commute with the equation operator in (4);�

Ŝ; Â�t�� � 0 : �7�

If the Hamiltonian is self-adjoint, the adjoint operator Â y�t�
is also an integral of motion, �Ŝ; Â y�t�� � 0.

Substituting representation (6) in Eqn (7), we obtain the
following equations for the functions f �t�, g�t�, and j�t�:

_f �t� � 0; _g�t� ÿ if �t� � 0 ; _j�t� � 0 ; �8�

where the dots denote derivatives with respect to t. The
general solution of Eqns (8) is

f �t� � c1 ; g�t� � c2 � ic1t ; j�t� � const ; �9�

where c1 and c2 are arbitrary constants. Without loss of
generality, we can set j�t� � 0. Thus,

Â�t� � c1q̂� ig�t� p̂ ; g�t� � c2 � ic1t : �10�

The commutator
�
Â�t�; Â y�t�� is given by�

Â�t�; Â y�t�� � 2Re
ÿ
g ��t� f �t�� � 2Re �c �1 c2� � d : �11�

Equations (9) imply that d is a real-valued integral of
motion, d � const: In what follows, we set d � 1,

d � 2Re �c �1 c2� � 1 : �12�

Let c1 � jc1j exp �im1� and c2 � jc2j exp �im2�. Condition (12)
then implies that

jc2jjc1j cos �m2 ÿ m1� �
1

2
: �13�

Choosing d � 1, we set Â�t� and Ây�t� to be annihilation and
creation operators,�

Â�t�; Â y�t�� � 1 : �14�

It follows from Eqns (10) and (12) that

q̂ � g ��t� Â�t� � g�t� Â y�t� ; g�t� � c2 � ic1t ;

ip̂ � c �1 Â�t� ÿ c1Â
y�t� : �15�

We note that the operators q̂ and p̂ cannot depend on the
constants c1, c2 or time t. Indeed, using Eqns (6) and (12), it
can be verified that the relations qtq̂ � qtp̂ � qc1 p̂ � qc1 q̂ �
qc2 p̂ � qc2 q̂ � 0 hold.
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2.3 Time-dependent generalized CSs
We consider eigenvectors jz; ti of the annihilation operator
Â�t� corresponding to an eigenvalue z:

Â�t�jz; ti � zjz; ti : �16�

In general, z is a complex number. It follows from Eqns (15)
and (16) that

q�t� � 
z; tjq̂j z; t� � q0 � pt ; q0 � c �2 z� c2z
� ;

p�t� � 
z; tjp̂j z; t� � i�c1z � ÿ c �1 z� � p ;

z � c1q�t� � ig�t� p � c1q0 � ic2p : �17�
Written in the q-representation, Eqn (16) becomes�

c1q� g�t� qq
�
F c1;2

z �q; t� � zF c1;2
z �q; t� ;

F c1;2
z �q; t� �



qjz; t� : �18�

The general solution of this equation has the form



qjz; t� � F c1;2

z �q; t� � exp

�
ÿ c1
g�t�

q 2

2
� zq

g�t� � w�t; z�
�
;

�19�

where w�t; z� is an arbitrary function of t and z:
We can see that the functions F c1;2

z �q; t� can be written in
terms of the mean values q�t� and p�t�,

F c1;2
z �q; t��exp

�
ipqÿ c1

2g�t�
�
qÿ q�t��2 � f�t; z�

�
; �20�

where f�t; z� is again an arbitrary function of t and z.
The functions Fz satisfy the equation

ŜF c1;2
z �q; t� � l�t; z�F c1;2

z �q; t� ; �21�

where

l�t; z� � i _f�t; z� ÿ 1

2

�
p 2 � c1

g�t�
�
: �22�

For functions (20) to satisfy Schr�odinger equation (4), we
have to fixf�t; z� from the condition l�t; z� � 0. Thus, for the
function f�t; z�, we obtain

f�t; z� � ÿ i

2
p 2tÿ 1

2
ln g�t� � lnN ; �23�

where N is a normalization constant, which we suppose to be
real.

The density probability generated by function (20) is given
by

r�q; t� � ��F c1;2
z �q; t�

��2 � N 2��g�t��� exp
�
ÿ
�
qÿ q�t��2
2
��g�t���2

�
:

�24�
By considering the normalization integral, we find the
constant N:�1

ÿ1
r�q; t� dq � 1) N � �2p�ÿ1=4 : �25�

Thus, normalized solutions of the Schr�odinger equation that
are eigenfunctions of the annihilation operator Â�t� have the

form

F c1;2
z �q; t� �

1������������������������
2p
p

g�t�
q

� exp

�
i

�
pqÿ 1

2
p 2t
�
ÿ c1
g�t�

�
qÿ q�t��2

2

�
; �26�

and the corresponding probability density is

r c1;2
z �q; t� �

��F c1;2
z �q; t�

��2
� 1������

2p
p ��g�t��� exp

�
ÿ
�
qÿ q�t��2
2
��g�t���2

�
: �27�

In what follows, we call solutions (26) the time-dependent
generalized CSs. In fact, we have a family of states para-
meterized by two complex constants c1 and c2 that satisfy
constraint (12). As we see in what follows, each family of
generalized CSs represents so-called squeezed states. Addi-
tional constraints on the constants c1 and c2 transform these
states into CSs of the free particle (see below).

We note that the generalized CSs can be constructed in the
Glauber manner, by acting with the displacement operator
D�z; t� � exp

�
zÂ y�t� ÿ z �Â�t�� on the vacuum vector j0; ti

defined by Â�t�j0; ti � 0:

qjz; t��D�z; t� 
qj0; t��exp

�
ÿ jzj

2

2

� X1
n�0

z n����
n!
p 


qjn; t� ;
jn; ti �

�
Â y�t��n����

n!
p j0; ti;

j0; ti � 1������������������������
2p
p

g�t�
q exp

�
ÿ c1
g�t�

q 2

2

�
: �28�

Functions (28) differ from those in (26) by a constant phase
factor only.

Using the completeness property of the states jn; ti,X1
n�0
jn; tihn; tj � 1 ; 8 t ; �29�

we can find the overlapping and prove the completeness
relations for the generalized CS of the free particle:

hz 0; tjz; ti � exp

�
z 0�zÿ jz

0j2 � jzj2
2

�
; 8 t;��

hqjz; tihz; tjq 0i d2z � pd�qÿ q 0� ;

d2z � dRe z dIm z ; 8 t : �30�

3. Standard deviations, uncertainty relations,
and CSs of a free particle

Calculating standard deviations sq�t�, sp, and the quantity
sqp�t� in a generalized CS, we obtain

sq�t� �
�������������������������
�q̂ÿ hqi�2�q

�
�����������������������
hq̂ 2i ÿ hqi2

q
� ��g�t��� ;

sp�t� �
��������������������������
� p̂ÿ hpi�2�q

�
�������������������������
h p̂ 2i ÿ h pi2

q
� �� f �t��� � jc1j ;

sqp�t� � 1

2


�q̂ÿ hqi�� p̂ÿ h pi� � � p̂ÿ h pi��q̂ÿ hqi��
� i

�
1

2
ÿ g�t� f ��t�

�
: �31�
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It is easy to see that the generalized CSs minimize the
Robertson±Schr�odinger uncertainty relation [15, 16]:

s 2
q �t� s 2

p ÿ s 2
qp�t� �

1

4
: �32�

This means that these states are squeezed states for any time
instant.

We evaluate the Heisenberg uncertainty relation in a
generalized CS taking constraint (12) into account:

sq�t� sp�t�
��
2Re �c �

1
c2��1

�
����������������������������������������������������������������������
1

4
� �jc2jjc1j sin �m2 ÿ m1� � jc1j2t

�2r
5

1

2
: �33�

Using (31), we then find sq�0� � sq � jc2j and sp�0� �
sp � jc1j, and hence at t � 0 this relation becomes

sqsp
��
2Re �c �

1
c2��1�jc2jjc1j�

����������������������������������������������������
1

4
� �jc2jjc1j sin �m2ÿm1��2r

:

�34�

We see that jcij 6� 0, i � 1; 2, and the left-hand side of (34) is
minimal if m1 � m2 � m, which provides the minimization of
the Heisenberg uncertainty relation in the generalized CS at
the initial time instant:

sqsp � 1

2
: �35�

In what follows, we consider the free-particle generalized
CS with the restriction m1 � m2. Such states are simply called
CSs of a free particle.

Now, constraint (12) takes the form

jc2jjc1j � 1

2
�) c �2 �

cÿ11

2
: �36�

We see that the constant m does not enter CS (26). We
therefore set m � 0 in what follows. Then

c2 � jc2j � sq ; c1 � jc1j � sp � 1

2sq
;

g�t��
�
sq � it

2sq

�
; sq�t� �

��g�t���� �������������������
s 2
q �

t 2

4s 2
q

s
: �37�

FromEqn (37), we conclude that for any t, theHeisenberg
uncertainty relation in the CS takes the form

sq�t� sp � 1

2

����������������
1� t 2

4s 4
q

s
5

1

2
; �38�

and the CSs of a free particle are given by

Fsq
z �q; t�

� exp
�
i�pqÿ �p 2=2� t� ÿ �qÿ q�t��2=�4�s 2

q � it=2��	����������������������������������������
�sq � it=�2sq��

������
2p
pq :

�39�

In fact, we have a family of CSs parameterized by one real
parameter sq. Each set of CSs in the family has its specific
initial standard deviations sq > 0. Coherent states from a

family with a given sq are labeled by quantum numbers

z � q0
2sq
� isqp ; �40�

which are in a one-to-one correspondence with the trajectory
initial data q0 and p:

q0 � 2sq Re z ; p � Im z

sq
: �41�

The probability densities that correspond to the CSs are

rsq
z �q; t� �

1����������������������������������������
s 2
q � t 2=�4s 2

q �
�
2p

q
� exp

�
ÿ 1

2

�
qÿ q�t��2

s 2
q � t 2=�4s 2

q �
�
: �42�

It can be seen that at any time instant t, probability
densities (42) are given by Gaussian distributions with
standard deviations sq�t�. The means hqi � q�t� � q0 � pt
move along the classical trajectory with the particle velocity p.
The maxima of the probability densities move with the same
velocity (42).

Figure 1 plots function (42) with s � 2ÿ1=2, p � 2, and
q0 � 0 for two time instants t � 0 and t � 1.

We compare CSs (39) with the plane waves

Fp�q; t� � 1������
2p
p exp

�
i

�
pqÿ p 2

2
t
��

: �43�

Both sets of functions are solutions of the Schr�odinger
equation for the free particle. The CSs belong to L 2(R),
whereas a plane waves do not. A plane wave propagates with
the phase velocity, that is, p=2: The CS set generates the
probability density that propagates exactly with the particle
velocity p: We can say that CSs (39) represent wave packets
that allow establishing a natural connection between the
classical and quantum description of free particles. Depend-
ing on the parameters of the CSs, some of them can be treated
as semiclassical states of free particles, while some cannot,
because they describe pure quantum states (see below).

4. Semiclassical CSs of a free particle

To discuss the question of which CSs can be treated as
representing semiclassical particle motion, we have to return
to the initial dimensional variables x and t in (3) and to the

0.6

0.5

0.4

0.3

0.2

0.1

0

ÿ3 ÿ2 ÿ1 0 1 2 3 4 5 6
q

r p

p

sq�0�

sq�1�

Figure 1. Evolution of probability densities.
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initial wave function C�x; t� written in these variables,
Eqn (4). Taking into account that

x�t� � lq�t� � x0 � px
m

t ; p � l

�h
px ;

sx�0�� lsq�0�� ls � sx ; s 2
x �t� � s 2

x �
�h 2

4m 2s 2
x

t 2 ; �44�

we obtain

C�x; t� � 1������������������������������������������������
sx � i�ht=�2msx�

� ������
2p
pq

� exp

�
i

�h

�
pxxÿ p 2

x

2m
t

�
ÿ

�
xÿ x�t��2

4
�
s 2
x � i�ht=�2m��

�
;

r�x; t� � ��C�x; t���2 � 1���������������������������������������������������
s 2
x � �h 2t 2=�4m 2s 2

x �
�
2p

q
� exp

�
ÿ 1

2

�
xÿ x�t��2

s 2
x � �h 2t 2=�4m 2s 2

x �

�
: �45�

Semiclassical motion implies that the form of distribution
(45) changes slowly with time t in a certain sense. This form
changes due to the change in the quantity �h 2t 2=�4m 2s 2

x � with
time, which is responsible for the change in s 2

x �t� [see
Eqn (44)]. We suppose that in semiclassical motion, this
quantity is much less than the square of the distance that the
particle travels in the same time. We then have the inequality

�h 2

4m 2s 2
x

t 2 5

�
px
m

t

�2

�) px 4
�h

2sx
� v4 �h

2msx
; �46�

which can be rewritten in another form:

l5 4psx; l � 2p�h

px
; �47�

where l is the Compton wavelength of the particle. Hence, the
CSs of a free particle can be considered semiclassical states if
the Compton wavelength of the particle is much less than the
coordinate standard deviation sx at the initial instant. It is
known that in a cyclotron, nonrelativistic electronsmove with
velocities v ' 103 m sÿ1. Then, according to (46), the CSs of
such electrons with 2sx ' 10ÿ7 can be treated as semiclassical
states.

We note that similar criteria of semiclassicality were used
in the theory of potential scattering [17] and in classifying CSs
in a magnetic-solenoid field [18].

5. Some concluding remarks

In this article, we have studied different types of generalized
CSs of a free massive nonrelativistic particle and established
properties of these states such as the completeness relations,
the minimization of uncertainty relations, and the evolution
of the corresponding probability densities in time. Among all
these types of generalized CSs, families of states are naturally
distinguished which we suggest identifying with the CSs of a
free massive nonrelativistic particle. These CS families are
parameterized by one real-valued parameter, the coordinate
standard deviation sq at the initial time instant. The CSs from
a family with a given sq form a complete system of functions
and are labeled by a complex-valued quantum number z,

which is in a one-to-one correspondence with the initial data
of the corresponding trajectory of the coordinate mean value.
CSs minimize the Robertson±Schr�odinger uncertainty rela-
tion at all time instants and the Heisenberg uncertainty
relations at the initial instant. The smaller the coordinate
standard deviation sq�t� at the initial instant is, the faster t
grows with time at an arbitrary instant. At any time instant t,
the probability density corresponding to free-particle CSs is
given by Gaussian distributions with standard deviations
sq�t�. The coordinate mean value propagates along the
classical trajectory with the mean particle velocity. The
probability density maximum propagates with the same
velocity. The constructed CSs are wave packets that are
solutions of the Schr�odinger equation for a free particle.
They belong to the Hilbert space L2 (R), whereas plain waves
do not belong to this space. The CSs allow establishing a
natural relation between the classical and quantum descrip-
tions of free particles. Depending on the parameters of the
CSs, some of them can be considered semiclassical states of
free particles, and some of them cannot, inasmuch as the
latter are purely quantum states. We provide arguments in
favor of the fact that free-particle CSs can be considered
semiclassical states when the Compton wavelength is much
less than the standard coordinate deviation at the initial
instant. The suggested CSs can be apparently identified with
the asymptotic free states in nonrelativistic quantum scatter-
ing theory.

We believe it is useful for a lecture course in quantum
mechanics to complete the description of quantum motion of
a free particle with the free-particle CSs as an example of exact
wave packets, which, under certain conditions, admit a
semiclassical description of such a particle, and which allow
illustrating a large number of general principles of quantum
mechanics, such as the minimization of uncertainty relations.
The acquaintance of an audience with free-particle CSs would
naturally make it easier to understand the CSs of an oscillator
and other quantum systems.
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