
Abstract. The way in which nonstoichiometry and order and
disorder interrelate in solid phase compounds is discussed. Non-
stoichiometry due to the presence of structural vacancies is
widely found in such solid phase compounds as transition metal
carbides, nitrides, and oxides, and in related ternary interstitial
compounds. It is shown that it is nonstoichiometry that deter-
mines the disordered or ordered distribution of atoms and va-
cancies. A review is given of the current status of research into
structural order±disorder phase transitions in nonstoichiometric
compounds with basal cubic and hexagonal crystal lattices.
Symmetry analysis results for disorder±order and order±order
phase transformations are considered in detail. Key superstruc-
ture types that form in nonstoichiometric compounds with va-
cancies in one or two sublattices are also described.

1. Introduction

Nonstoichiometry reflects the mismatch between the chemi-
cal composition of a compound and the number of sites in
crystal sublattices occupied by the atoms of its different
components [1, 2]. Nonstoichiometry is only possible in two-
and multicomponent crystalline compounds. The elemental
composition of nonstoichiometric compounds cannot be
expressed as a ratio of small integers.

The nonstoichiometry of a solid is due to the presence of
structural vacancies and interstitial atoms. The concentration
of these point defects in the majority of double and more
complex crystalline compounds is rather low and does not
exceed 0.01 at.% at 300 K, allowing deviations from
stoichiometry to be often neglected for such compounds.
Strongly nonstoichiometric compounds are those containing
structural vacancies and homogeneity intervals in which
vacancy concentration is such that it ensures interaction
between them [1±6]. The group of strongly nonstoichio-
metric compounds includes oxides, sulfides, selenides, car-
bides, nitrides, borides, metal hydrides, and related ternary
compounds possessing homogeneity intervals [1±7]. Such
intervals comprise a concentration region in which the type
of crystalline structure of a nonstoichiometric compound
remains unaltered despite a change in its composition [1±6].
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The location of the upper and lower boundaries of the
homogeneity interval depends on temperature.

The best known nonstoichiometric compound, wustite
(FeO), always contains excess oxygen due to the presence of
vacancies in the iron sublattice: the homogeneity interval of
wustite extends at high temperatures from Fe0:84O to Fe0:96O
and does not include the stoichiometric composition of FeO.
Large deviations from stoichiometry with vacancies in the
metal sublattice occur in the Fe0:85S and Cu1:73S sulfides.
Nonstoichiometry with vacancies in the oxygen sublattice is
characteristic of the TiO2ÿx, V2O5ÿx, CeO2ÿx, UO2ÿx,
MoO3ÿx, and WO3ÿx oxides. Cubic titanium �TixOz� and
vanadium �VxOz� monoxides contain up to 15 at.% of
vacancies in both metal and oxygen sublattices; their
composition within the homogeneity interval varies from
TiO0:65ÿ0:80 to TiO1:25ÿ1:33 and from VO0:55ÿ0:60 to
VO1:25ÿ1:30, respectively. The highest degree of nonstoichio-
metry is found in cubic MXy carbides and nitrides (M � Ti,
Zr, Hf, V, Nb, Ta; X � C, N; 0:504 y4 1:0); under normal
conditions, theymay contain up to approximately 30±50 at.%
of structural vacancies in the nonmetal sublattice. Hexagonal
carbides and nitrides M2Xy 0 �MXy 0=2 �0:404 y 0=24 0:50�
have a narrower homogeneity interval.

In 1799±1806, the French researcher J L Proust formu-
lated the law of definite proportions, stating that each
chemically pure substance always contains exactly the same
proportion of elements by mass. In 1803, the English chemist
J Dalton discovered the law of multiple proportions,
according to which the elemental composition of a com-
pound can be expressed as the ratio of small integers, i.e., it
is stoichiometric. The notion of stoichiometry was introduced
by Jeremias Benjamin Richter (1762±1807) in his book
Anfansgrunden der Stochiometrie oder Messkunst chemischer
Elemente [8]. Proust's ideas were opposed by C L Berthollet,
who studied alloys and arrived at the conclusion that the
composition of compounds may change steadily, and some of
them may have a varying composition. The controversy
between Proust and Berthollet lasted from 1800 till 1808 and
ended in a temporary defeat of the latter. On the one hand, the
law of definite proportions and the law of multiple propor-
tions significantly contributed to many achievements in
chemistry and metallurgy but, on the other hand, they
hampered the development of the solid state theory. Non-
stoichiometry had been regarded as a curiosity till the early
20th century, when N S Kurnakov [9] demonstrated the
practical utility of Berthollet's ideas. Since the 1930s, the
notion of nonstoichiometry has been used, based on Kurna-
kov's works, in a sense opposite to stoichiometry.

The conception of the crystal as a periodic three-
dimensional ordered ensemble of particles is a physical
model of an ideal solid. Real crystals always have various
defects. In fact, crystals totally free of defects for T > 0 K are
nonexistent; therefore, the presence of defects is not in itself a
sign of nonstoichiometry. Its essential feature is the mismatch
observed between the chemical composition of a compound
and the number of sites in the crystal lattice occupied by its
components.

Nonstoichiometry of a solid is due to the presence of such
point defects as structural vacancies. The introduction of
structural vacancies into a solid changes the number of atoms
in the crystal and its composition. Therefore, they differ from
Frenkel, Schottky, and anti-Schottky defects that are point-
like, too, but do not affect the crystal composition. From the
crystallographic standpoint, the presence of structural vacan-

cies is a consequence of the discrepancy between the chemical
composition of a compound, i.e., the relative number of
atoms of various kinds, and the relative number of sites in
different crystal sublattices occupied by these atoms. Physi-
cally, the cause of producing structural vacancies is the
mismatch between the composition of a compound and its
crystalline structure, owing to which the atoms of one
sublattice cannot occupy the sites of another. It makes
impossible the formation of antistructural defects and gives
rise to structural vacancies in the crystal.

Structural vacancies, i.e., vacant sites of a crystal lattice,
behave as atoms occupying the sites of the same lattice.
Therefore, they are considered to be an analog of atoms
rather than mere `holes' in the lattice. Deviation from
stoichiometry and the resulting homogeneity interval can be
described as a substitution solid solution, the components of
which are atoms and structural vacancies located in a sole
sublattice. Thus, vacancies and atoms of a nonstoichiometric
compound make up a substitution solution that can be either
disordered or ordered.

Under certain conditions, interstitional atoms and vacan-
cies undergo redistribution over lattice sites and give rise to a
variety of ordered structures. The ordered distribution ismost
probable at low temperatures, whereas disordered distribu-
tion occurs at high temperatures, when the entropic contribu-
tion to the free energy of a nonstoichiometric compound is
large enough [1±6]. Indeed, the thermodynamically equili-
brium state of strongly nonstoichiometric compounds at
temperatures below 1000 K is an ordered state, whereas the
disordered state in the same temperature range is metastable.

Totally ordered and totally disordered distributions are
the limiting states of a nonstoichiometric compound. Order-
ing is responsible for the formation of one or several ordered
phases in the homogeneity interval of a nonstoichiometric
compound. Nonstoichiometry is a prerequisite for promoting
disorder or order in atom and vacancy distributions in the
structure of a nonstoichiometric compound.

Nonstoichiometry occupies a highly important place in
solid state research and materials science, especially in
semiconductor electronics. Nonstoichiometry accounts for
the dependence of all properties of nonstoichiometric sub-
stances on their composition and the possibility of a targeted
modification of these properties by varying the composition
of a nonstoichiometric compound within its homogeneity
interval or by ordering such a compound at fixed chemical
composition.

Investigations in recent decades have shown that changes
in the properties of a nonstoichiometric compound under-
going ordering are comparable in terms of magnitude with
those resulting from the alteration of its composition within
the homogeneity interval of the ordered phase. This means
that variation of the composition of strongly nonstoichio-
metric compounds and redistribution of atoms and vacancies
in their crystal lattices represent two equally acceptable
modes of controling their properties.

The notion of atomic or atomic-vacancy ordering is a
synonym of the disorder±order structural phase transition.
The interchanging components of a substitutional solid
solution in the disordered state are randomly distributed
over crystal lattice sites, with the probability of filling any
site by an atom of a given type corresponding to its
concentration in the solution. A drop in temperature induces
a disorder±order phase transition that, in turn, causes the
lattice sites of a disordered solution to break up into a few
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sublattices. Sublattices of an ordered solid solution differ
from one another in probabilities of site occupation by atoms
of a given type. The ordered phases resulting from lattice
breakup into several sublattices in a disordered crystal are
called superstructures.

Ordering processes occur not only in solid substitution
solutions (alloys) but also in interstitial solid solutions, given
the number of interstitial positions is greater than the number
of atoms occupying them. In ordering of interstitial solid
solutions, the unoccupied positions and interstitial atoms act
as components of a substitution solid solution, while solvent
atoms form an immobile atomic core in which interstitial
atoms and vacancies undergo redistribution.

Thus, the presence of structural vacancies in nonstoichio-
metric interstitial compounds leads in certain conditions to
ordering. In the description of ordering in nonstoichiometric
compounds, interstitial atoms and structural vacancies are
regarded as interchanging components of a binary substitu-
tion solution in the nonmetal sublattice. Due to this, in the
simplest case of a nonmetal sublattice of nonstoichiometric
compounds having a type B1 or L03 structure, ordering is
reduced to the breakup of the site system formed by
octahedral interstices of the metal sublattice into two new
sublattices. All sites of the first superstructural sublattice are
filled up with interstitial atoms, while the sites of the other
sublattice remain vacant. Clearly, it is quite admissible to
speak about the existence of a vacancy sublattice in the case of
ordering in nonstoichiometric compounds.

Ordering of nonstoichiometric compounds is accompa-
nied by symmetry reduction. Indeed, part of symmetry
transformations in a disordered nonmetal or metal sub-
lattice combining occupied and unoccupied sites do not
belong to the group of symmetry elements of an ordered
crystal, since these sites become crystallographically none-
quivalent.

Atomic-vacancy ordering is widespread in nonstoichio-
metric compounds and observed in most ongoing experi-
ments with nonstoichiometric carbides, nitrides, and oxides.

However, the available experimental data on the structure
of ordered phases of nonstoichiometric compounds are far
from complete and not infrequently contradictory.

Crystallographic considerations in Ref. [10] suggest the
formation of type M2C, M3C2, M8C5, M4C3, M5C3, M5C4,
M6C5, andM8C7 ordered structures in carbides. Calculations
of ordering processes in strongly nonstoichiometric cubic
MXy compounds by the order parameter functional method
[1±6, 11±17] showed that only M2X, M3X2, and M6X5

superstructures can form, taking into account thermo-
dynamic limitations. In the case of a specific position of the
upper boundary of the homogeneity interval (as in cubic
vanadium carbide VCy), the M8X7 phase can appear as a
result of the disorder±order transition.

The first review of ordered structures of carbides and
nitrides of transition metals was presented in Ref. [18].
Atomic ordering of nonstoichiometric compounds was
discussed in later studies [19±23]. A sufficiently detailed
comprehensive analysis of ordering processes in nonstoichio-
metric compounds, based on the results obtained before 2000,
can be found in several reviews and monographs [1±6, 12±14,
24±29]. New data on the superstructures of nonstoichiometric
compounds were reported at the beginning of the 21st
century; also, the sequence of disorder±order and order±
disorder phase transformations became for the first time a
matter of discussion. The present work is an attempt to

summarize the available data on superstructures of nonstoi-
chiometric compounds and additionally attract the attention
of experimentalists to such interesting objects as strongly
nonstoichiometric compounds.

2. Disorder±order transition channel
and the distribution function

It is convenient to describe the structure of ordered phases
using the distribution function n�r�, i.e., the probability of
discovering an atom of a given kind at site r � �xI; yI; zI� of
the Ising lattice undergoing ordering transformations. To
perform the symmetry analysis and to calculate the distribu-
tion functions of interstitial atoms in various superstructures,
it is necessary to move to the reciprocal lattice of these
superstructures and to find the channel of the disorder±
order structural phase transition. The basis vectors b�i of the
reciprocal lattice are defined via translation vectors ai of the
unit cell by the ordinary formula

b�i � 2p
aj � ak

a1�a2 � a3� ; �1�

where i; j; k � 1; 2; 3.
In the case of nonstoichiometric MXy compounds with

the basic structure B1, the Ising lattice undergoing atomic-
vacancy ordering is the nonmetal face-centered cubic (fcc)
sublattice. Translation vectors determining the positions of r
sites in this sublattice have the form: r � xIa1 � yIa2 � zIa3,
where a1, a2, a3 are the fundamental translations of the fcc
lattice in the �100�B1, �010�B1, and �001�B1 �ja1j � ja2j �
ja3j � a� directions, and xI, yI, zI are the site coordinates
(integers or half-integers) in the nonmetal fcc sublattice. The
basis vectors of the reciprocal lattice corresponding to the
direct fcc lattice are equal to b1 � h�111i, b2 � h1�11i, and
b3 � h11�1i in 2p=aB1 units. From here on, the numbering and
description of fksg stars of the wave vectors of the fcc lattice
and their k � j �s rays are given in accordance with monographs
[1, 2, 30, 31].

Combining the above superstructure vectors b�1, b
�
2, and b

�
3

of the reciprocal lattice and translating them by the vector
r � n1b

�
1 � n2b

�
2 � n3b

�
3 permit us to determine which none-

quivalent vectors enter the first Brillouin zone of the
disordered nonmetal fcc sublattice and to which fksg stars
these nonequivalent vectors belong. In this way, we find the
channel of disorder±order structural phase transition, i.e., the
set of all nonequivalent superstructure vectors k � j �s of the
reciprocal lattice measured from the nearest structural site of
this lattice and entering the first Brillouin zone of the
disordered lattice constructed around this site; these vectors
are the rays of fksg stars associated with this phase
transformation. Such a definition of the phase transition
channel was formulated in paper [26] based on previous
studies [12, 13, 32±34]. The term `transition channel' was
proposed in Ref. [35] with respect to second-order phase
transitions. Today, it is used when describing second- and
first-order structural phase transitions. Since the transition
channel is known, it is possible to calculate the distribution
function n�r� of atoms in an ordered lattice.

Deviation of the probability n�r� from itsmagnitude in the
case of disordered (statistical) distribution can be represented
as the superposition of several plane concentration waves
[36]. Their wave vectors are superstructure vectors making up
a disorder±order transition channel [1, 2]. In the static
concentration wave method [36], the distribution function
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n�r� has the form

n�r� � y� 1

2

X
s

X
j2 s

Zsgs
�
exp �ij � j �s � exp �ik � j �s r�

� exp �ÿij � j �s � exp �ÿik � j �s r�� ; �2�
where y is the fraction of sites occupied by the atoms of a given
kind in the lattice undergoing ordering; the quantity

1

2
Zsgs

�
exp �ij � j �s � exp �ik � j �s r�
� exp �ÿij � j �s � exp �ÿik � j �s r�� � D�k � j �s ; r�

is the plane standing static concentration wave generated by
the k � j �s superstructure vector of the fksg star; Zs is the long-
range order parameter corresponding to the fksg star, and
Zsgs and j � j �s are the amplitude and the phase shift of the
concentration wave, respectively. It follows from Eqn (2) that
each star of the wave vector fksg corresponds to a long-range
order parameter Zs. The distribution function at sites r located
in crystallographically equivalent positions assumes one and
the same value, because it is invariant with respect to rotation
and reflection transformations entering the symmetry point
group of the ordered crystal. The total number of values taken
by the distribution function is greater by unity than the
number of long-range order parameters. Summation in
formula (2) should only be taken over nonequivalent super-
structure vectors of the first Brillouin zone.

The notion of the phase transition channel is of impor-
tance for the construction of the diffraction pattern of an
ordered crystal; it ensures correct and unambiguous determi-
nation of parameters gs and j � j �s of the distribution function
n�r�.

Given ordering in the Bravais lattice, each superstructure
vector k � j �s in the first Brillouin zone corresponds to the
opposite superstructure vectorÿk � j �s . Vectorÿk � j �s enters the
phase transition channel if it is not equivalent to vector k � j �s ,
i.e., if �k � j �s ÿ �ÿk � j �s ��� 2k � j �s 6� H. The concentration wave
with the opposite wave vector ÿk � j �s undergoes a phase shift
with the opposite sign equaling ÿj � j �s . Thus, the opposite
superstructure vector ÿk � j �s does not enter the phase transi-
tion channel in that and only in that case where the doubled
superstructure vector 2k � j �s equals the structural vector H of
the reciprocal lattice. In the case of ordering in the fcc lattice,
such vectors are the rays of fk9g and fk10g stars.

Nonequivalent superstructure vectors k � j �s andÿk � j �s give
two similar concentration waves; due to this, the correspond-
ing terms of Eqn (2) can be combined. As a result (see paper
[26]), function n�r� takes the form

n�r� � y� 1

2

X
s

Zs
X
j2 s

�
2ÿ

X
H

d�2k � j �s ÿH�
�

� �g�k � j �s � exp �ik � j �s r� � g ��k � j �s � exp �ÿik � j �s r�� ; �3�
where g�k � j �s � � gs exp �ij � j �s � and g ��k � j �s � � gs exp �ÿij � j �s �
are complex-conjugate quantities, and

d�2k � j �s ÿH� � 1 ; if 2k � j �s � H ;

0 ; if 2k � j �s 6� H :

(

The delta function d�2k � j �s ÿH� allows taking account of the
case when the opposite superstructure vector ÿk � j �s is

equivalent and does not enter the phase transition channel.
The sum

P
H d�2k � j �s ÿH� over the entire set of sites fHg of

the reciprocal lattice equals either unity (in an fcc lattice, such
vectors are the rays of Lifshitz fk9g and fk10g stars alone) or
zero. Summation over s and j in Eqn (3) means summation
taken over all vectors of the phase transition channel, barring
the opposite vectorsÿk � j �s , i.e., summation over the truncated
phase transition channel.

Bearing in mind the known relations exp �ia� � cos a�
i sin a and exp �ÿia� � cos aÿ i sin a, the authors of Ref. [26]
transformed the distribution function (3) into the trigono-
metric form used in practice to describe concrete super-
structures:

n�r� � y�
X
s

Zs
X
j2 s

�
As j cos �k � j �s r� � Bs j sin �k � j �s r�� ; �4�

where

As j �
�
2ÿ

X
H

d�2k � j �s ÿH�
�
gs cosj

� j �
s ;

Bs j � ÿ
�
2ÿ

X
H

d�2k � j �s ÿH�
�
gs sinj

� j �
s :

The numerical values of As j and Bs j coefficients [i.e., the
explicit form of the distribution function n�r�] being known, it
is possible to find parameters gs and j � j �s of this function:

gs �
�
2ÿ

X
H

d�2k � j �s ÿH�
�ÿ1���A2

s j � B 2
s j�1=2

�� ; �5�

j � j �s � ÿ arctan

�
Bs j

As j

�
� p

2

�
1ÿ As j

jAs jj
�

� p
2

�
1� As j

jAs jj
��

1� Bs j

jBs jj
�
: �6�

For the Lifshitz fk9g and fk10g stars in an fcc lattice,
coefficient Bs j � 0 and gs � jAs jj. As follows from formula
(6), the phase shift j � j �s � 2p � 0 in this case for As j > 0, and
j � j �s � p forAs j < 0. If certain coefficients Bs j corresponding
to Lifshitz stars from fk8g to fk0g vanish in the distribution
function, i.e., Bs j � 0, the phase shift j � j �s � 0, too, for
As j > 0, and is j � j �s � p for As j < 0.

In calculating the distribution function, coefficients gs are
defined so that the long-range order parameters Zs equaling
unity correspond to the fully ordered state of the crystal.
Under this condition, the distribution function of nonmetal
atoms assumes only two different values at the totality of sites
of the nonmetal fcc sublattice undergoing ordering: n1 � 0 at
vacant sites, and n2 � 1 at the sites occupied by nonmetal
atoms. Thus, knowledge of the transition channel and the use
of the static concentrationwavemethod allow us to obtain the
general form of the distribution function for any structure
without specifying the values of the long-range order
parameters Zs.

It was shown both experimentally and theoretically that
superstructures M2tX2tÿ1 �M2tX2tÿ1&�, where t � 1, 1.5, 2, 3,
and 4, are produced in strongly nonstoichiometric com-
pounds together with some other superstructures (Ti5O5,
Ti2O3, Ti4O5, V14O6, V52O64). A few new superstructures
have recently been described and the data on the known ones
substantially corrected and improved.

842 A I Gusev Physics ±Uspekhi 57 (9)



With this in mind, we shall consider below transition
channels and distribution functions corresponding to super-
structures of nonstoichiometric compounds. For uniformity
and convenience, the unit cells of superstructures will be
constructed whenever possible so that vacant sites are
located at their vertices.

3. M2X superstructures

3.1 Trigonal M2X superstructure
The unit cell of a trigonal (space group R�3m) M2X super-
structure is shown in Fig. 1. The major axis of such a unit cell
has direction �1�11�B1. Its translation vectors, as well as the
coordinates of atoms and vacancies in an ideal trigonal M2X
structure, are presented in Table 1. The trigonal (space group
R�3m) M2X type ordered phase was observed experimentally
in titanium carbide [37].

Calculations of superstructure vectors and their transla-
tion showed that the trigonal M2X superstructure forms in a
nonstoichiometric MXy compound in the phase transition
channel involving a single ray k

�3�
9 � b2=2 of the Lifshitz star

fk9g (Table 2). For other orientations of the unit cell
(�111�B1, ��111�B1, and �11�1�B1), the transition channel con-
tains rays k

�1�
9 , k

�2�
9 , or k

�4�
9 , respectively. The subscript of the

wave vector corresponds to the star number, and the
superscript to its ray number. The distribution function
describing a trigonal (space group R�3m) M2X superstruc-
ture has the form

n�xI; yI; zI� � yÿ Z9
2

cos
�
p�xI ÿ yI � zI�

�
: �7�

In this superstructure, coordinates �xI; yI; zI� of the sites of the
fcc Ising lattice correspond to those in Fig. 1 and are related to
the trigonal coordinates in Table 1 by the following expres-
sions: xI � xtr=2� ytr � ztr=2, yI � ÿxtr ÿ ytr=2ÿ ztr=2, and
zI � xtr=2�ytr=2� ztr. Function (7) also describes the trigo-
nal (space group R�3m) substitution superstructure AB (of the
CuPt type).

The completely ordered state of a nonstoichiometricMXy

compound is reached when the long-range order parameter
Z9�y� equals unity, and the relative concentration of inter-
stitial atoms in the nonmetal sublattice is yst � 1=2. In the
nonmetal sublattice of a fully ordered trigonal (space group
R�3m) M2X structure, the complete atomic plane �1�11�B1, in
which all sites are occupied by interstitial atoms, and the
defective plane �1�11�B1, all sites of which are vacant,
successively alternate in the �1�11�B1 direction. In such a
superstructure, distortions of the metal sublattice must be
apparent.

Distribution function (7) at all sites of the fcc nonmetal
sublattice takes two values, n1 and n2, that are the probabil-
ities of detecting interstitial atoms at these sites (see Table 1).
Parameters gs and j � j �s of distribution function (7) are
presented in Table 2.

A trigonal (space group R�3m) M2X superstructure can
also be represented in the hexagonal arrangement (see Fig. 1).
Translation vectors of the hexagonal unit cell of this super-
structure and magnitudes of the distribution function at its
sites are listed in Table 1.

3.2 Cubic M2X superstructure
The unit cell of the cubic (space group Fd �3m) M2X super-
structure is illustrated in Fig. 2. Translation vectors of this

unit cell, together with atom and vacancy coordinates, are
given in Table 1. The cubic (space group Fd �3m)M2X ordered
phase was observed experimentally in titanium and zirconium
carbides [37±39]. In Ref. [26], the position of the unit cell of
this superstructure in the lattice with structure B1 is shown
incorrectly (without the shift of the origin of its coordinates
by the vector ÿ�1=4�h111iB1); as a result, the coordinates of
atoms and vacancies in the unit cell of the cubic (space group
Fd �3m) superstructure were given incorrectly, too.

The disorder±order MXyÿM2X (space group Fd �3m)
phase transition channel includes all four rays of the fk9g
star (see Table 2). The cubic M2X superstructure under
consideration is described by the distribution function

n�xI; yI; zI� � yÿ Z9
4

n
ÿ cos

�
p�xI � yI � zI�

�
� cos

�
p�ÿxI � yI � zI�

�� cos
�
p�xI ÿ yI � zI�

�
� cos

�
p�xI � yI ÿ zI�

�o
; �8�

bhex

btr

[010]B1

[001]B1

[100]B1

atr

ctr

chex

ahex

M2X (space group R�3m)

Figure 1. Positions of trigonal and hexagonal unit cells of the trigonal

(space groupR�3m)M2X superstructure in a lattice with the basic structure

B1: (*) interstitial atom, (*) metal atom, and (&) vacancy. The hexagonal

unit cell is shown by dashed-dotted lines.

[010]B1

[001]B1

[100]B1

M2X (space group Fd�3m)

a2

a1

a3

Figure 2. Position of the cubic (space group Fd �3m) unit cell of the M2X

superstructure in a lattice with structureB1: (*) interstitial atom, (*)metal

atom, and (&) vacancy. The origin of coordinates of the cubic M2X

superstructure has coordinates �ÿ1=4 ÿ 1=4 ÿ 1=4�B1 of the lattice with

the basic structure B1.
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with parameters g9 and j � j �9 presented in Table 2. For a fully
ordered crystal, the relative stoichiometric concentration of
interstitial atoms is yst � 1=2. As Fig. 2 depicts, coordinates
�xI; yI; zI� are related to the coordinates of this superstructure,
given in Table 1, by expressions xI � 2xcub ÿ 1=4,
yI � 2ycub ÿ 1=4, and zI � 2zcub ÿ 1=4.

Function (8) at the sites of the fcc nonmetal sublattice
takes the same values n1 and n2 (see Table 1) as function (7)
describing the trigonalM2X superstructure.

3.3 Tetragonal M2X superstructures
The literature mentions two tetragonal (space groups
P4=mmm and I41=amd ) M2X superstructures. Their unit

Table 1. Superstructures of typeM2X.

Symmetry Space group Translation
vectors

of unit cell

V � Atom Position
and
multi-
plicity

Atomic coordinates
in ideal ordered structure

Values
of distribution

function
n�xI; yI; zI�

x=atr y=btr z=ctr

Trigonal No. 166

R�3m

�D 5
3d�

atr � 1
2
h1�21iB1,

btr � 1
2
h2�11iB1,

ctr � 1
2
h1�12iB1

a 3
B1=2

X1 (vacancy) 1�a� 0 0 0 n1 � yÿ Z9=2

X2 1�b� 1=2 1=2 1=2 n2 � y� Z9=2

M1 2�c� 1=4 1=4 1=4

x=ahex y=bhex z=chex

Hexagonal No. 166

R�3m

�D 5
3d�

ahex � 1
2
h�101iB1,

bhex � 1
2
h011iB1,

chex � 2h1�11iB1

3a 3
B1=2

X1 (vacancy) 3�a� 0 0 0 n1 � yÿ Z9=2

X2 3�b� 0 0 1=2 n2 � y� Z9=2

M1 6�e� 0 0 1=4

x=acub y=bcub z=ccub

Cubic No. 227

Fd �3m

�O 7
h �

acub � h200iB1,
bcub � h020iB1,
ccub � h002iB1

8a 3
B1

X1 (vacancy) 16�c� 1=8 1=8 1=8 n1 � yÿ Z9=2

X2 16�d � 5=8 5=8 5=8 n2 � y� Z9=2

M1 32�e� 3=8 3=8 3=8

x=at y=bt z=ct

Tetragonal No. 123

P4=mmm

�D 1
4h�

at � 1
2
h1�10iB1,

bt � 1
2
h110iB1,

ct � h001iB1

a 3
B1=2

X1 (vacancy) 1�a� 0 0 0 n1 � yÿ Z10=2

X2 1�d � 1=2 1=2 1=2 n2 � y� Z10=2

M1 1�b� 0 0 1=2

M2 1�c� 1=2 1=2 0

x=at y=bt z=ct

Tetragonal No. 141

I41=amd

�D 19
4h �

at � h100iB1,
bt � h010iB1,
ct � h002iB1

2a 3
B1

X1 (vacancy) 4�a� 0 0 0 n1 � yÿ Z8=2

X2 4�b� 0 0 1=2 n2 � y� Z8=2

M1 8�e� 0 0 1=4

* The volume of the unit cell of a superstructure expressed through parameter aB1 of the unit cell of the basic disordered structure of type B1.

Table 2. Disorder±order phase transition channels MXyÿM2X and parameters of the distribution functions n�xI; yI; zI� describing M2X
superstructures.

Symmetry Space group Disorderëorder transition channel Parameters of the distribution function

Star fksg Rays k � j �s of the fksg star gs j � j �s

Trigonal No. 166
R�3m �D 5

3d�
fk9g k

�3�
9 � b2=2 g9 � 1=2 j �3�9 � p

Cubic No. 227
Fd �3m �O 7

h �
fk9g
fk9g
fk9g
fk9g

k
�1�
9 � �b1 � b2 � b3�=2,

k
�2�
9 � b1=2,

k
�3�
9 � b2=2,

k
�4�
9 � b3=2

g9 � 1=4

g9 � 1=4

g9 � 1=4

g9 � 1=4

j �1�9 � 0

j �2�9 � p

j �3�9 � p

j �4�9 � p

Tetragonal No. 123
P4=mmm �D 1

4h�
fk10g k

�1�
10 � �b1 � b2�=2 g10 � 1=2 j �1�10 � p

Tetragonal No. 141
I41=amd �D 19

4h �
fk8g
fk8g

k
�1�
8 � �b1 � 3b2 � 2b3�=4,

k
�2�
8 � ÿk �1�8

g8 �
���
2
p

=4

g8 �
���
2
p

=4

j �1�8 � 3p=4

j �2�8 � ÿ3p=4
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cells are demonstrated in Fig. 3 (a different arrangement of
the unit cell, with the origin of coordinates displaced with
respect to that of the basic lattice B1, is possible for a
superstructure with the space group I41=amd ). Translation
vectors of tetragonal unit cells of the M2X phases and
coordinates of atoms and vacancies in them are presented in
Table 1.

The phase transition channel associated with the forma-
tion of a tetragonal (space group P4=mmm) superstructure
contains one ray k

�1�
10 of the fk10g star (see Table 2). The

distribution function of interstitial atoms in the tetragonal
(space group P4=mmm)M2X superstructure has the form

n�xI; yI; zI� � yÿ Z10
2

cos �2pzI� : �9�

A similar distribution function describes the tetragonal
(space group P4=mmm) substitution superstructure AB (of
the CuAu type). The values of distribution function (9) at
sites related to different positions of the nonmetal sublattice
of the superstructure of interest are given in Table 1.
According to Fig. 3a, coordinates �xI; yI; zI� are linked by
the expressions xI � xt=2� yt=2, yI � ÿxt=2� yt=2, and
zI � zt to the tetragonal coordinates of this superstructure,
listed in Table 1.

In the nonmetal sublattice of the perfectly ordered
tetragonal (space group P4=mmm) M2X phase, the complete
and fully defective (containing only vacancies) �001�B1 planes
successively alternate. In such superstructures, the metal
sublattice is grossly distorted, which makes unlikely the
existence of a tetragonal (space group P4=mmm) M2X
superstructure in nonstoichiometric compounds; it should
be regarded as a model as far as nonstoichiometric com-
pounds are concerned.

The ordered tetragonal (space group I41=amd ) M2X
phase (Fig. 3b) was experimentally examined in titanium
nitride [40, 41]. Its disorder±order phase transition channel
contains rays k

�1�
8 and k

�2�
8 of the fk8g star (see Table 2). The

distribution function describing this M2X superstructure
depends on a single long-range order parameter:

n�xI; yI; zI� � yÿ Z8
2

n
cos
�
p�2xI � zI�

�� sin
�
p�2xI � zI�

�o
:

�10�
Function (10) assumes two values at the sites found to belong
to different positions of the nonmetal sublattice under
consideration (see Table 1). Parameters of the distribution

function (10) are listed in Table 2. According to Fig. 3b,
coordinates �xI; yI; zI� are related to the tetragonal coordi-
nates of this superstructure by expressions xI � xt, yI � yt,
and zI � 2zt.

In fully ordered tetragonal M2X phases, where the
respective long-range order parameter (Z10 or Z8) equals
unity, the relative stoichiometric concentration yst of inter-
stitial atoms is 1=2.

3.4 Superstructures of lithium nickelite Li1ÿxÿzNi1�xO2

Marked deviations from stoichiometry in the metal sublattice
are characteristic of lithium nickelite, related LiMO2 oxides,
and their solid solutions. The crystalline structures of
complex LiMO2 (M � Ni, Co) oxides are derivatives of the
basic structure B1 and differ in the mode of ordering of
lithium and transition metal �M� cations in �111�B1 planes or
in equivalent ��111�B1, �1�11�B1, and �11�1�B1 planes of the fcc
sublattice. When ions of lithium and metal M separately fill
the alternating metal �111�B1 planes of the basic cubic lattice,
layered structures are formed.

A few ways of writing out the chemical formula of lithium
nickelite are applied in the literature: LixNiO2 [42±44],
Li1ÿxNi1�xO2 [43, 45], and Lix 0Ni2ÿx 0O2 (or LiyNi1ÿyO,
where y � x 0=2) [46, 47]. This discrepancy in formulas is due
to different views of its structure. The triple LiÿNiÿO system
gives rise to a solid solution LiyNi1ÿyO �04 y4 0:5�, the end
members of which are cubic nickel monoxide NiO (at y � 0)
and trigonal (rhombohedral) stoichiometric lithium nickelite
LiNiO2 (at y � 0:5, i.e., Li0:5Ni0:5O). The structure of
stoichiometric nickelite LiNiO2 can be regarded as a result
of ordering the Li and Ni atoms (ions) in the basic cubic
structure of the B1 type. Formulas Li1ÿxNi1�xO2 and
Lix 0Ni2ÿx 0O2 are virtually identical �x 0 � 1ÿ x� and reflect
substitution of lithium by nickel in the solid solution, even if
they do not take into account possible vacancies in the lithium
sublattice. Indeed, deviation of the nickelite composition
from that of stoichiometric LiNiO2 is associated with the
appearance of structural vacancies in the lithium sublattice,
the concentration of which can be rather high. Formula
LixNiO2 (or Lix&1ÿxNiO2, where & is the structural vacancy
in the lithium sublattice) takes account of the presence of
vacancies [42±44], but disregards Ni substitution for Li.
Reference [48] shows that the formula of lithium nickelite
should be presented as Li1ÿxÿzNi1�xO2 �Li1ÿxÿz&zNi1�xO2� if
Li substitution by Ni during formation of NiO/LiNiO2 solid
solution and the presence of structural vacancies & in the
metal sublattice are to be taken into consideration. This
formula takes account of peculiarities of the lithium nickelite
structure and permits us to analyze its ordering bymaking use
of the atomic distribution function.

The symmetry analysis of experimental and theoretical
nickelite superstructures Li1ÿxÿz&zNi1�xO2, from determin-
ing the disorder±order transition channel to calculating
distribution functions of the atoms undergoing ordering,
was performed for the first time in paper [48].

The unit cell of the trigonal (rhombohedral) ordered
LiNiO2 phase of the nickelite Li1ÿxÿzNi1�xO2� is demon-
strated in Fig. 4. Translation vectors of the unit cell and
coordinates of atoms and vacancies in it are presented in
Table 3. The trigonal cell is primitive as regards Li atoms; it
contains a single Li atom, one Ni atom, and two oxygen (O)
atoms. The nonprimitive cell is hexagonal, has a volume that
is three times larger, and contains three atoms of Li and Ni
together with six O atoms in positions 3�a��000�,

a

[010]B1

[001]B1

[100]B1

btat

ct

b

M2X (space group P4=mmm) M2X (space group I41=amd)

[010]B1

[001]B1

[100]B1

bt

at

ct

Figure 3. Position of tetragonal unit cells of M2X superstructures in a

lattice with the basic structure B1: (a) space group P4=mmm, and (b) space

group I41=amd; (*) interstitial atom, (*) metal atom, and (&) vacancy.
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3�b��0 0 1=2�, and 6�c��0 0 1=4�, respectively. The hexagonal
cell has the translation vectors ahex� �1=2�h�101iB1,
bhex� �1=2�h011iB1, chex � 2h1�11iB1 or ahex� �1=2�h011iB1,
bhex� �1=2�h110iB1, and chex � 2h1�11iB1.

Unlike the trigonal M2X �M2X&� superstructure with &

vacancies in the nonmetal sublattice, the trigonal (space
group R�3m) superstructure of lithium nickelite contains &

vacancies in the metal sublattice and is referred to as of type
MX2 �M&X2�. The trigonal lithium nickelite superstructure
forms via the same phase transition channel as the
trigonal M2X superstructure. The transition channel
includes a single k

�3�
9 ray of the Lifshitz fk9g star to

which the long-range order parameter Z �M�9 corresponds in
the metal fcc sublattice of lithium nickelite. In disordered
Li1ÿxÿzNi1�xO2 �Li1ÿxÿz&zNi1�xO2�, probabilities n �Li��r�,
n �Ni��r�, and n �&��r� coincide with the fraction of metal
sublattice sites occupied by Li or Ni atoms or with the
fraction of vacant sites, respectively, i.e., n �Li��r� �
�1ÿ xÿ z�=2, n �Ni��r� � �1� x�=2, and n �&��r� � z=2. The
metal fcc sublattice takes the part of the Ising lattice in
which ordering involves Ni atoms, on the one hand, and Li
atoms and structural vacancies &, on the other hand.
According to paper [48], the distribution function of Ni
atoms in the trigonal (space group R�3m) Li1ÿxÿzNi1�xO2

superstructure has the form

n �Ni��xI; yI; zI� � 1� x

2
ÿ Z �M�9

2
cos
�
p�xI ÿ yI � zI�

� �11�

and depends on the long-range order parameter Z �M�9 .
Function (11) at sites of the metal fcc sublattice takes two
values: n

�Ni�
Ni � �1� x�=2� Z �M�9 =2, and n

�Ni�
Li � �1� x�=2ÿ

Z �M�9 =2 (see Table 3). One �n �Ni�
Ni � is the probability of

detecting Ni atoms at the sites of the nickel sublattice, and
the other �n �Ni�

Li � is the probability of detectingNi atoms at the
sites of the lithium sublattice (from here on, the subscript in
the notations of probabilities n and concentrations c stands
for the sublattice of interest, while the superscript denotes the
sort of atoms located at the sites of this sublattice). During
rhombohedral ordering, Li atoms and vacancies & are
statistically distributed over the sites of the common lithium
sublattice; therefore, the distribution function of the sites of
the sole Li-sublattice in the basic cubic lattice can be written
out as

n �Li;&��xI; yI; zI� � 1ÿ x

2
� Z �M�9

2
cos
�
p�xI ÿ yI � zI�

�
: �12�

Distribution function (12) at sites of the metal fcc sublattice
takes two values: n

�Li�
Li � �1ÿ x�=2� Z �M�9 =2, and n

�Li�
Ni �

�1ÿ x�=2ÿ Z �M�9 =2 (see Table 3).
The fully ordered state of lithium nickelite is reached for

the stoichiometric LiNiO2 composition when the long-range
order parameter Z �M�9 �x� � 1, the relative concentrations of
Li and Ni atoms in the metal sublattice are identical, and
structural vacancies are absent, i.e., xst � 0 and zst � 0. In the
metal sublattice of the fully ordered rhombohedral (space
group R�3m) LiNiO2 structure, hexagonal atomic planes
�1�11�B1, all sites of which are occupied by Li atoms,
successively alternate in direction �1�11�B1 with planes
�1�11�B1, the sites of which are occupied by Ni atoms.

Symmetry analysis [48] unambiguously indicates that the
structure of rhombohedral lithium nickelite is described by a
single order parameter, Z �M�9 , although certain authors (see,
for instance, paper [46]) believe erroneously that two
parameters are needed for the purpose: one for the order
description in the Li sublattice, and the other for the order
description in the Ni sublattice. But the long-range order
parameter in these sublattices is totally determined by
parameter Z �M�9 . Indeed, the degree of ordering in Li and Ni
sublattices can be estimated using the parameter Z �M�9 and the
obtained values of the distribution function. The degree of
ordering in the Ni sublattice is given by

ZNi �
c
�Ni�
Ni ÿ c

�Li�
Ni

c
�Ni�max
Ni

� n
�Ni�
Ni ÿ n

�Li�
Ni

c
�Ni�max
Ni

:

The highest possible concentration of nickel in the Ni-

sublattice is c
�Ni�max
Ni � 1. Taking this into account and

knowing the values n �Ni�
Ni and n

�Li�
Ni of functions (11) and (12),

the degree of ordering in the Ni-sublattice is ZNi � Z �M�9 � x.

[010]B1

[001]B1

[100]B1LiNiO2 (space group R�3m)

b

a

c

Figure 4. Position of the rhombohedral (space group R�3m) unit cell of

lithium nickelite LiNiO2 in the lattice with the basic structure B1 [59]:

( ) Li, (*) Ni, and (*) O. The figure shows successive alternation of atomic

planes filled only with Li atoms, O atoms, or Ni atoms in the direction

�1�11�B1.

Table 3. Trigonal (rhombohedral) [space group No. 166ÐR�3m �D 5
3d�] LiNiO2 superstructure of lithium nickelite Li1ÿxÿzNi1�xO2: atr � �1=2�h1�21iB1,

btr � �1=2�h2�11iB1, and ctr � �1=2�h1�12iB1.
Atom Position and

multiplicity
Atomic coordinates

in perfectly ordered structure
Values of distribution function

x=atr y=btr z=ctr n �Li;&��xI; yI; zI� n �Ni��xI; yI; zI�

Li

Ni

O

1�a�
1�b�
2�c�

0

1=2

1=4

0

1=2

1=4

0

1=2

1=4

n
�Li�
Li � �1ÿ x�=2� Z �M�9 =2

n
�Li�
Ni � �1ÿ x�=2ÿ Z �M�9 =2

n
�Ni�
Li � �1� x�=2ÿ Z �M�9 =2

n
�Ni�
Ni � �1� x�=2� Z �M�9 =2
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By analogy, the degree of ordering in the Li-sublattice is ZLi �
�c �Li�Li ÿ c

�Ni�
Li �=c �Li�max

Li , where c
�Li�
Li � n

�Li�
Li and c

�Ni�
Li � n

�Ni�
Li

are concentrations of Li and Ni atoms in the Li-sublattice,

i.e., in the Li layers. The value of c
�Li�max
Li � 1ÿ x is the

highest possible concentration of lithium in the Li-sublattice.

Taking this into account and knowing the values n �Ni�
Li and

n
�Li�
Li of functions (11) and (12), the degree of ordering in the

Li-sublattice is found to be ZLi � �Z �M�9 ÿ x�=�1ÿ x�.
The dependence of the maximum value of the long-range

order parameter Z �M�9 on the Li1ÿxÿzNi1�xO2 composition
during formation of the rhombohedral LiNiO2 phase for the
values of 04 x4 1 and 04 z < 1ÿ x has the form
Z �M�max
9 �x; z� � 1ÿ x. Therefore, Zmax

Li � �1ÿ 2x�=�1ÿ x�
and Zmax

Ni � 1. In the case of a maximum long-range order
parameter in Li1ÿxÿzNi1�xO2, when x � 0 and z � 0, the
degree of ordering in the Ni- and Li-sublattices equals 1. For
x > 0, the degree of ordering in the Ni-sublattice remains
equal to 1, since all its sites are occupied only by Ni atoms.
Alternatively, the degree of ordering in the Li-sublattice does
not exceed Zmax

Li � �1ÿ 2x�=�1ÿ x�, because its sites are
occupied not only by Li atoms but also by xNA nickel
atoms. The degree of ordering cannot be negative; therefore,
it follows from the relation Zmax

Li � �1ÿ 2x�=�1ÿ x� that a
rhombohedral (space groupR�3m) superstructure cannot exist
for x > 0:5. Indeed, a high vacancy concentration �z5 1=6�
leads to disordering up to the cubic phase or to a reduction in
symmetry with the retention of Ni atomic planes and with
ordering of Li atoms and vacancies in �1�11�B1 planes of the
common Li-sublattice. In lithium nickelite with an excess of
Ni �x5 1=6�, the reduction of symmetry may proceed with
the redistribution of Li and Ni atoms over all �1�11�B1 planes
in themetal sublattice and their ordering in these planes. Such
orderings may occur as first-order phase transformations via
transition channels containing the rays of the fk4g and fk3g
stars, besides the rays of the fk9g star. As a result, super-
structures of type Li5&Ni6O12 with monoclinic and trigonal
symmetries may arise. For z5 0:25, Li3&Ni4O8 and
Li2&Ni3O6 superstructures may be formed. Indeed, Refs [42,
49] report the detection of a monoclinic Li3&Ni4O8 super-
structure in nickelite Li0:50ÿ0:75NiO2. A symmetry analysis of
Li3&Ni4O8 �M7&O8� and Li2&Ni3O6 �M5&O6� superstruc-
tures was performed in paper [48].

3.5 Sequence of M2X superstructure formation
The thermodynamic computation of phase equilibria in
TiÿC, ZrÿC, and TiÿN systems by the order parameter
functional method [1±5] confirms the formation ofM2X type
ordered phases but does not allow the determination of their
symmetry or space group. It remains to be elucidated if
superstructures of type M2X are mutually exclusive or can
arise one after the other in a certain sequence as temperature
drops.

References [50, 51] report the results of the symmetry
analysis of theM2X phase structure with a view to determin-
ing the possible sequence of phase transformations during the
formation of M2X type superstructures in the nonstoichio-
metric carbidesMCy and nitridesMNy.

Disorder±order or order±order phase transformations
occurring as the temperature decreases are transitions from
a higher free energy state to a lower energy one. The state of a
substance undergoing atomic or atomic-vacancy ordering can
be characterized by the Landau thermodynamic potentialÐ

that is, in this case, the functional of probabilities of detecting
atoms of a certain kind at lattice sites, site coordinates, and
temperature. The probabilities, in turn, are the functions of
long-range order parameters. The Landau potential passes a
few minima corresponding to high-symmetry disordered and
low-symmetry ordered phases. As temperature drops, dis-
order±order and order±order phase transitions occur with the
reduction of symmetry. The symmetry analysis permits us to
quantitatively evaluate the degree of symmetry reduction
during superstructure formation and to determine the
physically admissible sequence in which these superstruc-
tures can arise.

The ordering of X atoms and & structural vacancies
occurs in the basic nonmetal fcc sublattice of the disordered
cubic (space group Fm�3m)MXy phase and is associated with
the splitting of highly symmetric 4�b� positions into two or
more positions of the low-symmetry ordered phase. The
disordered cubic (space group Fm�3m) MXy phase has a
point symmetry group m�3m �Oh� including 48 symmetry
elements h1ÿh48 [1, 2, 31]. The symmetry point groups of
the four M2X superstructures under consideration belong to
subgroups of the m�3m �Oh� point group. Therefore, the
transition from the disordered cubic MXy phase to any of
these superstructures constitutes a disorder±order phase
transformation.

According to the Landau phenomenological theory of
phase transitions [52], a necessary condition for the second-
order phase transition is an identical equality to zero of the
coefficient of the cubic term in a power series expansion of the
free energy in the long-range order parameter. If a second-
order phase transformation occurs with a change in transla-
tional symmetry, the group-theoretical Landau criterion is
equivalent to the following necessary condition for realizing
the second-order phase transition [36]: a second-order phase
transformation is feasible only when it is impossible to choose
from the star vectors associated with this transformation
three (not necessarily different) vectors, the sum of which
would be equal to zero or to the structural vector H of the
reciprocal lattice in a disordered crystal. In other words, the
following inequalities hold during a second-order phase
transformation:

k � j1�s � k � j2�s � k � j3�s

3k � j �s

)
6� 0 or H : �13�

Determination of MXyÿM2X phase transition channels
revealed that the formation of anyM2X type superstructure is
associated with one of the Lifshitz stars fk10g, fk9g, or fk8g.
For the vectors of fk9g and fk8g stars entering the transition
channel, condition (13) is fulfilled. This means that disorder±
order transitions with the formation of M2X superstructures
(space groups R�3m, Fm�3m, I41=amd ) satisfy the Landau
criterion for second-order phase transitions. The formation
of a tetragonal (space group P4=mmm) M2X superstructure
can only be a first-order phase transformation, since condi-
tion (13) is not fulfilled for the fk10g star.

The trigonal (space group R�3m) M2X superstructure has
the point symmetry group �3m �D3d� including 12 symmetry
elements, whereas the m�3m �Oh� point group of the basic
cubic disordered phase contains 48 elements; for this reason,
the reduction in rotational symmetry equals 4. The reduction
in translational symmetry is described by the ratio of unit cell
volumes of low- and high-symmetry phases; it equals 1.5 in
the case of transition from the high-symmetry disordered
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compoundMXy to the low-symmetry trigonal phaseM2X (in
the hexagonal arrangement). The overall symmetry reduction
is equal to the product of rotational and translational
reductions. For this reason, in the disordered cubic (space
group Fm�3m) MXy phase ! ordered trigonal (space group
R�3m) M2X phase transition, the overall symmetry reduction
is given by N � n�G�=n�GD� � 6, where n�G� and n�GD� are
the orders of space groups G and GD relevant to high- and
low-symmetry phases.

The cubic (space group Fd �3m) M2X superstructure has
the same point symmetry group m�3m as the disordered MXy

phase; therefore, the rotational symmetry reduction equals 1.
Translational symmetry reduction during transition from the
disorderedMXy phase to the cubic (space group Fd �3m)M2X
phase equals 8. Due to this, the overall symmetry reduction in
the disordered cubic (space group Fm�3m) MXy phase !
ordered cubic (space group Fd �3m) M2X phase transition is
equal to 8.

Although the point symmetry group of the trigonal (space
group R�3m) M2X superstructure is a subgroup of the point
group of the cubic (space group Fd �3m) M2X superstructure,
transition from the cubic (space group Fd �3m) M2X super-
structure to the trigonal one is impossible because, in this
case, symmetry would raise rather than reduce. It follows
from a comparison of symmetry reduction during formation
of trigonal and cubic M2X superstructures that their forma-
tion is equally probable. Indeed, Ref. [37] reports that these
superstructures arise in different concentration regions. It
may be supposed that in nonstoichiometricMXy compounds
differing in the amount of nonmetal y, parallel disorder±order
transitions are possible from the cubic (space group Fm�3m)
disordered MXy phase to the cubic (space group Fd �3m)
ordered M2X phase and from the cubic (space group Fm�3m)
disordered MXy phase to the trigonal (space group R�3m)
orderedM2X phase.

Tetragonal (space group P4=mmm and I41=amd ) M2X
superstructures have the same point symmetry group 4=mmm
�D4h� that includes 16 symmetry elements h1ÿh4, h13ÿh16,
h25ÿh28, and h37ÿh40 [1, 2, 34]. Thus, the rotational
symmetry reduction during formation of tetragonal M2X
superstructures proceeds in a similar fashion and equals 3.
The change in translational symmetry in disorder±order
transitions resulting in tetragonal M2X superstructures with
space groups P4=mmm and I41=amd equals 1=2 and 2, while
the overall symmetry reduction in these transitions is equal to
3=2 and 6, respectively.

It is clear from the ratio of symmetry elements hI that the
point group 4=mmm of tetragonalM2X superstructures is not
a subgroup of group �3m of a trigonal superstructure. This
means that order±order transitions from a trigonal super-
structure to any of the two tetragonal M2X superstructures
with decreasing temperature are impossible. Order±order
transitions from a cubic M2X superstructure to any of the
two tetragonal M2X superstructures with decreasing tem-
perature are equally impossible, because symmetry would
raise rather than reduce.

Bearing in mind changes in general and translational
symmetries, the tetragonal (space group P4=mmm) M2X
superstructure can be formally regarded as highly symmetric
with respect to the M2X superstructure with the space group
I41=amd. In this case, the overall reduction in symmetry
during the order±order transition from M2X (space group
P4=mmm) toM2X (space group I41=amd ) equals 4.

On the whole, the above analysis demonstrates the
possibility of three sequences of transformations involving
ordered M2X phases with a decrease in temperature (Fig. 5).
The first and second sequences are the cubic (space group
Fm�3m) disordered MXy phase! cubic (space group Fd �3m)
ordered M2X phase and cubic (space group Fm�3m)
disordered MXy phase ! trigonal (space group R�3m)

MXy (space group Fm�3m)
M2X (space group P4=mmm)

M2X (space group Fd�3m) M2X (space group R�3m)
M2X (space group I41=amd)

Figure 5. (Color online.) The possible sequences of disorder±order and order±order phase transformations occurring with decreasing temperature and
associated with the formation of typeM2X superstructures in strongly nonstoichiometricMXy compounds with the basic structure B1. The topmost unit
cell of a nonstoichiometricMXy compound has a basic cubic (space group Fm�3m) structure; the sites of the nonmetal sublattice in this cell are statistically
occupied by X atoms with probability y. Intermediate formation of the tetragonal (space group P4=mmm) M2X superstructure in the third phase
transformation sequence can be excluded due to the thermodynamic instability of such a phase in MXy compounds with the basic structure B1. The
notation `vac' in unit cells ofM2X superstructures indicates vacant sites.
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ordered M2X phase transitions; they may occur in non-
stoichiometric MXy type compounds with different y
compositions and include only disorder±order transforma-
tions. The alternative sequence is the cubic (space group
Fm�3m) disordered MXy phase ! tetragonal (space group
P4=mmm) ordered M2X phase transformation; it includes
disorder±order and order±order transformations. In the
absence of an ordered phase in experiment, the transforma-
tion sequences remain physically valid anyway, even with-
out this phase.

The above transformation sequences were found from
symmetry considerations. It was shown in Refs [1, 2, 5, 53]
by the order parameter functional method that the forma-
tion of cubic, trigonal, and tetragonal (space group
I41=amd ) M2X superstructures is equally probable from the
thermodynamic point of view and must occur at closely
spaced temperatures. As regards the tetragonal (space group
P4=mmm)M2X superstructure, it has a higher (absolute) free
energy than other M2X type superstructures and therefore
cannot arise in nonstoichiometric MXy compounds with
structure B1, meaning that the tetragonal (space group
P4=mmm) M2X superstructure can be excluded from the
third sequence. Then, the third sequence takes the form of
the cubic (space group Fm�3m) disordered MXy phase !
tetragonal (space group I41=amd ) ordered M2X phase
transformation and also includes only disorder±order transi-
tions.

It was shown in experiment that the first and second
sequences of disorder±order transformations with the pro-
duction of cubic and trigonal M2X phases are realized in
nonstoichiometric carbides of different compositions, espe-
cially in titanium carbide. According to Ref. [37], ordering in
nonstoichiometric carbide TiCy leads to the formation of the
cubic (space group Fd �3m) M2X superstructure in the region
from TiC0:49ÿ0:51 to TiC0:54ÿ0:55, while the trigonal (space
group R�3m) M2X superstructure has the homogeneity
interval TiC0:55ÿTiC0:59. The disorder±order transition
temperature for both superstructures falls in the range of
990±1020 K. The third transformation sequence, i.e., dis-
order±order transition with the formation of a tetragonal
(space group I41=amd ) M2X superstructure, occurs in
nonstoichiometric nitrides. It can be supposed that the
realization of one sequence or another is related to the
macroscopic state of a nonstoichiometric compound, namely
to grain size and morphology in the disordered phase and the
origin of formation of the primary ordered phase on a certain
crystallographic surface, as well as to the distinctions inMÿC
andMÿN interatomic interactions.

4. M3X2 superstructures

4.1 Monoclinic M3X2 superstructure
The unit cell of a monoclinic [space group C2 (B112)] M3X2

superstructure is depicted in Fig. 6. Its translation vectors and
coordinates of atoms and vacancies in an ideal monoclinic
M3X2 superstructure are presented in Table 4. InRef. [26], the
space group of this superstructure was determined incor-
rectly; therefore, certain atoms and vacancies in the unit cell
were disregarded. This error was repeated in later publica-
tions [1, 2, 6].

The monoclinic [space group C2 (B112)] M3X2 super-
structure forms via the phase transition channel involving six
rays of the fk4g star with parameter m4 � 1=3 (Table 5).

The monoclinic M3X2 superstructure is described by the
distribution function

n�xI; yI; zI� � yÿ Z4
3

�
cos

�
4p�xI � zI�

3

�
ÿ

���
3
p

3
sin

�
4p�xI � zI�

3

�
ÿ 2

���
3
p

3
sin

�
4p�yI � zI�

3

�
� cos

�
4p�xI ÿ yI�

3

�
�

���
3
p

3
sin

�
4p�xI ÿ yI�

3

��
: �14�

Parameters g4 and j � j �4 of function (14) are presented in
Table 5. For the completely ordered M3X2 phase, the
quantity yst � 2=3. Figure 6 shows that coordinates
�xI; yI; zI� are related to the coordinates of the monoclinic
M3X2 superstructure, presented in Table 4, by the following

bm

[010]B1

[001]B1

[100]B1

cm

am

M3X2 (space group C2�B112�)
Figure 6.Position of themonoclinic [space groupC2 (B112)] unit cell of the

M3X2 superstructure in the lattice with the basic structure B1: (*) inter-

stitial atom, (*) metal atom, and (&) vacancy. Although angles a, b, and g
of an ideal unit cell are equal to 90�, this structure ismonoclinic rather than

orthorhombic in terms of symmetry. The origin of coordinates of the

monoclinicM3X2 superstructure has coordinates �ÿ1=4 ÿ1=4 0�B1 of the
basic lattice with structure B1.

Table 4. Monoclinic [space group No. 5ÐC2 (B112) (C 3
2 )] M3X2 super-

structure:Z � 6,V � 9a 3
B1=2, am � �1=2�h112iB1, bm � h11�1iB1, and cm �

�3=2�h1�10iB1.
Atom Position

and
multi-
plicity

Atomic coordinates in
perfectly ordered structure

Values
of distribution

function
n�xI; yI; zI�x=am y=bm z=cm

X1 (vacancy)

X2 (vacancy)

X3

X4

X5

X6

M1

M2

M3

M4

M5

M6

2�b�
4�c�
2�b�
2�b�
4�c�
4�c�
2�a�
2�a�
2�a�
4�c�
4�c�
4�c�

1=2

1=6

1=2

1=2

1=6

1=6

0

0

0

1=6

1=6

1=6

1=2

1=6

1=2

1=2

1=6

1=6

0

0

0

2=3

2=3

2=3

2=3

0

0

1=3

1=3

2=3

1=6

1=2

5=6

0

1=3

2=3

n1 � yÿ 2Z4=3

n1 � yÿ 2Z4=3

n2 � y� Z4=3

n2 � y� Z4=3

n2 � y� Z4=3

n2 � y� Z4=3
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equations: xI� xm=2� ym � 3zm=2ÿ 1=4, yI� xm=2� ymÿ
3zm=2ÿ 1=4, and zI � xm ÿ ym. The distribution function
(14) assumes two values, n1 and n2, at sites of the nonmetal fcc
sublattice (see Table 4).

In the completely ordered monoclinic [space group C2
�B112�] M3X2 �y � 2=3, Z4 � 1� superstructure, one third of
the sites of each nonmetal atomic plane �1�11�B1 are vacant,
while the remaining ones are occupied by interstitial atoms.

4.2 Orthorhombic M3X2 superstructures
The literature describes two orthorhombic M3X2 super-
structures with space groups Immm (Fig. 7) and C2221
(Fig. 8). Translation vectors of the unit cells of these
superstructures, as well as the coordinates of atoms and
vacancies in them, are listed in Table 6.

The disorder±order MXyÿM3X2 (space group Immm)
phase transition channel includes two rays k

�1�
4 and k

�2�
4 of

the fk4g star with parameter m4 � 1=3 (see Table 5). The
orthorhombic (space group Immm) M3X2 superstructure is

described by the distribution function

n�xI; yI; zI� � yÿ 2Z4
3

cos

�
4p�xI � yI�

3

�
: �15�

For the fully ordered M3X2 phase, the quantity yst � 2=3. In
accordance with Fig. 7, coordinates �xI; yI; zI� are related to
the coordinates of the orthorhombic (space group Immm)
M3X2 superstructure, presented in Table 6, by the equations
xI � xrh=2� 3yrh=2, yI � ÿxrh=2� 3yrh=2, and zI � zrh.

In the ordering under consideration, the nonmetal
sublattice of the disordered MXy compound splits into two
nonequivalent sublattices differing in probabilities n1 and n2
of site occupation by interstitial X atoms (see Table 6).

The orthorhombic unit cell of the M3X2 superstructure
with the space groupC2221 is depicted in Fig. 8. The presence
of the ordered (space group C2221) M3X2 phase in titanium
carbide TiC0:64 was shown by a Monte Carlo computation in
Ref. [23]. Traces of the orthorhombic (space group C2221)
ordered Ti3C2 �M3X2� phase were observed in experiment
[37]. The M3X2 superstructure forms via the transition
channel involving two rays of the fk4g star and four rays of
the fk3g star (see Table 5). The actual parameters of the fk4g
and fk3g stars are m4 � 1=3 and m3 � 1=12, respectively.

The distribution function of interstitial atoms in the
orthorhombic (space group C2221) M3X2 superstructure has
the form

n�xI; yI; zI� � yÿ Z4
3

(
1

2
cos

�
4p�xI � yI�

3

�

ÿ
���
3
p

2
sin

�
4p�xI � yI�

3

�)

ÿ Z3
2

(�
1

2
�

���
3
p

6

�
cos

�
p�2xI ÿ 4yI ÿ 3zI�

3

�

Table 5. Channels of disorder±order MXyÿM3X2 phase transitions and the parameters of distribution functions n�xI; yI; zI� describing M3X2

superstructures.

Symmetry Space group Disorderëorder transition channel Parameters of the distribution function

fksg star k � j �s rays of the fksg star gs j � j �s

Monoclinic No. 5

C2 �B112�
�C 3

2 �

fk4g
fk4g
fk4g
fk4g
fk4g
fk4g

k
�3�
4 � �b2 ÿ b1�=3,

k
�4�
4 � ÿk �3�4 ,

k
�5�
4 � �b1 � 2b2 � b3�=3,

k
�6�
4 � ÿk �5�4 ,

k
�9�
4 � �2b1 � b2 � b3�=3,

k
�10�
4 � ÿk �9�4

g4 �
���
3
p

=9

g4 �
���
3
p

=9

g4 �
���
3
p

=9

g4 �
���
3
p

=9

g4 �
���
3
p

=9

g4 �
���
3
p

=9

j �3�4 � p=3

j �4�4 � ÿp=3
j �5�4 � p

j �6�4 � ÿp
j �9�4 � 7p=6

j �10�4 � ÿ7p=6

Orthorhombic No. 71

Immm �D 25
2h �

fk4g
fk4g

k
�1�
4 � �b1 � b2 � 2b3�=3,

k
�2�
4 � ÿk �1�4

g4 � 1=3

g4 � 1=3

j �1�4 � p

j �2�4 � ÿp

Orthorhombic No. 20

C2221

�D 5
2 �

fk4g
fk4g
fk3g
fk3g
fk3g
fk3g

k
�1�
4 � �b1 � b2 � 2b3�=3,

k
�2�
4 � ÿk �1�4 ,

k
�3�
3 � ÿ�7b1 � b2 � 2b3�=12,

k
�4�
3 � ÿk �3�3 ,

k
�5�
3 � �b1 ÿ 5b2 � 2b3�=12,

k
�6�
3 � ÿk �5�3

g4 � 1=6

g4 � 1=6

g3 �
���
6
p

=12

g3 �
���
6
p

=12

g3 �
���
6
p

=12

g3 �
���
6
p

=12

j �1�4 � 4p=3

j �2�4 � ÿ4p=3
j �3�3 � 11p=12

j �4�3 � ÿ11p=12
j �5�3 � 7p=12

j �6�3 � ÿ7p=12

Trigonal No. 164

P�3m1 �D 3
3d�

fk5g
fk5g

k
�5�
5 � ÿb2=3,

k
�6�
5 � ÿk �5�5

g5 � 1=3

g5 � 1=3

j �5�5 � p

j �6�5 � ÿp

brh

[010]B1

[001]B1

[100]B1

crh

arh

M3X2 (space group Immm)

Figure 7. Position of the orthorhombic (space group Immm) unit cell of the

M3X2 superstructure in the lattice with structure B1: (*) interstitial atom,

(*) metal atom, and (&) vacancy.
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As in the preceding case, the quantity yst � 2=3. Function
(16) takes three values at all sites located in different
positions on the nonmetal sublattice of the M3X2 structure
(see Table 6). As follows from Fig. 8, coordinates �xI; yI; zI�
are related to the coordinates of theM3X2 structure, listed in
Table 6, by the following equations: xI � xrh � 3yrh ÿ 1=2,
yI � ÿxrh�3yrh ÿ 1=2, and zI � 2zrh ÿ 1=2.

Parameters gs and j � j �s of distribution functions (15) and
(16) are presented in Table 5.

4.3 Trigonal M3X2 superstructure
The unit cell of a model trigonal (space group P�3m1) M3X2

superstructure is depicted in Fig. 9. Translation vectors of this
unit cell and coordinates of atoms and vacancies are given in
Table 7. The trigonal (space group P�3m1) M3X2 super-
structure forms via the transition channel involving two
rays, k

�5�
5 and k

�6�
5 , of the fk5g star (see Table 5). In this

superstructure. the actual parameter m5 of fk5g star rays
equals 1=3.

Table 6. OrthorhombicM3X2 superstructures.

Space group Translation vectors
of unit cell

V � Atom Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

Values of distribution
function n�xI; yI; zI�

x=arh y=brh z=crh

No. 71

Immm

�D 25
2h �

arh � 1
2
h1�10iB1,

brh � 3
2
h110iB1,

crh � h001iB1

3a 3
B1=2

X1 (vacancy) 2�a� 0 0 0 n1 � yÿ 2Z4=3

X2 4�g� 0 1=3 0 n2 � y� Z4=3

M1 2�c� 1=2 1=2 0

M2 4�h� 0 2=3 1=2

x=arh y=brh z=crh

No. 20

C2221

�D 5
2 �

arh � h1�10iB1,
brh � h330iB1,
crh � h002iB1

12a 3
B1

X1 (vacancy) 4�b� 0 1=6 1=4 n1 � yÿ Z4=6ÿ Z3=2

X2 (vacancy) 4�b� 0 1=3 1=4 n1 � yÿ Z4=6ÿ Z3=2

X3 (vacancy) 8�c� 1=4 5=12 0 n1 � yÿ Z4=6ÿ Z3=2

X4 4�b� 0 0 1=4 n2 � y� Z4=3

X5 4�b� 0 1=2 1=4 n2 � y� Z4=3

X6 4�b� 0 2=3 1=4 n3 � yÿ Z4=6� Z3=2

X7 4�b� 0 5=6 1=4 n3 � yÿ Z4=6� Z3=2

X8 8�c� 1=4 1=12 0 n3 � yÿ Z4=6� Z3=2

X9 8�c� 1=4 1=4 0 n2 � y� Z4=3

M1 4�a� 0 0 0

M2 4�a� 1=2 0 0

M3 8�c� 1=4 1=12 1=4

M4 8�c� 1=4 1=4 1=4

M5 8�c� 1=4 5=12 1=4

M6 8�c� 0 1=6 1=4

M7 8�c� 0 1=3 1=2

* The volume of the unit cell of a superstructure expressed through parameter aB1 of the unit cell of the disordered basic B1 type structure.

brh

[010]B1

[001]B1

[100]B1

crh

arh

M3X2 (space group C2221)

Figure 8. Position of the orthorhombic (space groupC2221) unit cell of the

M3X2 superstructure in the lattice with structure B1: (*) interstitial atom,

(*) metal atom, and (&) vacancy.

September 2014 Nonstoichiometry and superstructures 851



The distribution function for the trigonal M3X2 super-
structure has the form

n�xI; yI; zI� � yÿ 2Z5
3

cos

�
2p�xI ÿ yI � zI�

3

�
: �17�

As follows from Fig. 9, coordinates �xI; yI; zI� are related to
the coordinates of the M3X2 superstructure presented in
Table 7 by the following equations: xI � xtr=2� ztr � 1=2,
yI � ytr=2ÿ ztr � 1, and zI � ÿxtr=2� ytr=2� ztr � 1=2.
Distribution function (17) assumes two values at all sites of
the nonmetal fcc sublattice (see Table 7). For the completely
ordered trigonal M3X2 phase, the quantity yst � 2=3. Para-
meters g5 and j � j �5 of (17) are presented in Table 5.

Given that only the nonmetal sublattice of the trigonal
(space group P�3m1) M3X2 superstructure is considered, two
complete atomic planes, all sites of which are occupied by
interstitial atoms, and one defective plane having all sites
vacant alternate successively in the �1�11�B1 direction. The
formation of such a superstructure in nonstoichiometric
MXy compounds with structure B1 is unlikely. This
inference is consistent with thermodynamic calculations by
the order parameter functional method [1, 2, 5, 53], showing
that the formation of the trigonal (space group P�3m1) M3X2

superstructure in nonstoichiometric MXy compounds is
impossible.

4.4 Sequence of M3X2 superstructure formation
Thermodynamic calculations [1±6] of phase equilibria in
TiÿC, ZrÿC, HfÿC, and TiÿN systems, including non-

stoichiometric MXy compounds with the basic cubic B1
structure, confirm the possibility of forming ordered M3X2

type phases with the exception of the trigonal (space group
P�3m1) phase. We shall perform a symmetry analysis of three
other M3X2 type superstructures and discuss the sequence of
their formation with decreasing temperature.

Point symmetry groups of monoclinic and orthorhombic
M3X2 superstructures take the part of the subgroups of the
m�3m �Oh� point symmetry group of the disordered cubic
(space group Fm�3m) MXy phase. Therefore, the transition
from phaseMXy to any of these superstructures is a disorder±
order phase transformation.

The determination of MXyÿM3X2 phase transition
channels showed that the formation of monoclinic and
orthorhombic M3X2 superstructures is associated with the
symmetry distortion affecting one �fk4g� or two �fk4g or
fk3g� non-Lifshitz stars. Moreover, for orthorhombic (space
groups Immm andC2221) superstructures, 3k

�1�
4 � h220i, and

for the monoclinic (space group C2) superstructure,
3k
�5�
4 � h202i. This means that condition (13) is not fulfilled

and the formation of these M3X2 type superstructures is a
first-order phase transformation.

Among the three M3X2 superstructures being discussed,
the orthorhombic (space group Immm) M3X2 phase exhibits
the highest symmetry. It has a point symmetry group mmm
�D2h� that includes 8 symmetry elements, h1ÿh4 and h25ÿh28,
whereas the point group m�3m �Oh� of the basic cubic
disordered phase includes 48 elements; for this reason, the
rotational reduction in symmetry equals 6. The volume of the
unit cell of this superstructure is V � 3a 3

B1=2 (see Table 6);
therefore, the translational symmetry reduction is 3=2. The
overall symmetry reduction equals 6�3=2 � 9.

Another orthorhombic (space group C2221) M3X2 phase
has the point symmetry group 222 �D2� including 2 symmetry
elements, h1 and h2. The volume of the unit cell of this
superstructure is V � 12a 3

B1. Accordingly, rotational and
translational symmetry reductions equal 24 and 12, while
the overall symmetry reduction during the formation of the
orthorhombic (space group C2221) M3X2 superstructure
equals 24� 12 � 288.

The monoclinic [space group C2 �B112�] M3X2 super-
structure possesses the point symmetry group 2 �C2� that
includes two symmetry elements, h1 and h4. Therefore, the
rotational symmetry reduction during its formation in a
nonstoichiometric compound with structure B1 equals 24.
The reduction in translational symmetry during formation of
this superstructure is 9=2, and the overall symmetry reduction
reaches 24� 9=2 � 108.

Point symmetry groups of orthorhombic (space group
C2221) and monoclinic (space group C2 (B112)] M3X2

superstructures are subgroups of the point symmetry group
of the orthorhombic (space group Immm)M3X2 phase. Thus,
the highest-symmetry orthorhombic (space group Immm)
M3X2 superstructure may be a high-temperature phase as
compared with orthorhombic (space group C2221) and
monoclinic (space group C2) M3X2 phases. More likely is
the order±order orthorhombic (space group Immm) M3X2

phase ! orthorhombic (space group C2221) M3X2 phase
transition, since it is associated with the maximum overall
symmetry reduction equal to 32. In the order±order orthor-
hombic (space group Immm) M3X2 phase ! monoclinic
(space group C2) M3X2 phase transition, the overall reduc-
tion in symmetry is 12, and this transition cannot be excluded.
The point symmetry group of the monoclinic (space group

Table 7.Trigonal [space groupNo. 164ÐP�3m1 (D 3
3d)]M3X2 superstructure:

Z�1, V�3a 3
B1=4, atr��1=2�h10�1iB1, btr��1=2�h011iB1 and, ctr�h1�11iB1.

Atom Position
and
multi-
plicity

Atomic coordinates
in perfectly ordered structure

Values of distri-
bution function
n�xI; yI; zI�

x=atr y=btr z=ctr

X1 (vacancy)

X2

M1

M2

1�a�
2�d �
1�b�
2�d �

0

1=3

0

1=3

0

2=3

0

2=3

0

1=3

1=2

5=6

n1 � yÿ 2Z5=3

n2 � y� Z5=3

btr

[010]B1

[001]B1

[100]B1

ctr

atr

M3X2 (space group P�3m1)

Figure 9. Position of the trigonal (space group P�3m1) unit cell of theM3X2

superstructure in the lattice with structure B1: (*) interstitial atom,

(*) metal atom, and (&) vacancy. The origin of coordinates of the trigonal

M3X2 superstructure has coordinates �1=2 1 1=2�B1 of the basic lattice

with structure B1.
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C2) M3X2 phase is not a subgroup of the point symmetry
group of the orthorhombic (space groupC2221)M3X2 phase;
therefore, the orthorhombic (space groupC2221)M3X2 phase
! monoclinic (space group C2) M3X2 phase transformation
is impossible. Moreover, such a transition would be accom-
panied by a symmetry raising instead of reduction.

The above analysis indicates that a drop in temperature in
MXy type nonstoichiometric compounds with structure B1
may cause two alternative phase transformation sequences
involving orderedM3X2 type phases, namely the cubic (space
group Fm�3m) disorderedMXy phase! orthorhombic (space
group C2221) ordered M3X2 phase transition and the cubic
(space group Fm�3m) disorderedMXy phase! orthorhombic
(space group Immm) ordered M3X2 phase ! monoclinic
(space group C2) ordered M3X2 phase transition. Both
sequences include disorder±order and order±order transfor-
mations. The former sequence ending in the formation of an
orthorhombic (space group C2221) M3X2 superstructure
appears more likely, taking into consideration the overall
symmetry reduction.

5. M4X3 superstructures

5.1 Cubic and tetragonal superstructures of type M4X3

Unit cells of cubic (space group Pm�3m) and tetragonal (space
group I4=mmm) M4X3 superstructures are shown in Fig. 10.
Translation vectors of the unit cell of the former super-
structure coincide with those of the basic crystal lattice with
structure B1; coordinates of the atoms and vacancies in an
ideal cubicM4X3 superstructure are presented in Table 8. The
cubic (space group Pm�3m) orderedM4X3 phase forms via the
phase transition channel involving all three rays of the fk10g
star (Table 9).

The distribution function describing the cubic M4X3

superstructure has the form

n�xI; yI; zI� � yÿ Z10
4

ÿ
cos �2pxI� � cos �2pyI� � cos �2pzI�

�
:

�18�

Coordinates �xI; yI; zI� of the basic nonmetal fcc sublattice
coincide with the coordinates of the cubic M4X3 super-
structure. Distribution function (18) at sites located in
different positions of the nonmetal sublattice takes the
following values: n1 � yÿ 3Z10=4, and n2 � y� Z10=4 (see
Table 8). Parameters g10 and j � j �10 of function (18) are given in
Table 9. For the completely orderedM4X3 phase, the relative
stoichiometric concentration of interstitial atoms yst is equal
to 3=4. The same function describes the cubic (space group
Pm�3m) substitution A3B superstructure (of the Cu3Au type).

The unit cell of a tetragonal (space group I4=mmm)M4X3

superstructure is depicted in Fig. 10b. Translation vectors of
these cell and coordinates of the atoms and vacancies are
presented in Table 8. The disorder±orderMXyÿM4X3 (space
group I4=mmm) transition channel includes one ray of the
fk10g star and two rays of the fk8g star (see Table 9).

The tetragonal interstitial M4X3 structure is described by
the distribution function that depends on two long-range
order parameters, Z10 and Z8:

n�xI; yI; zI� � yÿ Z10
4

cos �2pzI� ÿ Z8
2

cos
�
p�2xI � zI�

�
: �19�

Table 8. Superstructures of typeM4X3.

Symmetry Space group Translation vectors
of unit cell

V � Atom Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

Values of distribution
function n�xI; yI; zI�

x=acub y=bcub z=ccub

Cubic No. 221

Pm�3m

�O 1
h �

acub � h100iB1,
bcub � h010iB1,
ccub � h001iB1

a 3
B1

X1 (vacancy) 1�a� 0 0 0 n1 � yÿ 3Z10=4

X2 3�c� 1=2 0 1=2 n2 � y� Z10=4

M1 1�b� 1=2 1=2 1=2

M2 3�d � 0 1=2 0

x=at y=bt z=ct

Tetragonal No. 139

I4=mmm

�D 17
4h �

at � h100iB1,
bt � h010iB1,
ct � h002iB1

2a 3
B1

X1 (vacancy) 2�a� 0 0 0 n1 � yÿ Z10=4ÿ Z8=2

X2 2�b� 0 0 1=2 n2 � yÿ Z10=4� Z8=2

X3 4�d � 0 1=2 1=4 n3 � y� Z10=4

M1 4�c� 0 1=2 0

M2 4�c� 0 0 1=4

* The volume of the unit cell of a superstructure expressed through parameter aB1 of the unit cell of the basic disordered B1 type structure.

b

M4X3 (space group I4=mmm)

[010]B1

[001]B1

[100]B1

bt

at

ct
a

M4X3 (space group Pm�3m)

[010]B1

[001]B1

[100]B1

bcub

acub

ccub

Figure 10. Positions of (a) cubic (space group Pm�3m) and (b) tetragonal

(space group I4=mmm) unit cells ofM4X3 type superstructures in a lattice

with structure B1: (*) interstitial atom, (*) metal atom, and (&) vacancy.
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In accordance with Fig. 10b, coordinates �xI; yI; zI� are
related by expressions xI � xt, yI � yt, and zI � zt=2 to the
coordinates of this superstructure, listed in Table 8. Distribu-
tion function (19) takes three values at the sites pertaining to
different positions of the nonmetal fcc sublattice (see Table 8).
For the totally ordered M4X3 phase, the relative stoichio-
metric concentration of interstitial atoms is yst � 3=4.

Distribution function (19) also describes the tetragonal
(space group I4=mmm) substitution A3B superstructure
characteristic of, e.g., Al3Ti and Ni3V.

Superstructures of type M4X3 in nonstoichiometric MXy

compounds with theB1 structure have never been observed in
experiment. Thermodynamic calculations by the order para-
meter functional method [1±6, 53] have given evidence that
typeM4X3 superstructures do not form in nonstoichiometric
MXy compounds with the B1 structure.

The cubic (space group Pm�3m) M4X3 superstructure
possesses a higher symmetry than the tetragonal (space
group I4=mmm) M4X3 superstructure. It follows, thus, from
the symmetry analysis that the cubic (space group Fm�3m)
disorderedMXy phase! cubic (space group Pm�3m) ordered
M4X3 phase ! tetragonal (space group I4=mmm) ordered
M4X3 phase transition is formally possible as temperature
decreases. The phase transformation sequence remains
physically valid, despite the lack of an ordered phase in
experiment.

5.2 Ordering in the trigonal f-Ta4C3ÿx phase
The high nonstoichiometry of the nonmetal sublattice is
characteristic not only of cubic and tetragonal carbides but
also of trigonal z-M4C3ÿx (M4C3ÿx&1�x, 0:20 < x < 0:56)
vanadium, niobium, and tantalum carbides. The large
concentration of structural vacancies & in the carbon
sublattice of nonstoichiometric trigonal z-M4C3ÿx phases
amounting to tens of at.% is a prerequisite for their atomic-
vacancy ordering.

The first investigations into the ordering in nonstoichio-
metric z-M4C3ÿx phases were carried out using the z-phase of
tantalum carbide [54±56].

In Refs [57±59], formation of z-Ta4C3ÿx was erroneously
interpreted as ordering involving cubic carbide TaCy. How-
ever, this transformation is not a disorder±order transition
between the disordered cubic TaCy carbide and trigonal z-
Ta4C3ÿx carbide, because cubic symmetry of the basic metal
fcc sublattice of disordered TaCy carbide is not preserved in z-
Ta4C3ÿx.

Disordered z-M4C3ÿx (M � V, Nb, Ta) carbide phases
have a trigonal (space groupR�3m) structure in which 12metal
atoms twice occupy 6�c� positions, while sites of the nonmetal

sublattice are located in 3�a�, 3�b�, and 6�c� positions having
coordinates �0 0 0�, �0 0 1=2�, and �0 0 � 5=12�, respectively
(from here on, atomic coordinates and parameters of unit
cells of the z-phases are expressed in hexagonal axes).

In z-M4C3ÿx&1�x phases, even at x � 0, a quarter of all
positions of the nonmetal sublattice are vacant. Carbon
atoms fill all 6�c� positions, while the remaining C atoms
and structural vacancies occupy 3�a� and 3�b� positions. The
location of C atoms and& vacancies in 3�a� and 3�b� positions
may become statistic or ordered. For statistical distribution,
C atoms equiprobably, �1ÿ x�=2, occupy 3�a� and 3�b�
positions in the nonmetal sublattice. An ordered distribution
is possible in two variants. In one of them, the atoms occupy
3�a� positions with a probability of �1ÿ x�, while 3�b�
positions are vacant. During such ordering, new crystal-
lographic positions do not appear, and the lattice retains its
trigonal symmetry. An X-ray and neutronographic experi-
ments [54±56] confirmed the validity of this variant. Accord-
ing to these studies, the other variant with C atoms and
vacancies occupying 3�b� and 3�a� positions, respectively,
with probability �1ÿ x�, does not agree with available
experiments.

The unit cell of a disordered trigonal z-Ta4C3ÿx phase
shown in Fig. 11a in hexagonal axes contains three Ta4C3ÿx
formula units. In disordered z-Ta4C3ÿx carbide, C atoms and
& vacancies statistically, with the same probability �1ÿ x�=2,
occupy 3�a� and 3�b� positions in the nonmetal sublattice.
The unit cell of an ordered trigonal z-phase of tantalum
carbide also contains three Ta4C3ÿx formula units. Coordi-
nates of the atoms and vacancies in this cell are presented in
Table 10. The composition of an ideal z-phase corresponds to
� TaC0:67 �TaC2=3� or Ta4C3ÿx with x � 1=3. Tantalum
atoms occupying 6�c� positions with coordinates
�0 0 � 1=8� in the planes normal to the c-axis of the unit cell
are displaced toward carbon sublattice planes formed by the
sites at 3�b� positions and away from carbon sublattice planes
formed by 3�a� sites (Fig. 11b). The presence of such
displacements indirectly suggests different populations of
3�a� and 3�b� positions by C atoms, i.e., their possible
ordering.

The z-Ta4C3ÿx phase has a close-packed metal sublattice
transitional between hexagonal close-packed (HCP) and fcc
metal sublattices of hexagonal and cubic Ta2C and TaCy

carbides.
Taking account of the ordered distribution of C atoms

and & vacancies over 3�a� and 3�b� positions, the structural
formula of the z-phase can be represented as Ta4C2C1ÿx&1�x.
If the distribution of carbon atoms and vacancies between
3�a� and 3�b� positions is described by the long-range order

Table 9. The channels of disorder±order MXyÿM4X3 phase transitions and the parameters of distribution functions n�xI; yI; zI� describing M4X3

superstructures.

Symmetry Space group Disorderëorder transition channel Parameters of the distribution function

fksg star k � j �s rays of the fksg star gs j � j �s

Cubic No. 221

Pm�3m

�O 1
h �

fk10g
fk10g
fk10g

k
�1�
10 � �b1 � b2�=2,

k
�2�
10 � �b1 � b3�=2,

k
�3�
10 � �b2 � b3�=2,

g10 � 1=4

g10 � 1=4

g10 � 1=4

j �1�10 � p

j �2�10 � p

j �3�10 � p

Tetragonal No. 139

I4=mmm

�D 17
4h �

fk10g
fk8g
fk8g

k
�1�
10 � �b1 � b2�=2,

k
�1�
8 � �b1 � 3b2 � 2b3�=4,

k
�2�
8 � ÿk �1�8 ,

g10 � 1=4

g8 � 1=4

g8 � 1=4

j �1�10 � p

j �1�8 � p

j �2�8 � ÿp
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parameter Z, ideal ordering with the long-range order
parameter Zmax � 1 is achieved at x � 0, when all 3�a�
positions are occupied by C atoms and 3�b� positions are
vacant. If x increases, i.e., with a rise in vacancy concentra-
tion, parameter Zmax decreases, since vacancies appear in 3�a�
positions. The dependence of the maximum value of the long-
range order parameter on the z-phase composition has the
form Zmax�x� � 1ÿ x. In the disordered z-phase, 3�1ÿ x�
carbon atoms equiprobably occupy 3�a� and 3�b� positions;
therefore, the relative concentration of carbon atoms
involved in the ordering process amounts to �1ÿ x�=2.
Then, the function describing the distribution of C atoms
over 3�a� and 3�b� sites in a nonmetal sublattice of the trigonal
z-phase can be represented as

n�r� � 1ÿ x

2
� Z
2
cos �6pzh� ; �20�

where r � �xh; yh; zh� is the site of the nonmetal sublattice
occupying either the 3�a� or 3�b� position. Distribution
function (20) defines the probability of detecting carbon

atoms at r sites relevant to the 3�a� and 3�b� positions in the
nonmetal sublattice of the z-Ta4C3ÿx phase.With amaximum
long-range order parameter, Zmax�x� � 1ÿ x, function (20) at
all 3�a� sites assumes the value of �1ÿ x� but vanishes into
3�b� sites. In other words, the probability of detectingC atoms
at 3�a� and 3�b� sites at the maximum long-range order
parameter is �1ÿ x� and 0, respectively. For lack of
ordering, when Z � 0, the distribution function n�r� �
�1ÿ x�=2 at all 3�a� and 3�b� sites of the nonmetal
sublattice. The values of function (20) at the sites of the
nonmetal sublattice of the z-Ta4C3ÿx phase are given in
Table 10.

6. M6X5 superstructures

The literature contains a wealth of data on carbide super-
structuresM6C5 �M6C5&� for which t � 3. Experiments have
demonstrated the formation of M6C5 superstructures differ-
ing in symmetry and distribution of C atoms and & vacancies
over the lattice sites in strongly nonstoichiometric cubic
(space group Fm�3m) MCy carbides of group V transition
metals (M � V, Nb, Ta) with a relative carbon content of
0:794 y4 0:88 at temperatures below 1300 K. Trigonal
(space group P31 or P3112) and monoclinic (space group
C2=m, C2 or C2=c) M6C5 superstructures have been
proposed in the literature for ordered nonstoichiometric
vanadium and niobium carbides. The formation of an
incommensurate M6C5-like ordered phase was observed in
nonstoichiometric tantalum carbide TaCy [60±62].

The sequence of phase transformations accompanying the
formation of M6C5 superstructures in nonstoichiometric
MCy carbides was discussed in Ref. [63]. However, reports
published after 2008 propose updated structures with new
space groups for ordered M6X5 �M6C5� phases. These data
were summarized by the authors of Ref. [64], who revised the
transformation sequence during the formation of M6X5 type
superstructures in nonstoichiometric MXy compounds with
the B1 structure. The discussion below takes account of the
new information on superstructures of typeM6X5.

6.1 Trigonal M6X5 superstructure
The formation of an axial trigonal ordered V6C5 phase has
been established by the electron diffraction method, electron
microscopy, and NMR method [65±67]. In terms of symme-
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6(c)

3(b)
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[010]h[100]h
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6(c)

6(c)

3(b)

6(c)

6(c)

Figure 11. Arrangement of atoms in the unit cell of disordered (a) and

ordered (b) trigonal (space group R�3m) z-Ta4C3ÿx phases (the cell is

shown in hexagonal axes): (*) Ta atoms, ( ) Ta atoms outside the cell,

(*) C atoms, (&) structural vacancies, (^) 3�a� and 3�b� positions of the
nonmetal sublattice of the disordered phase statistically, with probability

�1ÿ x�=2, occupied by C atoms and vacancies. (a) Dashed-dotted lines

show the primitive cell of the disordered z-Ta4C3ÿx phase formed by 3�a�
and 3�b� sites, and also 3�a�, 3�b�, and 6�c� positions of the nonmetal

sublattice octahedrally surrounded by tantalum atoms. (b) Ordered

distribution of C atoms over 3�a� positions and structural vacancies &

over 3�b� positions.

Table 10. Trigonal [space group No. 166ÐR�3m (D 5
3d)] z-Ta4C3ÿx �

Ta4C2C1ÿx&1�x carbide: Z � 3, ah � bh � 0:3123, and ch � 3:0053 nm.

Atom Position
and
multi-
plicity

Atomic coordinates
in hexagonal axes

Values
of distribution

function
n�xh; yh; zh�x=ah y=bh z=ch

C1*

C2 (vacancy)

C3

Ta1

Ta2

3�a��
3�b�
6�c�
6�c�
6�c�

0

0

0

0

0

0

0

0

0

0

0

0.5

0.4170

0.1274

0.2910

n2� �1ÿ x�=2� Z=2

n1� �1ÿ x�=2ÿ Z=2

* Carbon C atoms occupy all 3(a) positions in z-Ta4C3ÿx carbide at
x � 0 and the maximum long-range order parameter; for x > 0 and the
maximum long-range order parameter, C atoms occupy only part of the
3�a� positions, while their remaining part is vacant; 3�b� positions are
always vacant regardless of composition and order parameter; 6�c�
positions of nonmetal lattice are always élled with carbon atoms.
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try, this superstructure belongs to the space group P31 or
enantiomorphic space groupP32. The authors of Refs [68, 69]
used structural neutronography to elucidate the structure of
the trigonal V6C5 phase and showed that it has the space
group P3112. Later on, the authors of Ref. [70] reconsidered
the experimental data [65] on the crystalline structure of
ordered nonstoichiometric vanadium carbide and demon-
strated that the trigonal V6C5 superstructure possesses the
space group P3112 rather than P31.

Trigonal (space groups P3112 and P31) unit cells ofM6X5

�M6C5� superstructure are demonstrated in Fig. 12. Coordi-

nates of the atoms and vacancies in ideal trigonal (space
groupsP3112 andP31)M6X5 superstructures are presented in
Table 11. Both unit cells have identical translation vectors
(see Table 11). The unit cell of the M6X5 superstructure with
the space group P3112 is displaced one third of the ctr-axis
length from the trigonal (space group P31) cell, i.e., by vector
ctr=3 � �2=3�h1�11iB1.

Trigonal (space groups P3112 and P31) M6X5 �M6C5�
superstructures are formed via the phase transition channel
involving 13 k � j �s rays of the three fk9g, fk4g, and fk3g stars
(Table 12).

The identical disorder±order transition channel corre-
sponding to trigonal (space groups P3112 and P31) M6X5

superstructures suggests that they are described by one and
the same distribution function depending on three long-range
order parameters: Z9, Z4, and Z3, corresponding to fk9g, fk4g,
and fk3g stars:
n�xI; yI; zI� � yÿ Z9

6
cos
�
p�xI ÿ yI � zI�

�
ÿ Z4
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(
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�
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�
ÿ

���
3
p
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�
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ÿ

���
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���
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: �21�

Referring to Fig. 12, coordinates �xI; yI; zI are related to the
coordinates of the trigonal (space group P3112) M6X5

btr

[010]B1

[001]B1

[100]B1

(000)P3112

(000)P31

ctr

atr

M6X5 (M6X5 ) (space group P3112 and P31)

Figure 12. Position of trigonal (space group P3112 and P31) unit cells of

M6X5 �M6C5� superstructure in a lattice with the basic structure B1. The

contours of the unit cells are shown by solid and dashed-dotted lines,

respectively. The origin of coordinates �000�P3112 of the trigonal (space

group P3112) unit cell has cubic coordinates �2=3 �5=6 �1=2�B1, and the

origin of coordinates �000�B1 of the trigonal (space groupP31) unit cell has
cubic coordinates �0 �1=6 �7=6�B1. ( ) metal atom, (*) interstitial atom X

(C), and (&) vacancy.

Table 11. Trigonal [space group No. 151ÐP3112 (D 3
3 ) and No. 144ÐP31 (C 2

3 )] M6X5 �M6C5� type superstructures: Z � 3, V � 9a 3
B1=2, and

atr � �1=2�h21�1iB1, btr � �1=2�h�112iB1, ctr � 2h1�11iB1.
Atom Space group P3112 Space group P31 Values of distribution

function n�xI; yI; zI�
Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

x=atr y=btr z=ctr x=atr y=btr z=ctr

X1 (vacancy) 3�b� 1=9 2=9 1=6 3�a� 1=9 2=9 1=2 n1 � yÿ Z9=6ÿ Z4=3ÿ Z3=3

X2 3�b� 4=9 8=9 1=6 3�a� 4=9 8=9 1=2 n3 � yÿ Z9=6� Z4=6� Z3=6

X3 3�b� 7=9 5=9 1=6 3�a� 7=9 5=9 1=2 n3 � yÿ Z9=6� Z4=6� Z3=6

X4 3�a� 1=9 8=9 1=3 3�a� 1=9 8=9 2=3 n2 � y� Z9=6ÿ Z4=3� Z3=3

X5 3�a� 4=9 5=9 1=3 3�a� 4=9 5=9 2=3 n4 � y� Z9=6� Z4=6ÿ Z3=6

X6 3�a� 7=9 2=9 1=3 3�a� 7=9 2=9 2=3 n4 � y� Z9=6� Z4=6ÿ Z3=6

M1 6�c�
4=9 5=9 1=12 3�a� 4=9 5=9 5=12

4=9 5=9 7=12 3�a� 4=9 5=9 11=12

M2 6�c�
1=9 8=9 1=12 3�a� 1=9 8=9 5=12

1=9 8=9 7=12 3�a� 1=9 8=9 11=12

M3 6�c�
7=9 2=9 1=12 3�a� 7=9 2=9 5=12

7=9 2=9 7=12 3�a� 7=9 2=9 11=12
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superstructure, listed in Table 11, by the following expres-
sions: xI � xtr ÿ ytr=2� 2ztr � 2=3, yI � xtr=2� ytr=2ÿ
2ztrÿ 5=6, and zI � ÿxtr=2� ytr � 2ztr ÿ 1=2. Parameters gs
and j � j �s of function (21) are presented in Table 12.
Distribution function (21) describing trigonal M6X5 �M6C5�
superstructures takes four values: n1, n2, n3, and n4 at the sites
of the basic nonmetal fcc sublattice (see Table 11), meaning
that the nonmetal sublattice of the disordered nonstoichio-
metricMXy �MCy� compound splits into four nonequivalent
sublattices in the ordering being considered. For ideal M6X5

�M6C5� superstructures, quantity y in distribution function
(21), i.e., the relative concentration of interstitial X atoms,
equals 5=6.

The identity of the phase transition channel and the
distribution function means that for the trigonal M6X5

phase only one of the two trigonal structural models is
valid. Given that the usual requirements for a unit cell are
fulfilled (correspondence to crystal symmetry, maximum
number of right angles and minimum volume), its choice
in one and the same lattice is controversial and possible in a
variety of ways [71]. This explains why one and the same
crystal is described differently in experimental studies. As a
matter of fact, the requirements for the choice of a unit cell
are reduced to a single condition: it must possess the highest
possible symmetry. Given an equal volume of cells, this

means that the point symmetry group of the selected unit
cell must include the maximum number of symmetry
elements (operations).

The point symmetry group 322 �D3� of a trigonal (space
group P3112) M6X5 superstructure comprises 6 symmetry
elements: h1, h5, h9, h13, h17, and h21, and the point symmetry
group 3 �C3� of a trigonal (space group P31) M6C5 super-
structure has three elements: h1, h5, and h9 [1, 2, 31]. This
means that the trigonal (space group P3112) structural model
of the M6X5 phase possesses a higher symmetry than the
trigonal model of the M6X5 phase with space group P31. In
other words, the former model more adequately describes the
crystalline structure of the ordered M6X5 �M6X5&� phase
than the latter one. Thus, the trigonal (space group P3112)
M6X5 �M6C5� superstructures observed in experiments [65±
67, 72, 73] and described later in reviews [1±6, 26] actually
belong to the space group P3112.

6.2 Monoclinic M6X5 superstructure:
C2/c or C2 space group?
A solid boron solution in fcc palladium, PdBy, was recently
investigated in Refs [74, 75] by structural neutronography,
X-ray, and electron diffraction techniques. The disordered
solid PdBy solution has a basic cubic structure B1. The
authors of Refs [74, 75] took advantage of the analogy with

Table 12. Disorder±order MXyÿM6X5 phase transition channels and parameters of the distribution functions n�xI; yI; zI� describing M6X5 �M6C5�
superstructures.

Symmetry Space group Disorderëorder transition channel Parameters of distribution functions

fksg star k � j �s rays of the fksg star gs j � j �s

Trigonal No 151

P3112

�D 3
3 �

or

No. 144

P31

�C 2
3 �

fk9g
fk4g
fk4g
fk4g
fk4g
fk4g
fk4g
fk3g
fk3g
fk3g
fk3g
fk3g
fk3g

k
�3�
9 � b2=2,

k
�1�
4 � �b1 � b2 � 2b3�=3,

k
�2�
4 � ÿk �1�4 ,

k
�7�
4 � �b3 ÿ b1�=3,

k
�8�
4 � ÿk �7�4 ,

k
�9�
4 � �2b1 � b2 � b3�=3,

k
�10�
4 � ÿk �9�4 ,

k
�3�
3 � ÿ�4b1 � b2 � 2b3�=3,

k
�4�
3 � ÿk �3�3 ,

k
�9�
3 � �2b1 � 3b2 � 4b3�=6,

k
�10�
3 � ÿk �9�3 ,

k
�23�
3 � �2b1 � b2 ÿ 2b3�=6,

k
�24�
3 � ÿk �23�3

g9 � 1=6

g4 �
���
3
p

=18

g4 �
���
3
p

=18

g4 �
���
3
p

=18

g4 �
���
3
p

=18

g4 �
���
3
p

=18

g4 �
���
3
p

=18

g3 �
���
3
p

=18

g3 �
���
3
p

=18

g3 �
���
3
p

=18

g3 �
���
3
p

=18

g3 �
���
3
p

=18

g3 �
���
3
p

=18

j �3�9 � p

j �1�4 � 7p=6

j �2�4 � ÿ7p=6
j �7�4 � 3p=2

j �8�4 � ÿ3p=2
j �9�4 � 5p=6

j �10�4 � ÿ5p=6
j �3�3 � 7p=6

j �4�3 � ÿ7p=6
j �9�3 � p=2

j �10�3 � ÿp=2
j �23�3 � ÿ5p=6
j �24�3 � 5p=6

Monoclinic No. 15

C2=c

�C12=c1�
�C 6

2h�
or

No. 5

C2 �C121�
�C 3

2 �

fk9g
fk4g
fk4g
fk3g
fk3g
fk0g
fk0g
fk0g
fk0g

k
�3�
9 � b2=2,

k
�1�
4 � �b1 � b2 � 2b3�=3,

k
�2�
4 � ÿk �1�4 ,

k
�3�
3 � ÿ�4b1 � b2 � 2b3�=3,

k
�4�
3 � ÿk �3�3 ,

k
�4�
0 � �4b1 � b2 ÿ 4b3�=12,

k
�28�
0 � ÿk �4�0 ,

k
�13�
0 � ÿ�8b1 � 5b2 � 4b3�=12,

k
�37�
0 � ÿk �13�0

g9 � 1=6

g4 � 1=12

g4 � 1=12

g3 � 1=12

g3 � 1=12

g0 �
���
3
p

=12

g0 �
���
3
p

=12

g0 �
���
3
p

=12

g0 �
���
3
p

=12

j �3�9 � p

j �1�4 � 4p=3

j �2�4 � ÿ4p=3
j �3�3 � 4p=3

j �4�3 � ÿ4p=3
j �4�0 � ÿ7p=6
j �28�0 � 7p=6

j �13�0 � ÿ7p=6
j �37�3 � 7p=6

Monoclinic No. 12

C2=m

�C12=m1�
�C 3

2h�

fk9g
fk4g
fk4g
fk3g
fk3g

k
�3�
9 � b2=2,

k
�1�
4 � �b1 � b2 � 2b3�=3,

k
�2�
4 � ÿk �1�4 ,

k
�3�
3 � ÿ�4b1 � b2 � 2b3�=3,

k
�4�
3 � ÿk �3�3

g9 � 1=6

g4 � 1=6

g4 � 1=6

g3 � 1=6

g3 � 1=6

j �3�9 � p

j �1�4 � p

j �2�4 � ÿp
j �3�3 � p

j �4�3 � ÿp
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ordered nonstoichiometric M6C5 carbides [1, 2, 26, 34] and
arrived at a conclusion about the formation of a monoclinic
[space group C2=c (C12=c1)] Pd6B �M6X� superstructure.
The monoclinic (space group C2=c) Pd6B superstructure
corresponds to the inverse M6X5 superstructure with the
same space group. In the present case, by inversion is meant
the inversion of populations of octahedral interstices (a
vacant interstice is replaced by the one occupied by a
nonmetal interstitial atom and vice versa).

The disorder±order transition channel for the inverse
monoclinic (space group C2=c)M6X5 �M6C5� superstructure
was studied in Refs [76, 77]. It turned out to be identical with
the disorder±order transition channel via which the mono-
clinic M6C5 superstructure with a space group C2 forms. Let
us clarify if there is a physical difference between monoclinic
M6X5 �M6C5� superstructures with space groups C2=c and
C2.

Figure 13a shows the position of the unit cell of the
monoclinic (space group C2) M6X5 superstructure and the
contour of the unit cell of the monoclinic (space group C2=c)
M6X5 phase. Figure 13b illustrates the arrangement of atoms

and vacancies in the unit cell of the monoclinic (space group
C2=c)M6X5 �M6X5&� phase. Referring to Fig. 13, the origin
of coordinates �000�C2=c of this superstructure has cubic
coordinates ��1=2 1=4 �1=4�B1, i.e., it is displaced by vector
�1=4�h�21�1iB1 with respect to the origin of coordinates
�000�B1 � �000�C2 of the monoclinic (space group C2) unit
cell of the M6X5 �M6C5� superstructure. Coordinates of
atoms and vacancies in ideal monoclinic (space groups C2=c
and C2) M6X5 �M6X5&� superstructures and translation
vectors of unit cells are presented in Table 13. The unit cells
of monoclinic superstructures comprise four M6X5 formula
units and have equal volumes V � 6a 3

B1.
Figure 13 demonstrates that translation vectors of the

unit cell of the monoclinic (space group C2=c) M6X5 phase
have the same length and direction as those of the
monoclinic (space group C2) M6X5 phase or are their
linear combinations: aC2=c � aC2, bC2=c � bC2, and cC2=c �
aC2 � cC2, the volumes of both unit cells being equal. Due
to the invariance of determinants in formula (1) with
respect to addition and subtraction of the rows, the
superstructure vectors of the reciprocal lattice of the
monoclinic (space group C2=c) M6X5 phase also coincide
or are combinations of the vectors of the reciprocal lattice
of the monoclinic (space group C2) M6X5 phase: a�C2=c �
a�C2 ÿ c�C2 � �1=4�h1�1�3i, b�C2=c � b�C2 � �1=3�h�1�10i, and
c�C2=c � c�C2 � �1=4�h1�11i. Monoclinic (space groups C2=c
and C2) M6C5 phases are formed via the same disorder±
order transition channel involving 9 vectors belonging to the
Lifshitz star fk9g, non-Lifshitz stars fk4g, fk3g, and non-
Lifshitz star fk0g with 48 rays (see Table 12).

Taking account of this channel, the distribution function
of interstitial atoms X (C) in monoclinic (space groups C2=c
andC2)M6X5 �M6C5� superstructures depends on four long-
range order parameters, Z9, Z4, Z3, and Z0, corresponding to
stars fk9g, fk4g, fk3g, and fk0g, and has the form

n�xI; yI; zI� � yÿ Z9
6

cos
�
p�xI ÿ yI � zI�

�
ÿ Z4
12

(
cos

�
4p�xI � yI�

3

�
ÿ

���
3
p

sin

�
4p�xI � yI�

3

�)

ÿ Z3
12

(
cos

�
p�xIÿ 5yIÿ 3zI�

3

�
ÿ

���
3
p

sin

�
p�xIÿ 5yIÿ 3zI�

3

�)

ÿ Z0
12

(
3 cos

�
p�xI� 7yI� 9zI�

6

�
ÿ

���
3
p

sin

�
p�xI� 7yI� 9zI�

6

�

� 3 cos

�
p�7xI � yI ÿ 9zI�

6

�
ÿ

���
3
p

sin

�
p�7xI � yI ÿ 9zI�

6

�)
:

�22�

Referring to Fig. 13, coordinates �xI; yI; zI� of the disordered
cubic B1 structure are related to the coordinates of the
monoclinic (space group C2=c) M6X5 superstructure (see
Table 13) by the expressions xI � xm=2� 3ym=2� 3zm=2ÿ
1=2, yI � ÿxm=2� 3ym=2ÿ3zm=2� 1=4, and zI � ÿxm�
zm ÿ 1=4. Distribution function (22) describing monoclinic
(space groupsC2=c andC2)M6X5 �M6C5� superstructures at
all sites of the basic nonmetal fcc sublattice takes 5 different
values, n1, n2, n3, n4, and n5 (see Table 13). The similarity of
distribution functions means that only one of the two
monoclinic (space groups C2=c and C2) structural models
holds for the M6X5 phase. Since the volumes of the unit cells
are equal, the higher symmetry cell should be chosen here.
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Figure 13. Position of monoclinic unit cells of the M6X5 �M6C5� super-
structure in a lattice with the basic structure B1: (a) the cell with space

group C2, and (b) the cell with space group C2=c. Dashed-dotted lines in

figure (a) additionally show the contour of the monoclinic cell with space

group C2=c. The origin of coordinates �000�C2=c of the monoclinic (space

group C2=c) unit cell has cubic coordinates ��1=2 1=4 �1=4�B1, i.e., it is

displaced by vector �1=4�h�21�1iB1 with respect to the origin of coordinates

�000�B1 � �000�C2 of the monoclinic (space group C2) unit cell. Vertical

dashed lines show projections (�) of atoms, vacancies, and vertices of unit

cells onto the plane �x y 0�B1. ( ) metal atom, (*) interstitial atom X (C),

and (&) vacancy.
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The point symmetry group 2=m �C2h� of the monoclinic
(space groupC2=c)M6X5 �M6C5� phase includes 4 symmetry
elements (rotations h1, h4, h25, and h28), whereas group 2 �C2�
of the monoclinic (space group C2) M6X5 �M6C5� phase
comprises only two symmetry elements, h1 and h4. Therefore,
it is inferior to the monoclinic (space group C2=c) structural
model of the M6X5 phase in terms of symmetry. Thus, the
monoclinic (space group C2=c) model more adequately
describes the crystalline structure of the ordered M6X5

�M6X5&� phase than the model with a space group C2. To
sum up, the monoclinic (space group C2) M6X5 �M6C5�
superstructures observed in experiments [78±81] and also
described in reviews [1±6, 26] actually belong to the space
group C2=c.

6.3 Monoclinic (space group C2/m) M6X5 superstructure
The unit cell of the monoclinic (space group C2=m) M6X5

�M6C5� superstructure includes two M6X5 formula units
(Fig. 14). Translation vectors of the unit cell and coordinates
of atoms and vacancies are given in Table 14. The disorder±

Table 13.Monoclinic superstructures of typeM6X5 �M6C5� [space group No. 15ÐC2=c (C12=c1) (C 6
2h) and No. 5ÐC2 (C121) (C 3

2 )]:Z � 4,V � 6a 3
B1;

aC2=c � �1=2�h1�1�2iB1, bC2=c � �1=2�h330iB1, cC2=c � �1=2�h3�32iB1; aC2 � �1=2�h1�1�2iB1, bC2 � �1=2�h330iB1, cC2 � h1�12iB1.
Atom Space group C2=c Space group C2 Values of distribution function

n�xI; yI; zI�
Position
and
multi-
plicity

Atomic coordinates
in ideal ordered structure

Position
and
multi-
plicity

Atomic coordinates
in ideal ordered structure

x=atr y=btr z=ctr x=atr y=btr z=ctr

X1 �vacancy� 4�e� 0 1=12 1=4 2�a� 0 0 0 n1 � yÿ Z9=6ÿ Z4=12ÿ Z3=12ÿ Z0=2

1=2 5=12 3=4 2�b� 2�b� 1=3 1=2 n1 � yÿ Z9=6ÿ Z4=12ÿ Z3=12ÿ Z0=2

X2 4�e�
0 5=12 1=4 2�a� 0 1=3 0 n5 � yÿ Z9=6ÿ Z4=12ÿ Z3=12� Z0=2

0 7=12 3=4 2�b� 1=2 1=2 1=2 n5 � yÿ Z9=6ÿ Z4=12ÿ Z3=12� Z0=2

X3 4�e� 0 3=4 1=4 2�a� 0 2=3 0 n3 � yÿ Z9=6� Z4=6� Z3=6

0 1=4 3=4 2�b� 1=2 1=6 1=2 n3 � yÿ Z9=6� Z4=6� Z3=6

X4 4�c� 1=4 3=4 1=2 4�c� 1=2 2=3 1=4 n4 � y� Z9=6� Z4=6ÿ Z3=6

X5 8� f � 1=4 5=12 1=2 4�c� 1=2 1=3 1=4 n2 � y� Z9=6ÿ Z4=12� Z3=12

1=4 1=12 1=2 4�c� 1=2 0 1=4 n2 � y� Z9=6ÿ Z4=12� Z3=12

M1 8� f � 1=8 1=4 3=8 4�c� 1=4 1=6 1=8

1=8 3=4 7=8 4�c� 3=4 2=3 5=8

M2 8� f � 5=8 5=12 3=8 4�c� 3=4 1=3 1=8

3=8 7=12 5=8 4�c� 3=4 1=2 3=8

M3 8� f � 1=8 7=12 3=8 4�c� 1=4 1=2 1=8

5=8 1=12 3=8 4�c� 3=4 0 1=8

[010]B1

[100]B1

[001]B1

am

cm

bm

M6X5 (M6X5 ) (space group C2=m)

Figure 14. Position of the monoclinic (space group C2=m) unit cell of

M6X5 �M6C5� superstructure in a lattice with the basic structure B1.

( ) metal atom, (*) interstitial atom X (C), and (&) vacancy.

Table 14. Monoclinic [space group No. 12ÐC2=m (C12=m1) (C 3
2h)] M6X5 superstructures: Z � 2, V � 3a 3

B1, aC2=m � �1=2�h1�1�2iB1, bC2=m �
�1=2�h330iB1, and cC2=m � �1=2�h1�12iB1.

Atom Position and
multiplicity

Atomic coordinates in ideal ordered structure Values of distribution function n�xI; yI; zI�
x=aC2=m y=bC2=m z=cC2=m

X1 (vacancy)

X2

X3

X4

M1

M2

2�a�
2�d �
4�g�
4�h�
4�i �
8� j �

0

0

0

0

1=4

1=4

0

1=2

1=3

1=6

0

2=3

0

1=2

0

1=2

3=4

3=4

n1 � yÿ Z9=6ÿ Z4=3ÿ Z3=3

n2 � y� Z9=6ÿ Z4=3� Z3=3

n3 � yÿ Z9=6� Z4=6� Z3=6

n4 � y� Z9=6� Z4=6ÿ Z3=6
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order transition channel associated with the formation of the
monoclinic (space groupC2=m)M6X5 �M6C5� superstructure
involves five nonequivalent superstructure vectors of three
stars, fk9g, fk4g, and fk3g (see Table 12). Taking this into
account, the distribution function of carbon atoms in
monoclinic (space group C2=m) M6X5 �M6C5� superstruc-
tures depends on three long-range order parameters, Z9, Z4,
and Z3:

n�xI; yI; zI� � yÿ Z9
6

cos
�
p�xI ÿ yI � zI�

�
ÿ Z4

3
cos

�
4p�xI � yI�

3

�
ÿ Z3

3
cos

�
p�xI ÿ 5yI ÿ 3zI�

3

�
: �23�

In accordance with Fig. 14, coordinates �xI; yI; zI� of the basic
disordered B1 structure are related to the coordinates of the
monoclinic (space group C2=m) M6X5 superstructure by
the expressions xI � xm=2� 3ym=2� zm=2, yI � ÿxm=2�
3ym=2ÿ zm=2, and zI � ÿxm � zm. The distribution func-
tion (23) at all sites of the basic nonmetal fcc sublattice takes
the same 4 values (see Table 14) as distribution function (21)
describing the trigonal M6X5 superstructure (see Table 11).
However, the relative positions of the sites of four sublattices
in the monoclinic (space groupC2=m) ordered superstructure
differ from those in the trigonal (space group P3112) M6X5

superstructure. The long-range order in the distribution of
carbon atoms and vacancies in the monoclinic (space group
C2=m) M6X5 superstructure under consideration is also
different from that in the monoclinic (space group C2=c)
M6X5 superstructure.

The monoclinic (space group C2=m) superstructure of
type M6X5 �M6C5� was observed in experiments with
nonstoichiometric niobium carbide NbCy [32, 33, 82±86].
According to paper [73], solidification of vanadium-rich Fe
alloys is accompanied by dispersed precipitation of the
ordered V6C5 phase that also has the monoclinic (space
group C2=m) structure.

6.4 Sequence of M6X5 superstructure formation
The above symmetry analysis of M6X5 �M6C5� superstruc-
tures gives evidence that the ordering of nonstoichiometric
MXy �MCy� compounds with y � 5=6 results in formation of
one trigonal (space group No. 151Ð P3112) and two
monoclinic (space groups No. 12ÐC2=m and No. 15Ð
C2=c) M6X5 �M6C5� phases. The ordering of X atoms and &

structural vacancies occurs in the basic nonmetal fcc sub-
lattice of the disordered cubic (space group Fm�3m) MXy

phase and is associated with the splitting of high-symmetry
4�b� positions into two or more positions of the low-
symmetry ordered phase. The disordered cubic (space group
Fm�3m) MXy phase has a point symmetry group m�3m �Oh�
that includes 48 symmetry elements, h1ÿh48 [1, 2, 30, 31].

Point symmetry groups of trigonal (space group P3112),
monoclinic (space group C2=c), and monoclinic (space group
C2=m) M6X5 �M6C5� superstructures include six �h1, h5, h9,
h13, h17, h21�, four �h1, h4, h25, h28�, and again four �h1, h4, h25,
h28� symmetry elements, respectively. They are subgroups of
the point symmetry group of the basic disordered cubic (space
group Fm�3m) MXy �MCy� phase; therefore, the transition
from the disordered MXy �MCy� compound to any of these
superstructures represents a disorder±order phase transfor-
mation. The formation of these M6X5 superstructures
proceeds with a symmetry distortion over three or four
irreducible representations, meaning that MXy !M6X5

phase transitions do not satisfy the Landau group-theoreti-
cal criterion for second-order phase transitions: they are
realized through a first-order transition mechanism.

The point symmetry group 322 �D3� of the trigonal (space
group P3112) M6X5 superstructure includes 6 symmetry
elements: h1, h5, h9, h13, h17, and h21, while the point
symmetry group m�3m �Oh� of the basic cubic disordered
MCy phase contains 48 elements, h1ÿh48; therefore, the
rotational symmetry reduction equals 8. The reduction in
translational symmetry upon the transition from the high-
symmetry disordered MXy �MCy� phase to a low-symmetry
trigonalM6X5 �M6C5� superstructure equals 4.5. The overall
symmetry reduction is the product of rotational and transla-
tional reductions. Therefore, the overall symmetry reduction
in the disordered nonstoichiometric cubic (space group
Fm�3m) MXy phase ! ordered trigonal (space group P3112)
M6X5 phase transition amounts to N � 36. The point
symmetry group 2=m �C2h� of monoclinic (space group
C2=m and C2=c) ordered M6X5 phases involves 4 symmetry
elements, h1, h4, h25, and h28; hence, the rotational symmetry
reduction in the disorder±order transition reaches 12. The
reduction in translational symmetry during the transition
from the disordered MXy phase to the monoclinic (space
groupC2=m)M6X5 superstructure would run to 3 and equals
6 in the transition to the monoclinicM6X5 phase with a space
group C2=c. The overall symmetry reduction in disorder±
orderMXy (space groupFm�3m)!M6X5 (space groupC2=m)
and MXy (space group Fm�3m)!M6X5 (space group C2=c)
transitions amounts to 36 and 72, respectively.

As far as transitions between individual M6X5 �M6C5�
superstructures are concerned, it is clear from the relationship
between symmetry elements hi that a trigonal superstructure
is unrelated to monoclinic M6X5 superstructures in terms of
symmetry, because its point group is neither a group nor a
subgroup of the point groups of monoclinic superstructures.
Therefore, the transition between the trigonal and any of the
two monoclinic M6X5 phases cannot be an order±order
transition but is possible as a polymorphic transformation.

The order±order phase transformation is only possible for
monoclinic (space groups C2=m and C2=c) M6X5 super-
structures. Since the point symmetry groups of these super-
structures are identical, a transition between them does not
affect rotational symmetry. A reduction in translational
symmetry in an order±order transition equals the ratio
between unit cell volumes of low- and high-symmetry
ordered phases or the ratio between site numbers in the unit
cells of these phases. For the monoclinic (space groups C2=m
and C2=c) M6X5 �M6C5� superstructures under considera-
tion, the reduction in translational symmetry equaling 2 will
occur during the order±order M6X5 (space group C2=m) !
M6X5 (space group C2=c) transition. Therefore, the order±
order monoclinic (space group C2=m) M6X5 phase !
monoclinic (space group C2=c) M6X5 phase transformation
occurs with a two-fold overall symmetry reduction.

Thus, a decrease in temperature is accompanied by two
transition sequences involvingM6X5 �M6C5� phases (Fig. 15).
The first one covers a cubic (space group Fm�3m) disordered
MXy phase!monoclinic (space groupC2=m) orderedM6X5

phase!monoclinic (space groupC2=c) orderedM6X5 phase
transformations, including only disorder±order and order±
order transitions with symmetry reduction by a factor of 36
and 2, respectively. The alternative sequence embraces a cubic
(space group Fm�3m) disorderedMXy phase! trigonal (space
group P3112) ordered M6X5 phase ! monoclinic (space
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group C2=c) M6X5 phase transformations, including disor-
der±order transitions with symmetry reduction by a factor of
36 and polymorphic transformation of the trigonal phase into
the monoclinic one. Experimental data suggest a higher
probability of the former sequence.

7. M8X7 cubic superstructures

Unit cells of cubic (space groups Fm�3m and P4332) super-
structures of type M8X7 have similar translation vectors but
differ in the relative positions of occupied and vacant sites in
M8X7 phases (Fig. 16). Translation vectors of unit cells and
the coordinates of atoms and vacancies in these phases are
presented in Table 15.

The phase transition channel associated with the forma-
tion of a cubic (space group Fm�3m) M8X7 superstructure
includes all rays of fk10g and fk9g stars (Table 16). The
distribution function of interstitial atoms in the cubic (space
group Fm�3m)M8X7 phase has the form

n�xI; yI; zI� � yÿ Z10
8

�
cos �2pxI� � cos �2pyI� � cos �2pzI�

�
ÿ Z9

8

n
cos
�
p�xI � yI � zI�

�� cos
�
p�xI ÿ yI � zI�

�
� cos

�
p�xI � yI ÿ zI�

�� cos
�
p�ÿxI � yI � zI�

�o �24�

and depends on two long-range order parameters, Z10 and Z9.
Referring to Fig. 16a, coordinates �xI; yI; zI� of the basic
disordered B1 structure are related to the coordinates of the
cubic (space group Fm�3m) M8X7 superstructure given in

Table 15 by the expressions xI � 2xcub, yI � 2ycub, and
zI � 2zcub. The values of function (24) at sites located in
different positions of the nonmetal sublattice are presented in
Table 15, and the values of parameters gs and j � j �s of this
function in Table 16. The same distribution function (24)
describes the cubic (space group Fm�3m) substitution super-
structure A7B (of the Pt7Cu type).

The cubic (space group P4332) M8X7 superstructure
forms via the transition channel involving all rays of fk9g,
fk8g, and fk4g stars with m4 � 1=4 (see Table 16). The
distribution function describing this superstructure depends

MXy (MCy) (space group Fm3m)

M6X5 (M6C5) (space group P3112)

M6X5 (M6C5) (space group P31)

M6X5 (M6C5) (space group C2=m)

M6X5 (M6C5) (space group C2=c) M6X5 (M6C5) (space group C2)

Figure 15. (Color online.) Physically admissible sequences of disorder±order and order±order phase transformations proceeding with a decrease in

temperature and producing superstructures of typeM6X5 �M6C5� in strongly nonstoichiometricMXy �MCy� compoundswith the basicB1 structure. The

topmost unit cell of the nonstoichiometricMXy �MCy� compound has a basic cubic (space group Fm�3m) structure; the sites of the nonmetal sublattice in

this cell are statistically occupied byX (C) atoms with probability y. According to verified data,M6X5 �M6C5� superstructures belong to the space groups
P3112 and C2=c (space groups P31 and C2 were identified incorrectly). Of the two possible sequences, the cubic (space group Fm�3m) disordered MXy

�MCy� phase! monoclinic (space group C2=m) ordered M6X5 phase! monoclinic (space group C2=c) ordered M6X5 phase transformation is most

likely to occur. The vacant sites of the nonmetal sublattice ofM6X5 �M6C5� superstructures are not shown.

M8X7 (space group Fm�3m) M8X7 (space group P4332)

[010]B1

[010]B1

[100]B1
[100]B1

[001]B1 [001]B1

acub

acub

ccub
ccub

bcub

bcub

a b

Figure 16. Position of cubic (space group Fm�3m) unit cells of M8X7

superstructures in a lattice with the basic structure B1: (a) space group

Fm�3m, and (b) space group P4332 (the origin of coordinates �000�M8X7
of

this superstructure M8X7 has coordinates �ÿ1=4 ÿ 1=4 ÿ 1=4�B1 of the

basic structure of type B1). (*) interstitial atom, (*) metal atom, and

(&) vacancy.
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on three long-range order parameters, Z9, Z8, and Z4:

n�xI; yI; zI� � yÿ Z9
16

n
cos
�
p�xI � yI � zI�

�
ÿ cos

�
p�xI ÿ yI � zI�

�ÿ cos
�
p�xI � yI ÿ zI�

�
ÿ cos

�
p�ÿxI � yI � zI�

�oÿ Z8
8

n
ÿ cos

�
p�2xI � zI�

�
� sin

�
p�2xI � zI�

�ÿ cos
�
p�yI � 2zI�

�� sin
�
p�yI � 2zI�

�
ÿ cos

�
p�xI � 2yI�

�� sin
�
p�xI � 2yI�

�o
ÿ Z4

8

n
cos
�
p�xI � yI�

�� cos
�
p�xI � zI�

�
� cos

�
p�yI � zI�

�� sin
�
p�xI ÿ yI�

�
ÿ sin

�
p�xI ÿ zI�

�� sin
�
p�yI ÿ zI�

�o
: �25�

The values of parameters gs and j � j �s of function (25) are
presented in Table 16. As Fig. 16b shows, coordinates
�xI; yI; zI� of the basic disordered B1 structure are related to
the coordinates of the cubic (space group P4332) M8X7

superstructure (see Table 15) by expressions xI �
2xcub ÿ 1=4, yI � 2ycub ÿ 1=4, and zI � 2zcub ÿ 1=4. The
probabilities of filling sites in these sublattices by interstitial
X atoms, i.e., the values of the distribution function (25), are
given in Table 15. In such ordering, the nonmetal sublattice of
the disordered MXy compound breaks up into four none-
quivalent sublattices.

The cubic (space group P4332) superstructure of type
M8X7 has been observed experimentally in vanadium carbide
VCy [87±92], and in dispersed vanadium carbide precipitates
from FeÿVa alloys [73].

In completely ordered cubic superstructures of type
M8X7, the relative content of interstitial atoms in the
nonmetal sublattice is yst � 7=8.

Table 15. Cubic superstructures of typeM8X7.

Symmetry Space
group

Translation vectors
of unit cell

V � Atom Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

Values of distribution
function n�xI; yI; zI�

x=acub y=bcub z=ccub

Cubic No. 225

Fm�3m

�O 5
h �

acub � h200iB1,
bcub � h020iB1,
ccub � h002iB1

8a 3
B1

X1 (vacancy) 4�a� 0 0 0 n1 � yÿ 3Z10=8ÿ Z9=2

X2 4�b� 1=2 1=2 1=2 n2 � yÿ 3Z10=8� Z9=2

X3 24�d � 0 1=4 1=4 n3 � y� Z10=8

M1 8�c� 1=2 1=4 1=4

M2 24�e� 1=4 0 0

x=acub y=bcub z=ccub

Cubic No. 212

P4332

�O 6�

acub � h200iB1,
bcub � h020iB1,
ccub � h002iB1

8a 3
B1

X1 (vacancy) 4�b� 5=8 5=8 5=8 n1 � yÿ Z9=8ÿ 3Z8=8ÿ 3Z4=8

X2 4�a� 1=8 1=8 1=8 n2 � y� Z9=8� 3Z8=8ÿ 3Z4=8

X3 12�d � 1=8 5=8 5=8 n3 � y� Z9=8ÿ Z8=8� Z4=8

X4 12�d � 1=8 3=8 7=8 n4 � yÿ Z9=8� Z8=8� Z4=8

M1 8�c� 3=8 3=8 3=8

M2 24�e� 1=8 3=8 1=8

* The volume of the unit cell of a superstructure expressed through parameter aB1 of the unit cell of the basic disordered B1 structure.

Table 16.Disorder±orderMXyÿM8X7 phase transition channels and parameters of the distribution functions describing superstructures of typeM8X7.

Symmetry Space group Disorderëorder transition channel Parameters of distribution functions

fksg star k � j �s rays of the fksg star gs j � j �s

Cubic No. 225

Fm�3m

�O 5
h �

fk10g
fk9g

k
�1�
10 , k �2�10 , k �3�10

k
�1�
9 , k �2�9 , k �3�9 , k �4�9

g10 � 1=8

g9 � 1=8

j �1�10 � j �2�10 � j �3�10 � p

j �1�9 � j �2�9 � j �3�9 � j �4�9 � p

Cubic No. 212

P4332

�O 6�

fk9g
fk8g
fk8g
fk4g
fk4g
fk4g
fk4g
fk4g

k
�1�
9 , k �2�9 , k �3�9 , k �4�9

k
�1�
8 , k �3�8 , k �5�8

k
�2�
8 , k �4�8 , k �6�8

k
�1�
4 , k �5�4 , k �9�4

k
�2�
4 , k �6�4 , k �10�4

k
�3�
4 , k �11�4

k
�4�
4 , k �12�4

k
�7�
4 , k �8�4

g9 � 1=16

g8 �
���
2
p

=16

g8 �
���
2
p

=16

g4 � 1=16

g4 � 1=16

g4 � 1=16

g4 � 1=16

g4 � 1=16

j �1�9 � p, j �2�9 � j �3�9 � j �4�9 � 0

j �1�8 � j �3�8 � j �5�8 � 5p=4

j �2�8 � j �4�8 � j �6�8 � ÿ5p=4
j �1�4 � j �5�4 � j �9�4 � p

j �2�4 � j �6�4 � j �10�4 � ÿp
j �3�4 � j �11�4 � p=2

j �4�4 � j �12�4 � ÿp=2
j �7�4 � 3p=2, j �8�4 � ÿ3p=2

862 A I Gusev Physics ±Uspekhi 57 (9)



Cubic M8X7 superstructures have unit cells of equal
volume, V � 8a 3

B1, but the point symmetry group 432 �O� in
M8X7 with the space group P4332 contains 24 symmetry
elements, h1ÿh24, whereas the point symmetry group m�3m
�Oh� of the cubic (space group Fm�3m) M8X7 superstructure
includes 48 elements, h1ÿh48. Evidently, one of these two
cubic M8X7 superstructures, namely that with the space
group P4332, is a low-symmetry and, accordingly, low-
temperature structure. The cubic (space group Fm�3m) M8X7

superstructure is intermediate between the high-temperature
disordered MXy phase and the M8X7 superstructure with
space group P4332. The sequence of possible phase transfor-
mations that occur as temperature decreases and give rise to
M8X7 superstructures in MXy compound with structure B1
has the following form: disordered nonstoichiometric cubic
(space group Fm�3m) MXy phase ! ordered cubic (space
group Fm�3m) M8X7 phase ! ordered cubic (space group
P4332)M8X7 phase. In these disorder±order and order±order
transitions, the overall symmetry reduction equals 8 and 2,
respectively.

8. Superstructures
of lower hexagonal M2Cy carbides

Ordering in lower nonstoichiometric carbides and nitrides
M2Xy 0 �MXy 0=2 �0:404 y 0=24 0:50� with the basic hexa-
gonal structure of type L03 is known much less than that in
nonstoichiometric MXy compounds with the basic cubic
structure B1. Ordering of lower hexagonal nonstoichio-
metric M2Xy 0 compounds most frequently gives rise to
superstructures of type M2X with a different symmetry. A
detailed description of such superstructures exemplified by
lower tungsten carbideW2C can be found in monograph [93].
In what follows, they are considered as typical M2X super-
structures with a basic hexagonal lattice.

The lower tungsten carbide W2Cy belong in the group of
strongly nonstoichiometric interstitial compounds and has a
homogeneity interval extending from WC0:34 to WC0:52 at
� 3000 K [94] and narrowing as temperature drops. The
literature reports a disordered hexagonal [space group
P63=mmc (D 4

6h)] b-W2C phase and three ordered phases of
lower tungsten carbide W2Cy, viz. orthorhombic b 0-W2C
[space group No. 60ÐPbcn (D 14

2h )] with the z-Fe2N �Mo2C�
structure, rhombohedral b 00-W2C [space group No. 164Ð
P�3m1 (D 3

3d)] with the C6 (anti-CdI2) structure, and trigonal
e-W2C [space group No. 162ÐP�31m (D 1

3d)] with the e-Fe2N
structure. In all modifications of W2Cy carbide, the tungsten
atoms make up a close-packed hexagonal metal sublattice in
which from 34 to 50% of the interstices can be occupied by
carbon atoms. Lower W2Cy carbide can be either disordered
at a high temperature or ordered at a lower temperature,
depending on the arrangement of carbon (C) atoms and &

vacancies.
The basic b-W2C phase has a hexagonal (space group

P63=mmc) L03 structure with a disordered arrangement of C
atoms and & structural vacancies in 2�a� positions of the
nonmetal sublattice. The unit cell of the b-W2C phase is
depicted in Fig. 17a. The volumeVL03 of the unit cell in b-W2C
carbide is � ���3p =2�a 2c. In disordered b-W2C carbide with the
L03 structure, the Ising lattice in which atomic-vacancy
ordering may occur is formed by the hexagonal nonmetal
sublattice. For the b-W2C carbide, lattice periods
ax � ay � a, and period az of the primitive (as regards the
nonmetal sublattice) translation cell in direction �001� is half

the period c of the unit cell, i.e., az � c=2 (Fig. 17a). Structural
vectors of the reciprocal lattice for the basic hexagonal lattice
are b1 � h100i and b2 � h010i in 4p=�a ���

3
p � units, and

b3 � h001i in 4p=c units.

8.1 Rhombohedral b 00-W2C superstructure
The unit cell of a rhombohedral (space group P�3m1) ordered
b 00-W2Cphasewith theC6 type structure is shown inFig. 17b.
Translation vectors of this unit cell coincide with translation
vectors of the unit cell of the disordered hexagonal phase and
equal aC6 � �100�L03, bC6 � �010�L03, and cC6 � �001�L03. Due
to this, the volume of the unit cell of the rhombohedral phase,
VC6 � �

���
3
p

=2�a 2c, coincides with that of the unit cell of the
disordered b-W2C carbide. Coordinates of the atoms and
vacancies in an ideal rhombohedral (space group P�3m1)
b 00-W2C phase are presented in Table 17. It is clear from a
comparison of the disordered b-W2C carbide and the
rhombohedral b 00-W2C phase (see Fig. 17) that rhombohe-
dral ordering results in splitting 2�a� positions statistically
half-filled with C atoms into positions 1�a� and �1b�, one of
which is occupied by carbon atom, while the other is vacant.

The b 00-W2C superstructure forms via the disorder±order
transition channel involving k

�1�
17 �b3=2 ray of the fk17g star

of the hexagonal lattice (the numbering and description of
fksg stars of the wave vectors of the hexagonal lattice and
their k � j �s rays are in accordance with monographs [30, 31]).
Notice that vector k

�1�
17 � b3=2 � �0 0 1=2� in 4p=c units or

�001� in 2p=c units. Accordingly, the distribution function of
carbon atoms at r sites of the nonmetal sublattice in the
ordered rhombohedral b 00-W2C �WCy� phase depends on a
single long-range order parameter Z17 and has the form

n�xI; yI; zI� � y� Z17
2

cos �2pzI� ; �26�

where y4 0:5 is the relative carbon concentration in b 00-W2C
�WCy� carbide, and xI; yI; zI are the coordinates of r sites in
the nonmetal sublattice of the basic disordered hexagonal
phase. Referring to Fig. 17b, coordinates �xI; yI; zI� of the
disordered hexagonal L03 structure are related by simple

b-W2C (L03, space group P63=mmc) b00-W2C (C6, space group P�3m1)

[010]L03
[010]L03

[100]L03 [100]L03

[001]L03 [001]L03

ax � a
ay � a

az�c=2

a bcC6

aC6

bC6x x x x

Figure 17. Unit cell of the basic disordered hexagonal (space group

P63=mmc) b-W2Cphase withL03 type structure (a) and position of the unit
cell of the rhombohedral (space group P�3m1) ordered b 00-W2C phase of

type C6 (b) in the basic lattice with L03 structure. Periods of the unit cell

of the disordered b-W2C phase equal a in directions �100�L03 and �010�L03;
the period in the �001�L03 direction is c. The primitive (as regards nonmetal

sublattice) unit cell of the b-W2C phase is shown by dashed lines; its

periods ax and ay coincide with the respective periods of the unit cell of the

b-W2C phase, and period az of the primitive cell in direction �001�L03 is half
the period c of the unit cell of the disordered b-W2C phase, i.e., az � c=2.
(*) tungsten (W) atoms, ( ) sites of the nonmetal sublattice of the

disordered b-W2C phase statistically (with probability 1=2) occupied by

carbon (C) atoms, (*) carbon (C) atoms, and (&) vacant sites of nonmetal

sublattice.

September 2014 Nonstoichiometry and superstructures 863



expressions xI � xC6, yI � yC6, and zI � zC6 to the coordi-
nates of the rhombohedral (space group P�3m1) b 00-W2C
superstructure (see Table 17) . The values of distribution
function (26) at the sites of the nonmetal sublattice of the
rhombohedral superstructure are listed in Table 17.

The authors of Ref. [95] postulated the existence of the
ordered rhombohedral b 00-W2C phase without furnishing
strong structural evidence by a mere reference to Ref. [96],
where W2C carbide obtained by carbidization of a thin
metallic tungsten film was studied using the electron diffrac-
tion technique. In Ref. [96], based on limited data and taking
no account of othermodels, the researchers hypothesized that
lower b 00-W2C carbide has a rhombohedral (space group
P�3m1) structure of type C6. The authors of Ref. [95] argued
that the b 00-W2C phase exists at temperatures from 2300 to
1500 K. Reference [97] reports without any structural proof
finding the b 00-W2C phase in lower tungsten carbide obtained
at 2420±2520 K. The existence of the rhombohedral b 00-W2C
phase has never been confirmed in later studies.

8.2 Trigonal e-W2C superstructure
The trigonal (space group P�31m) e-W2C phase possesses a
unit cell of volumeVe � �3

���
3
p

=2�a 2c (Fig. 18). Its translation
vectors and coordinates of atoms and vacancies are presented
in Table 17. For the trigonal e-W2C superstructure in the first
Brillouin zone of the disordered hexagonal nonmetal sub-
lattice, there are three nonequivalent superstructure vectors
corresponding to ray k

�1�
17 � b3=2 of the single-ray Lifshitz

star fk17g and two rays k
�1�
15 � �b1� b2�=3� b3=2 and

k
�2�
15 � ÿk �1�15 of the two-ray Lifshitz star fk15g. Thus, the

disorder±order phase transition channel involved in the
formation of the ordered trigonal e-W2C phase comprises
three superstructure vectors, k

�1�
15 , k

�2�
15 , and k

�1�
17 . It should be

noted that vector b3=2 � �0 0 1=2� in 4p=c units or �001� in
2p=c units. If 2p=c units are utilized, vectors k

�1�
17 �

b3=2 � �001� and k
�1�
15 � �b1 � b2�=3� b3=2 � �1=3 1=3 1�.

Therefore, the distribution function of carbon atoms in the
ordered trigonal e-W2Cy 0 �WCy, y4 0:5� phase has the form

n�xI; yI; zI� � yÿ Z17
6

cos �2pzI�

� 2Z15
3

cos

�
2p
3
�xI � yI � 3zI�

�
: �27�

Referring to Fig. 18, coordinates �xI; yI; zI� of the disordered
hexagonal L03 structure are related to the coordinates of the
trigonal (space group P�31m) e-W2C superstructure (see
Table 17) by the following expressions: xI � xe � ye, yI �
ÿxe � 2ye, and zI � ze. Distribution function (27) depends on
two long-range order parameters, Z17 and Z15, corresponding
to fk17g and fk15g stars, and takes four different values at the
sites of the nonmetal sublattice of the trigonal e-W2C phase
(see Table 17).

e-W2C (e-Fe2N, space group P�31m)

[010]L03

[001]L03

[100]L03

ce

ae

be

x

x

Figure 18. Position of the unit cells of the trigonal (space group P�31m)

ordered e-W2C phase of type e-Fe2N in the basic lattice with the L03
structure: (*) tungsten (W) atoms, (*) carbon (C) atoms, and (&) vacant

sites of the nonmetal sublattice.

Table 17.M2X type superstructures of lower hexagonal tungsten carbide W2C.

Symmetry Space group Translation vectors
of unit cell

V � Atom Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

Values of distribution
function n�xI; yI; zI�

x=aC6 y=bC6 z=cC6

Rhombo-

hedral

No. 164

P�3m1

�D 3
3d�

aC6 � h100iL03,
bC6 � h010iL03,
cC6 � h001iL03

VL03
C1 (vacancy) 1�b� 0 0 1=2 n1 � yÿ Z17=2

C2 1�a� 0 0 0 n2 � y� Z17=2

M1 (W1) 2�d � 1=3 2=3 1=4

x=ae y=be z=ce

Trigonal No. 162

P�31m

�D 1
3d�

ae � h1�10iL03,
be � h120iL03,
ce � h001iL03

3VL03
C1 (vacancy) 1�b� 0 0 1=2 n1 � y� Z17=6ÿ 2Z15=3

C2 (vacancy) 2�c� 1=3 2=3 0 n2 � yÿ Z17=6ÿ Z15=3

C3 1�a� 0 0 0 n3 � yÿ Z17=6� 2Z15=3

C4 2�d � 1=3 2=3 1=2 n4 � y� Z17=6� Z15=3

M1 (W1) 6�k� 1=3 0 1=4

x=aorth y=borth z=corth

Ortho-

rhombic

No. 60

Pbcn

�D 14
2h �

aorth � h001iL03,
borth � 2h100iL03,
corth � h120iL03

4VL03
C1 (vacancy) 4�c� 0 7=8 1=4 n1 � yÿ Z14=2

C2 4�c� 0 3=8 1=4 n2 � y� Z14=2

M1 (W1) 8�d � 1=4 1=8 1=12

* The volume of the unit cell of a superstructure expressed through volume VL03 � �
���
3
p

=2�a 2c of the unit cell of the basic disordered structure of type
L03.
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The trigonal (space group P�31m) e-W2C phase was found
in W2C samples produced by solid-phase sintering of WÿC
mixtures at 2370±2670 K [98], 1920 K [99], and 2070 K [100],
and by arc melting such mixtures [101]. In Refs [101±104], the
W2C samples were ground and the resulting powders were
annealed at 1470 K for 100 h. Neutronographic [103] and
electron diffraction [101] studies revealed that the main phase
in the annealed powders is ordered trigonal (space group
P�31m) e-W2C carbide with the e-Fe2N type structure.
According to Ref. [103], the temperature of the disorder±
order b-W2C$ e-W2C transition depends on the carbon
concentration in carbides and varies from 1920 to 2100 K.
The authors of Refs [105, 106] found that disordered b-W2C
carbide is transformed into a trigonal ordered e-W2C phase at
� 2120 K. The authors of Ref. [106] maintain that the e-W2C
phase is thermodynamically stable in a temperature range of
2120±1520 K.

Detailed neutronographic and X-ray investigations into
the structure of lower tungsten carbide obtained under
various conditions in a temperature range of � 3600±1370 K
are reported in Refs [100, 107±109]. These experiments
demonstrated that lower tungsten carbide W2C is thermo-
dynamically stable in a range from the melting point of
� 3050 to 1370 K, where it resists decomposition. It was
shown in Refs [100, 107±109] that the sole ordered phase of
lower tungsten carbideW2C in a range from� 2700 to 1370K
is the trigonal (space group P�31m) e-W2C phase.

8.3 Orthorhombic b 0-W2C superstructure
The unit cell of the orthorhombic (space group Pbcn) ordered
b 0-W2C phase with the structure of type z-Fe2N is depicted in
Fig. 19. Its volume Vorth � �2

���
3
p �a 2c, i.e., four times that of

the unit cell of disordered b-W2C carbide. Coordinates of
atoms and vacancies in an ideal orthorhombic (space group
Pbcn) b 0-W2C phase are presented in Table 17.

The disorder±order b-W2C (space group P63=mmc)!
b 0-W2C (space group Pbcn) transition channel involves one
superstructure k

�3�
14 vector of the fk14g star. Because vector

b3=2 � �0 0 1=2� in 4p=c units or �001� in 2p=c units, vector
k
�3�
14 � ÿ�b1 � b2 ÿ b3�=2 � ÿ�1=2 1=2 ÿ 1� in 2p=c units.

The distribution function of carbon atoms in the orthorhom-
bic (space group Pbcn) b 0-W2C phase takes the form

n�xI; yI; zI� � y� Z14
2

cos
�
p�xI � yI ÿ 2zI�

�
: �28�

In accordance with Fig. 19, coordinates �xI; yI; zI� of the
disordered hexagonal L03 structure are related to the
coordinates of the orthorhombic (space group Pbcn)
b 0-W2C superstructure in Table 17 by the following expres-
sions: xI� 2yorth � zorth ÿ 1, yI� 2zorth ÿ 1=2, and zI� xorth.
Distribution function (28) takes two values at sites relevant to
different positions of the nonmetal sublattice of the orthor-
hombic b 0-W2C superstructure (see Table 17).

The authors of Ref. [95] hypothesized the existence of an
orthorhombic b 0-W2C phase. RoÈ ntgenograms of W2C
�WC0:50� samples annealed for T4 1270 K in Refs [110,
111] gave evidence of diffraction reflections of the orthor-
hombic b 0-W2C phase with a structure of type z-Fe2N.
Samples of W2C annealed at 870, 1070, and 1270 K for
3000, 1500, and 750 h, respectively, retained the ordered
orthorhombic (space group Pbcn) b 0-W2C phase [111]. A
neutronographic study [112] of W2C �WC0:50� samples
annealed at 1070±1270 K for 600 h confirmed the existence
of the ordered orthorhombic (space group Pbcn) phase of
lower tungsten carbide.

The orthorhombic b 0-W2C phase was also observed in
Refs [97, 102, 103, 113]. Neutronographic data [102, 103]
indicated that this superstructure was present inW2C samples
only after annealing for T < 1300 K. It may be argued based
on the results of Refs [97, 102, 103, 110±113] that the
orthorhombic (space group Pbcn) modification of b 0-W2C
phase occurs at temperatures below 1300 K.

8.4 Sequence of disorder±order
and order±order transformations in W2Cy

Let us consider changes in symmetry during the formation of
various superstructures for the determination of a physically
admissible disorder±order and order±order phase transfor-
mation sequence in W2Cy with decreasing temperature.

The point symmetry group �3m �D3d� of rhombohedral
b 00-W2C carbide includes 12 symmetry elements:H1,H3,H5,
H8, H10, H12, H13, H15, H17, H20, H22, and H24, of the 24
H1ÿH24 elements, making up the 6=mmm hexagonal group
[1, 2, 30, 31]; therefore, rotational symmetry reduction
reaches 2. The drop in translational symmetry equals the
ratio between unit cell volumes of ordered and disordered
phases or the ratio between site numbers in these cells. The
overall symmetry reduction N is the product of rotational
symmetry reduction and the translational symmetry fall.
Because the unit cell volume remains unaltered in a
disorder±order transition, translational symmetry reduction
equals 1, and the overall symmetry reduction in the putative
b-W2C (space group P63=mmc) ! b 00-W2C (space group
P�3m1) phase transformation is 2.

The point symmetry group �3m of trigonal e-W2C carbide
includes 12 symmetry elements; therefore, rotational symme-
try reduction equals 2. The unit cell volume increases by a
factor of 3 in the transition from disordered b-W2C carbide to
trigonal e-W2C carbide. The overall symmetry reduction in
the b-W2C (space group P63=mmc) ! e-W2C (space group
P�31m) transition reaches 6.

The point symmetry group mmm �D2h� of orthorhombic
b 0-W2C carbide includes 8 symmetry elements Hi; therefore,
rotational symmetry reduction is 3. The drop in translational
symmetry equals 4, and the overall symmetry reduction in the
b-W2C (space group P63=mmc) ! b 0-W2C (space group
Pbcn) transition amounts to 12.

Symmetry changes during the formation of putative
orthorhombic and rhombohedral phases are such that the

b0-W2C (z-Fe2N, space group Pbcn)

[010]L03

[001]L03

[100]L03

corth

aorth

borth

x

x

x

x
x

xx

x

Figure 19. Position of the unit cell of the orthorhombic (space groupPbcn)

ordered b 0-W2C (z-W2C) phase of type z-Fe2N in the basic lattice with the

L03 structure: (*) tungsten (W) atoms, (*) carbon (C) atoms, and

(&) vacant sites of the nonmetal sublattice.
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hexagonal disordered b-W2C phase! orthorhombic ordered
b 0-W2C phase ! rhombohedral ordered b 00-W2C phase
transition sequence proposed in Ref. [95] is physically
inadmissible, because the b 0-W2C! b 00-W2C transition
would be accompanied by a rise in symmetry rather than a
fall.

When all three superstructures are formed at different
stages of W2C carbide ordering, the results of symmetry
analysis allow us to propose the sole possible sequence of
phase transformations that occur with decreasing tempera-
ture and agree with the symmetry variations, viz. the
hexagonal (space group P63=mmc) disordered b-W2C phase
! rhombohedral (space groupP�3m1) ordered b 00-W2C phase
! trigonal (space group P�31m) ordered e-W2C phase !
orthorhombic (space group Pbcn) ordered b 0-W2C phase
transitions. In this case, symmetry reduces twofold during
the transition from hexagonal to rhombohedral carbide, then
threefold in the transition from rhombohedral to trigonal
carbide, and, finally, twofold in the transition from trigonal
to orthorhombic carbide. The transition sequences remain
physically valid even in the absence of observing the ordered
phase in experiment.

The sole ordered phase of lower tungsten carbide W2C in
a temperature range of� 2700ÿ1370 K is the trigonal (space
group P�31m) e-W2C phase [107±109]. The existence of the
rhombohedral (space group P�3m1) ordered b 00-W2C phase in
this temperature range remains to be confirmed. Nor have
any traces of the orthorhombic (space group Pbcn) ordered
b 0-W2C phase been observed after prolonged annealing at
1370 K [100, 107±109]. It may be supposed that the transition
from the trigonal ordered e-W2C phase to the orthorhombic
(space groupPbcn) ordered b 0-W2C phase occurs at tempera-
tures below 1370 K, since it is consistent with the physically
admissible phase transition sequence. Indeed, the orthorhom-
bic (space group Pbcn) b 0-W2C phase with the z-Fe2N
structure has been observed in lower tungsten carbide
samples annealed at temperatures below 1300 K [103, 111,
112].

Thus, a symmetry analysis and the available experimental
data [100, 103, 107±112] suggests that ordering of lower
tungsten carbide with decreasing temperature leads to the
following sequence of phase transformations: hexagonal
(space group P63=mmc) disordered b-W2C phase! trigonal
(space group P�31m) ordered e-W2C phase ! orthorhombic
(space group Pbcn) ordered b 0-W2C phase.

Calculations of electronic structure and energy stability
of disordered and three possible ordered phases of lower
tungsten carbide W2C [114] by the nonempirical band
FLAPW-GGA method1 agree with this experimentally
adopted transition sequence. According to Ref. [114],
trigonal e-W2C and orthorhombic b 0-W2C phases are the
most stable ones having similar formation energies (ÿ0:04
and ÿ0:02 eV per formula unit). The rhombohedral (space
group P�3m1) ordered b 00-W2C phase is characterized by a
very high formation energy, �0:19 eV per formula unit, and
cannot exist. The formation energy of disordered b-W2C
carbide is close to zero, which accounts for its metastability
at low temperatures. Indeed, disordered b-W2C carbide is
found in thermodynamic equilibrium between � 2300 K and
the melting point; it undergoes a disorder±order phase

transformation at temperatures below approximately 2000±
2300 K.

9. Superstructures of nonstoichiometric TixOz

and VxOz oxides with double defectiveness

Besides nonstoichiometric compounds with a single defective
sublattice, there are nonstoichiometric compounds contain-
ing about 10±15 at.% of structural vacancies simultaneously
in two sublattices: cubic titanium and vanadium monoxides,
TixOz and VxOz, with the basic crystalline B1 structure [1, 2].

The ordering in cubic titanium monoxide TiOy

(Tix&1ÿxOz&1ÿz, where y � z=x, & and & are vacancies in
metal and oxygen sublattices, respectively) has been studied
in great detail [115±125]. In titanium monoxide TiOy, the
ordered phases with cubic, tetragonal, rhombic, or mono-
clinic sublattices are formed, depending on the composition
and thermal treatment conditions. The variety of super-
structures in cubic titanium monoxide, TiOy, is due to the
presence of structural vacancies in both titanium and oxygen
sublattices at a time. Of greatest interest is ordering of
equiatomic titanium monoxide Ti0:83O0:83 in which mono-
clinic [116, 118, 120, 121, 124, 125] and cubic [117, 126±128]
superstructures of type Ti5O5 arise. During the formation of
the Ti5O5 superstructure, Ti atoms and metal vacancies & are
orderedwithin themetal fcc sublattice, whereas oxygen atoms
and nonmetal& vacancies undergo ordering at the sites of the
nonmetal fcc sublattice. In other words, equiatomic titanium
monoxide is characterized by the ordering of two atomic
species in two different but equitype Ising lattices.

Vanadium oxides containing less than 50±55 at.% oxygen
also possess wide homogeneity intervals. However, cubic
vanadium monoxide VOy �Vx&1ÿxOz&1ÿz � VxOz� contains
only one ordered V52O64 phase, despite its apparent similarity
to titanium monoxide TiOy [129±135]. This phase exhibits
tetragonal symmetry and forms in the VO1:2ÿVO1:3 region,
i.e., in monoxide containing vacancies only in the vanadium
sublattice. Its structure is significantly different from that of
the known ordered phases in titanium monoxide TiOy and
from the structures of other nonstoichiometric compounds.

Nonstoichiometric vanadium oxides adjoin a solid oxy-
gen solution in vanadium, V(O), called the b-phase. In this
phase, oxygen (O) atoms and & structural vacancies make up
a substitution solution. The high vacancy concentration in the
b-phase creates prerequisites for atomic-vacancy ordering.
Ordering of the b-phase gives rise to a g-phase, i.e., the
monoclinic vanadium suboxide V14O6 �V14O6&8� superstruc-
ture [136±141].

9.1 Monoclinic Ti5O5 superstructure
The unit cell of the monoclinic (space group C2=m) Ti5O5 �
Ti5&O5& �Ti10&2O10&2� superstructure formed in titanium
monoxide TiOy � TixOz with vacancies located simulta-
neously in titanium and oxygen sublattices is depicted in
Fig. 20. It contains two formula units Ti5&O5&, and
translation vectors, the coordinates of atoms and vacancies
for this cell are presented in Table 18. The Ti5O5 super-
structure forms via a transition channel involving 5 vectors,
viz. k

�1�
10 ray of the fk10g star, two rays k �5�4 and k

�6�
4 of the fk4g

star with parameter m4 � 1=3, and two k
�7�
1 and k

�8�
1 rays of

the fk1g star with parameters m �1�1 � 1=3 and m �2�1 � 1=6.
Calculations done in Refs [120, 121] showed that the

distribution function of titanium atoms in the monoclinic
(space group C2=m) superstructure of titanium monoxide

1 The fullong-range order parameter potential linear augmented plane

wave (FLAPW) method with generalized gradient approximation (GGA)

of the exchange-correlation potential.
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TixOz has the form

nTi�xI; yI; zI� � xÿ Z10
6

cos �2pzI� ÿ Z4
3

cos

�
4p�xI � zI�

3

�
ÿ Z1

3
cos

�
2p�2xI ÿ zI�

3

�
; �29�

with g10 � 1=6, j �1�10 � p, g4 � 1=6, j �1�4 � p, j �2�4 � ÿp,
g1 � 1=6, j �1�1 � p, and j �2�1 � ÿp. The distribution of
oxygen atoms in the monoclinic (space group C2=m) super-
structure of titanium monoxide TixOz is described by the
function

nO�xI; yI; zI� � z� Z10
6

cos �2pzI� ÿ Z4
3

cos

�
4p�xI � zI�

3

�
� Z1

3
cos

�
2p�2xI ÿ zI�

3

�
�30�

with parameters g10 � 1=6, j �1�10 � 0, g4 � 1=6, j �1�4 � p,
j �2�4 � ÿp, g1 � 1=6, j �1�1 � 0, and j �2�1 � 2p.

Referring to Fig. 20, coordinates �xI; yI; zI� of the
disordered cubic B1 structure are related to the coordinates
of the monoclinic (space group C2=m) Ti5O5 superstructure
presented in Table 18, by the following expressions:
xI � xm � zm, yI � ym, and zI � ÿxm � 2zm. The completely
ordered state of titanium monoxide is reached when all long-
range order parameters equal 1, i.e., Z10 � Z4 � Z1 � 1. It
follows from distribution functions (29) and (30) that in this
case the relative concentration of Ti atoms in the metal
sublattice is x � 5=6, while the analogous quantity for
oxygen atoms in the nonmetal sublattice is z � 5=6. In other
words, the stoichiometric composition of an ideal monoclinic
superstructure can be represented as Ti5=6O5=6 �Ti0:83O0:83� or
Ti5O5 �Ti5&O5&�.

Distribution function (29) of Ti atoms at the sites of the
metal sublattice of ordered titanium monoxide takes
four different values: n1�Ti�, n2�Ti�, n3�Ti�, and n4�Ti�; distribu-
tion function (30) of O atoms at the sites of the nonmetal
sublattice assumes 4 similar values (see Table 18). Thus,
ordering in the cubic titanium monoxide under discussion
results in the splitting of each sublattice into four non-
equivalent sublattices. In the case of equal long-range order
parameters, the distribution functions take only two values
each, and each sublattice undergoing ordering breaks up
only into two sublattices. It can be seen from Fig. 20 that
the relative positions of oxygen vacancies are exactly the
same as those of titanium vacancies. In fact, the oxygen

vacancy sublattice is displaced by vector �1=2�h101iC2=m �
�1=2�h201iB1 with respect to the titanium vacancy sub-
lattice.

9.2 Cubic Ti5O5 superstructure
The ordered cubic Ti5O5 phase was mentioned without any
experimental evidence in one of the first publications on
titanium monoxide, dated 1968 [117]. According to this
report, the cubic Ti5O5 phase exists in a temperature range
from 1250 to 1520 K and, unlike disordered titanium
monoxide, has a triple-period lattice; in terms of symmetry,
it belongs to one of the space groups Fm�3, F432, F�43m, or
Fm�3m. Experiments in subsequent decades failed to demon-
strate the cubic Ti5O5 �Ti5&O5&� superstructure, nor has its

Table 18. Monoclinic [space group No. 12ÐC2=m (A12=m1) (C 3
2h)] Ti5O5 �Ti5&1O5&1� superstructure of TixOz monoxide: Z �2, V � 3a 3

B1,

am � h10�1iB1, bm � h010iB1, and cm � h102iB1.
Atom Position and

multiplicity
Atomic coordinates in ideal ordered structure Values of distribution functions

nTi�xI; yI; zI� and nO�xI; yI; zI�
x=am y=bm z=cm

Ti1 (vacancy &)

Ti2

Ti3

Ti4

2�a�
2�d �
4�i�
4�i�

0

1=2

1=6

1=3

0

1=2

0

0

0

1=2

1=3

2=3

n1�Ti� � xÿ Z10=6ÿ Z4=3ÿ Z1=3

n2�Ti� � x� Z10=6ÿ Z4=3� Z1=3

n4�Ti� � x� Z10=6� Z4=6ÿ Z1=6

n3�Ti� � xÿ Z10=6� Z4=6� Z1=6

O1 (vacancy &)

O2

O3

O4

2�c�
2�b�
4�i�
4�i�

1=2

0

1=3

1=6

0

1=2

0

0

1=2

0

1=6

5=6

n1�O� � zÿ Z10=6ÿ Z4=3ÿ Z1=3

n2�O� � z� Z10=6ÿ Z4=3� Z1=3

n4�O� � z� Z10=6� Z4=6ÿ Z1=6

n3�O� � zÿ Z10=6� Z4=6� Z1=6

[010]B1

[100]B1

[001]B1

cm

am

bm

Ti5 O5 (space group C2=m)

Figure 20. Position of the monoclinic (space group C2=m) unit cell of the

Ti5&O5& superstructure in a lattice with the basic structureB1: (*) oxygen

atom, (*) titanium atom, (&) vacancy in the nonmetal sublattice (oxygen

vacancy), and (&) vacancy in the metal sublattice (titanium vacancy).
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theoretical model been proposed. The simulation method
[127, 128] for the construction of a cubic Ti5O5 superstructure
appeared only in 2012±2013; its existence was confirmed by
electron diffraction data [126, 128].

The unit cell of the cubic (space group Pm�3m)
Ti5O5�Ti5&O5& �Ti90&18O90&18� superstructure is illu-
strated in Fig. 21. It has translation vectors acub � h300iB1,
bcub � h030iB1, and ccub � h003iB1; accordingly, the recipro-
cal lattice vectors are a�1 � h0 0 1=3i, a�2 � h0 1=3 0i, and
a�3 � h1=3 0 0i. The unit cell contains 18 Ti5&O5& formula
units; coordinates of atoms and vacancies are listed in
Table 19. The disorder±order transition channel involved in
the formation of the cubic (space group Pm�3m) Ti5O5

superstructure includes all the rays of seven stars: fk10g,
fk7g, fk6�1�g, fk6�2�g, fk4�1�g, fk4�2�g, and fk1g, i.e., a total
of 75 superstructure vectors (Table 20).

According to papers [127, 128], the neighboring &

vacancies in the titanium sublattice of the cubic (space
group Pm�3m) Ti5O5 superstructure are located within largest
distances aB1 and

���
2
p

aB1 from one another. The distribution
function of Ti atoms in the basic fcc lattice found for such an
arrangement has the form

nTi�xI; yI; zI� � x� Z10
6

X
j2k10

cos �k � j �10 r�

ÿ Z7
18

X
j2k7

cos �k � j �7 r� � Z6�1�
18

X
j2k6�1�

cos �k � j �6�1�r�

ÿ Z6�2�
18

X
j2k6�2�

cos �k � j �6�2�r� �
Z4�1�
18

X
j2k4�1�

cos �k � j �4�1�r�

� Z4�2�
18

X
j2k4�2�

cos �k � j �4�2�r� ÿ
Z1
18

X
j2k1

cos �k � j �1 r� : �31�

In the oxygen sublattice of the cubic (space group Pm�3m)
Ti5O5 superstructure, the neighboring & vacancies are also
separated by the largest distances aB1 and

���
2
p

aB1 from one
another. The distribution function of O atoms at the sites of
the basic oxygen fcc sublattice with these vacant sites has the

Table 19. Ideal ordered cubic [space group No. 221ÐPm�3m (P4=m�32=m) (O 1
h )] Ti5&O5& phase of titanium monoxide TixOz: Z � 18, V � 27a 3

B1,

acub � h300iB1, bcub � h030iB1, and ccub � h003iB1.
Atom Position

and multi-
plicity

Atomic coordinates
in ideal ordered structure

Values of distribution functions
nTi�xI; yI; zI� and nO�xI; yI; zI�

x=acub y=bcub z=ccub

Ti1

Ti2

Ti3

Ti4 (vacancy &)

Ti5

Ti6

Ti7 (vacancy &)

Ti8

Ti9

Ti10

1�b�
3�d �
6�e�
6� f �
8�g�
12�h�
12� j1�
12� j2�
24�k�
24�m�

1=2

1=2

1=6

1=6

1=6

1=3

1=2

1=2

0

1=3

1=2

0

0

1=2

1=6

1=2

1=6

1=3

1=6

1=3

1=2

0

0

1=2

1=6

0

1=6

1=3

1=3

1=6

n1�Ti� � xÿ Z10=2ÿ Z7=3ÿ Z6�1�=6ÿ Z6�2�=6� Z4�1�=3� Z4�2�=3� 2Z1=3

n2�Ti� � x� Z10=6� Z7=9� Z6�1�=18ÿ Z6�2�=6ÿ Z4�1�=9� Z4�2�=3ÿ 2Z1=9

n3�Ti� � x� Z10=6ÿ Z7=18� 5Z6�1�=36ÿ Z6�2�=12� 2Z4�1�=9ÿ 2Z1=9

n4�Ti� � xÿ Z10=2ÿ Z7=6ÿ Z6�1�=12ÿ Z6�2�=12

n5�Ti� � xÿ Z10=2� Z7=6� Z6�1�=12� Z6�2�=12� Z4�1�=12� Z4�2�=12� Z1=6

n6�Ti� � x� Z10=6� Z7=9ÿ Z6�1�=36ÿ Z6�2�=12ÿ Z4�1�=9� Z1=9

n7�Ti� � xÿ Z10=2ÿ Z4�1�=12ÿ Z4�2�=12ÿ Z1=6

n8�Ti� � x� Z10=6� Z7=9ÿ Z6�1�=9� 5Z4�1�=36ÿ Z4�2�=12ÿ Z1=18

n9�Ti� � x� Z10=6ÿ Z7=18� Z6�1�=18ÿ Z4�1�=36ÿ Z4�2�=12� Z1=9

n10�Ti� � x� Z10=6ÿ Z7=18ÿ Z6�1�=36� Z6�2�=12ÿ Z4�1�=36� Z4�2�=12ÿ Z1=18

O1

O2

O3 (vacancy &)

O4

O5

O6

O7 (vacancy &)

O8

O9

O10

1�a�
3�c�
6�e�
6� f �
8�g�
12�h�
12�i1�
12�i2�
24�l �
24�m�

0

0

1=3

1=3

1=3

1=6

0

0

1=2

1/6

0

1=2

0

1=2

1=3

1=2

1=3

1=6

1=3

1=6

0

1=2

0

1=2

1=3

0

1=3

1=6

1=6

1=3

n1�O� � zÿ Z10=2ÿ Z7=3ÿ Z6�1�=6ÿ Z6�2�=6� Z4�1�=3� Z4�2�=3� 2Z1=3

n2�O� � z� Z10=6� Z7=9� Z6�1�=18ÿ Z6�2�=6ÿ Z4�1�=9� Z4�2�=3ÿ 2Z1=9

n3�O� � zÿ Z10=2ÿ Z7=6ÿ Z6�1�=12ÿ Z6�2�=12

n4�O� � z� Z10=6ÿ Z7=18� 5Z6�1�=36ÿ Z6�2�=12� Z4�1�=9ÿ Z1=9

n5�O� � zÿ Z10=2� Z7=6� Z6�1�=12� Z6�2�=12� Z4�1�=12� Z4�2�=12� Z1=6

n6�O� � z� Z10=6� Z7=9ÿ Z6�1�=36ÿ Z6�2�=12ÿ Z4�1�=9� Z1=9

n7�O� � zÿ Z10=2ÿ Z4�1�=12ÿ Z4�2�=12ÿ Z1=6

n8�O� � z� Z10=6� Z7=9ÿ Z6�1�=9� 5Z4�1�=36ÿ Z4�2�=12ÿ Z1=18

n9�O� � z� Z10=6ÿ Z7=18� Z6�1�=18ÿ Z4�1�=36ÿ Z4�2�=12� Z1=9

n10�O� � z� Z10=6ÿ Z7=18ÿ Z6�1�=36� Z6�2�=12ÿ Z4�1�=36� Z4�2�=12ÿ Z1=18

Ti O

[010]B1

[100]B1

[001]B1 ccub

acub

bcub

Ti5 O5 (Ti90 18O90 18) (space group Pm�3m)

Figure 21. Position of the cubic (space group Pm�3m) unit cell of the

Ti5&O5& �Ti90&18O90&18� superstructure in a basic lattice with the

structure B1. The vacant sites of the titanium sublattice are in 6� f � and
12� j1� positions, the vacant sites of the oxygen sublattice are in 6�e� and
12�i1� positions: (*) titanium (Ti) atoms, (*) oxygen (O) atoms,

(&) vacancy in the titanium sublattice, and (&) vacancy in the oxygen

sublattice.
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form

nO�xI; yI; zI� � zÿ Z10
6

X
j2k10

cos �k � j �10 r�

ÿ Z7
18

X
j2k7

cos �k � j �7 r� ÿ Z6�1�
18

X
j2k6�1�

cos �k � j �6�1�r�

ÿ Z6�2�
18

X
j2k6�2�

cos �k � j �6�2�r� �
Z4�1�
18

X
j2k4�1�

cos �k � j �4�1�r�

� Z4�2�
18

X
j2k4�2�

cos �k � j �4�2�r� �
Z1
18

X
j2k1

cos �k � j �1 r� : �32�

Distribution functions (31) and (32) are calculated by
formula (3), i.e., from the truncated transition channel; for
this reason, sums

P
j2 s cos �k � j �s r� in formulas (31) and (32)

are taken only over odd rays of non-Lifshitz stars (for Lifshitz
stars fk10g, summation is performed over all three rays). The
values of parameters gs and j � j �s entering into functions (31)
and (32) are given in Table 20. In accordance with Fig. 21,
coordinates �xI; yI; zI� of the disordered B1 structure are
related to the coordinates of the cubic (space group Pm�3m)
Ti5O5 superstructure, presented in Table 19, by the following
expressions: xI � 3xcub, yI � 3ycub, and zI � 3zcub.

Distribution functions (31) and (32) take 10 different
values (see Table 19) at the sites of the metal sublattice in
ordered titanium monoxide. The completely ordered state of

titanium monoxide is reached when all long-range order
parameters equal 1. In this case, the relative concentration
of Ti atoms in the metal sublattice is x � 5=6, while that of
O atoms in the nonmetal sublattice is z � 5=6. The
stoichiometric composition of an ideal cubic superstructure
can be represented as Ti5=6O5=6 �Ti0:83O0:83� or T5O5

�Ti90&18O90&18�. In the case of equal long-range order
parameters, the distribution functions take only two values
each, and every sublattice undergoing ordering breaks up
only into two sublattices.

Notice that the mutual arrangement of oxygen vacancies
with respect to each other in the ideal fully ordered cubic
Ti5O5 �Ti90&18O90&18� superstructure is exactly the same as
that of titanium vacancies (see Fig. 21). Evidently, the
titanium vacancy sublattice is displaced by vector
�1=2�h111iPm�3m � �3=2�h111iB1 in relation to the oxygen
vacancy sublattice.

9.3 Relation between monoclinic
and cubic Ti5O5 superstructures
In disordered nonstoichiometric titanium monoxide TiO1:0

�Ti0:83O0:83� with an equal number of vacancies in the
titanium and oxygen sublattices, the cubic (space group
Pm�3m) ordered Ti5&O5& phase may form in addition to the
known monoclinic (space group C2=m) ordered phase of a
similar composition. Are these ordered phases alternatives or
is an order±order transition possible between them?

Table 20. Disorder±order TixOzÿTi5O5 phase transition channel with the formation of the cubic (space group Pm�3m) Ti5O5 �Ti90&18O90&18�
superstructure.

fksg star k � j �s rays of fksg stars entering transition channel m �s� gs j � j �s for sublattice

Ti O

fk10g k
�1�
10 � �b1 � b2�=2 � 3a�1 � �0 0 1�, k

�2�
10 , k

�3�
10 g10 � 1=6 j � j �10 � 0 j � j �10 � p

fk7g k
�1�
7 � �b1 � b3�=2� m7�b1 � b2� � 3a�2 � a�1 � �0 1 1=3�,

k
�2�
7 � ÿk �1�7 , k

�3�
7 , k

�4�
7 � ÿk �3�7 , k

�5�
7 , k

�6�
7 � ÿk �5�7 ,

k
�7�
7 , k

�8�
7 � ÿk �7�7 , k

�9�
7 , k

�10�
7 � ÿk �9�7 , k

�11�
7 , k

�12�
7 � ÿk �11�7

m7 � 1=6 g7 � 1=36 j � j �7 � p j � j �7 � p

fk6�1�g k
�1�
6�1� � m6�1��b1 � b2� � a�1 � �0 0 1=3�, k

�2�
6�1� � ÿk �1�6�1�,

k
�3�
6�1�, k

�4�
6�1� � ÿk �3�6�1�, k

�5�
6�1�, k

�6�
6�1� � ÿk �5�6�1�

m6�1� � 1=6 g6�1� � 1=36 j � j �6�1� � 0 j � j �6�1� � p

fk6�2�g k
�1�
6�2� � m6�2��b1 � b2� � 2a�1 � �0 0 2=3�, k

�2�
6�2� � ÿk �1�6�2�,

k
�3�
6�2�, k

�4�
6�2� � ÿk �3�6�2�, k

�5�
6�2�, k

�6�
6�2� � ÿk �5�6�2�

m6�2� � 1=3 g6�2� � 1=36 j � j �6�2� � p j � j �6�2� � p

fk4�1�g k
�1�
4�1� � m4�1��b1 � b2 � 2b3� � a�2 � a�3 � �1=3 1=3 0�,

k
�2�
4�1� � ÿk �1�4�1�, k

�3�
4�1�, k

�4�
4�1� � ÿk �3�4�1�, k

�5�
4�1�,

k
�6�
4�1� � ÿk �5�4�1�, k

�7�
4�1�, k

�8�
4�1� � ÿk �7�4�1�, k

�9�
4�1�, k

�10�
4�1� � ÿk �9�4�1�,

k
�11�
4�1� , k

�12�
4�1� � ÿk �11�4�1�

m4�1� � 1=6 g4�1� � 1=36 j � j �4�1� � 0 j � j �4�1� � 0

fk4�2�g k
�1�
4�2� � m4�2��b1 � b2 � 2b3� � 2a�2 � 2a�3 � �2=3 2=3 0�,

k
�2�
4�2� � ÿk �1�4�2�, k

�3�
4�2�, k

�4�
4�2� � ÿk �3�4�2�, k

�5�
4�2�, k

�6�
4�2� � ÿk �5�4�2�,

k
�7�
4�2�, k

�8�
4�2� � ÿk �7�4�2�, k

�9�
4�2�, k

�10�
4�2� � ÿk �9�4�2�,

k
�11�
4�2� , k

�12�
4�2� � ÿk �11�4�2�

m4�2� � 1=3 g4�2� � 1=36 j � j �4�2� � 0 j � j �4�2� � 0

fk1g k
�1�
1 � m �1�1 �b1 � b3� � m �2�1 �b2 � b3� �
�2m �2�1 2m �1�1 0� � �2=3 1=3 0�, k

�2�
1 � ÿk �1�1 , k

�3�
1 ,

k
�4�
1 � ÿk �3�1 , k

�5�
1 , k

�6�
1 � ÿk �5�1 , k

�7�
1 , k

�8�
1 � ÿk �7�1 , k

�9�
1 ,

k
�10�
1 � ÿk �9�1 , k

�11�
1 , k

�12�
1 � ÿk �11�1 , k

�13�
1 , k

�14�
1 � ÿk �13�1 ,

k
�15�
1 , k

�16�
1 � ÿk �15�1 , k

�17�
1 , k

�18�
1 � ÿk �17�1 , k

�19�
1 ,

k
�20�
1 � ÿk �19�1 ,

k
�21�
1 ,

k
�22�
1 � ÿk �21�1 ,

k
�23�
1 ,
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The disordered cubic (space group Fm�3m) phase of
titanium monoxide TiOy �TixOz� has the point group m�3m
that includes all 48 symmetry elements, h1ÿh48, of the total
symmetry group of the cube. The point symmetry groups of
monoclinic (space group C2=m) and cubic (space group
Pm�3m) Ti5O5 superstructures include 4 �h1; h4; h25; h28� and
48 �h1ÿh48� symmetry elements, respectively [1, 2, 30, 31];
they make up subgroups of the point group of the basic
disordered cubic (space group Fm�3m) TiOy �TixOz� phase.
Therefore, a transition from disordered monoxide to any of
these superstructures is a disorder±order phase transforma-
tion.

The monoclinic (space groupC2=m) Ti5O5 superstructure
forms via the transition channel involving rays of the Lifshitz
fk10g star and two non-Lifshitz fk4g and fk1g stars to which
three long-range order parameters correspond. The cubic
(space group Pm�3m) Ti5O5 superstructure forms via the
transition channel involving rays of Lifshitz fk10g star and
six non-Lifshitz fk7g, fk6�1�g, fk6�2�g, fk4�1�g, fk4�2�g, and
fk1g stars (see Table 20). Under symmetry distortion through
a few stars, only critical order parameters corresponding to
non-Lifshitz stars should be regarded for the assessment of
the type of phase transitions. The number of critical order
parameters for monoclinic and cubic Ti5O5 superstructures is
greater than 1; therefore, TixOz ! Ti5O5 phase transitions do
not satisfy the Landau group-theoretical criterion for second-
order phase transitions and are realized through a first-order
transition mechanism. The disorder±order transition of the
first kind for monoclinic (space group C2=m) Ti5O5 super-
structures is confirmed experimentally by the change in
period aB1 of the basic crystalline lattice in titanium mon-
oxide during ordering [120].

As regards phase transformations between Ti5O5 super-
structures, the ratio among hi elements indicates that the
monoclinic (space group C2=m) superstructure is a subgroup
of the cubic (space group Pm�3m) superstructure in terms of
symmetry, because its point group is a subgroup of the point
group of the cubic Ti5O5 superstructure. This inference is also
confirmed by a change in the transition channel that involves
the rays of seven stars, fk10g, fk7g, fk6�1�g, fk6�2�g, fk4�1�g,
fk4�2�g, and fk1g, for the cubic Ti5O5 superstructure, and the
rays of only three stars, fk10g, fk4g, and fk1g, for the
monoclinic superstructure. This means that the transition
between cubic and monoclinic Ti5O5 phases is the order±
order cubic (space group Pm�3m) Ti5O5 phase! monoclinic
(space group C2=m) Ti5O5 phase transformation accompa-
nied by a 12-fold reduction in rotational symmetry. The cubic
(space group Pm�3m) Ti5O5 superstructure is a high-tempera-
ture phase with respect to the monoclinic superstructure.

The above results suggest successive realization of dis-
order±order and order±order cubic (space group Fm�3m)
disordered monoxide TiOy �TixOz� ! cubic (space group
Pm�3m) Ti5O5 superstructure ! monoclinic (space group
C2=m) Ti5O5 superstructure transitions in the homogeneity
interval of nonstoichiometric cubic titanium monoxide with
decreasing temperature.

9.4 Rhombic Ti3O2 and Ti2O3 superstructures
The authors of Refs [116, 124, 125] observed the appearance
of an orthorhombic superstructure with the space group
Immm or I222 in the TiO0:7ÿTiO0:9 region. The orthorhom-
bicM3X2 (M3X2& �M2tX2tÿ1, where t � 1:5) superstructure
described in Section 4.2 has a stoichiometric composition
closest to the lower boundary of the homogeneity interval of

cubic titanium monoxide TiO0:70 � Ti0:97O0:68. The maxi-
mum value of the long-range order parameter is known to
depend on the composition of the compound undergoing
ordering [1, 2, 5, 6]. In M3X2& �t � 1:5� type orthorhombic
ordering of titanium monoxide TiOy � TixOz with
z=x � y < 1, the maximum long-range order parameter in
the oxygen sublattice is given by

Z �O�max
4 �z� � 2t�1ÿ z� � 3�1ÿ z� at t � 1:5 : �33�

This means that the maximum value of the long-range order
parameter in the ordered phase is less than 1 even at the lower
boundary of the homogeneity interval of titanium monoxide
TiO0:70 � Ti0:97O0:68 �y � 0:70, z � 0:68�. The orthorhombic
(space group Immm) Ti3O2 �M3X2� superstructure forms via
the transition channel presented in Table 5 and has the unit
cell depicted in Fig. 7; it is described by the distribution
function

nO�xI; yI; zI� � zÿ 2Z �O�4

3
cos

�
4p�xI � yI�

3

�
: �34�

Translation vectors of this unit cell and coordinates of atoms
and vacancies are listed in Table 6. Distribution function (34)
at the sites of the oxygen sublattice assumes two values:
n1�O� � zÿ 2Z �O�4 =3 in positions 2�a�, and n2�O� � z� Z �O�4 =3
in positions 4�g�. Evidently, n2�O� for 1 > z > �2tÿ 1�=2t
always equals 1, and n1�O�5 3zÿ 2 is always smaller than
unity, whichmeans that in the ordered orthorhombic phase of
monoxide TiOy �y < 1�, the oxygen atoms occupy all 4�g�
positions, whereas 2�a� positions are vacant with a prob-
ability of P � 1ÿ n1, i.e., some of them are occupied by O
atoms with probability n1.

The ordered orthorhombic (space group Immm) Ti3O2&

phase should be distinguished from the hexagonal (space
group P6=mmm) TiO0:5 (or Ti3O2) phase, which is not a
superstructure of cubic monoxide TiOy. The stoichiometric
Ti3O2& composition of this superstructure does not enter the
homogeneity interval of cubic titanium monoxide and there-
fore cannot be realized. Only the partly ordered orthorhom-
bic Ti3O2& phase forms.

According to Hilti [117], the orthorhombic phase of the
nominal TiO1:20 composition is produced from the disordered
cubic TiOy phase with the basic structure B1 in the
TiO1:00ÿTiO1:20 region and belongs to the space groups
Immm, Imm2, or I222. The superstructure proposed in
Ref. [177] has the same symmetry and Bravais cell as the
orthorhombic M3X2 superstructure described in Section 4.2,
although its Ti atoms and & vacancies of the titanium
sublattice are ordered, whereas the nonmetal fcc sublattice is
totally occupied by oxygen atoms. Thus, the ordered
orthorhombic phase proposed in Ref. [177] can be repre-
sented as an M2&X3 superstructure inverse with respect to
M3X2&. Indeed, it was shown in work [122] that ordering of
titanium monoxide TiOy for y < 1:0 and y > 1:0 can be
described via Ti3O2& and Ti2&O3 superstructures character-
ized by rhombic symmetry and an ordered arrangement of O
atoms and oxygen vacancies & (for y < 1:0) or Ti atoms and
titanium vacancies & (for y > 1:0).

The orthorhombic (space group Immm) Ti2&O3

(Ti2tÿ1&O2t, where t � 1:5) superstructure forms via the
disorder±order transition channel involving k

�1�
4 and

k
�2�
4 � ÿk �1�4 rays of the non-Lifshitz fk4g star with para-

meter m4 � 1=3. The unit cell of the ordered orthorhombic
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(space group Immm) Ti2&O3 phase of monoxide TiOy with
y > 1 (Fig. 22) is inverse with regard to the unit cell of the
rhombic M3X2 �Ti3O2&� superstructure (see Fig. 7) and can
be obtained by substituting nonmetal sublattice sites for
metal sublattice ones. Translation vectors and coordinates
of atoms and vacancies in the unit cell of the Ti2&O3 phase are
presented in Table 21. The distribution function of Ti atoms
over the sites of the titanium sublattice in the orthorhombic
Ti2&O3 superstructure of monoxide TixOz has the form

nTi�xI; yI; zI� � xÿ 2Z �Ti�4

3
cos

�
4p�xI � yI�

3

�
: �35�

During the ordering in the metal sublattice of titanium
monoxide TixOz, in which 1 > x > �2tÿ 1�=2t and
y � z=x > 1, the maximum value of the long-range order
parameter is equal to

Z �Ti�max
4 �x� � 2t�1ÿ x� � 3�1ÿ x� at t � 1:5 : �36�

At the upper boundary of the TiOy �y � 1:28, x � 0:77�
monoxide homogeneity interval, the maximum value of the
long-range order parameter Z �Ti�4 in the ordered Ti2O3 phase
does not exceed 0.70. Distribution function (36) at the sites

of the metal sublattice takes two values: n1�Ti� in 2�c�
positions, and n2�Ti� in 4�h� positions (see Table 21). In the
case of a maximum value of long-range order parameter
and 1 > x > �2tÿ 1�=2t, n2�Ti� always equals 1 and
x5 n1�Ti�5 3xÿ 2 is always smaller than unity. This means
that the titanium atoms occupy all 4�h� positions in the
ordered rhombic phase of monoxide TiOy �y > 1�, whereas
2�c� positions are vacant with a probability of P � 1ÿ n1�Ti�.

The Ti2&O3 superstructure should be distinguished from
the trigonal Ti2O3 phase which is not the ordered phase of
titanium monoxide TiOy.

9.5 Tetragonal Ti4O5 superstructure
The unit cell of the tetragonal (space group I4=m) Ti4&O5

superstructure of monoxide TiOy � TixOz with y � z=x > 1
is shown in Fig. 23. Such an ordered phase was examined in
Ref. [125]. Translation vectors and coordinates of atoms and
vacancies in the unit cell of this phase are presented in
Table 21. The tetragonal (space group I4=m) Ti4O5 super-
structure forms via the disorder±order transition channel
involving four rays: k

�1�
1 , k

�2�
1 � ÿk �1�1 , k

�13�
1 , and

[100]B1

[001]B1ct

[010]B1

bt

at Ti4 O5 (space group I4=m)

Figure 23. Position of the tetragonal (space group I4=m) unit cell of

Ti4&O5 superstructure of the TiOy � TixOz �y � z=x > 1� monoxide in a

lattice with the basic B1 structure: (*) oxygen atom, (*) titanium atom,

and (&) vacancy in metal sublattice (titanium vacancy).

Table 21. Orthorhombic Ti2&O3 superstructure and tetragonal Ti4&O5 superstructure of disordered monoxide TixOz �y � z=x > 1� with the basic B1
structure.

Symmetry Space
group

Translation vectors
of unit cell

V � Atom Position
and multi-
plicity

Atomic coordinates
in ideal ordered structure

Values of
distribution functions

nTi�xI; yI; zI� and
nO�xI; yI; zI�

x=arh y=brh z=crh

Ortho-

rhombic

No. 71

Immm

�D 25
2h �

arh � 1
2
h1�10iB1,

brh � 3
2
h110iB1,

crh � h001iB1

3a 3
B1=2

Ti1 (vacancy) 2�c� 1=2 1=2 0 n1�Ti� � xÿ 2Z �Ti�4 =3

Ti2 4�h� 0 2=3 1=2 n2�Ti� � y� Z �Ti�4 =3

O1 2�a� 0 0 0 nO � z

O2 4�g� 0 1=3 0 nO � z

x=at y=bt z=ct

Tetragonal No. 87

I4=m

�C 5
4h�

at � 1
2
h310iB1,

bt � 1
2
h�130iB1,

ct � h001iB1

5a 3
B1=2

Ti1 (vacancy) 2�a� 0 0 0 n1�Ti� � xÿ 4Z �Ti�1 =5

Ti2 8�h� 2=5 1=5 0 n2�Ti� � x� Z �Ti�1 =5

O1 2�b� 0 0 1=2 nO � z

O2 8�h� 1=10 3=10 0 nO � z

* The volume of the unit cell of a superstructure expressed through parameter aB1 of the unit cell of the basic disordered structure of type B1.

[100]B1

[001]B1crh

[010]B1

brh

arh

Ti2 O3 (space group Immm)

Figure 22. Position of the orthorhombic (space group Immm) unit cell of

Ti2&O3 monoxide superstructure TiOy � TixOz �y � z=x > 1� in the

lattice with the basic B1 structure: (*) oxygen atom, (*) titanium atom,

and (&) vacancy in metal sublattice (titanium vacancy).
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k
�14�
1 � ÿk �13�1 of the non-Lifshitz fk1g star with parameters

m �1�1 � 2=5 and m �2�1 � 1=5.
The distribution function of Ti atoms over the sites of the

titanium sublattice in the tetragonal Ti4&O5 (Ti2tÿ1&O2t,
where t � 2:5) superstructure of the TixOz monoxide has the
form

nTi�xI; yI; zI� � xÿ 2Z �Ti�1

5

(
cos

�
4p�xI � 2yI�

5

�

� cos

�
4p�2xI ÿ yI�

5

�)
: �37�

Referring to Fig. 23, coordinates �xI; yI; zI� of the disordered
cubic B1 structure are related to the coordinates of the
tetragonal (space group I4=m) Ti4O5 superstructure, pre-
sented in Table 21, by the following expressions:
xI � 3xt=2ÿ yt=2, yI � xt=2� 3yt=2, and zI � zt. At all sites
of the metal sublattice, function (37) takes two values (see
Table 21).

9.6 Tetragonal V52O64 superstructure
A peculiar structural feature of the ordered V52O64 phase is
that four of the 52 vanadium atoms occupy tetrahedral
interstices of the basic cubic lattice. This property is
extrinsic to nonstoichiometric MXy compounds with the B1
structure, where metalM atoms populate 4�a� positions with
coordinates �000�, and nonmetal X atoms occupy 4�b�
positions with coordinates �1=2 1=2 1=2�. Positions 4�b�
and 4�a� are octahedrally surrounded by the sites of metal
and nonmetal sublattices, respectively. The tetrahedral
interstices, i.e., crystallographic 8�c� positions with coordi-
nates �1=4 1=4 1=4�, in disordered nonstoichiometric com-
pounds with the B1 structure are always vacant. In all known
superstructures of nonstoichiometric compounds with the B1
structure, both the atoms and the vacancies are redistributed
only over the 4�b� or 4�a� positions of the basic disordered
lattice. The structure of the V52O64 phase is such that V atoms
are distributed during ordering over two different sublattices,
namely over the sites of the basic nonmetal fcc sublattice and
over some of the sites of the cubic sublattice formed by
tetrahedral interstices. The crystalline structure of disor-
dered nonstoichiometric vanadium monoxide was studied
with reference to peculiarities of the V52O64 superstructure
in Refs [135, 142]. It was shown that the disordered VOy

monoxide has a cubic (space group Fm�3m) structure of the
type D03 differing from the generally accepted B1 structure,

making ordering in monoxide VOy fundamentally different
from that in titanium monoxide Ti0:83O0:83, in which two
atomic species (Ti and O) are ordered in two equitype basic
fcc sublattices.

The position of the unit cell in the ideal tetragonal (space

group I41=amd )V52O64 superstructure in its cubic lattice with

theD03 structure is shown in Fig. 24. Translation vectors and

coordinates of atoms and vacancies for this cell are presented

in Table 22. The V52O64 superstructure forms via the

disorderëorder transition channel involving k
�2�
10 and k

�3�
10

rays of the Lifshitz fk10g star, four rays k �1�4 , k �2�4 � ÿk �1�4 ,

k
�3�
4 , k �4�4 � ÿk �3�4 of the 12-ray fk4g star with parameter

m4 � 1=4, eight rays k
�1�
3 , k �2�3 � ÿk �1�3 , k �3�3 , k �4�3 � ÿk �3�3 ,

k
�5�
3 , k �6�3 � ÿk �5�3 , k �7�3 , and k

�8�
3 � ÿk �7�3 of the 24-ray fk3g

star with parameter m3 � 1=8, and eight rays k
�1�
2 �

m1�b1 � b2� � m2b3, k
�2�
2 � ÿk �1�2 , k

�3�
2 , k

�4�
2 � ÿk �3�2 , k

�5�
2 ,

k
�6�
2 � ÿk �5�2 , k �7�2 , and k

�8�
2 � ÿk �7�2 of the 24-ray fk2g star

with parameters m2 � 1=4 and m1 � 3=8.

During the formation of the V52O64 superstructure,
vanadium atoms undergo redistribution over two Ising

Table 22. Ideal tetragonal [space groupNo. 141Ð I41=amd (D 19
4h )] V52O64 �V52&12O64� superstructure:Z � 1,V � 16a 3

B1, at � h2�20iB1, bt � h220iB1, and
ct � h002iB1.

Atom Position and
multiplicity

Atomic coordinates
in ideal ordered structure

Values of distribution functions
nV�1��xI; yI; zI� and nV�2��xI; yI; zI�

of vanadium atoms
x=at y=bt z=ct

V1 (vacancy)

V2

V3

V4

V5

O1

O2

O3

16�h�
16�h�
16� f �
16� f �
4�a�*
16�h�
16�h�
32�i�

0

0

1=8

5=8

0

0

0

1=8

5=8

1=8

0

0

3=4

1=8

7=8

0

1=4

1=4

0

0

1=8

1=2

0

1=4

n1�V�2�� � xÿ Z10=16ÿ Z4=4ÿ Z3=4ÿ Z2=4

n2�V�2�� � xÿ Z10=16ÿ Z4=4� Z3=4� Z2=4

n3�V�2�� � xÿ Z10=16� Z4=4� Z3=4ÿ Z2=4

n4�V�2�� � xÿ Z10=16� Z4=4ÿ Z3=4� Z2=4

n1�V�1�� � Z10

* Tetrahedral intersticeìposition 8�c� of the basic disordered D03 structure.

[100]D03

[001]D03

ct

[010]D03

bt

at

V52O64 (space group I41=amd)

Figure 24. (Color online.) Position of the tetragonal (space group

I41=amd ) unit cell of an ideal V52O64 �V52&12O64� superstructure in the

basic cubic lattice with the D03 structure: ( ) vanadium (V) atoms in

octahedral positions, ( ) vanadium (V) atoms filling tetrahedral interstices

of the basic disordered lattice, and ( ) vacant sites of the metal sublattice.

Oxygen atoms are not shown.
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lattices. Let us find the distribution function n
�1�
V for V atoms

in the Ising lattice formed by four of the 128 tetrahedral �c�
sites of the basic cubic D03 structure: it is represented by four
sites in position �a� of the tetragonal V52O64 structure (see
Table 22 and Fig. 24). The distribution of V atoms over this
lattice is governed by the rays of the fk10g star. In the
disordered state, V atoms do not occupy tetrahedral sites,
i.e., x � 0. Therefore, the distribution function for V atoms
over the Ising lattice formed by four tetrahedral sites of the
basic D03 structure is given by

nV�1��xI; yI; zI� � ÿ Z10
2

�
sin �2pxI� � sin �2pyI�

� �38�

and takes a single value n1�V�1�� � Z10 at the 4�a� sites of the
V52O64 superstructure.

The distribution function for V atoms in the second Ising
lattice formed by octahedral �a� sites of the basic D03
structure is related to the rays of three stars fk4g, fk3g, and
fk2g. This lattice of the V52O64 superstructure contains
64 sites located in four 16-fold positions � f � and �h� (see
Table 22). When the V52O64 superstructure forms in oxide
VxOz �VOy�, some of the V atoms pass from the second Ising
lattice to the first one; due to this, the order parameter Z10 is
also present in the distribution function of V atoms over the
second Ising lattice. In the end, the first lattice contains 4Z10
vanadium atoms, whereas their number in the second lattice
decreases from 64x to 64xÿ 4Z10. The relative number of sites
in the second lattice occupied by V atoms decreases from x to
�xÿ Z10=16�. In accordance with this fact and the transition
channel peculiarities, the distribution function nV�2��r� for V
atoms in the second Ising lattice has the form

nV�2��xI; yI; zI� � xÿ Z10
16

� Z4
4

n
sin
�
p�xI � yI�

�ÿ cos
�
p�xI ÿ yI�

�o
ÿ Z3

8

( ���
2
p

sin

�
p�xI � 3yI � 2zI�

2

�

� cos

�
p�xI ÿ 3yI ÿ 2zI�

2

�
ÿ sin

�
p�xI ÿ 3yI ÿ 2zI�

2

�
ÿ cos

�
p�ÿxI � 3yI ÿ 2zI�

2

�
ÿ sin

�
p�ÿxI � 3yI ÿ 2zI�

2

�
ÿ

���
2
p

sin

�
p�ÿxI ÿ 3yI � 2zI�

2

�)

ÿ Z2
8

(
cos

�
p�xI � yI � 2zI�

2

�
� sin

�
p�xI � yI � 2zI�

2

�

ÿ
���
2
p

cos

�
p�xI ÿ yI ÿ 2zI�

2

�

ÿ
���
2
p

cos

�
p�ÿxI � yI ÿ 2zI�

2

�
ÿ cos

�
p�ÿxI ÿ yI � 2zI�

2

�
� sin

�
p�ÿxI ÿ yI � 2zI�

2

�)
�39�

and depends on four long-range order parameters Z10, Z4, Z3,
and Z2. It follows from Fig. 24 that coordinates �xI; yI; zI� of
the disordered cubic D03 structure are related to the
coordinates of the tetragonal (space group I41=amd ) V52O64

superstructure, listed in Table 22, by the following expres-
sions: xI � 2xt � 2yt ÿ 3=4, yI � ÿ2xt � 2yt � 5=4, and
zI � 2zt.

In an ideal ordered phase with order parameters
Z4 � Z3 � Z2 � 1, the quantity xÿ Z10=16 � 3=4; therefore,
the fraction of sites occupied by V atoms in two sublattices
undergoing ordering equals x � 13=16 at Z10 � 1. In other
words, the relative stoichiometric concentration of V atoms in
the totally ordered tetragonal phase is xst � 13=16. Distribu-
tion function (39) of V atoms at the sites of the ordered metal
sublattice in the tetragonal V52O64 superstructure with an
arbitrary degree of order takes 4 different values: n1�V�2��,
n2�V�2��, n3�V�2��, and n4�V�2�� (see Table 22). These values in
16�h� and 16� f � positions of the metal sublattice depend on
all four long-range order parameters Z10, Z4, Z3, and Z2. At the
same time, the n1�V�1�� value of distribution function (38) in
tetrahedral 4�a� positions depends on parameter Z10 alone
(see Table 22).

Symmetry distortion over a few irreducible representa-
tions and the presence of rays of non-Lifshitz stars in the
transition channel suggest that the VOy (space group
Fm�3m)! V52O64 (space group I41=amd ) phase transition
does not fulfill the Landau group-theoretical criterion for
second-order phase transitions and is realized through the
first-order transition mechanism.

The point symmetry group 4=mmm �D4h� of the tetra-
gonal V52O64 superstructure includes 16 symmetry elements,
h1ÿh4, h13ÿh16, h25ÿh28, h37ÿh40, from the 48 elements,
h1ÿh48, making up the m�3m �Oh� point group of the basic
disordered cubic VOy phase; hence, the rotational symmetry
reduction reaches 3. Translational symmetry reduction
equals the ratio between the unit cell volumes of ordered
and disordered phases and amounts to 16 in our case.
Therefore, the overall symmetry reduction in the disordered
cubic monoxide (space group Fm�3m) VOy ! ordered tetra-
gonal (space group I41=amd ) V52O64 phase transition is
N � 48.

9.7 Monoclinic V14O6 superstructure
The monoclinic (space group C2=m) V14O6 superstructure is
produced during ordering of an oxygen solid solution in
vanadium b-V(O). The solid b-V(O) solution has a body-
centered tetragonal (bct) lattice with the I4=mmm space
group. The bct lattice with periods a and c possesses a
reciprocal lattice with structural vectors b1 � h0 p=a p=ci,
b2 � hp=a 0 p=ci, and b3 � hp=a p=a 0i [30, 31]. The position
of the unit cell of an ideal V14O6 superstructure in the basic
tetragonal lattice is illustrated in Fig. 25. Translation vectors
and the coordinates of atoms and vacancies for this cell are
presented in Table 23.

The V14O6 superstructure forms via the disorderëorder

transition channel involving two rays of each of the three

8-ray non-Lifshitz fk1ÿ1g, fk1ÿ2g, and fk1ÿ3g stars of the

fk1g type. The vector-representative for the fk1g star of the
reciprocal bct lattice has the form k

�1�
1 � nb2 � m�b3 ÿ b1�.

The stars to which superstructure vectors belong differ only

in the ray length, i.e., the numerical values of parameters n
and m. The fk1ÿ1g star has parameters n1 � 2=7 and m1 �
ÿ1=7; for the fk1ÿ2g star n2 � 1=7 and m2 � 3=7, and for the

fk1ÿ3g star n3 � 4=7 and m3 � ÿ2=7. The transition channel

involves two k
�1�
1ÿ1 � 2b2=7ÿ �b3 ÿ b1�=7 � �1=7 0 3=7� and

k
�2�
1ÿ1 � ÿk �1�1ÿ1 rays of the fk1ÿ1g star, two k

�1�
1ÿ2 �
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b2=7� 3�b3 ÿ b1�=7 � �4=7 0 ÿ 2=7� and k
�2�
1ÿ2 � ÿk �1�1ÿ2 rays

of the fk1ÿ2g star, and two k
�1�
1ÿ3 � 4b2=7ÿ 2�b3 ÿ b1�=7 �

�2=7 0 6=7� and k
�2�
1ÿ3 � ÿk �1�1ÿ3 rays of the fk1ÿ3g star. The

simultaneous presence of the rays of several non-Lifshitz

stars in the transition channel unambiguously suggests the

érst kind of the b-V(O) (space group I4=mmm)! g-phase of
V14O6 (space group C2=m) phase transformation under

consideration.
The distribution function of oxygen atoms in the mono-

clinic (space group C2=m) V14O6 superstructure with any
degree of order has the form

nO�xI; yI; zI� � y� Z1ÿ1
7 cos �3p=7� cos

�
2p�xI � 3zI�

7

�

ÿ Z1ÿ2
7 cos �2p=7� cos

�
2p�4xI ÿ 2zI�

7

�

� Z1ÿ3
7 cos �p=7� cos

�
2p�2xI � 6zI�

7

�
: �40�

Referring to Fig. 25, coordinates �xI; yI; zI� of a basic
disordered body-centered structure are related by expres-
sions xI � 3xm � zm, yI � ym, and zI � ÿxm � 2zm to the
coordinates of the monoclinic (space group C2=m) V14O6

superstructure, presented in Table 23. Given arbitrary values
of the long-range order parameters, distribution function (40)
takes 4 different values (see Table 23).

The point symmetry group 2=m �C2h� of the monoclinic
V14O6 superstructure includes 4 symmetry elements h1, h4,
h25, and h28, while the point group 4=mmm �D4h� of the basic
tetragonal disordered b-phase ofV(O) consists of 16 elements:
h1ÿh4, h13ÿh16, h25ÿh28, and h37ÿh40 [30, 31]; hence,
rotational symmetry reduction equals 4. The unit cell volume
increases by a factor of 7 during transition from the
disordered b-phase to monoclinic V14O6 suboxide; there-
fore, the translational symmetry reduction reaches 7, while
the overall symmetry reduction in the b-V(O) (space group
I4=mmm)! g-phase of V14O6 (space group C2=m) transfor-
mation amounts to 28.

10. Conclusion

The most distinctive feature of strongly nonstoichiometric
compounds is the high concentration of structural vacancies
that can vary from zero to a few dozen atomic percent at the
lower boundary of the homogeneity interval. The high
vacancy concentration is a prerequisite for disorder or order
in the distribution of atoms and vacancies in the structure of
nonstoichiometric compounds. Deviations from the statisti-
cal (disordered) distribution of atoms and vacancies affect
their crystalline structure, as is apparent from the appearance
of short- or long-range orders. The former characterizes only
the radial distribution of the atoms, i.e., fluctuations of the
atomic concentrations in different coordination spheres. The
long-range order includes both radial and angular distribu-
tions and permits determining the atom of which kind is
located in one site or another of the crystal lattice.

The present review gives evidence that atom±vacancy
ordering in strongly nonstoichiometric interstitial com-
pounds is a widespread phenomenon, even though super-
structures of many nonstoichiometric compounds have not
yet been identified.

Superstructures of nonstoichiometric compounds are
more diverse and frequently more complicated than those of
solid substitution solutions (alloys). Indeed, ordering in
nonstoichiometric compounds, e.g., cubic titanium and

Table 23.Monoclinic [space group No. 12ÐC2=m (C 3
2h)] V14O6 superstructure; Z � 1, am � h30�1ibct, bm � h010ibct, and cm � h102ibct.

Atom Position and
multiplicity

Atomic coordinates
in ideal ordered structure

Values of distribution function
nO�xI; yI; zI�*

of oxygen atoms
x=am y=bm z=cm

O1

O2

O3 (vacancy)

O4 (vacancy)

V1

V2

V3

V4

2�a�
4�i�
4�i�
4�i�
2�d �
4�i�
4�i�
4�i�

0

2=7

6=7

4=7

0

9=14

11=14

13=14

0

0

0

0

1=2

0

0

0

0

1=7

3=7

2=7

1=2

1=14

9=14

3=14

n1�O� � y� g �1�1ÿ1Z1ÿ1 � g �1�1ÿ2Z1ÿ2 � g �1�1ÿ3Z1ÿ3
n2�O� � y� cos �2p=7�g �1�1ÿ1Z1ÿ1 ÿ cos �p=7�g �1�1ÿ2Z1ÿ2 ÿ cos �3p=7�g �1�1ÿ3Z1ÿ3
n3�O� � yÿ cos �p=7�g �1�1ÿ1Z1ÿ1 ÿ cos �3p=7�g �1�1ÿ2Z1ÿ2 � cos �2p=7�g �1�1ÿ3Z1ÿ3
n4�O� � yÿ Z1ÿ1=7ÿ Z1ÿ2=7ÿ Z1ÿ3=7

* g �1�1ÿ1 � 1=�7 cos �3p=7��, g �1�1ÿ2 � ÿ1=�7 cos �2p=7��, g �1�1ÿ3 � 1=�7 cos �p=7��.

[100]t

[010]t

[001]t
cm

bm

btetr

bm

am

Figure 25. Position of the monoclinic (space group C2=m) unit cell of the

V14O6 superstructure in the body-centered tetragonal lattice: (*) vana-

dium (V) atom, (*) oxygen (O) atom, and (&) vacancy in oxygen

sublattice.
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vanadium monoxides, may simultaneously occur in several
sublattices of a basic disordered structure.

Changes in the properties of strongly nonstoichiometric
compounds as a result of ordering are similar in magnitude to
those in the compositions within the homogeneity interval of
an ordered phase. Thus, variation in the composition of
strongly nonstoichiometric compounds and redistribution of
atoms and vacancies in their crystal lattices are two equitable
ways to modify the characteristics of these compounds,
creating an additional motivation to study superstructures
of nonstoichiometric compounds.

This study was supported by the RFBR projects 13-03-
00077a.
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