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of single crystals of Fe-based
superconductors of the 122 family
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1. Introduction
Iron-based superconductors, just after their discovery in 2008
[1±5], have become a subject of great interest for the scientific
community and occupy one of the leading places among the
most topical subjects in contemporary solid-state physics [6,
7]. The present development of investigations of iron-contain-
ing superconductors can be compared perhaps with the great
efforts to study properties of cuprate high-temperature
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superconductors (HTSCs) in the first years after their
discovery [8]. At present more than one hundred Fe-based
superconductors of different compositions have been found.
These compounds represent quite a new class of super-
conducting materials with crystal lattice containing ions of
3d metals (Fe, Co, Ni) well known as ferromagnetic metals.
Therefore, a priori, other mechanism of superconducting
pairing in Fe-based superconductors, different from the
traditional electron±phonon coupling, cannot be ruled out.
A characteristic feature of all iron-containing superconduc-
tors is the presence in their crystal structure of FeÿAs layers
in the case of pnictides or FeÿSe layers in the case of
chalcogenides. At present, the maximum critical temperature
Tc of the superconducting transition in Fe-based super-
conductors reaches 56 K [9] (in a Gd1ÿxThxFeAsO com-
pound), which is inferior only to Tc of cuprate HTSCs. This
circumstance undoubtedly makes it possible to place iron-
based superconductors in the class of HTSCs.

Interest in iron-based superconductors is roused due to a
whole number of fundamental and applied aspects. Firstly,
the discovery of superconductivity in these compounds has
broken the illusion that high-temperature superconductivity
is exclusively a property of cuprate superconductors;
secondly, it may be supposed that an investigation of the
mechanism of high-temperature superconductivity in iron-
containing superconductors will reveal ways of finding a
more efficient mechanism of electron pairing than that
existing in the cuprates and, correspondingly, can open the
door to reaching higher values of Tc, which gives a new
hope for the achievement of room-temperature supercon-
ductivity; thirdly, theoretical and experimental investiga-
tions of the energy-band structure of iron-containing super-
conductors yield values of the electron velocity vF on the
Fermi surface on the order of 106ÿ107 cm sÿ1, which, in
turn, suggests small coherent lengths x � �hvF=2pkBTc �
1ÿ3 nm and, respectively, higher values of the upper critical
field Hc2 � f0=2px

2 exceeding 100 T [10]. Moreover, based
on the experimental data, one can make an unambiguous
conclusion that the density of the critical current in iron-
containing superconductors at a liquid-helium temperature
should exceed 106 A cmÿ2 [11±13], which is comparable with
an analogous magnitude in cuprate superconductors. Iron-
containing superconductors also possess a significantly
smaller anisotropy of Hc2 and Jc compared to cuprate
superconductors [11], and the grain boundaries in these
compounds, unlike those in cuprate superconductors, are
`transparent' to the superconducting current and do not
restrict its magnitude [14]. All the above properties allow
reaching a conclusion about the wide practicality of recently
discovered iron-containing superconductors, primarily in
`strong-current' applications in high magnetic fields.

This report is not directed to an analysis of the existing
concepts of the specific features of the band structure of
iron-containing superconductors, possible mechanisms of
superconducting pairing, types of symmetry of the order
parameter, or the manifestation of multigap superconductiv-
ity. Rather, we focus our attention on the results (obtained
by our team and other research groups) of investigations of
the magnetotransport properties and current-carrying capa-
city of iron-containing superconductors, in particular, of
BaFe2ÿxNixAs2 crystals depending on the temperature,
magnetic field, and the type of doping. This topic represents
significant interest from the viewpoint of the estimation of the
opportunity of practical applications of these materials.

2. Samples and measuring techniques
Optimally doped BaFe2ÿxNixAs2 single crystals have lower
values of Tc and Hc2�0� than those of Ba1ÿxKxFe2As2 and
BaFe2ÿxCoxAs2 compounds of the 122 family, with the
maximum critical temperatures reaching 40 and 25 K,
respectively [14]. It might be possible that for this reason the
crystals of the 122 family with an admixture of Ni have not
been studied so intensely as the compounds of the 122 family
doped with K and Co. On the other hand, the relatively low
values ofTc andHc2�0� give a good opportunity to investigate
the superconducting current-carrying properties and vortex
pinning in BaFe2As2 single crystals doped with Ni in a wide
temperature range covering almost the entire region of the
phase diagram of this compound.

BaFe2ÿxNixAs2 single crystals were grown by the self-flux
method using as a flux a charge containing the components
that enter the composition of the single crystals, in this case,
FeAs. The starting components (Ba, FeAs, and NiAs) of high
purity and with the total weight of � 5 g were mixed in the
molar proportion of 1 :5�1ÿ x� :5x, placed in a corundum
crucible (3 cm3 in volume), sealed in quartz tubes under a
residual pressure of 0.2 atm of Ar, and placed into a tubular
furnace. At the next step, the ampoule was heated to a
temperature of 1200 �C, held at this temperature for 24 h
(for the homogenization of the melt), and then cooled to
1070 �C at a rate of 2 �C hÿ1. After having reached this
temperature, the ampoule and the furnace were rotated from
the vertical position by 90�ÿ95� to sink the liquid flux from
the crucible. Then, the ampoule with the crystals was cooled
to room temperature together with the furnace. As a result,
crystals were produced (almost free of flux) with dimensions
of up to 4� 2 mm2 in the ab-plane with a thickness up to
several hundred micrometers. The charaterization of the as-
grown crystals using X-ray diffraction analysis has shown the
absence of any foreign phase.

Figure 1a, where only peaks corresponding to f00l g
planes are seen, illustrates this conclusion for the
BaFe2ÿxNixAs2 samples with x � 0:1 and x � 0:14. The
sample with the larger nickel concentration �x � 0:14� has a
greater value of the lattice parameter along the c-axis. The
decrease in the intensity of the reflections with increasing
diffraction angle in the sample with x � 0:1 gives evidence of
a somewhat inhomogeneous distribution of nickel over the
crystal volume. The high perfection of the BaFe2ÿxNixAs2
single crystals is also confirmed by the data given in Fig. 1b
which demonstrates the temperature dependence of the real
�w 0� and imaginary �w 00� parts of the magnetic susceptibility
for the sample with x � 0:1, measured in magnetic fields of 0,
1, 5, and 9 T applied along the c-axis.

It can be seen that in a zero magnetic field the width of the
superconducting transition (estimated at the level of 10±90%)
equals approximately 1:5 K; with increasing field, the
transition is shifted toward lower temperatures and slightly
broadens. The magnitude of Tc determined by extrapolation
of the linear part of the susceptibility curve w�T � to zero was
19.5 K. The estimation of the derivative of the upper critical
field as a function of temperature yields dHc2=dT �
ÿ4:2 T Kÿ1. From an analysis of similar data on w 0�T � for
BaFe1:86Ni0:14As2 crystals, the following values have been
obtained: Tc � 13 K, and dHc2=dT � ÿ3:6 T Kÿ1.

To measure the magnetic and transport properties of
grown crystals, samples of rectangular shape with dimen-
sions of � 2� �0:5ÿ1:0� � �0:1ÿ0:2� mm3 have been
cleaved. The temperature dependence of the magnetic
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susceptibility was measured using a PPMS-9 (Physical
Property Measurement System 9) (Quantum Design) facil-
ity. The measurements of the magnetization curves were
performed using a low-frequency (3.6 Hz) vibration-sample
magnetometer with a step motor [15] in the International
Laboratory for Strong Magnetic Fields and Low Tempera-
tures (Wroclaw, Poland). The typical rate of the magnetic-
field sweep ranged within 20±90 Oe sÿ1.

3. Magnetotransport properties
of BaFe2ÿxNixAs2 crystals (x�0.1 and x�0.14)
Figure 2a shows, as an example, the temperature dependence
of the resistance R�T � of a BaFe1:9Ni0:1As2 crystal in
magnetic fields of up to 9 T applied parallel to the c-axis. It
can be seen that with increasing magnetic field the resistive
superconducting transition is shifted toward lower tempera-
tures, whereas its width remains almost unaltered. At small
resistances near the onset of the superconducting transition,
the temperature dependence of the resistance is described well
in terms of the vortex glass model [16]: R�T � �
�Tÿ Tg� n�zÿ1�, where Tg is the melting point of the vortex
glass, and n and z are the static and dynamic critical
exponents, respectively. This result is illustrated in Fig. 2b,
where the R�T � dependences are constructed in the Vogel±
Fulcher coordinates. It can be seen that near the onset of the
superconducting transition the derivative �d lnR=dT �ÿ1
depends linearly on temperature. In this case, the

�d lnR=dT �ÿ1 straight lines as functions of temperature are
extrapolated to the melting point (Fig. 2b). As can be seen
from the inset to Fig. 2b, the slope of the �d lnR=dT �ÿ1
straight lines as a function of T is independent of the
magnitude of the applied magnetic field, also in agreement
with the vortex glass model [16]. Similar data have also been
obtained for BaFe1:86Ni0:14As2 crystals. The only difference is
lower melting points of the vortex glass Tg in this crystal.

One more evidence in favor of the applicability of the
vortex glass model for the description of the magnetotran-
sport properties of BaFe2ÿxNixAs2 crystals are the results of
measurements of the current±voltage (IV) characteristics).
According to the vortex glass model [16], a positive
curvature of the IV curves on the double logarithmic scale
indicates the state of a liquid vortex glass, whereas a negative
curvature of the IV characteristics corresponds to solid-state
vortex glass with a nonzero critical current. A rectilinear IV
characteristic in double logarithmic coordinates corresponds
to the transition of the vortex system from the solid state to
the liquid one.

Figure 1. (a) Results of the X-ray phase diffraction analysis of

(1) BaFe1:9Ni0:1As2 and (2) BaFe1:86Ni0:14As2 samples. (b) Temperature

dependences of the real �w 0� and imaginary �w 00� parts of the magnetic

susceptibility for the BaFe1:9Ni0:1As2 sample in magnetic fields of 0, 1, 5,

and 9T applied along the c-axis [11].
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In Fig. 3a, we give, as an illustration, the results of
measurements of the IV curves for a BaFe1:9Ni0:1As2 crystal in
a magnetic field of 4 T at various temperatures with a step of
0.1K. It can clearly be seen from the curves that atTg�16:75K
there is a change in the curvature of the IV characteristics froma
positive to a negative curvature. Similar results have also been
obtained for the other values of the applied magnetic field.

Thus, we can conclude on the base of the data obtained
that the magnetotransport properties of BaFe2ÿxNixAs2
crystals are described well by the vortex glass model. This
conclusion is additionally illustrated by Fig. 3b, where we
give the dependences of Tg on the magnetic field for
BaFe2ÿxNixAs2 crystal with x � 0:1 and 0.14, obtained
from R�T � measurements in various magnetic fields, as well
as from CVCs measured in a fixed magnetic field at different
temperatures. It is distinctly seen that these two independent
methods of determining Tg give results that are in good
agreement with each other.

4. Magnetic properties of BaFe2ÿxNixAs2 crystals with
x � 0.1 and x � 0.14 and peculiarities in the dependence
of the critical current density on magnetic field
Figure 4 displays the results of measurements of the
bulk isothermal irreversible magnetization M�H� of

BaFe1:9Ni0:1As2 and BaFe1:86Ni0:14As2 crystals depending
on the magnetic field applied along the c-axis of the crystal
(Figs 4a, 4b) and parallel to the ab plane (Figs 4c, 4d) at
various temperatures indicated in the figures. The symmetry
of the curves relative to the ordinate axis is clearly seen. In
good agreement with the previously published data, the
M�H� curves also demonstrate a sharp peak near the zero
magnetic field. In addition, for the BaFe1:9Ni0:1As2 single
crystal a second wide peak is observed in Jc�H� for both
orientations of the magnetic field, whereas for the
BaFe1:86Ni0:14As2 sample the second peak is absent. With
increasing temperature, the position of the second peak is
shifted toward lower magnetic fields. Notice that there is no
common opinion on the nature of the second peak.

Based on the data presented in Fig. 4, we can calculate the
critical current density in the crystals investigated, using the
well-known expression Jc � 20DM=a�1ÿ a=3b� obtained in
terms of the Bean model of the critical state [17, 18], where a
and b �b > a� are the crystal dimensions in the plane
perpendicular to the applied magnetic field. As an example,
we show in Fig. 5 the calculated critical current density for the
BaFe1:9Ni0:1As2 crystal depending on the field applied along
the c-axis (Fig. 5a) and parallel to the ab plane (Fig. 5b) at
various temperatures. As could be expected, in accordance
with the data depicted in Fig. 4, the Jc�H� dependence at all
temperatures studied in the experiment is nonmonotonic with
a wide peak which is shifted toward the lower fields with
increasing temperature. In this case, the Jc value obtained at
low temperatures exceeds 106 A cmÿ2, which approaches the
upper boundary of the previously published data on the
critical current density in single crystals of the 122 family
[14, 19±26].

The analysis of the dependence of the normalized
pinning force fp � Fp=F

max
p � Jc�H�H=��Jc�H�H�max on

the normalized magnetic field h � H=Hc2 is a powerful
tool for studying the mechanism of pinning in type-II
superconductors. In the case of iron-containing com-
pounds, just as in cuprate HTSCs, it is necessary to take
into account that the region of the liquid vortex state
occupies a significant part of the magnetic phase diagram
and, respectively, the difference between the upper critical
field and the irreversibility field is substantial. For this
reason, it is expedient to use for the normalization of the
applied magnetic field the irreversibility field Hirr, at which
Fp and Jc become zero, instead of Hc2. In the Dew-Hughes
model [27], the fp�h� curves obtained at various tempera-
tures obey the scaling dependence fp / hp�1ÿ h�q in the
case of the single mechanism of pinning and should fall on a
single curve with the identical position of the peak, which
gives information on the nature of the pinning centers. The
position of the peak at hmax � 0:2 suggests the pinning at
grain boundaries; the position of the peak at hmax � 0:33
implies the pinning at normal point defects with dimensions
on the order of the coherent length x, and, finally, the peak
at hmax � 0:7 refers to the pinning caused by a spatial
change of the order parameter. In the model developed by
Kramer [28], the large density of strong pinning centers
yields a clearly pronounced peak at low h, whereas the weak
and rare pinning centers will give an fp�h� peak at higher h.
Figure 6 displays the fp�h� dependence for BaFe1:9Ni0:1As2
single crystals obtained at various temperatures in two
orientations of the magnetic field using the data for Jc�H�
at temperatures covered in Fig. 5. The irreversibility field
Hirr has been estimated using the data given in Fig. 4.

Figure 3. (a) Current±voltage characteristics of a BaFe1:9Ni0:1As2 crystal

in a magnetic field of 4 T at various temperatures with a step of 0.1 K. The

dashed straight line corresponds to the melting point of the vortex glass,

Tg � 16:75 K. (b) The melting curve Tg�H� of the vortex-glass phase of

BaFe2ÿxNixAs2 crystals (x � 0:1 and x � 0:14). The asterisks correspond
to the data obtained from R�T � measurements, and squares are the data

obtained from IV measurements.
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Referring to Fig. 6, all experimental curves fp�h� within
the scatter of the measurement fall on the same curve in the
case of field orientation Hkc, which suggests a single
mechanism of pinning (a similar result was obtained for a
BaFe1:86Ni0:14As2 sample with a greater nickel concentra-
tion). The scaling of the fp�h� curves was revealed in a wide
temperature range 2±17 K; the scaling curve is described well
by the expression fp�h� � h�1ÿ h�2 with the peak position at
hmax � 0:3ÿ0:4, which, in accordance with the Dew-Hughes

model [27], implies pinning on normal point defects. Our
observation of the peaks at hmax � 0:3ÿ0:4 agrees well with
other experiments on crystals of the 122 family with hole and
electron dopings, for which peaks were reported at
hmax � 0:32, 0.37, and 0.43 [13, 24, 25]. As can be seen from
Fig. 6, the curves measured in the field Hkab demonstrate a
striking difference. In this case, the fp�h� curves reach their
peaks at different points, thus demonstrating the absence of
scaling. This result does not look surprising, since the
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screening current in the case of the magnetic field orientation
parallel to the ab-plane consists of two components: a current
flowing in the direction parallel to the ab planes, and a current
directed parallel to the c-axis. These two components can be
related to different mechanisms of pinning with different field
and temperature dependences, which might explain the
absence of scaling.
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