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Antiferromagnetism in iron-based
superconductors: magnetic order
in the model of delocalized electrons

I M Eremin

In 2008, a group of Japanese materials scientists led by Hideo
Hosono of Tokyo Institute of Technology discovered super-
conductivity in iron-based layered materials [1]. Understand-
ing the interplay between magnetism and superconductivity
in these ferropnictides or iron pnictides (as they are commonly
referred to) requires insight into the main body of magneti-

cally ordered states in nonsuperconducting parent com-
pounds and how these states evolve with the number of
charge carriers (i.e., the doping level). Notably, a hot current
topic is the origin of magnetism in parent iron-containing
superconducting compounds, because it is believed that the
magnetic interactions responsible for magnetic ordering are
also responsible for Cooper pairing [2].

The phase diagrams of ferropnictides (FPs) are similar to
those of high-temperature superconducting cuprates in
showing neighboring antiferromagnetic (AFM) and super-
conducting phases. At low carrier concentrations, most
ferropnictides are antiferromagnetic, and the suppression of
the AFM state with increasing doping level, pressure, or
degree of disorder leads to emerging of superconductivity.
This fact is reminiscent of the phase diagram of cuprates and
is often used as evidence of the interrelation between
magnetism and superconductivity in iron-based materials.

There are, however, two important differences between
ferropnictides and cuprates. First, the starting FP compounds
are AFMmetals, and second, in most FPs the superconduct-
ing Cooper pairing most likely exhibits extended S-wave
symmetry, with or without zeros on the Fermi surface [2].
The electronic structures of paramagnetic FPs have been
studied experimentally with angle-resolved photoemission
spectroscopy (ARPES) [3±9] and de Haas±van Alphen
oscillation measurements [10±12] and found to be in overall
agreement with band calculations [13, 14]. In particular, the
Fermi surface of a ferropnictide is two-dimensional and
consists, when viewed in a plane, of two nearly spherical
hole pockets of different sizes centered at the G point (0,0) of
the Brillouin zone, and of two elliptical electron pockets
centered at the points (0, p) and (p, 0) of the Brillouin zone
in the unit cell containing a single Fe atom. Because of the
tetragonal symmetry, the two electron pockets are equivalent
under rotation through 90�. The Brillouin zone that was
utilized in the experiments contains two Fe atoms per unit
cell due to the nonequivalent positions of the As atom, and,
hence, both electron pockets are centered at (p; p). The
electron dispersions near the electron pockets show behavior
that is very similar to the analogous behavior near the hole
pockets, except for the global change in sign [the so-called
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nesting property which allows the electron and hole bands to
be mutually nested into each other through a shift by a wave
vector (p; p)]. This dispersion property is characteristic of
most (but not all) ferropnictides, as will be discussed later on.

This article presents a theoretical analysis of the magnetic
ordering mechanisms in parent FPs [15, 16]. Inelastic
neutron scattering measurements in such compounds have
shown that the ordering of interest most commonly reveals
itself on the wave vectors (0, p) and (p, 0)Ð that is,
ferromagnetic chains along one of the crystallographic axes
and antiferromagnetic chains in the other direction. Such a
magnetic order originates, in principle, in the J1ÿJ2 model of
localized spins with exchange interactions J1 and J2 between,
respectively, the nearest and next-to-nearest neighbors for
J2 > 0:5J1 [17±21].

The current discussion, however, concerns a different
scenario, one taking into account that a ferropnictide
remains metallic when it resides a magnetic state, and relies
on a model that describes AFM order in terms of the spin
density wave (SDW) for itinerant electrons.

The reason is that optical conductivity measurements
reveal a transfer of spectral weight from the Drude peak to
the middle of the infrared peak, in accordance with the
itinerant electron model that leads to AFM order [22]. As is
known, the nesting mechanism produces an incommensurate
AFM order in Cr [23, 24]. Given the ferropnictide electronic
structure, a natural conjecture is that AFM order is estab-
lished, at least in part, due to nesting between the electron and
hole energy dispersions. That this is indeed so may be
supported by band structure calculations and also by a
total energy analysis of the AFM state: it is strictly found
that the total energy gain with respect to the paramagnetic
state is mainly due to those regions of the Brillouin zone that
contain electron and hole pockets [25]. Furthermore,
ARPES experiments have demonstrated a direct relation-
ship between nesting and the origin of AFM ordering [26].
Moreover, an incommensurate ordering wave vector is
observed in neutron diffraction experiments with a varying
number of carriers, again in agreement with the itinerant
electron model [27]. The application of this mechanism to
ferropnictides has been a subject of study for some years and
is outlined below [15, 28±33].

Magnetic ordering and magnetic frustration effects. As
noted above, the first evidence for magnetic order in FPs
came from neutron scattering [34] and muon spin relaxation
(mSR) [35]. The N�eel temperature of magnetic transition is
about TN � 150 K. In real space, magnetic ordering man-
ifests itself in appearing ferromagnetic chains along one of the
crystallographic axes in the square lattice of antiferromagne-
tically bonded Fe atoms. Inmomentum space, this ordering is
defined by the wave vector Q1 � �p; 0� or, alternatively,
Q2 � �0; p�. In the localized scenario, this ordering arises in
the context of the J1ÿJ2 model of localized electrons [17] for
J2 > 0:5J1, and with allowance for quantum fluctuations.

Now let us have a look at the band theory interpretation
of this order. Figure 1 shows the Fermi surface of a normal-
state ferropnictide. This Fermi surface topology exhibits two
equivalent wave vectors of instability, Q1 � �p; 0� and
Q2 � �0; p�, with respect to spin density wave formation due
to the nesting of electronic and hole Fermi surfaces. For the
idealized case of zero-ellipticity electron pockets and equal
electron and hole effective masses, the situation is similar to
that in the single-band Hubbard model on the square lattice
with a half-filled conduction band. In particular, the

electron±hole susceptibility in this case shows a logarithmic
divergence, similar to what occurs in the particle±particle
channel of Cooper pairing. The renormalization group
analysis shows that the fundamental instability in this case
develops in the magnetic channel [28, 29]. However, given the
presence of two wave vectors, Q1 and Q2, the question
remains as to how one of two experimentally observed
ordering vectors should be selected.

To formulate the problem, we start by describing the
general spin configuration as determined by two magnetic
order parameters Di in the mean field approximation for each
of the wave vectors Qi:

S�R� � D1 exp �iQ1R� � D2 exp �iQ2R� : �1�

This configuration divides the iron lattice into two antiferro-
magnetically ordered, mutually penetrating sublattices with
respective magnetizations D1 � D2 and D1 ÿ D2. In this case,
however, neither the angle between nor the relative magni-
tude of the two N�eel vectors is fixed. Shown in Fig. 2 are four
of the set of all possible magnetic configurations, those in
panels c and d corresponding to the experimental situation in
which one of the order parameters Di vanishes.

Let us consider a model of interacting fermions with
circular Fermi contours centered at the G-point of the
Brillouin zone (a zone) and two elliptical pockets around the
points ��p; 0� and �0;�p� (b zone) (see Fig. 1):

H2 �
X
p;s

h
e a1p a�1psa1ps � e b1p b�1ps b1ps � e b2p b�2ps b2ps

i
: �2�

p

Q2

Q1

ÿp p

0

0

Figure 1. Schematics of the Fermi surface of a ferropnictide. Its unit cell

contains one Fe atom, hole fermion pockets situated near the G-point of
the Brillouin zone, and two elliptical electron pockets near (p; 0) and (0; p)
points. Q1 and Q2 are two possible ordering vectors for the spin density

wave.

D1 ? D2 D1 � D2 D1 � 0 D2 � 0

a b c d

Figure 2. Possible magnetic ordering configurations in ferropnictides [16].
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Here ea1p , e
b1
p , and e b2p are the quasiparticle energies in the hole

and electron bands, respectively:

e a1p � ÿ
�h 2p 2

2m1
� m; e b1p �

�h 2p 2
x

2mx
� �h 2p 2

y

2my
ÿ m ;

e b2p �
�h 2p 2

x

2my
� �h 2p 2

y

2mx
ÿ m ;

the quasimomenta of the a fermions are counted from the
point (0, 0), those of the b1 and b2 fermions are measured
from (0, p) and (p, 0), respectively, and m is the chemical
potential. In the general case, the interaction Hamiltonian
includes density±density type interactions, scattering with
wave vectors (0, p), (p, 0) and (p; p), and quasiparticle pair
hopping.

Consider first the density±density type interaction
between a and b fermions and the quasiparticle pair hopping
processes:

H4 � U1

X
a�1p3s b

�
jp4s 0

bjp2s 0 a1p1s

�U3

2

X�
b�jp3s 0 b

�
ip4s 0

a1p2s 0 a1p1s � h:c:
�
: �3�

Here, the interaction parameters are assumed to be wave
vector-independent; a, �a��, b, �b�� are the annihilation
(creation) operators for the hole and electron Fermi
surfaces; the summation is assumed to be taken over all
momenta (p1, p2, p3, p4) and spins (s; s 0), and h.c. stands for
`Hermitian conjugate'. Because two b bands are involved, it is
natural to introduce two SDW order parameters:
D1 /

P
pha�1pd sdg b1pgi (where sdg are the Pauli matrix

elements) with a wave vector Q1 � �p; 0�, and D2 /P
pha�1pd sdg b2pgi with a wave vector Q2 � �0; p�. Without

loss of generality, wemay assume that the vectorD1 is directed
along the z-axis, and that D2 lies in the xz plane. For the
purposes of further discussion, it is convenient to redefine
these parameters in the following way:

D z
1 � ÿUSDW

X
p



a�1p" b1p"

�
; �4�

D z�x�
1 � ÿUSDW

X
p



a�1p" b1p"�#�

�
;

where USDW � U1 �U2. Assuming first a circular shape of
the electron pockets (mx � my � m and e b1p � e b2p � e bp ), the
Hamiltonian is diagonalized by three consecutive Bogoliubov
transformations, reducing the self-consistent equation for the
order parameter to

1 � USDW

2N

X
p

1���������������������
�ep�2 � D 2

q : �5�

Two important conclusions follow from the above. First,
the self-consistent equation defines the order parameters not
separately but in combination, D2

1 � D2
2, i.e., at this level of

calculation a pair of vector order parameters, D1 and D2, can
be considered as a generalized six-component vector. Here, a
state of spin density waves is characterized by spontaneous
breaking of the O(6) symmetry, and this ordered state has five
Goldstone modes. The degenerate ground state corresponds
to two-sublattice states antiferromagnetically ordered along
the (0, p) and (p; 0) diagonals for whichD1 � 0 or D2 � 0, and
also corresponds to many other situations, some of which are
demonstrated in Fig. 2.

It should also be noted that the revealed degeneracy
turned out greater than in the J1ÿJ2 model of localized
spins. In our case, not only can the angle between the two
sublattices be arbitrary, but also the sublattices can have
different ordered moments.

We note, in conclusion, that integration over momenta in
Eqn (5) extends beyond the Fermi surface. The SDW order
parameter also becomes finite when the Fermi surface
disappears. This results from the fact that an electron±hole
loop formed by a and b fermions is similar to the particle±
particle loop because the a- and b-band dispersions differ in
sign. As a consequence, the small sizes of hole and electron
pockets are of no relevance to the formation of an SDWor, in
other words, an SDW arises in this case due to the nesting
between the a and b bands, but not due to nesting in
individual Fermi surfaces.

Now let us switch on the interaction between two electron
pocketsÐwhich we should because it is not weak and should
be taken into account in a theoretical analysisÐand see
whether this can lift the degeneracy. Four types of interaction
may be distinguished:

H ex
4 � U6

X
b�1p3sb

�
2p4s 0b2p2s 0b1p1s

�U7

X
b�2p3sb

�
1p4s 0b2p2s 0b1p1s

�U8

2

X�
b�1p3sb

�
2p4s 0b2p2s 0b1p1s � h:c:

�
�6�

�U4

2

X�
b�1p3sb

�
2p4s 0b2p2s 0b1p1s � b�2p3sb

�
1p4s 0b2p2s 0b1p1s

�
(we use the notation of Ref. [16]). All theUi are considered to
be positive. Carrying out consecutive Bogoliubov transfor-
mations and averaging yields the following corrections to the
ground state energy:

E ex
gr �2A 2�U6�U8ÿU7ÿU4�

��D1

��2��D2

��2
D 4

� 4A 2U7

ÿ
D1 D2

�2
D 4

:

�7�
It is seen thatE ex

gr now depends on both themagnitude and the
relative direction of vectors D1 and D2. When all the
interactions are equal in strength, the first term on the right-
hand side vanishes, and the second has a minimum at
D1 ? D2. The O(6) symmetry is reduced, but not to lower
than O�3� �O�2�, i.e., the order parameters each have the
same value at all sites because �D1 � D2�2 � �D1 ÿ D2�2, but
the angle between D1 � D2 and D1 ÿ D2 is still arbitrary. This
is exactly the same situation as in the classical J1ÿJ2 model.
However, if �U6 �U8 ÿU7 ÿU4� 6� 0, the symmetry drops
to O(3) even in the mean-field approximation. Because U4 is
reduced and indeed changes sign [14]Ðwhereas the other U
remain unchangedÐunder renormalization group transfor-
mations, the most likely situation to occur is one in which
U6 �U8 ÿU7 ÿU4 > 0 and, hence, the minimum energy
cases are consistent with D1 � 0 and D2 � 0, which in turn
correspond to SDWwith the wave vector (0; p) or (p; 0). This
is exactly what is observed experimentally. If U6 �U8ÿ
U7 ÿU4 < 0, the minimum of E ex

gr occurs at jD1j � jD2j, and
the sublattice order parameters are orthogonal to each other.
Figure 2 depicts the spin ordering pattern for this case. This
type of spin ordering was found earlier when analyzing the
two-orbit model.

Now let us take into account the fact that the electron
pockets are not circular but elliptical, i.e., the effective masses
mx and my are not equal between themselves and e b1k 6� e b2k .
For the problem to remain tractable analytically, we assume
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that the departure from a circular shape of the electron
pockets is small and introduce mx � �1� d�m and my �
�1ÿ d�m, with d5 1. Consecutive Bogoliubov transforma-
tions give

E ellipt
gr � C

��D1

��2��D2

��2 ; C � d 2 mm 2

4pD 4
: �8�

From formula (8) it is seen that the ellipticity of the electron
pockets lifts the degeneracy in favor of a (0; p) or a (p; 0) SDW.
As already noted, this is precisely the situation corresponding
to the experimental data. Thus, ellipticity gives rise to the
effective interaction between the SDW order parameters,
which for D5 m favors the same ground state arising from
the inclusion of interaction between two electron pockets.

For comparison, let us consider the same itinerant
electron model, but with the conduction electrons interacting
as in the J1ÿJ2 model. Then, the model Hamiltonian takes
the form

HJ1ÿJ2 �
X
p

S�p�S�ÿp�

� �J1�cos px � cos py� � J2 cos px cos py
�
; �9�

where S�p� � �1=2� P a�p; asabap1�p; b, a� and a are the
fermion operators that describe holes or electrons if p
resides, respectively, near (0, 0) and near (0; p) or (p; 0). The
kinetic energy term is the same as that in Eqn (2). To avoid
confusion, note that the model we are considering differs
from the localized spinmodel, even if the parameters J1 and J2
are much larger than the Fermi energy. In particular, in this
model states on the same lattice site cannot be filled twiceÐ
unlike the tÿJ model for the cuprates, where they can. A
version of the J1ÿJ2 model as applied to localized moments
will be considered below.

Energy operator (9) can be put into correspondence with
the potential energy operator in Eqn (3) by considering the
values of the operator p in the neighborhoods of (0, 0), (0; p),
and (p; 0) points. Writing the spin operators in a second-
quantized form, we find that U3 � 3J2 and U1 � J2 ÿ J1.
Thus, USDW � U1 �U3 � JSDW � 4J2ÿJ1 in this model. As
was the casewithEqn (3), it is logical to introduce vector order
parameters with the components D z

1 � ÿJSDW

Pha�1p"b1p"i
and D z�x�

2 � ÿJSDW

Pha�1p"b2p"�#�i. A mean-field approxima-
tion calculation similar to that described above gives the
following equation for the order parameterD 2�jD1j2 � jD2j2:

1 � JSDW

2N

X
p

1���������������������
�ep�2 � D 2

q : �10�

A solution for D 2 � jD1j2 � jD2j2 exists for J2 > J1=4. Large
values of J2 produce antiferromagnetic ordering along
diagonals. It is instructive to look at the condition J2 > J1=4
in relation to its counterpart inequality for the J1ÿJ2 model
of localized spinsÐand thereby to see that they indeed differ
from each other. The degeneracy between different SDW
states with the same value of D 2 � jD1j2 � jD2j2 is lifted by
including the interaction between the electron pockets, which
is described by the Fourier transforms for J1 and J2 at the
momenta p � �0; 0� and p � �p; p�. It is easily verified that the
term with p � �p; p� mixes electronic states and this is
equivalent to including the interactions U6, U7, and U8,
whereas the presence of the term with p � �0; 0� is equivalent
to including U6 and U4.

By second-quantizing S�p�S�ÿp�, we obtain an operator
quadratic in b1 and b2 fermions in the same form with the

coefficients

U s
6 � J1 ÿ 3J2 ; U s

7 � ÿJ1 ÿ 3J2 ; �11�
U s

8 � 3�J1 ÿ J2� ; U s
4 � ÿ3�J1 � J2� ;

which, when substituted into the total energy expression,
gives

EJ1ÿJ2
gr � 2A 2

�
4J1
jD1j2jD2j2

D 4
ÿ �J1 � 3J2� �D1 D2�2

D 4

�
; �12�

where A > 0. It is seen that the coefficient of �D1D2�2 is
negative, i.e., the energy decreases when the vectors D1 and
D2 become parallel. In this case, jD1j2jD2j2 � �D1D2�2, and
from Eqn (12) we obtain

EJ1ÿJ2
gr � ÿ2A 2�J2 ÿ J1� jD1j2jD2j2

D 4
: �13�

It is seen that the states withD1 � 0 orD2 � 0, corresponding,
respectively, to SDW vectors with (0; p) or (p; 0) are stabilized
only for J1=4 < J2 < J1. For larger J2's, the energy has a
minimum at D1 � �D2. In the corresponding SDW state, one
sublattice is antiferromagnetically ordered, whereas the other
is disordered (Fig. 2d), exemplifying that the Landau theory
predicts magnetic ordering when extended to the case of a
two-component order parameter. It is also interesting to note
that, when J2 stands for the dominant parameter, the spin±
spin interaction between two electron bands stabilizes a
different SDW from that due to the interaction in the charge
channel.

We have established above that the magnetic stripe (0; p)
or (p; 0) ordering is stabilized in a three-band (one hole and
two electron) model by a usual charge interaction. In the
discussion below, we will see how the introduction of the
second hole pocket affects the stabilization of an SDW in a
ferropnictide. The second hole Fermi contour is less strongly
coupled to the electron contours than is the one already
included in the three-band model, the reason being the
differences in the strength of interaction and the degree of
mixing with the electron Fermi contours. A discussion of
these two factors follows.

Let us consider first a model constructed from two
electronic and two hole Fermi surfaces, all circular. We
assume that they are equal in size, but with two types of
interaction existing between the electron and hole bands:
U
�1�
SDW for one hole band, andU

�2�
SDW for the other. There are, in

addition, four order parameters: D11, D12, D21, and D22, the
first and the third corresponding to SDW with the wave
vectorQ1, and two others with the vectorQ2. Without loss of
generality, let D11 be directed along the z-axis, and D12 lie in
the xz plane, but let D21 and D22 have arbitrary directions. To
simplify matters, we assume the SDW configurations to be
coplanar. LetD11 andD21 be directed along the z-axis, andD12

andD22 be along the x-axis. Under the above assumptions, we
have, by analogy, the following relations:

D11 � D z
1 � ÿU �1�SDW

X

a�1p" b1p"

�
;

D12 � D x
1 � ÿU �1�SDW

X

a�1p" b2p"

�
;

D21 � D z
2 � ÿU �2�SDW

X

a�2p" b1p"

�
;

�14�

D22 � D x
2 � ÿU �2�SDW

X

a�2p" b2p"

�
:
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As before, we start by allowing one hole band to interact with
electronic states (U1 and U3). Partially averaging in the four-
fermion terms and separating the order parameters, we arrive
at a Hamiltonian of the quadratic form: H

�2�
eff �

H kin �H
�2�
a1b
�H

�2�
a2b

, where

H kin �
X

p;s; i�1;2
ep
�
a�ipsaips ÿ b�ips bips

�
; �15�

H
�2�
a1b
� ÿ

X
p

h
a�1p"�D z

1b1p" � D x
1 b2p#�

ÿ a�1p#�D z
1b1p# ÿ D x

2 b2p"�
i
� h:c:;

H
�2�
a2b
� ÿ

X
p

h
a�2p"�D z

2b1p" � D x
2 b2p#�

�16�

ÿ a�2p#�D z
2b1p# ÿ D x

2 b2p"�
i
� h:c:

That part involving a1 holes and the parameters D z
1 and Dx

1

can be diagonalized in the same manner as in the three-band
model, i.e., by introducing new operators. The self-consistent
equation for the gap D1 �D1 � ��D z

1 �2 � �D x
1 �2�1=2� has the

form

1 � U
�1�
SDW

2N

X
p

1���������������������
�ep�2 � D 2

1

q ; �17�

and the equation for the gap D2 �D2 � ��D z
2 �2 � �D x

2 �2�1=2� is
written down as

1 � U
�2�
SDW

2N

X
p

1���������������������
�ep�2 � D 2

2

q : �18�

Clearly, both equations (17) and (18) facilitate a reduction in
the energy through their nonzero solutions forD1 andD2 Ð if,
certainly, such exist. This means that the energy decreases still
further if, in addition to states with D z

1 � D1 cos y and
D x
1 �D1 sin y, a state with D z

21�ÿD2 sin y and D z
2 �D2 cos y

forms. Furthermore, for equal circular Fermi contours,
solutions for D1 and D2 exist at any U

�1�
SDW and U

�2�
SDW. The

resulting fermion excitations turn out to have energy gaps.
Thus, we come to the conclusion that an SDW state

exhibits a dielectric nature in a four-band model with hole
and electron pockets of equal size and a circular shape.

Let us see whether this conclusion is consistent with the
observation of SDWs with wave vectors (0; p) and (p; 0).
Because the angle y does not enter explicitly into the quadratic
forms, the ground state turns out to be degenerate again. A
degenerate SDWmultiplet can be described by the expression

S�R� / nz�D1 cos yÿ D2 sin y� exp �iQ1R�
� nx�D1 sin y� D2 cos y� exp �iQ2R� : �19�

This degenerate set contains no (0; p) and (p; 0) states with
only aQ1 or only aQ2 SDW vector. These states are obtained
by putting tan y � D1=D2 or tan y � ÿD2=D1. The question
arises as to whether such states will be stabilized by other
interactions, as was the case for the (0; p) and (p; 0) states in
the three-bandmodel. In our view, no, they won't. The reason
is that the (0; p) and (p; 0) states in the four-band model occur
for y chosen such that D1 and D2 have components with both
Q1 and Q2 wave vectors. The total spin component with
eitherQ1 orQ2 vanishes as the components D1 and D2 cancel
each other out. Indeed, forU

�2�
SDW 5U

�1�
SDW, the angle y is close

to zero or p=2 but not equal to either of these values. Recall

that the above discussion of a degeneracy lifting in the three-
bandmodel showed that the interaction between the b1 and b2
electrons leads, together with the ellipticity effect, to an
energy of the form Egr�y� � E0 � E1 sin

2�2y�, with a mini-
mum at either y � 0 or y � p=2. To verify what the four-band
model gives, we extended our analysis to finite U

�2�
SDW and

analyzed the behavior of an Egr�y� minimum perturbatively
by adding the small parameter U

�2�
SDW=U

�1�
SDW. We omit here

the details of the calculation, because they follow those for
three bands, and only mention that the minimum of Egr�y�
does not shift from y � 0 and y � p=2.

Thus, we see that in the four-band model the interactions
that lift the degeneracy of SDW states do not lead to the
stabilization of (0; p) or (p; 0) states. For example, at y � 0
one obtains

S�R� / nzD1 exp �iQ1R� � nxD2 exp �iQ2R� :

This SDW state corresponds to a two-sublattice structure
with two equal order parameters but not with collinear spins.

To summarize the above analysis, the (0; p) or (p; 0) states
occur only if D2 is exactly zero and, hence, the second hole
band has no relevance for the formation of an SDW. Only in
this case do interactions and ellipticity lift the degeneracy in
favor of (0; p) or (p; 0) states. Otherwise, the order parameter
with necessity has bothQ1 andQ2 components, and an SDW
turns out to be modulated along both the x- and the y-axes.
This conclusion is directly related to the electronic structure.
At D2 � 0, one hole band and one electron band have no
energy gaps, meaning that the system remains metallic.

As noted above, there is a perfect nesting for hole and
electron pockets of a circular shape; therefore, D2 6� 0 for any
value of U

�2�
SDW. The situation changes when the hole Fermi

contours differ in size and the electron pockets are elliptical.
Then, repeating the calculation generally yields a state with
four SDWs, which is described by the Hamiltonian

HSDW �
X
a; b

X
p

E1;2p�e�a; bp ea; bp � p�a; bp pa; bp�

�
X
a; b

X
p

E3;4p�e�a; bp ea; bp � p�a; bp pa; bp� : �20�

Here, e� and e are the creation and annihilation operators for
the new quasiparticles that are produced after the diagonali-
zation of the Hamiltonian quadratic form with SDW order
parameters:

E1;2p � 1

2

ÿ
e a1p � �ep

�� 1

2

���������������������������������������
�e a1p � �ep�2 � 4jD1j2

q
;

E3;4p � 1

2

ÿ
e a2p � ��ep

�� 1

2

���������������������������������������
�e a2p � ��ep�2 � 4jD2j2

q
;

where �ep�e b1p cos2 y�e b2p sin2 y, and ��ep�eb2p cos2 y�eb1p sin2 y.
The self-consistent equations for the two gaps are as follows:

1 � U
�1�
SDW

X
p

n�E1p� ÿ n�E2p����������������������������������������
�e a1k ÿ �ek�2 � 4jD1j2

q ; �21�

1 � U
�2�
SDW

X
p

n�E3p� ÿ n�E4p����������������������������������������
�e a2k ÿ ��ek�2 � 4jD2j2

q : �22�

An analysis of this equation shows that, if the nesting is not
perfect, the origination of magnetism with SDW shows itself
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as a threshold phenomenon in the sense that the interactions
USDW should exceed a certain value for D1 and D1 to be
nonzero. We found that the hole band with heavier carriers
and, hence, with a larger Fermi contour, should be coupled
more strongly to the electron bands. This band features as an
a1 band in our discussion. When U

�1�
SDW exceeds the threshold

valueU
�1�
cr , an SDWwith D1 6� 0 arises in the system, which is

a stripe ordering with a wave vector (0; p) or (p; 0). For the
hole bandÐ the a2 band in our terminologyÐaD2 6� 0 SDW
arises whenU

�2�
SDW exceeds the critical value ofU

�2�
cr > U

�1�
cr . If

this happens, an SDW withQ1 andQ2 components arises, as
illustrated in Fig. 3a, b. The interaction regime characterized
by inequalities U

�1�
SDW > U

�1�
cr , U

�2�
SDW > U

�2�
cr and consistent

with experimental data appears to be quite reasonable.
Our conclusion regarding the linkage of stripe ordering

with D1 6� 0 and D2 � 0 directly follows from the topology,
and more specifically from the fact that both hole Fermi
contours are situated aroundG point. To see this, assume that
the hole and electron bands mix to form an SDW with the
vector Q1��0; p� (Fig. 3a). If the interaction is strong, an
energy gap develops in the SDW excitation spectrum, thus
blocking coupling with the other electron band. However, if
the blocking is not strong enough, then another pair of bands
coupled by the vector Q1 � �0; p� will also undergo mixing,
leading to the generation of an SDW and, hence, starting to
destroy the stripe order Q1 � �0; p�. A different situation
occurs if the second hole band is centered around (p; p), not
(0, 0) (Fig. 3c). In this case, the connecting wave vectors are
about the same for both pairs; hence, the originally estab-
lished stripe order remains intact. Figure 3c corresponds to
the situation occurring in the tÿt 0ÿUmodel with a half-filled
band. The Hamiltonian of the model has the form

H � t
X
i; d1;s

c�is ci�d1s � t 0
X
i; d2;s

c�is ci�d2s �U
X
i

ni"ni# ; �23�

where d1 and d2 are the distances to the nearest and next-to-
nearest neighbors, respectively, and nis � c�isci1s. The quasi-
particle energy ep�2t�cos px � cos py��4t 0 cos px cos pyÿm
has maxima at (0, 0) and (p; p) points. For t 6� 0, the effective
masses are different. The energyminima and, accordingly, the
electron pockets are located near points (0; p) and (p; 0). The
Fermi contour topology is illustrated in Fig. 3c. For large
values of U, the model reduces to the Heisenberg J1ÿJ2
model. All quasiparticle excitations have gaps in this model.
In the mean-field approximation, the order parameters of
SDW states are degenerate.

It is instructive to consider in more detail the distinction
between the four-band model and the tÿt 0ÿUmodel. Recall
that in the four-band model the ellipticity of and interaction
between electron pockets lift degeneracy already in the mean-
field approximation. We will show below that in the mean-
field approximation, the tÿt 0ÿU model does not allow the
removal of degeneracy, even if t 6� 0 and the electron pockets
are elliptical. In this case, the (0; p) and (p; 0) states remain
degenerate with an unboundedly large number of sublattice
states. Extending the J1ÿJ2 model beyond the mean-field
approximation, it is found that quantum fluctuations
stabilize the (0; p) or (p; 0) states. To demonstrate that in the
tÿt 0ÿUmodel the SDWorder parameter is degenerate in the
mean-field approximation, we consider the case of small t and
introduce two order parameters:

D1 � ÿ U

2N

X
k



c�k; asabck�Q1; b

�
with the wave vector Q1, and

D2 � ÿ U

2N

X
k



c�k; asabck�Q2; b

�
with the wave vector Q2. We further introduce four types of
fermion operators with quasimomenta near (0, 0), (0; p),
(p; 0), and (p; p) points and reformulate the tÿt 0ÿU model
in correspondence with the concept of holes and electrons.
Because the calculation is similar to that done above, we omit
the details and only present the results. The additional term in
the Hamiltonian quadratic form arises from the interaction
between holes and electrons. For t � 0, all four dispersion
relations turn out to be the same except for the sign, and the
Hamiltonian is diagonalized as before. The ground state
energy depends only on the sum D 2

1 � D 2
2 , indicating degen-

eracy.
Let usnow touchon the interaction effect between electron

bands. There are four types of electron±electron interactions
analogous to U6, U7, U8, and U4. They all originate from an
initial U and have the same prefactor. The electron±electron
interaction contributes the term of the type E ex

gr �
4A 2U �D1D2�2=D 4 to the ground state energy, which `brings
into order' D1 and D2 and arranges them perpendicular to one
another, with the result that the order parametersD1 � D2 and
D1 ÿ D2 have the same value in the two sublattices. In the
absence of the term jD1j2 jD2j2, however, the angle between the
two sublattices remains arbitrary.

Let us consider next the consequences of introducing
electron pocket ellipticity. Recall that in our model the
ellipticity effects were to introduce correction terms propor-
tional to jD1j2 jD2j2. The tÿt 0ÿU model produces a very
similar situation. The ground state energy Egr again com-
prises two contributions, one of which is defined by the

p

Q2

Q1

ÿp p

0

0

a D2

D1

b

p

Q2

Q1

ÿp p

0

0

c
D2

D1

d

Figure 3. Fermi contours and magnetic structure changes related to the

appearance of a relatively small D2 (a, b) for pnictides, and (c, d) for the

tÿ t 0 model with t5 t 0.
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second-order perturbation theory allowing for off-diagonal
Hamiltonian terms, and the other of which is due to the
change in the dispersion relation. The contribution from the
off-diagonal terms is given by the expression

Ea; ellipt
gr � 8t 2

jD1j2 jD2j2
D 4

�
X
p

�cos2 px � cos2 py�D 2�
D 2 � 16�t 0�2 cos2 px cos2 py

�3=2 � . . . ; �24�

where, as before, the ellipsis refers to the terms that depend
only on D. The contribution due to the change in the
dispersion of the diagonal Hamiltonian terms is written out
as follows:

Eb; ellipt
gr � ÿ8t 2 jD1j2 jD2j2

D 4

�
X
p

�cos2 px � cos2 py�D 2�
D 2 � 16�t 0�2 cos2 px cos2 py

�3=2 � . . . : �25�

Comparing Eqns (25) and (24), we see that the two
contributions cancel out. Thus, including elliptical electron
pockets into the tÿt 0ÿU model does not lift the degeneracy
of the SDW order parameter. This result will most likely be
true if the higher-order terms in the expansion of the energy in
a power series of t=t 0 are included.

In this talk, the formation mechanism of spin density
waves in iron-based pnictides were analyzed based on the
results of paper [16]. We have considered a model of itinerant
electrons with two hole Fermi surfaces centered around the G
point of the Brillouin iron zone and with two electron pockets
near (0; p) and (p; 0) points.

In general, the SDW order parameter in this model is a
combination of two components with respective wave vectors
Q2 (0; p) and Q1 (p; 0). However, only one of these compo-
nents is observed in neutron scattering experiments. As
shown in the talk, indeed only one of the components, (0; p)
or (p; 0), is stabilized if only one of the hole bands is assumed
to mix with the electron bands when SDW states form. The
other hole band remains gapless, which is precisely what
explains the metallicity of pnictides with SDWs. For perfect
nesting, the SDW order parameter in this three-band model
is strongly degenerate. This degeneracy is lifted in favor of
either (0; p) ordering or (p; 0) ordering by including
interactions and elliptical electron pockets. The calculated
Fermi contours, ARPES spectral intensity, and the band
dispersion near the Fermi level are consistent with the
experimental data.
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Superconducting state
in iron-based materials
and spin-êuctuation pairing theory

M M Korshunov

Beyond the pairs of opposites of which the world
consists, other, new insights begin.
Herman Hesse, ``Inside and Outside,'' in Stories of
Five Decades (London: Jonathan Cape, 1974)

Quite recently, the scientific community was shaken up by a
new discovery. In the field of high-Tc superconductivity,
where cuprates had overwhelmingly predominated for the
previous two decades, a new playerÐ iron compoundsÐhas
appeared [1]. Although the superconducting transition
temperature (Tc) in iron-based compounds has not exceeded
the liquid-nitrogen temperature, already in late 2008, i.e., less
than a year after the discovery of this new class of super-
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