
Abstract. We analyze the torque applied to a rotating magne-
tized sphere in a vacuum. It is shown that for the correct
determination of one of the torque components, the angular
momentum of the electromagnetic field within the body must
be taken into account.

1. Introduction

As is well known, the first model proposed to describe
magnetospheres of pulsarsÐ rotating neutron starsÐwas
the simplest vacuum model [1, 2]. According to this model,
which dates back to the classical paper by Deutsch [3], a
neutron star can be viewed as a highly conductingmagnetized
solid sphere (with a radius R and a magnetic moment )
rotating in the vacuum with an angular velocity O. The main
power generation occurs due to magneto-dipole 1 radiation,
which decelerates the rotation and decreases the angle w
between the spin axis z 0 and the magnetic moment [4]. The
projection of the braking torque on the spin axis is then
expressed as

Kz 0 � ÿ 2

3

2

R 3

�
OR
c

�3

sin2 w ; �1�

and the total powerWtot � ÿXK is [5]

Wtot � 2

3

2O 4

c 3
sin2 w : �2�

The time evolution of the angle w is described by the
projection of the torque on the x 0 axis lying in the plane X,
which therefore also rotates around the z 0 axis with the
angular velocity O:

Kx 0 � 2

3

2

R 3

�
OR
c

�3

sin w cos w : �3�

It is easy to verify that in this case, the braking torque K is
perpendicular to the magnetic dipole . Therefore, according
to Euler's equations, the projection of the angular velocity on
this axis must be conserved [4]:

O cos w � const : �4�

As we see, the characteristic times of evolution of the
inclination angle w and the rotational angular velocity O are
the same.

Later, however, it was found that if the neutron star
magnetosphere is filled with plasma that screens the long-
itudinal electric field (parallel to the magnetic field), then the
magnetospheric plasma fully suppresses the magneto-dipole
radiation [6, 7]. Energy losses must in this case be related to
the action of the Amp�ere force caused by the surface currents
that close longitudinal currents in the pulsar magnetosphere;
in the case of zero longitudinal currents, the total energy loss
is zero.

Presently, this statement, which had been aggressively
debated for many years after the publication of paper [6] in
1983, can be considered to have been proved. For example, a
numerical solution of the inclined rotator, obtained by
Spitkovsky [8] in the force-free approximation, does not
contain the magneto-dipole wave [9]. We stress that, as
shown below, the braking of a magnetized sphere rotating in
the vacuum is also due to the surface currents [10, 11], but in
this case these are purely vortex surface currents without
sources or sinks.

Here, we do not discuss the model of a magnetosphere
filled with plasma, but consider the apparently completely
studied problem of a rotating magnetized sphere in a vacuum.
Even in the framework of this simple problem, some issues
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1 The electric quadrupole radiation due to charge redistribution within the

sphere is suppressed by the factor �OR=c�4.



remain open. In particular, there is no common opinion
regarding the so-called anomalous torque, i.e., the one acting
along the y 0 axis perpendicular to the plane X and leading
not to a regular decrease in the inclination angle w but to the
precession of the spin axis. The name is due to the value of this
torque,

Ky 0 � x
2

R 3

�
OR
c

�2

sin w cos w ; �5�

where x is a numerical coefficient of the order of unity, which
turns out to be �OR=c�ÿ1 times the braking torque Kz 0 . Here,
different authors have obtained different values of x, namely,
x � 2=3 [2], x � 1 [4, 12], x � 1=5 [13], and x � 3=5 [14] (see
also paper [15], in which, however, the electric field contribu-
tionwas admittedly ignored). On the other hand, according to
[10, 16], the anomalous torque is equal to zero (x � 0), and
therefore no magnetized sphere precession should occur.

Clearly, such a situation, in which there is no full
agreement on the solution of an apparently elementary
problem, is curious. We recall that the anomalous torque
applied to a neutron star causes its precession, and for a
nonspherical star, this precession, superimposed on the
deceleration of the radio pulsar rotation, should significantly
affect the so-called braking index nbr � �OO= _O 2 [14, 17, 18].

Thus, the problem considered is of both theoretical and
purely practical interest. In this paper, we therefore try to
clarify the situation as much as we can, and show where the
variety of results come from. As we see, different papers have
in fact discussed different quantities, many of which cannot
be treated as the torque applied to a magnetized sphere
rotating in a vacuum. We perform the calculation indepen-
dently in the framework of the so-called quasistationary
formalism, which, as we see, allows obtaining the result in
the fastest and most straightforward way.

2. Method of calculations

We first make several general remarks. As noted in the
Introduction, we are interested only in the anomalous torque
applied to a magnetized sphere rotating in a vacuum. In
addition, an important refinement is in order: as follows from
the z-component of the equation of motion d =dt � X� ,

d z

dt
� Ox y ÿ Oy x ; �6�

the regular variation of z � cos w related to magneto-
dipole energy losses is possible if there is a nonzero
component of the angular velocity X lying in the xy plane.
However, as follows from the same formula, the value of O?
should be of the order of the inverse time of evolution of the
angle w. Therefore, as can be readily verified, this additional
rotation can be ignored in the analysis of the anomalous
torque.

Everywhere below, we assume the solid sphere to be
ideally conducting, and hence the condition of magnetic
field freezing holds everywhere within it:

E� bR � B � 0 ; �7�

where bR � X� r=c. Clearly, to determine the torque applied
to the sphere due to the electromagnetic field, it is necessary to
calculate the volume and surface currents and charges
connected to the sphere rotation. As a result, forces applied

to the sphere can be represented in the form

dF � reE dV� j� B

c
dV� seE dS� IS � B

c
dS ; �8�

where the first and second pair of terms in the right-hand side
respectively correspond to the bulk and surface effects. But if
we assume that only corotation currents j � crebR are present
within the body (which is our key assumption), then it is easy
to verify that the bulk part of force (8) vanishes. Now, taking
into account that on the sphere r � Rn and dS � R 2 do,
where do is the solid angle element, we obtain the total
torque in the form

K �
�
r� dF � R 3

4p

��
n� fBg�Bn� � n� E

ÿfEg n��do ;
�9�

where the curly brackets denote field jumps on the sphere. 2

Thus, the calculation of the torque is reduced to determining
the electromagnetic field inside and outside the sphere.

We next note that due to the linearity of the Maxwell
equations, all electromagnetic fields can be decomposed into
axially symmetric components (with the magnetic axis
parallel to the spin axis) and orthogonal components. The
general solution has the form

A � A k cos w� A? sin w ; �10�
where A is an arbitrary field component. Equation (5)
suggests that only cross terms in which one of the compo-
nents in the products n� fBgBr and n� E fErg relates to the
axially symmetric component and the other relates to the
orthogonal component make a nonzero contribution to
integral (9). For example, for a point-like magnetic dipole,
the axially symmetric component coincides with the static
magnetic field

B k � 3� n� nÿ
r 3

: �11�
For an orthogonal rotor (again in the case of a point-like
dipole), these fields must have the form [3, 5]

B?r � r 3
sin yRe

�
2ÿ 2i

Or
c

�
exp

�
i
Or
c
� ijÿ iOt

�
; �12�

B?y � r 3
cos yRe

�
ÿ 1� i

Or
c
� O 2r 2

c 2

�
� exp

�
i
Or
c
� ijÿ iOt

�
; �13�

B?j � r 3
Re

�
ÿ iÿ Or

c
� i

O 2r 2

c 2

�
� exp

�
i
Or
c
� ijÿ iOt

�
; �14�

E?r � 0; �15�

E?y �
O

r 2c
Re

�
ÿ 1� i

Or
c

�
exp

�
i
Or
c
� ijÿ iOt

�
; �16�

E?j �
O

r 2c
cos yRe

�
ÿ iÿ Or

c

�
exp

�
i
Or
c
� ijÿ iOt

�
: �17�

2 Here, it is important that the field components outside the curly brackets

are continuous on the sphere.
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Finally, as in most papers, we consider the case of rather
slow rotation, where the natural parameter

e � OR
c

�18�

is much smaller than unity; for most radio pulsars, e � 10ÿ3±
10ÿ4. Comparing expression (5) with general relation (9) for
the torqueK, we then conclude that only the first two terms in
the series expansion of the electric and magnetic fields in the
parameter e are needed in order to calculate the anomalous
torque.

Therefore, in our opinion, the most convenient method of
calculations is the so-called quasistationary formalism, which
assumes that all fields depend on the azimuthal angle j and
time t only in the combination jÿ Ot. In this case, the time
derivatives can be substituted by spatial derivatives, and the
Maxwell equations take the form [19]

HH� �E� bR � B� � 0 ; �19�

HH� �Bÿ bR � E� � 4p
c

jÿ 4prebR : �20�

A clear advantage of the proposed method is revealed here.
Indeed, if we assume the corotation condition j � crebR to be
valid inside the sphere, then the right-hand side of Eqn (20)
vanishes both outside the sphere, where currents and charges
are absent, and inside the sphere. As a result, the following
relations should hold both inside and outside the sphere:

E� bR � B � ÿHc ; �21�

Bÿ bR � E � Hh ; �22�
where c�r; y;jÿ Ot� and h�r; y;jÿ Ot� are scalar functions
that can be found from the continuity condition for the
corresponding components of the electric and magnetic field
and from the conditions HHE � 0 and HHB � 0 outside the
sphere.

Moreover, the proposed method allows obtaining the
desired result using a simple iteration procedure. Indeed, if
the magnetic field B �0� is known in the zeroth order in the
parameter e � OR=c, then, using Eqn (21), we can calculate
the electric field E �1� in the first order in the parameter e.
Equation (22), in turn, allows finding the magnetic field B �2�

in the second order. These two steps are sufficient to calculate
the anomalous torque, which is proportional, as we have seen,
to the square of the small parameter OR=c.

Thus, the problem is reduced to finding two scalar
functions c �1� and h �2� that fully determine the structure of
electromagnetic fields to the required accuracy. Below, we
omit indexes (1) and (2) in most cases.

3. Results

We first consider the simplest case of a homogeneously
magnetized solid sphere. This means that in the zeroth order
in the parameter e, the magnetic field is uniform inside the
sphere and coincides with the field of a point-like dipole
outside the sphere. Then the zeroth-order magnetic field
components inside the sphere have the form

B?r �
2

R 3
sin y cos �jÿ Ot� ;

B?y �
2

R 3
cos y cos �jÿ Ot� ; �23�

B?j � ÿ
2

R 3
sin �jÿ Ot� ;

B kr �
2

R 3
cos y ; B

k
y � ÿ

2

R 3
sin y ; B kj � 0 : �24�

Correspondingly, outside the sphere, we have

B?r �
2

r 3
sin y cos �jÿ Ot� ;

B?y � ÿ r 3
cos y cos �jÿ Ot� ; �25�

B?j � r 3
sin �jÿ Ot� ;

B kr �
2

r 3
cos y ; B

k
y � r 3

sin y ; B kj � 0 : �26�

We now turn to the first-order terms in the small
parameter e. We first note that in this order, the magnetic
field is zero. This result, unexpected at first glance, follows
immediately from relations (12)±(14), where the exponential
should be expanded in the Taylor series. The magnetic field
cannot arise due to Hh either, since in this order it would
correspond to a monopole magnetic field.

As regards the electric field, by comparing Eqns (7) and
(21), we obtain that the condition

c in � 0 �27�

must always be satisfied inside the sphere. As a result, we have

E?inr � 2

R 3

Or
c

sin y cos y cos �jÿ Ot� ;

E?iny � ÿ 2

R 3

Or
c

sin2 y cos �jÿ Ot� ; E?inj � 0 ;
�28�

E kinr � ÿ 2

R 3

Or
c

sin2 y ;

E
kin
y � ÿ 2

R 3

Or
c

sin y cos y ; E kinj � 0 :
�29�

We note that for the axially symmetric component, the
divergence of the electric field is nonzero, which corresponds
to a nonzero charge density inside the sphere:

rGJ � ÿ
XB

2pc
: �30�

This rGJ is referred to as the Goldreich±Julian charge density
[20], named after the first to obtain this expression for neutron
stars. For the orthogonal component, owing to the condition
XB � 0, the volume charge density inside the sphere is zero.

On the other hand, outside the sphere, according to (21),
with zero potentialc � 0, the electric fieldmust have the form

E?outr � ÿ
r 3

Or
c

sin y cos y cos �jÿ Ot� ;

E?outy � ÿ 2

r 3
Or
c

sin2 y cos �jÿ Ot� ; E?outj � 0 ;
�31�

E koutr �
r 3

Or
c

sin2 y ;

E
kout
y � ÿ 2

r 3
Or
c

sin y cos y ; E koutj � 0 :
�32�
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In this case, however, it is easy to verify that the electric field
divergence is nonzero. Therefore, to obtain the divergence-
free electric field outside the sphere, where there are no
charges or currents by definition, these expressions should
be corrected using the function c in (15). It is straightforward
to verify that the condition HE � 0 for the total field (as well
as conditions of the continuity of the tangential electric field
component at the sphere r � R) is satisfied for the functions

c?0 � r

O
c
sin y cos y cos �jÿ Ot�

ÿ
r 3

OR 2

c
sin y cos y cos �jÿ Ot� ;

ck0 � ÿ r

O
c
sin2 y� 1

3 r 3
OR 2

c
�3 cos2 yÿ 1� :

�33�

Here and hereafter, we of course use the fact that singularities
are absent at the sphere center and at infinity (which is also
why we have chosen only increasing solutions inside the
sphere and solutions decreasing at infinity outside it), and
that the total charge of the sphere must be zero. 3

Thus, the electric field outside the sphere takes the form

E?outr � ÿ 3

r 4
OR 2

c
sin y cos y cos �jÿ Ot� ;

E?outy � ÿ
r 2

O
c
cos �jÿ Ot�

�
r 4

OR 2

c
�1ÿ 2 sin2 y� cos �jÿ Ot� ;

E?outj �
r 2

O
c
cos y sin �jÿ Ot�

ÿ
r 4

OR 2

c
cos y sin �jÿ Ot� ; �34�

E koutr � ÿ
r 4

OR 2

c
�3 cos2 yÿ 1� ;

E
kout
y � ÿ 2

r 4
OR 2

c
sin y cos y ; E koutj � 0 :

�35�

It is easy to verify that the orthogonal component of the
electric field outside the sphere is the sum of the magnetic
dipole radiation field (15)±(17) and the quadrupole field of
charges induced in the sphere. The longitudinal field contains
only the static field of the quadrupole; naturally, this
component does not generate electromagnetic waves.
Finally, jumps of the radial electric field component, which
determine the surface charges, are expressed as

fE?r g � ÿ5 R 3

OR
c

sin y cos y cos �jÿ Ot� ;

fE kr g � R 3

OR
c
�3ÿ5 cos2 y� :

�36�

Here, the total charge of the shell is nonzero, and the
opposite-sign charge related to Goldreich±Julian charge
density (30) is uniformly distributed within the sphere
volume.

We now determine the second-order fields in e. Relation
(9) suggests that only the magnetic field is relevant here.

Indeed, only the magnetic field that appears in products with
the zeroth-order magnetic field contributes to the anomalous
torque. Meantime, the second-order electric field would
contribute to only third-order terms in e. However, as we
can again see directly from relations (15)±(17), the electric
field in this order simply vanishes:

E �2� � 0 : �37�

The second-order magnetic field can be calculated from
the first-order electric field using Eqn (22). Using the same
procedure as for electric fields, it is straightforward to find the
compensating potentials h that is needed for the condition
HHB � 0 to be satisfied. As a result, inside the sphere, we obtain

h?in � ÿ 3

5 R 3

�
O 2r 3

c 2

�
sin y cos �jÿ Ot� ; h kin � 0 :

�38�

Correspondingly, outside the sphere,

h?out �
2

�
O
c

�2

sin y cos �jÿ Ot�

ÿ
r 2

�
OR
c

�2

sin y cos 2y cos �jÿ Ot� ;

h kout �
2

�
O
c

�2

cos y�
r 2

�
OR
c

�2

cos y sin2 y :
�39�

Therefore, inside the sphere the second-order magnetic field
can be written as

B?in2r �
R 3

�
Or
c

�2

sin y
�
2 sin2 yÿ 9

5

�
cos �jÿ Ot� ;

B?in2y �
R 3

�
Or
c

�2

cos y
�
2 sin2 yÿ 3

5

�
cos �jÿ Ot� ;

B?in2j � 3

5 R 3

�
Or
c

�2

sin �jÿ Ot� ; �40�

B kin2r � 2

R 3

�
Or
c

�2

sin2 y cos y ;

B
kin2
y � ÿ 2

R 3

�
Or
c

�2

sin3 y ; B kin2j � 0 :
�41�

Correspondingly, outside the sphere we obtain

B?out2r �
r

�
O
c

�2

sin y cos �jÿ Ot�

�
r 3

�
OR
c

�2

sin y
�
4 sin2 yÿ 13

5

�
cos �jÿ Ot� ;

B?out2y � 1

2 r

�
O
c

�2

cos y cos �jÿ Ot�

�
r 3

�
OR
c

�2

cos y
�
ÿ 6 sin2 y� 4

5

�
cos �jÿ Ot� ;

B?out2j � ÿ 1

2 r

�
O
c

�2

sin �jÿ Ot�

�
r 3

�
OR
c

�2�
sin2 yÿ 4

5

�
sin �jÿ Ot� ; �42�3 We stress that, as seen from Eqn (21), the potential c k0 is not the total

electric potential of a static axially symmetric problem.
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B kout2r � 4

5 r 3

�
OR
c

�2

cos y ;

B
kout2
y � 2

5 r 3

�
OR
c

�2

sin y ; B kout2j � 0 :
�43�

It is easy to verify that the first terms in the orthogonal
component (42) exactly coincide with the fields of a rotating
magnetic dipole, which are proportional to rÿ1; to show this,
it is again necessary to expand the exponential in relations
(12)±(14). The second terms correspond to radiation fields of
quadrupole radiation. As we see, the method we use indeed
allows exactly reproducing the known results through the
second order in e. As regards the parallel component (43), the
second-order magnetic field is simply the field of a magnetic
dipole equal to �2=5� e 2 times the magnetic dipole of the
sphere . This field is generated by the circle corotation
current j � reX� r.

The above equations, however, do not yet solve the
problem. 4 The potentials h �2� are determined up to free
harmonic functions, which are solutions of the Laplace
equation,

h in �
X1
l�0

Xl
m�ÿl

f ml r lYm
l �y;j� ; �44�

h out �
X1
l�0

Xl
m�ÿl

f ml rÿlÿ1Ym
l �y;j� ; �45�

where Ym
l �y;j� are spherical functions. Naturally, here again,

only solutions increasing with r are chosen inside the sphere,
and decreasing solutions are chosen outside it. This case, as we
see, is different from that of the first-order electric field because
for the potential inside the sphere, the condition c � 0 was
chosen. The continuity of the tangential component caused
additional harmonic fields to be also absent for r > R.

As is easy to verify, the potential h �2� can contain only
those spherical functions that correspond to the angular
distribution of the volume charges and currents; therefore,
for the orthogonal component, we finally obtain

h?in � a?in
R 3

�
OR
c

�2

r Ŷ 1
1 �y;j�

� b?in
R 5

�
OR
c

�2

r 3Ŷ 1
3 �y;j� ;

h?out � a?out
r 2

�
OR
c

�2

Ŷ 1
1 �y;j�

� b?out
R 2

r 4

�
OR
c

�2

Ŷ 1
3 �y;j� : �46�

Correspondingly, for the axially symmetric component, we
have

h kin � a kin
R 3

�
OR
c

�2

rŶ 0
1 �y;j�

� b kin
R 5

�
OR
c

�2

r 3Ŷ 0
3 �y;j� ;

h kout � a kout
r 2

�
OR
c

�2

Ŷ 0
1 �y;j�

� b kout
R 2

r 4

�
OR
c

�2

Ŷ 0
3 �y;j� : �47�

For simplicity, we here use the `nonnormalized' spherical
functions

Ŷ 0
1 �y;j� � cos y ;

Ŷ 0
3 �y;j� � 5 cos3 yÿ 3 cos y ;

Ŷ 1
1 �y;j� � sin y cosj ;

�48�

Ŷ 1
3 �y;j� � �5 sin3 yÿ 4 sin y� cosj :

Thus, the problem is reduced to determining eight
coefficients (a and b with the various indexes), which are to
be found from the normal-component continuity on the
sphere surface. We hence obtain the following relations
between the coefficients:

a?in � ÿ2a?out � 9

5
; b?in � ÿ 4

3
b?out � 2

15
;

a kin � ÿ2a kout ; b kin � ÿ 4

3
b kout � 2

15
:

�49�

As we see, relations (49) are insufficient to find all eight
unknown coefficients, however. Indeed, to the fields consid-
ered in this order, which arise due to rotation of the sphere, we
can add fields that are formally of the order e 2, but are not
related to the rotation itself. Such fields can arise due to
additional surface currents, not caused by the sphere rotation,
which are e 2 times the surface currents generating the zeroth-
order magnetic field.

The additional fields arising due to potentials (46)±(47)
also contribute to the anomalous torque, and we cannot drop
them in the full solution. Remarkably, however, the anom-
alous torque itself is independent of the choice of free
coefficients.

Indeed, four such free coefficients can be taken to be
�a; b�?out and �a; b�kout, which describe harmonic fields out-
side the sphere. Direct integration of the corresponding
components in the general expression (9) shows that the
anomalous torque is indeed independent of �a; b�?in and
�a; b�kout because of relations (49). Just this must be the case,
because if their contribution were nonzero, the contribution
from the zeroth-order term �n� fB �0�g�y 0B �0�r would be
nonzero, which is also related to free fields described by
harmonic functions. On the other hand, as can be seen from
relations (49), if all �a; b�?out and �a; b�kout are set equal to
zero, some of the coefficients �a; b�?in and �a; b�kin become
nonzero and would therefore also contribute to Ky 0 .

To uniquely determine the solution, we again assume that
the second-order surface currents are solely due to rotation of
the surface charge se:

Ij � seOR sin y ; �50�

Iy � 0 : �51�
Conditions (50) and (51) yield additional relations needed to
completely determine the coefficients:

a?out � 7

30
; a?in � 4

3
; b?out � 1

7
; b?in � ÿ 2

35
;

a kout � 0 ; a kin � 0 ; b kout � 1

7
; b kin � ÿ 2

35
:
�52�

Importantly, the Deutsch solution [3] corresponds to a
somewhat different problem setup. In [3], it was assumed that

4 This is already seen from the fact that for the normal component, the

continuity condition on the sphere is not satisfied here.
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the normal magnetic field component on the sphere does not
contain corrections of the order e 2 at all. As can be easily
verified, this solution corresponds to choosing the constants
as

a?out � ÿ 4

5
; b?out � 1

5
; a kout � 2

5
; b kout�0 ; �53�

whence

a?in � 1

5
; b?in � ÿ 2

15
; a kin � ÿ 4

5
; b kin� 2

15
: �54�

Thus, in our setting, the Deutsch solution is the one for a
rotating dipole with specially adjusted additional sources of
small dipole and octupole fields such that they compensate
the normal component of the magnetic field of the order e 2 on
the sphere. The value of the anomalous torque, as shown
above, is independent of this choice.

We now turn to calculating the anomalous torque itself,
Eqn (9), which can be represented in the form

Ky 0 � R 3

4p

�ÿ�
n� fB �2�g�

y 0B
�0�
r �

�
n� fB�0�g�

y 0B
�2�
r

� �n� E �1�
�
y 0 fE �1�r g

�
do : �55�

Formula (55) can be simplified. Indeed, because the second-
order surface current Ij � seOR sin y is determined only by
the surface charge associated with the jump of the first-order
electric field, we find�

B
�2�
y

	 � OR
c

sin y
�
E�1�r

	
;

�
B �2�j

	 � 0 :
�56�

Using (21), we can also write

E
�1�
y � ÿOR

c
sin yB �0�r �57�

(this component is continuous on the sphere, and therefore we
can setc � 0 here), and hence the first and third terms in (55),
as can readily be verified, cancel each other, and as a result we
obtain

Ky 0 � R 3

4p

� �
n� fB �0�g�

y 0B
�2�
r do : �58�

This means that in the absence of zeroth-order surface
currents, the anomalous torque is zero.

After performing elementary integration, the total anom-
alous torque is found to be

Ky 0 � 1

3

2

R 3

�
OR
c

�2

sin w cos w : �59�

The contribution from the surface currents is here given by

KB
y 0 �

2

R 3

�
OR
c

�2

sin w cos w ; �60�

and the contribution from the electric field (i.e., the torque
due to surface charges) is

KE
y 0 � ÿ

2

3

2

R 3

�
OR
c

�2

sin w cos w : �61�

As the second example, we consider a rotating hollow
sphere. In other words, we assume that charges and currents,
including those that generate the zeroth-order magnetic field,
are localized in a thin spherical shell with r � R. It turns out
that this problem does not require changing the fields that we
found for the orthogonal dipole. Indeed, as noted above,
Goldreich±Julian charge density (30) for a uniform `hor-
izontal' magnetic field inside the sphere is zero. Therefore, at
r < R, we can again set c? � 0.

As regards the axially symmetric component, in order to
ensure the condition re � 0 inside the sphere, the potential

dc k � ÿ 2

3 R 3

Or 2

c
�62�

must be added to the obtained solution. As a result, only an
additional radial electric field arises inside the sphere:

dE kr �
4

3 R 3

Or
c
; �63�

whereas the electric field outside the sphere does not change at
all. Here, the electric field jump on the surface is expressed as

fE kr g �
5

3 R 3

OR
c
�1ÿ 3 cos2 y� : �64�

As we see, the full charge of the shell is zero in this case.
As regards the second-ordermagnetic field, it can easily be

verified that the additional electric field (63) gives rise to the
additional potential

dh k � 4

15 R 3

O 2

c 2
r 3 cos y : �65�

As a result, the additional magnetic field inside the sphere,
including the free fields, takes the form

dB kin2r � ÿ 4

5 R 3

�
Or
c

�2

cos y� a
R 3

�
OR
c

�2

cos y ;

dB kin2y � 8

5 R 3

�
Or
c

�2

sin yÿ a
R 3

�
OR
c

�2

sin y ;

dB kin2j � 0 : �66�
Correspondingly, outside the sphere we obtain

dB kout2r � ÿ
�
4

5
� 2a 0

�
r 3

�
OR
c

�2

cos y ;

dB kout2y � ÿ
�
2

5
� a 0

�
r 3

�
OR
c

�2

sin y ;

dB kout2j � 0 : �67�

The continuity of the magnetic field normal component and
the corotation condition yield

a � ÿ 2

9
; a 0 � 4

9
: �68�

Hence, the full anomalous torque finally becomes

Ky 0 � 31

45

2

R 3

�
OR
c

�2

sin w cos w : �69�

Using a similar method, we can also solve the problem in
which the uniform zeroth-order magnetic field in the
parameter e occupies only the inner spherical volume with a
radius Rin. For the intermediate region Rin < r < R (where,
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as for r < Rin, the potential c is zero) and for the region
outside the sphere, we assume that the zeroth-order magnetic
field is that of a point-like dipole. For the harmonic functions
we then need as many as 16 coefficients, because both
increasing and decreasing solutions can be taken in the
region Rin < r < R. Eventually, we find

Ky 0 �
�

8

15
ÿ 1

5

R

Rin

�
2

R 3

�
OR
c

�2

sin w cos w : �70�

We see that at Rin � R, we recover the previous value
x � 1=3.

4. Discussion

We have shown that the anomalous torque applied to a
rotating magnetized sphere in a vacuum is not zero in the
general case, and its value depends on the structure of the
internal electromagnetic field. In particular, we should accept
the divergence of the anomalous torque as Rin tends to zero;
however, this situation is unphysical and cannot be realized.

We first discuss the results obtained in the previous
studies. Unfortunately, in [4, 12], only the final result x � 1
is presented, which coincides, however, with the braking
torque (60) due to surface currents only. It cannot be ruled
out that those papers simply ignored the contribution from
the electric component in Eqn (61). Next, we note that there is
no direct contradiction with the result in [16], where the
magnetic field inside the sphere was assumed to be that of a
point-like dipole; then, as follows from Eqn (58), the
contribution from the sphere surface to the anomalous
torque (which is the only quantity determined in [16]) should
be zero. In other papers, as we show below, a quite different
quantity was considered, which does not have the meaning of
a braking torque.

Indeed, in virtually all papers discussed, the anomalous
torque was calculated as the momentum flux (Ki �
ÿ � ei j krjTkl dSl) of the electromagnetic stress tensor Tkl

using the formula

KM � 1

4p

�
S

ÿ
r� B�B dS� � r� E�EdS�

ÿ 1

2
�E 2 � B 2� r� dS

�
: �71�

When integrating over the sphere (with r � R n and
dS � nR 2 do, where, again, do is the solid angle element),
we obtain

KM
y 0 �

R 3

4p

� ��n� B�y 0 �Bn� � �n� E�y 0 �En�
	
do : �72�

Formula (72) differs from (9) in that there are no electric or
magnetic field jumps on the sphere surface. If we substitute
the values of the fields outside the sphere as found above in
(92), then at r � R� 0 we obtain

x � 3

5
; �73�

which is the result in [14] for the Deutsch solution. Here, it is
very important that the value x � 3=5 is also independent of
the choice of free coefficients.

However, it should be kept in mind that relation (72),
which indeed can be found in many textbooks, is provided
with important comments in Landau and Lifshitz's Electro-
dynamics of Continuous Media [21]. This formula can be used
only if the considered volume `does not include charged

bodies that are field sources'. Therefore, formula (72) can be
used only when the flux of the electromagnetic stress tensor
within the body is zero. However, the rotating spherical body
inside which currents and charges are induced does not satisfy
this condition, as we now show.

Indeed, the flux of the angular momentum vector of the
electromagnetic field is related to the torque acting on matter
by the electromagnetic field angular momentum conservation
[22]:

dLfield

dt
� KM �

�
r� F dV � 0 : �74�

Here, Lfield is the angular momentum of the electromagnetic
field inside a volume V,

Lfield �
�
r� �E� B�

4pc
dV ; �75�

KM is the field angular momentum flux through the surface
bounding this volume, and F � reE� j� B=c is the Lorentz
force. The last term in (74) plays the role of a source or a sink
and is therefore responsible for the angular momentum
transfer from the electromagnetic field to matter:

dLmat

dt
�
�
r� FdV : �76�

It is this term that plays the role of the torque, and notKM, as
was assumed in [14, 17].

Indeed, we consider a sphere of a radius r < R concentric
with the body under study. With the explicit expressions for
the zeroth-order magnetic field and the first-order electric
field, it can be readily verified that for a uniformlymagnetized
spherical body, the time-dependent angular momentum
component of Lfield in (75) has the form

Lfield � 4

15

2

R 6

�
Or 5

c 2

�
sin w cos w ex 0 : �77�

As the radius r increases, Lfield continuously increases, and
hence the angular momentum flux KM related to rotation of
this vector increases; it is discontinuous only on the sphere
r � R. Because _ex 0 � O ey 0 , the time derivative exactly
corresponds to the angular momentum flux KM calculated
for the inner surface of the sphere r � Rÿ 0 (4=15 �
3=5ÿ 1=3).

Thus, we arrive at an important conclusion: with the force
balance taken into account in the second order in e, the
electromagnetic field angular momentum should also be
taken into account. Therefore, part of the stresses due to the
electromagnetic field should affect the angular momentum of
the field itself, and only the remaining part should influence
the interaction with the rotating body. According to Eqn (74),
this implies that for the torque acting on the sphere, we should
use the expression

K � dLmat

dt
� fKMg : �78�

Incidentally, the divergence � Rÿ1in arising in Eqn (70) now
becomes clear. Indeed, the direct calculation of the total
angular momentum of the electromagnetic field inside the
body in this case yields

Lfield �
2O

c 2R

�
1

15
� 1

5

R

Rin

�
sin w cos w ex 0 : �79�

As we see, the angular momentum of the field contained
inside the sphere of radius R at a given value of diverges as
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1=�5Rin�. Therefore, the scale of forces applied to the rotating
spherical body must be of the same magnitude but with the
opposite sign.

In conclusion, we stress that the method proposed here is
inapplicable to the calculation of the torque that is respon-
sible for magneto-dipole radiation. As can be seen from (1),
this torque must be of the third order in e. Therefore, to
determine this torque, the magnetic field B �3� in the third
order in e must be known (the electric field, owing to
condition (37), does contribute in the third order). These
fields, involved in products with B �0�, must lead to the
required value of K (1).

But as can be easily verified, the third-order magnetic field
B �3� is simply a uniform field, whose value cannot be
determined by our procedure [11]. 5 Fortunately, this uncer-
tainty arises only at the next step of the expansion, because, as
we have seen, the anomalous torque (9) is �OR=c�ÿ1 times the
braking torque directed against the spin axis. As a result, the
procedure described above is applicable to the problem posed.

On the other hand, if we take the uniform third-order
magnetic field from explicit expressions for a rotating point-
like dipole (12)±(14),

B �3� � ÿ 2

3 R 3

�
OR
c

�3

ey 0 ; �80�

then the direct calculation of the electromagnetic angular
momentum flux KM at r � Rÿ 0 yields Kx 0 � 0 and Kz 0 � 0.
At r � R� 0, naturally, we return to expressions (1) and (3).
This means that in the third order in e, the electromagnetic
field angular momentum within the body is zero. Therefore,
to this order, the torque applied to a rotating sphere can
indeed be determined in terms of the surface integral that has
no field jumps. By contrast, as follows from numerical
simulations [23], the flux Kx 0 at r > R depends on the
integration radius r. This means that outside the body, the
third-order electromagnetic field angular momentum is also
nonzero.

5. Conclusion

The anomalous torque Ky 0 acting on a rotating magnetized
sphere in the general case is indeed nonzero. However, Ky 0

depends on the internal structure of the fields because in the
second order in the parameter e the electromagnetic field
angular momentum Lfield in (75) must be taken into account
in the balance of forces, and this angular momentum in turn
depends on the internal electric field structure. The results
obtained in the three examples considered in Section 4 are
different because, having the same normal magnetic field
component B

�0�
r on the sphere, each case has a different

internal electromagnetic field structure. This results in
different angular momenta of the electromagnetic field. But,
in the third order in e, the electromagnetic field angular
momentum inside the body is zero. Therefore, when calculat-
ing the torques Kx 0 and Kz 0 , we can use the angular
momentum flux KM

i in Eqn (71), which does not have field
jumps on the surface.

At last, following Archimedes, we can cry `Eureka!'
Indeed, the measurement of the anomalous torque applied
to a rotating spherical body allows determining its internal
structure, which has no apparent manifestations in the outer

regions. As we have shown here, lower-order electromagnetic
fields outside a solid and hollow sphere must be the same,
while the applied torques are different by a factor of more
than two. This is not the first such example in electrody-
namics, however. For instance, if a body has the so-called
anapole moment, 6

T � 1

10c

� ÿ�jr� rÿ 2r 2j
�
dV ; �81�

then, in the absence of rotation, the electromagnetic fields
outside the body are exactly equal to zero. But in a nonuni-
form magnetic field, the torque K � T� �H� B� acts on the
body, and the rotation of the body is accompanied by
electromagnetic radiation [24]. Taking the field angular
momentum into account is also absolutely necessary in some
other cases (see, e.g., [25, 26] and the references therein).
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