
Abstract. One of the major challenges in modern astrophysics is
the unexplained turbulence of gas-dynamic (nonmagnetic) ac-
cretion disks. Since they are stable, such disks should not
theoretically be turbulent, but observations show they are.
The search for instabilities that can develop into turbulence is
one of the most intriguing problems in modern astrophysics. In
2004, we pointed to the formation of the so-called `precessional'
density wave in accretion disks of binary stars, which produces
additional density and velocity gradients in the disk. A linear
hydrodynamics stability analysis of an accretion disk in a
binary shows that the presence in the disk of a precessional
wave produced by the tidal influence of the second binary
component gives rise to the instability of radial modes, whose
characteristic growth times are about one tenth or one hun-
dredth of the binary's orbital period. The immediate reason
for the instability is the radial velocity gradient in the preces-
sional wave, the destabilizing perturbations being those in which
the radial velocity variation on the wavelength scale is near or
greater than the speed of sound. Unstable perturbations occur in
the interior of the disk and make the gas turbulent as they
propagate outward. The characteristic turbulence parameters
are in agreement with observations (the Shakura±Sunyaev
parameter a90:01).

1. Introduction

High accretion rates observed in accretion disks in binary
stars can be explained only by the presence of turbulent

viscosity [1±3] (see also historical review [4]). The turbulence
itself should arise due to some instability [1, 3]. For a long
time, attempts have been made to search for fluid instabilities
in Keplerian disks (see, e.g., the references in [5]). But it can be
shown that small radial perturbations in a Keplerian disk are
stable according to the Rayleigh criterion [6]. In addition,
numerical simulations [6] suggest that azimuthal short-
wavelength modes also do not display instability. The
numerical study of long-wavelength perturbations in a thin
Keplerian disk [5] revealed that such perturbations grow to
become nonlinear and then decay without quenching the disk
turbulence.

Many authors have appliedmagneto-rotational instability
(MRI) [7, 8] to accretion disks [9]. However, this type of
instability as the reason for disk turbulence meets with some
difficulties: a) in the majority of close binary stars, there is no
observational evidence for the magnetic field; b) the disk
turbulence due to MRI requires the presence of a seed
magnetic field; c) themagnetic fieldgrowth stabilizes perturba-
tions, i.e., suppresses the instability [8]; d) at the nonlinear
stage, MRI saturates and hence the angular momentum
transfer through the disk significantly decreases [10]. In
addition, the very existence of MRI in thin disks was recently
questioned [11].

There have been several papers that further examined
fluid turbulence in disks. For example, in [12], turbulence was
proposed to arise due to a super-reflection instability. It was
argued in [13, 14] that disks with a negative entropy gradient
(in the presence of radiative cooling) can be subjected to
baroclinic instability for axially nonsymmetric modes.
Among the recent papers on gas-dynamic turbulence in
astrophysical disks, we note [15], where a statistical approach
to turbulence modeling was used. In such models, the field of
pressure fluctuations is represented by a stochastic force in
the equations of motion. Due to its simplicity and generality,
such a source is usually modeled as a Gaussian random
process that is delta-correlated in time. In our opinion, this
approach may help in studying only well-developed turbu-
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lence, but not the process of how it arises, as claimed by the
authors of [15]. The reason is that this random force is not
consistent with gas-dynamic equations; therefore, the growth
of perturbations due to this force cannot be viewed as the
appearance of fluid instability.

Instabilities are usually studied under certain a priori
assumptions on the structure and parameters of the accretion
disk. In particular, a near-Keplerian velocity distribution in
the disk, its homogeneity in the equatorial plane, and a
circular form of the stream lines or their weak eccentricity
are usually assumed. But such idealized assumptions can
already be invalid within the `pure' gas-dynamic framework.
For example, it was shown in [16] that in a viscous accretion
disk, orbits of particles are unstable with respect to the
eccentricity growth, and hence the disk ellipticity increases.
In accretion disks in binary stars, specific physical conditions
can occur, including shocks, tidal interaction, and resonances.
These features can significantly affect the gas flow, instability
growth, turbulence, and angular momentum transfer. In
accretion disks in semi-detached binaries, steady shocks arise
due to the tidal interactionwith the secondary component [17±
19] and the interaction of the gas stream from the inner
Lagrangian point with the circumdisk halo [20±33].

Numerical simulations have also revealed that the tidal
interaction with the secondary component leads to the
appearance of a specific type of waves in accretion disks, the
precessional density waves [34]. Waves of this kind have a
spiral form and occur in almost the entire disk. Qualitatively,
such a wave can be represented as the envelope of a family of
elliptical orbits precessing in a nonsymmetric gravitational
field [34]. The ellipticity of orbits can result from the eccentric
instability that arises due to either viscous forces [16] or
resonances [35]. In the latter case, linear modes are excited
in the disk, and the single-arm spiral with the azimuthal wave
number m � 1 has the maximum increment [35].

The stability of the disk in which the m � 1 mode is
present have been studied previously. For example, the
interaction of linear perturbations with an originally speci-
fied linear mode in the approximation of large radial wave
numbers was considered in [36]. It was shown there that
perturbations propagating within the disk plane can be
unstable, and the increment, according to the authors'
opinion, can exceed the Keplerian frequency in the disk.

This paper is devoted to the study of the instability of
radial (axially symmetric) perturbations that are formed in
the presence of a precessional density wave, and the wave
itself here is given as a numerical solution of gas-dynamic
equations. That the wave is tightly wound allows us to neglect
the angular dependence of all considered quantities for each
radial direction chosen. As a result, we restrict ourself to the
analysis of the radial perturbation modes only. An important
feature of the precessional wave is that it represents a smooth
solution, which provides fast convergence of spectral meth-
ods used in the stability analysis. The presence of gradients in
the wave significantly changes the dispersion relation for
linear perturbations and leads to conditions facilitating the
instability growth.

In Section 2, a scenario of the density wave arising is
presented. In Section 3, a linear analysis of perturbations in a
thin isothermal Keplerian disk is introduced and applied to
the numerical model of an accretion disk with a precessional
wave. In Section 4, a physical analysis of the results is
performed. A discussion of results and a conclusion are
given in Section 5.

2. Precessional density wave

Accretion disks in semi-detached binaries have a sufficiently
complicated structure because the tidal forces and the disk
interaction with the inter-component envelope and the gas
stream from the inner Lagrange point L1 deform the disk
shape and lead to the formation of different shocks. Tidal
shocks and the `hot line'Ð the region of impact of the gas
stream from the inner Lagrange point L1 with the circumdisk
haloÐmostly affect the flow. Three-dimensional hydrody-
namic simulations demonstrate that these waves do not
penetrate deep inside the cold accretion disk (with a
temperature � 104 K) and leave most of the disk weakly
perturbed, which creates conditions for the third type of
wave, the precessional density wave, to appear [34]. The
form of stream lines in the accretion disk is close to the
corresponding elliptical Keplerian orbits with the accreting
star residing in one of the focuses. This can be explained by
the fact that in the region free from strong gas-dynamic
perturbations due to steady shocks, the disk is almost
homogeneous and gravitational forces dominate over forces
due to gas pressure gradients in the equatorial plane of the
system. The tidal interaction increases the stream line
eccentricity in the disk and forces their apse line to counter-
rotate the disk. The tidal forces act on the stream lines
nonuniformly: the outer stream lines tend to rotate faster
than the inner ones. But because there can be no intersecting
stream lines in a gas disk (at least if the Knudsen number 1 is
much less than unity), some mean precessional velocity is
established, which is the same for all stream lines. This
velocity can be approximately estimated using the formula
[37, 38]

Ppr

Porb
� 4

3

�1� q�1=2
q

�
r

A

�ÿ3=2
; �1�

where Ppr is the precessional period, Porb is the system orbital
period, q is the binary component mass ratio, r is the
characteristic size of the orbit, and A is the distance between
the binary components.

The convergence of stream lines that move with different
velocities leads to the formation of a spiral pattern shown
schematically in Fig. 1. The matter velocity along the stream
line, whose shape is primarily determined by gravity, is close
to the local Keplerian velocity for the corresponding
(elliptical) orbit. Accordingly, the velocity is minimal at the
stream line apastron. But because the flux should be
conserved along the stream line, the matter density should
also change along the stream line and reach amaximum at the
apastron. Therefore, the spiral arm formed by the stream line
apastrons look likes a density wave, as was shown in [34].

In the observer's reference frame, the precessional wave is
almost steady: its shifts by 1�ÿ3� in the retrograde direction
in one orbital period [34]. Hence, the density and velocity
distribution in the wave can be considered stationary on time
scales of the order of several dozen characteristic disk periods.

Figure 2 shows distributions of the surface density and the
radial and angular velocity in numerical simulations of the
disk in a close binary system [34]. The calculations were

1 The Knudsen number here is the ratio of the particle mean free path to

the characteristic scale of the problem, which here can be the disk

thickness. For a typical number density in the accretion disk of the order

of 1011 cmÿ3, the free path length is 10ÿ10 a.u., while the disk thickness is

910ÿ2 a.u.
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carried out for the binary with the following parameters: the
accretor mass M1�1M�, the donor massM2 � 0:05M�, the
binary separation A�0:625R�, and the binary orbital period
Porb � 4830 s. The precessional wave is distinctly seen as a
spiral-like overdensity on the surface density map. On the
radial velocity map, the region with the density wave is
bounded by the zero radial velocity lines. The zero tangential
velocity lines coincide with radial velocity extrema.

The surface density and radial and tangential velocity
distributions are shown in Fig. 3 along four radial directions
in the disk: 180�, 225�, 270�, and 315� (0� corresponds to the
direction from the secondary component along the line
connecting the binary component centers). The density
peaks observed at phases 0.15±0.20 correspond to intersec-
tions of the profiles with the precessional wave and correlate
well with the radial velocity minima. The radial and
tangential velocity profiles are significantly different along
different directions. Nevertheless, these profiles share com-
mon features determined by the properties of elliptical orbits.
For example, for all profiles, the tangential velocity is sub-
Keplerian on average (because accretion occurs through the
disk); but in the outer parts of the disk, the tangential velocity
is much smaller than in the inner parts, because the velocity of
matter moving along a Keplerian orbit decreases with the
distance from the star. The radial velocity distribution
significantly depends on the direction: three profiles pre-
sented in Fig. 3a demonstrate a positive velocity (directed
away from the accretor) in the inner parts of the disk; at the
same time, the radial velocity in the fourth profile is negative
in the same region. This behavior is clear because matter
moving along an eccentric orbit can more towards or away
from the star at different parts of the trajectory. Nevertheless,
it should be noted that in the outer parts of the disk, the radial
velocity is positive for all profiles, because the angular

momentum of the disk decreases in the outer parts due to
the decretion of matter. We stress that the radial velocity
difference over the disk is fairly large and along some
directions can be as high as several dozen times the speed of
sound.

As follows from the distributions presented in Fig. 2, the
precessional wave is tightly wound. This allows approxi-
mately treating perturbations caused by the wave as axially
symmetric. This approximation cannot be valid in the central
parts of the disk, where the axial symmetry is significantly
violated (which can be seen most clearly in the velocity

A1A2

A3

A4

A5

O

Figure 1. Schematics of the spiral pattern formation in the inner

unperturbed parts of cold gas disks. The accretor is at the center O,

A1; . . . ;A5 denote the stream line apastrons.
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Figure 2.Maps of the surface density (upper panel), radial velocity (middle

panel), and deviations of the angular velocity from the Keplerian profile

(bottom panel) according to numerical model [34]. Velocities are in units

of the sound speed cT. The thick lines show zero velocity levels.
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distribution). In what follows, we analyze perturbations
excluding the central part of the disk with a radius smaller
than 0:08A from calculations. The results of calculations
suggest that the outer parts of the disk are subjected to
strong gas-dynamic perturbations. In shocks located close to
the disk edge, the stream lines are broken, and correspond-
ingly the methods we use in this paper cannot be applied to
study instabilities in these regions, because the calculation
domain is limited by the radius 0:37A.

3. Linear analysis of perturbations
in a disk with a precessional wave

The density and radial and tangential velocity distributions
obtained in numerical simulations [34] described in Section 2
were taken as the background distributions for the analysis of
perturbations. Perturbations propagating in the direction
perpendicular to the disk are sound perturbations, i.e., they
do not show instability. Therefore, it seems plausible to
assume that accounting for vertical perturbations can lead
to the appearance of additional sound modes and would only
insignificantly change the frequencies and increments of
radial perturbations. These considerations allow signifi-
cantly simplifying the calculations by excluding the vertical

degree of freedom. All the subsequent analysis is carried out
in two dimensions. Thus the results of numerical simulations
were reduced to two dimensions by integrating distributions
along the direction perpendicular to the disk [39].

The calculations were performed in the inertial reference
frame where the precessional wave is almost at rest. The
presence of the time-dependent gravitational field of the
secondary component in this frame, generally speaking, can
give rise to an additional spiral pattern comoving with the
rotation [40]. The amplitude of deviations in the density and
radial and tangential velocity distributions due to this effect
are scaled with the component mass ratio [40], which in our
case is very small. Hence, we assume that the gas distribution
in the inertial reference frame is steady.

3.1 Approach
We use the isothermal thin-disk approximation in two
dimensions. This approximation is quite suitable for accre-
tion disks in binary systems because the effective temperature
is of the order of 104 K and the characteristic ratio of the disk
thickness to its radius for this temperature is90:01. The two-
dimensional disk flow in the �r;f� plane is obtained by
integrating the complete system of gas-dynamic equations
along the vertical coordinate z. The parameters of this system
are the surface density s � � dz r, the radial and angular
velocities u and v � Or, and the flat pressure p � � dz P,
where r and P are the volume density and pressure. For a
perfect gas with the adiabatic index g, the flat pressure has a
power-law dependence on the surface density with the flat
`adiabatic index' gS � 1� 2�gÿ 1�=�g� 1� [39, 41, 42]. But in
the isothermal case, gS � 1 [39, 42], and the flat pressure has
the same form as the volume pressure, p � c 2Ts. The correct
reduction of the system of three-dimensional equations to two
dimensions, generally speaking, gives rise to additional terms
in the equations compared to the three-dimensional form [39,
42]. The initial two-dimensional system is

qs
qt
� H�sV� � 0 ; �2�

qV
qt
� �VH�V � ÿHF1 ÿ HF2 ÿ c 2TH ln �OKs� : �3�

where s is the surface density, V � eru� efv, F1 � ÿGM1=r
and F2 � ÿGM2=jR1 ÿ R2 � rj are the respective gravita-
tional potentials of the accretor and donor, cT is the speed of
sound, R1 and R2 are the respective radius vectors from the
barycenter to the accretor and donor, OK � �GM1=r

3�1=2 is
the Keplerian angular velocity, and G is the gravitational
constant.

Because the adopted mass ratio M2=M1 is small, the
binary system barycenter lies close to the accretor. We
assume the accretor center to be at the barycenter: R1�0,
R2�A. We also set M�M1, q �M2=M1. In cylindrical
coordinates, we then obtain

qs
qt
� 1

r

q�rsu�
qr

� 1

r

q�sv�
qf

� 0 ; �4�

qu
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qu
qr
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r
� ÿGM
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ÿ qGM�A cosf� r�
�A 2 � r 2 � 2Ar cosf�3=2
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q ln �OKs�
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Figure 3. Plots of (a) the surface density, (b) radial velocity, (c) angular

velocity, and (d) rotational curve slope in the numerical accretion disk

model [34]. The plots correspond to the radial disk cuts in the directions

180� (solid curves), 225� (dashed curves), 270� (dashed-dotted curves), and
315� (dashed-double-dotted curves).
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qv
qt
� u

qv
qr
� v

r

qv
qf
� uv

r

� ÿ c 2T
r

q ln s
qf
� qGMA sinf

�A 2 � r 2 � 2Ar cosf�3=2
: �6�

where f is the azimuthal angle in the disk;f � 0 corresponds
to the direction toward the secondary companion along the
line connecting the centers of the binary components.

We superimpose small perturbations and linearize the
equations. We take the disk model with a precessional wave
(see Section 2) as the unperturbed solution. The perturba-
tions are written in the form s! s0�1� d�, u! u0 � u,
v! O0r� v, where jdj5 1, juj5 ju0j and jvj5 jO0rj; the
quantities s0, u0, and O0 correspond to the unperturbed
solution. Linearizing the equations results in the vanishing
of terms responsible for gravitational interaction with the
donor. Equations for the perturbations take the form

qd
qt
� u0

qd
qr
� O0

qd
qf
� qu

qr

�
�
q lns0
qr
� 1

r

�
u� 1

r

qv
qf
� 1

r

q ln s0
qf

v � 0 ; �7�

qu
qt
� u0

qu
qr
� O0

qu
qf
� qu0

qr
u

�
�
1

r

qu0
qf
ÿ 2O0

�
v� c 2T

qd
qr
� 0 ; �8�

qv
qt
� u0

qv
qr
� O0

qv
qf
�
�
u0
r
� qO0

qf

�
v

� K 2
0

2O0
u� c 2T

r

qd
qf
� 0 ; �9�

where

K 2
0 � 2O0

�
2O0 � r

dO0

dr

�
�10�

is the square of the epicyclic frequency. We express the
perturbations in terms of harmonics of a kind, fa�t; r;f� !
exp �ÿiot� fa�r;f�, where � fa� � �d; u; v�. Then the system of
equations (7)±(9) can be represented in the matrix form

X3
b�1

Aab�r;f� fb�r;f� � iofa�r;f� : �11�

The characteristic scale of variations of the background
variables along the radius is about 0:1A (see Fig. 3), and along
the angular coordinate, about 2pr. Hence, at r4 0:016A, the
angular dependence of the background variables can be
neglected. Then the problem splits into independent one-
dimensional problems, and the density and velocity along
the corresponding radial direction in the disk can be taken as
unperturbed solutions of each of them. Assuming that the
perturbations are also independent of the angle, we obtain
the system of equations for radial perturbations (see
Appendix A):

X3
b�1

Aab�r� fb�r� � iofa�r� ; �12�

where the matrix of the operator Aab has the form

u0
d

dr

d ln s0
dr

� 1

r
� d

dr
0

c 2T
d

dr

du0
dr
� u0

d

dr
ÿ2O0

0
K 2
0

2O0

u0
r
� u0

d

dr

266666664

377777775 : �13�

The io are eigenvalues of the operator Aab, and its eigenfunc-
tions are the solution fa of the system. Therefore, Eqn (12) is a
Sturm±Liouville problem.

Because the unperturbed solution is sufficiently smooth,
and in order to avoid differentiation with respect to the
radius, we solve Eqn (12) by the Galerkin method in some
functional basis representation. The problem geometry
suggests that the zeroth-order Bessel functions of the first
kind can be conveniently chosen as the new functional basis.
In this paper, the unperturbed disk state is specified by the
numerical solution on a discrete spatial grid, and we therefore
use the discrete Hankel transform for the Bessel functions in
the form [43]

f̂a�kp� �
XN
q�1

2J0�kprq�
m 2
N�1J

2
1 �mq�

fa�rq� ; �14�

fa�rq� �
XN
p�1

2J0�kprq�
m 2
N�1J

2
1 �mp�

f̂a�kp� ; �15�

where mq is the qth root of J0 and N is the dimension of the
spatial grid. This transform assumes that the function f �r� is
defined on the finite interval 04 r4R and vanishes at the
interval boundaries, and its values should be calculated at the
points rq � Rmq=mN�1. The value of the image f̂ �kp� should be
calculated at the points kp � mp=R.

Equation (12) can be rewritten as

XN
s�1

X3
b�1

Âab�kp; ks� f̂b�ks� � io f̂a�kp� ; �16�

where

Âab�kp; ks� � 4

m4N�1

XN
q�1

J0�kprq�
J 2
1 �mq�

Aab�rq� J0�ksrq�
J 2
1 �mq�

: �17�

We note that the differential operator of the form g�r� d=dr
for an arbitrary function must transform as

g�r� d

dr
! 4

m 4
N�1

XN
q�1

J0�kprq�
J 2
1 �mq�

ks
2

Jÿ1�ksrq� ÿ J1�ksrq�
J 2
1 �mq�

g�rq� :

�18�

Finally, to reduce the system of algebraic equations to a
suitable form allowing the application of known methods for
solving eigenvalue problems, we linearly collect the elements
of the vector f̂a�kp� as follows:
� f̂I��

�
f̂1�k1�; f̂2�k1�; f̂3�k1�; f̂1�k2�; f̂2�k2�; f̂3�k2� ; . . .

�
: �19�

In a similar way, we compose the matrixÂIJ to finally obtain

X3N
J�1

ÂIJ f̂J � iof̂I : �20�
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Eigenvalues of the matrix ÂIJ give the spectrum of angular
frequencies of possible solutions, and eigenvectors give the
solution in terms of the Bessel functions. For a given spatial
grid dimension N, we have 3N complex eigenfrequencies and
N eigenvectors for each field (d, u, and v).

3.2 Computation
The method described in Section 3.1 can be used to compute
linear perturbations on axially symmetric backgrounds. In
the framework of the numerical model of an accretion disk
considered in Section 2, this assumption, strictly speaking, is
invalid. But we can state that for each radial direction, the
angular dependence of all variables is insignificant, and
therefore each radial distribution can be considered axially
symmetric. In our problem, this method was independently
applied to each radial cut of the disk. The parameters of
the method are the computational domain size
0:08A4 r4R � 0:37A and the grid dimension N � 439.
Equation (20) was solved using the LAPACK library [44].

Maps of complex frequencies for all perturbation modes
are presented in Fig. 4. The maximum absolute values of
angular frequencies in calculations reach 1500Oorb and the
increments lie in the range from ÿ70Porb to 50Porb. The
minimal perturbation length for a fixed grid dimension N
is around lN � 2R=N � 3� 10ÿ3A. This wavelength can be
compared to the Keplerian angular frequency �GM=l 3

N�1=2 �
6� 103Oorb, whereas the corresponding sound frequency is
2pcT=lN�40Oorb.We note that these estimates depend on the
spatial discretization scale. This scale can be related to the
maximum and minimum angular frequencies obtained in
calculations.

Because the original unperturbed solution is nonuniform,
the perturbation amplitude is different at different points of
the disk. The rate of growth or decay of perturbations is
determined both by the imaginary part of the eigenfrequency
and by its local amplitude. Figure 5 shows real parts of
eigenvectors for some modes in two cuts of the disk,
corresponding to 180� and 270� (imaginary parts of the
solutions are different from the real parts only in the spatial
phase).

Eigenvectors can have a nonuniform spectral composi-
tion: the local wavelength, defined as the distance between
maxima in different parts of the disk, can differ bymany times
(see Fig. 4). In studying the spectral composition of the
solutions in different parts of the disk, the wavelet analysis
may be helpful. For eachmode, we calculate the convolution 2

w�r; l� �
�
dr 0
��W�rÿ r 0; l� d�r 0��� ; �21�

whereW is the Morlet wavelet [46] of order 5,

W�r; l� � exp

�
ÿ 1

2

�
2p
5

r

l
ÿ 2p

�2�
exp

�
i2p

r

l

�
: �22�

The distribution of w�r; l� over wavelengths shows the
characteristic wavelength scale l dominating around a
given r.

The turbulence viscosity coefficient nturb, or the Shakura±
Sunyaev parameter a�nturb=�cTh� related to it, where
h�cT=OK is the half-thickness of a Keplerian disk [2], is the
commonly accepted characteristic of the efficiency of the
angular momentum transfer in accretion disks. Although
nturb pertains to well-developed turbulence, its relation to the
characteristics of unstable liner perturbations was obtained in
[47] in the form

nturb � gl 2

4p 2
; �23�

where l and g are the maximum wavelength and maximum
increment for all growing modes for a given type (given
branch) of perturbations. A similar approach to the turbu-
lent viscosity estimate was proposed in [12] based on plasma
theory results [48, p. 299], where the instability was regarded
as a consequence of the background nonuniformity only.

On the eigenfrequency maps (see Fig. 4), it is difficult to
uniquely identify the perturbation branches. The estimate of
nturb using maximum increments for all modes appears to be
senseless because the modes with maximum increments and
frequencies may reflect the spatial discretization and bound-
ary effects. Therefore, the values of the coefficient nturb
defined by formula (23) should characterize not the whole
set of eigenvectors but an individual mode at each point of the
disk. This approach corresponds to the general equation (7)
in [47]. In our setting, for the mode with the increment g and
the local wavelength l, we have

a � 0:21Porb g
�l=A�2
h=A

: �24�

To describe a reasonably realistic accretion disk, we
should specify the power density of the family of modes and
calculate the Shalura±Sunyaev parameter as the average over
the mode ensemble. For example, in [6], the initial conditions
for the evolution of plane waves in the outer part of the
accretion disk were chosen as a power-law power density
spectrum (quadratic in the wave number) exponentially
decaying at short wavelengths. In the present problem, the
plane-wavelength approximation is invalid because the
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Figure 4. Maps of complex frequencies of eigensolutions in the disk cuts

from Fig. 3.

2 In cylindrical coordinates, the Morlet wavelet and this type of transform

are, strictly speaking, inapplicable [45], but for approximate estimates this

transform turns out to be sufficient.
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wavelength is a local variable for one mode. The statistical
weight in the mode ensemble can be specified from the
following considerations. Expression (23) is applicable to
accretion disks under two physical conditions: a) only three-
dimensional turbulence can be induced; b) the characteristic
growth time of a perturbation cannot exceed one disk
revolution period. These conditions suggest two local restric-
tions, on the wavelength and on the increment of a
perturbation:

l4 h ; g5
O0

2p
: �25�

The final expression for the Shalura±Sunyaev parameter can
be written in the form

ak�r� �
� 0

dlwk�r; l� ak�r; l�� 0
dlwk�r; l�

�26�

for the mode with a number k at the point r, and

a�r� �
P 0

k wk�r� ak�r�P 0
k wk�r�

�27�

for all modes at the point r. The local amplitude of
perturbations for all modes is

w�r� �
X
k

0
� 0

dlwk�r; l� : �28�

Primes over the integral and the sum mean that the
summation is performed over the modes and wavelengths
for which conditions (25) are satisfied. The results of
calculations are presented in Fig. 6.

4. Physical analysis of the results

A comparison of the unperturbed distributions (see Figs 2
and 3) with perturbation profiles (see Fig. 4) reveals several
features. First, near zeros of the function u0, the local wave of
perturbations decreases. Second, immediately near these
points, the local amplitude of perturbations tends to zero.
The first effect can easily be explained by the following
considerations. We simplify the problem as much as possible
and consider the advection part of linearized equation (7):

qd
qt
� u0

qd
qr
� 0 : �29�

Direct substitution shows that near a root r� of u0, the
solution has the form

d � exp

�
io
�
dr

u0
ÿ iot

�
: �30�

Specifying the velocity variation law as u0 / rÿ r�, we obtain
the local perturbation wavelength (defined as l in the
expression o

� r�l
r dr=u0 � 2p) in the vicinity of r� behaving

as O�rÿ r��.
In the immediate vicinity of a zero of u0 in Eqn (7), the

divergence term becomes important. We write Eqns (7) and
(8) ignoring geometrical terms and the tangential velocity:

qd
qt
� u0

qd
qr
� qu

qr
� 0 ; �31�

qu
qt
� u0

qu
qr
� qu0

qr
u� c 2T

qd
qr
� 0 : �32�

For the background velocity variation law u0 / rÿ r�, in the
limit u0 5 cT, it is easy to show (by differentiating the Euler
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Figure 5. Real parts of the complex solutions for density and radial and angular velocity perturbations for some modes in the cuts (see Fig. 3)

corresponding to 180� (left panels) and 270� (right panels). Left plots correspond to o � 379:6Oorb, g � 22:3=Porb (solid curves) and o � 35:2Oorb,

g � 22:6=Porb (dashed curves). Right plots correspond to o � 158:0Oorb, g � 25:7=Porb (solid curves) and o � 10:4Oorb, g � 48:8=Porb (dashed curves).
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equation with respect to the radius and by eliminating
velocity perturbations) that solutions take the form
d / exp �ÿiot��rÿ r�� and u / exp �ÿiot��rÿ r��2 such that
in the immediate vicinity of the point r�, the perturbation
amplitude decreases and the spatial oscillations become
`frozen'.

Figure 6 demonstrates that the perturbation amplitude
reaches a maximum in the inner part of the disk restricted
by the precessional wave, while the turbulence (understood
as large values of a) is strongest in the outer part of the disk.
This is most clearly seen in the second and third quadrants
of the disk, where the location of the amplitude maximum
coincides with the radial velocity maximum (see Fig. 2). The
perturbation amplitude decreases with decreasing the
velocity. In the region bounded by the zero radial velocity,
some amplitude growth is observed, especially close to the
outer edge of the precessional wave. In the fourth quadrant,
where the radial velocity in the inner part of the disk is
negative (see also Fig. 3), perturbations and turbulence are
almost absent, but there is an amplitude peak at the outer
edge of the wave.

This behavior of the amplitude can be explained as
follows. We use Eqns (7)±(9) in the approximation of a
simulation box whose sizes are much smaller than the
distance from the box to the center, as in [6]. We represent
perturbations in the form exp �ÿiot� ikr� and assume that
the perturbation length is sufficiently small such that all
unperturbed variables can be considered constant and

geometrical terms can be neglected. We obtain the equations

�ÿio� iku0� d�
�
q ln s0
qr
� ik

�
u � 0 ; �33�

ic 2Tkd�
�
ÿ io� iku0 � qu0

qr

�
uÿ 2O0v � 0 ; �34�

�2ÿ q�O0u� �ÿio� iku0� v � 0 : �35�

The epicyclic term in the angular momentum conservation
law is written as K 2

0 =�2O0� � �2ÿ q�O0, where q �
ÿq lnO0=q ln r [6]. The dispersion relation for this system is

o� � u0kÿ i

2

qu0
qr
�
�
c 2Tk

2 ÿ 1

4

�
qu0
qr

�2

� 2�2ÿ q�O 2
0 ÿ ic 2T

q ln s0
qr

k

�1=2
: �36�

The second term in the right-hand side of (36) is a divergence
term that stabilizes or destabilizes perturbations depending
on whether the flow is divergent (qu0=qr > 0), as in the outer
part of the disk, or convergent (qu0=qr < 0), as in the inner
part of the disk. The second term in the radicand helps
destabilize the flow: if the radial velocity gradient is strong
enough, the perturbation phases over the one-wavelength
interval start surpassing each other. The third term in the
radicand, in the case of zero gradients, would correspond to
the Rayleigh stability criterion [6]: a flow with the angular
velocity profile q > 2 is unstable. Finally, the last term
contributes to the instability increment at all wave numbers.

We evaluate each term in dispersion equation (36) using
conditions (25) and Fig. 3. The minimum local wave number
at a given radius must be determined by the disk half-
thickness: jAkminj2��2pAOK=cT�2 � 105 �A=r�3; everywhere
except in the vicinity of roots of the radial velocity, we then
have jcTkminj5 ju0kminj. The term with the velocity gradient
turns out to be of the same order: jq�u0=cT�=q�r=A�j29105.
The term corresponding to the Rayleigh criterion can be
estimated as follows. The slope of the rotational curve can be
assumed to be Kepelerian everywhere (see Fig. 3), q � 3=2,
whence 2�2ÿ q��AO0=cT�2 � 103 �A=r�3. We see that this
term introduces only a small stabilizing effect. The density
gradient can be estimated as jA2kmin q ln s0=qrj � 5�
103 �A=r�3=2. Hence, the instability, at least in the simulation
box approximation, can only be due to the radial velocity
gradient. Dispersion equation (36) must therefore have the
form

o� � u0k�
�
c 2Tk

2 ÿ 1

4

�
qu0
qr

�2

� 2�2ÿ q�O 2
0

�1=2
: �37�

The above estimates strongly suggest that the disk is in a
border-line state between stability and instability. To clarify
this point, we use the general integral method of stability
analysis described in [49]. In this method, gas-dynamic
equations are written in terms of the displacement vector of
a gas element, and the analysis assumes this displacement to
be small. In this approach, the necessary and sufficient
condition for the instability in our problem can be presented
as (see Appendix B)��

dE

�ÿ1� �
dE

l
u0
cT

�2
�
�
dE

l 2

�
1ÿ u 2

0

c 2T
� l 2

h 2

�
< 0 ; �38�

where dE � dr rs0jxj2, x is the radial gas displacement, and l
is the characteristic wavelength scale of perturbation. For
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Sunyaev parameter a (bottom panel) in a disk.
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inequality (38) to be satisfied, it is necessary that the first term,
giving a positive contribution, be small enough and the
second term be negative. The second condition is satisfied if
the wavelength scale of perturbations is smaller than the disk
thickness (this is one of the conditions of developed
turbulence we adopted) and if the radial velocity in a
sufficiently large region of the disk is supersonic. The first
condition is satisfied if the radial motion in the disk is absent
or the mean radial velocity over the disk is close to zero, i.e.,
the velocity changes sign. In other words, the velocity should
take higher values and should have a large gradient over a
sufficiently extended part of the disk. Both these conditions
are satisfied in the present problem (see Appendix B).

The behavior of modes near the zero radial velocity points
and dispersion equation (37) are sufficient, in principle, to
explain many properties of unstable perturbations presented
in Fig. 6. If the radial velocity has a large gradient in the inner
part of the disk bounded by the precessional wave, then local
unstable modes arise. In the fourth quadrant of the disk, the
velocity gradient is not too high, and additionally the
character of the velocity in which it alternates in sign is less
pronounced, and hence unstable modes are suppressed. The
sub-Keplerian gas rotation in this region (see Fig. 3) also has a
stabilizing effect. At the precessional wave boundary, as
shown above, the perturbation amplitude vanishes. The
amplitude increase in the outer parts of the disk, in the first
and forth quadrants, can be due to boundary effects.3

The physical meaning of this instability can be explained
as follows. In the radial Euler equation, the term with the
background velocity gradient acts on the gas element as an
external force, in addition to the pressure gradient force and
the centrifugal force. In our setting, the rotational flow has a
stabilizing effect and together with pressure prevents the
instability development [both corresponding terms make a
positive contribution to the radicand in (37)]. But if the
velocity gradient is sufficiently high, the momentum flux
transmitted to a perturbation due to this term can exceed the
counter-acting contribution from stabilizing terms. Accord-
ing to (37), this condition occurs when the background radial
velocity change on the perturbation wavelength scale is
greater than or approximately equal to the speed of sound.
In this case, it is possible to argue that the rear phase of the
perturbation catches up with its front phase in one wave
period.Here, the amplitude of perturbationmaxima increases
by the mass conservation. In terms of the dispersion relation,
this signals the appearance of nonzero values of the perturba-
tion growth increment.

We note once again that in our method of instability
analysis, we assume axially symmetric perturbations, while
the background density and velocity distributions do not have
axial symmetry and weakly depend on the angle with the
characteristic angular scale 2p (see Fig. 2). In a real disk,
perturbations with this or smaller angular scale would shift in
the tangential direction due to the background rotation. This
could weaken the growth of perturbations due to the radial
velocity gradient. However, the necessary condition adopted
here for the turbulence to appear, Eqn (25), requires that the
characteristic growth time of perturbations be shorter than
the Keplerian time. Thus, a perturbation in its growth time

cannot leave the region of the precessional wave in the
tangential direction and we therefore observe the instability
growth.

In Section 3, we applied the necessary conditions of three-
dimensional turbulence development, Eqn (25), to unstable
modes. In the inner part of the disk, where the angular
frequency of the gas is high, the conditions for turbulence
development are more stringent. They become favorable only
in the outer part of the disk and near the zero radial velocity
line, where the local wavelength of perturbations decreases.

Thus, the turbulence arising in the disk can be described as
follows. Perturbations that have time to grow into the
nonlinear stage in less than one disk revolution and whose
wavelength does not exceed the disk half-thickness serve as
sources for three-dimensional turbulence. The turbulence
arises predominantly along the precessional wave boundary
and beyond its outer edge and is then taken by the gas
rotation and accretion flow over the entire disk.

5. Conclusion

Thin Keplerian disks are known to be stable under fluid
perturbations [5, 6]. For a hydrodynamic instability to arise, it
is necessary that the density and velocity distributions in the
disk differ from Keplerian ones [6]. The accretion disk in the
axially asymmetric gravitational field of a binary stellar
system provides an obvious example of such a configura-
tion. In [34], we have shown that the gravitational field of the
secondary binary component excites the precessional wave in
the disk. The wave significantly changes the flow in the disk,
causing the appearance of regions with large density and
velocity gradients. In the presented solution, the radial
velocity gradient can be as high as Mach 40.

In this paper, we performed a linear analysis of perturba-
tions to study the stability of an isothermal accretion disk
with a precessional wave. The numerical model of the
accretion disk in a binary system obtained in [34] was taken
as the unperturbed background solution. The problem of
linear perturbations growth was formulated in two dimen-
sions in the inertial frame where the precessional wave can be
considered stationary. The gas flow perturbations due to the
time-dependent gravitational field of the secondary compo-
nent can be considered small. The strong twisting of the
precessional wave allowed a linear analysis of radial perturba-
tions only for each radial cut of the disk.

We have shown that the presence of the precessional wave
gives rise to unstable radial modes with increments up to
� 50=Porb. However, actually important for turbulence
development is the presence of background regions with
large radial velocity gradients. The instability arises if the
radial velocity change in the unperturbed flow on the
wavelength of a perturbation is of the order of or greater
than the speed of sound. The physical reason for the
instability is that the rear phase of a perturbation starts
catching up with the frontal phase, which, by the mass
conservation, causes the growth of the perturbation ampli-
tude at maxima. The necessary conditions for turbulence (a
wavelength shorter than the disk thickness, the increment
exceeding the rotation frequency) are fulfilled only at the
precessional wave boundaries and in the outer part of the
disk.

The results of our analysis suggest that a precessional
wave in the disk can lead to turbulence with the characteristic
Shakura±Sunyaev a parameter about 0.01.

3 Perturbations vanish at the calculation domain boundary, but at the

same time the eigenvectors of problem (20) have a fixed norm; therefore, in

narrow regions where there are favorable conditions for the instability

development, the perturbation amplitude can be relatively high.
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Appendix A

The method for solving linearized equations we use in this
paper ignores the angular dependence of the background
variables. This approach is different from the ordinarily used
spectral method (see, e.g., [36]), and its formulation is not
fully rigorous. To show this, we expand system (11) in the
basis of some functions of the angular coordinate. We
conventionally define functional transformations of the form

~f �m� �
X
f

F�f;m� f �f� ; �39�

f �f� �
X
m

C�f;m� ~f �m� ; �40�

where fF�f;m�g and fC�f;m�g are mutually dual sets of
functions depending on the angle f and the parameter m.
Then expanded system (11) takes the formX3

b�1

X
f 0;m 0

F�f 0;m�Aab�r;f 0�C�f 0;m 0� ~fb�r;m 0�

� io
X
f 0 ;m 0

F�f 0;m�C�f 0;m 0� ~fa�r;m 0� : �41�

In the `standard' approach, the expansion is done with respect
to an orthogonal set of functions,�

df 0 F�f 0;m�C�f 0;m 0��0 ;

for m 6� m 0. In particular, this is valid for F�f 0;m� /
exp �ÿimf 0� and C�f 0;m 0� / exp �im 0f 0�. The approach
proposed in this paper relies on the expansion in two
harmonics only, denoted as m �M and m 0 � 0; here, the
orthogonality of functions is not assumed. Expansion (12)
can be obtained if we set

F�f 0;M � � dD�f 0 ÿ f� ; �42�

C�f 0; 0� � 1 ; �43�
where dD is the Dirac delta function. In this case, Eqns (39)
and (40) take the form ~f �0� � f �f�.

It can be seen that C�f 0; 0� represents an axially
symmetric harmonic and the operator

�
df 0 F�f 0;M � `cuts'

the given direction in the disk. One of the assumptions of this
approach is as follows. Although the expansion of system (11)
in the orthogonal set of functions is quite admissible, we
cannot be sure that functions (42) and (43) belong to two dual
sets in the sense of definitions (39) and (40) for all f from 0 to
2p. Despite this fact, we prefer this method because it offers a
more clear physical interpretation of the perturbation growth
as a function of the background variable distribution,
ensuring the angular coordinate locality. Another assump-
tion is that the proposed approach assumes the use of axially

symmetric modes, whereas the background solution depends
on the angle. The distributions shown in Fig. 2 demonstrate
that the main angular scale of changes is 2p. Therefore, this
scale should mainly contribute to perturbations, and in the
standard approach, this scale would correspond to the
azimuthal number m � 1. However, for simplicity, we
assume that the perturbation is axially symmetric. Thus, the
problem can be formulated independently for each radial
direction in the disk.

Appendix B

Below, we briefly describe the instability analysis in a disk
following the Lynden-Bell±Ostriker method. A detailed
presentation of the method and examples for axially sym-
metric flows can be found in [49].

The gas-dynamic equations can be written in terms of the
displacement vector of gas n relative to its equilibrium
position (marked with index `0'):�

q
qt
� V0H

�2

n � ÿD�c 2T H lns� HF� ; �44�

where D is the Lagrangian difference operator:

Df � f
ÿ
t; r� n�t; r��ÿ f0�t; r� �45�

� f �t; r� ÿ f0�t; r� � n�t; r�Hf0�t; r� � O
ÿjnj2� : �46�

Equation (44) should be supplemented with the continuity
equation

Ds� s0Hn � 0 : �47�

Further analysis is performed by assuming that the displace-
ment is small and the unperturbed disk is steady. We redefine
the displacement vector as n! exp �iot� n. The linearized
dynamic equations have the form

ÿo 2An� oBn� Cn � 0 ; �48�

where A, B, and C are matrices composed of the unperturbed
variables and their derivatives. After multiplying this equa-
tion by the vector n� and integrating over the volume, we
finally obtain a quadratic equation for o:

ÿo 2

�
d2r n�An� o

�
d2r n�Bn�

�
d2r n�Cn � 0 �49�

or

ÿo 2a� ob� c � 0 : �50�
The necessary and sufficient condition for a linear perturba-
tion to grow is the condition for the discriminant of this
equation:

b 2 � 4ac < 0 : �51�

In our problem, the displacement vector n contains only
the radial component, and the coefficients a, b, and c have the
form [49]

a �
�
dr rs0jxj2 ; �52�

b � i

�
dr rs0

�
x �

dx
dr
ÿ x

dx �

dr

�
u0 ; �53�
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c � t� v� p,

t �
�
dr rs0

�
ÿ u 2

0

���� dxdr
����2 � 3O0jxj2

�
; �54�

v �
�
dr rs0jxj2 d�rO 2

K�
dr

; �55�

p � c 2T

�
dr rs0

���� dxdr
����2 : �56�

Using the equilibrium flow equation

c 2T
d ln s0
dr

� rO 2
K ÿ rO 2

0 � 0 �57�

and the disk half-thickness h � cT=OK, we can rewrite the
instability growth condition as��

dr rs0jxj2
�ÿ1� �

dr rs0 Im
�
x
dx �

dr

�
u0
cT

�2
�
�
dr rs0

����dxdr
����2�1ÿ u 2

0

c 2T

�
�
�
dr rs0jxj2

�
1

h 2
� 1

r

d ln s0
dr

�
< 0 : �58�

Using (57), it is easy to show that in the particular case where
the fluid is incompressible and the radial flow is absent,
expression (58) becomes the classical Rayleigh criterion [6]:�

dr rs0jxj2K 2
0 < 0 : �59�

The integrand in the first term in (58) is the product of the
radial velocity and a function whose scale of change
corresponds to the given mode change scale. Indeed,
Eqn (47) for the displacement x can be written as

dx
dr
� d ln�rs0�

dr
x� d � 0 ; �60�

whence it follows that Im �x dx �=dr� � ÿIm �xd ��. The plot
of this function for two modes is presented in Fig. 7. By
comparing these modes with those shown in Fig. 5, we
conclude that the characteristic scale of change of these
functions is the same, although the functions Im �x dx �=dr�
apparently do not change sign. On the contrary, the radial
velocity distribution does change sign. We define the local
scale of perturbation change l as Im �x dx �=dr� � lÿ1jxj2.
Because the background distribution change scale is larger
than the scale of perturbations of interest here, the estimate

jdx=drj2 ' lÿ2jxj2 approximately holds. For the same rea-
son, we can neglect the density gradient in the last term in the
left-hand side of (58). Then the inequality takes the form��

dE

�ÿ1� �
dE

l
u0
cT

�2
�
�
dE

l 2

�
1ÿ u 2

0

c 2T
� l 2

h 2

�
< 0 ; �61�

where dE � dr rs0jxj2.
The numerical check of inequality (61) that we did also

confirms the presence of instability. For example, for the
modes shown in Fig. 5, the typical value of the discriminant
1� 4ac=b 2 is of the order of ÿ1.
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