
Abstract. An analysis is given of the nonisothermal growth of a
dendrite crystal under forced fluid flow in a binary system. The
theoretical model utilized employs a free moving crystal±liquid
interface and makes use of the Oseen approximation for the
equations of motion of the liquid. A criterion for the stable
growth of two-dimensional and three-dimensional parabolic
dendrites is derived under the assumption of an anisotropic
surface tension at the crystal±liquid interface, which gener-
alizes the previous known results for the stable growth of a
dendrite with convection in a one-component fluid and for the
growth of a dendrite in a two-component system at rest. The
criterion obtained within the Oseen hydrodynamic approxima-
tion is extended to arbitrary Peclet numbers and dendrite
growth with convection in a nonisothermal multicomponent
system. Model predictions are compared with experimental
data on crystal growth kinetics in droplets processed in electro-
magnetic and electrostatic levitation facilities. Theoretical and

simulation methods currently being developed are applied to
crystallization processes under earthly and reduced gravity
conditions.

1. Introduction

Dendrites are ramified treelike crystals composed of a trunk
and groups of branches oriented along the main crystal-
lographic axes of the lattice [1±6]. The dendritic shape
represents the most common morphological form of crystals
emerging from supercooled melts and supersaturated solu-
tions. The mass and heat transfer processes and kinetics of
atomic attachment at the interface control both the growth
rate and the dispersiveness of the dendritic structure that
eventually forms on mesoscopic and macroscopic spatial
length scales (� 10ÿ6ÿ10ÿ3 m) [7±9]. Figure 1 shows the
well-developed surface of a dendritic crystal grown in a
supercooled melt.

Theoretical analysis and computer simulation implicated
in the investigation of dendritic morphology are as impor-
tant as observations of crystal growth dynamics [11±13].
Qualitatively new data obtained in recent years can be
utilized to verify the major concepts of dendritic crystal
formation [14]. Of special interest in this context are two
problems having important theoretical and practical impli-
cations: the stability of free space dendritic tip growth, and
the influence of convective flow on the mechanism of growth
regime selection [15±17].

The former problem arose from the analysis of the
Ivantsov model [18±20] and experimental data on the growth
of the needle crystal with a paraboloidal tip [21±27]. The
analysis led to the conclusion that the continuous family of
Ivantsov's isotropic solutions is unstable, i.e., the paraboloi-
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dal shape of a needle crystal is unstable in the steady-state
growth regime [28, 29]. It was shown that the crystalline
anisotropy of the physical properties of the mobile crystal±
liquid interface stabilizes the dendrite paraboloidal shape.
Therefore, the Ivantsov solution was taken as a zero
approximation in the search for a solution to stable growth
in the first approximation in which the role of the small
parameter is played by the anisotropy of surface tension or
growth kinetics [29].

Following establishment of the criterion for dendritic tip
stability in a stagnant one-component medium [28, 29], the
problem was extended to convective medium motion [30±32]
and dendritic crystal growth in a binary (chemically two-
component) medium without convection [33]. In many real
situations, however, a comparative analysis of dendrite
growth in a binary system has to take into consideration
convective flows [34].Moreover, nonisothermal solidification
of binary melts is, as a rule, accompanied by the chemical
segregation in the solid phase being formed, leading to the
production of inhomogeneous solid solutions and disordered
crystal structures and the development of crystal heterogra-
nularity. Evidently, this accounts for the marked variability
of the physical, mechanical, electric, and chemical properties
of the samples and materials thus obtained [9, 35±37].

The present review is concerned with the comprehensive
consideration of the selection of the stable dendritic tip
growth regime in a binary system under forced convective
flow of the liquid phase.

Natural convection (e.g., thermogravitational or thermo-
capillary convection under terrestrial and microgravity
conditions, respectively) and forced convective flow of liquid
play a key role in transfer processes at the crystal±melt
interface. Convective flows significantly change local gradi-
ents of temperature and impurity concentration; thereby,
they affect evolutionary patterns of the solidification front
[38]. In the special case of dendritic structures, their shape and
growth rate are governed by temperature and concentration
gradients established as a result of both the conductive
(molecular) and convective heat and mass transfer near the
moving interface [38±40]. Both experiment and simple
estimating calculations [39, 40], as well as the phase field

modeling [41±43], have demonstrated the strong influence of
melt convection on the formation of a dendritic structure
growing into a supercooled liquid flow. Convection was
shown to affect phase selection [44±46], grain refinement [34,
47], and crystal structure formation [48, 49].

Figure 2 compares microstructures of Ni-Al alloy samples
crystallized under terrestrial conditions at normal gravity (1g)
and under microgravity conditions. Forced convection
induced under terrestrial conditions by an alternating electro-
magnetic field caused formation of extended and unbroken
dendritic crystals (Fig. 2a). Crystallization in a stagnant melt
results in a solidified microstructure in the form of fragment-
ed dendritic crystals (Fig. 2b). Due to the absence of
convective heat transport during solidification under micro-
gravity, a droplet remains in the two-phase state longer than
under 1g conditions. It produces the grain-refinement effect
[50, 51], and the final microstructure turns out to be much

Figure 1.Dendritic crystal in the cross section through a solidified metallic

melt treated in an electromagnetic levitator (electron micrograph) [10].

The dendrite central trunk is 100 mm long.

DT � 80 K

DT � 79 K

mg
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Figure 2. Microstructure of an Ni60-Al40 alloy droplet [48] crystallized

under terrestrial (1g) (a) and microgravity (b) conditions. The insets

images magnified fragments of the microstructure.
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denser for samples crystallized under microgravity condi-
tions.

A dendrite growth model extending an earlier theory [52,
53] was proposed in Ref. [16]. This model describes the
dependence of the dendrite growth rate on supercooling in
the incident convective fluid flow. In stating the problem, the
authors made use of the hydrodynamic equations for an ideal
fluid with zero viscosity, which substantially simplifies the
theoretical description of fluids. Later on, this theory was
advanced to describe the dendrite growth in the event of real
fluids possessing the property of viscosity [54, 55].

The objective of the present review consists in considering
recent experimental data, results of numerical simulations,
and theoretical analyses of the influence of forced fluid flows
on the characteristics of dendritic crystal growth. The model
description leans upon analytical results from Ref. [55] giving
a solution to the problem of nonisothermal dendrite growth
in a binarymelt in the presence of counter flow of fluid. Such a
model description is needed for the quantitative assessment
and prediction of the properties of samples made from
specially purified materials and alloy systems undergoing
containerless processing under terrestrial and reduced grav-
ity conditions [56]. The problem statement is in accordance
with the Stefan model including the anisotropy of the surface
energy at the parabolic (and paraboloidal) crystal±liquid
interface. The problem for the forced flow is solved in the
Oseen approximation due to the smallness of the Reynolds
number. An analysis of the stable regime in the framework of
such a generalized model yields a criterion for dendritic tip
growth in a binary system with convection, making it possible
to predict crystal growth kinetics by correlation with
experimental measurements of crystal growth rate and
morphological characteristics depending on convective flow
intensity.

2. Convective flow in droplets solidified
in levitators

Containerless and crucibless techniques, such as the drop tube
method, atomization, and levitation, substantially decrease
the probability of the heterogeneous nucleation of stable
centers of a new phase on the surface of a sample being
processed. As a result, samples can be supercooled hundreds
of degrees in the course of slow (e.g., in levitators) or intense
(as in fast quenching from the liquid phase) cooling. The
temperature of the sample may decrease in the process at a
rate of several million degrees per second, e.g., during
atomization, under high-intensity laser recrystallization, in
drop tubes, or in splat quenching [57]. Both slow and intense
cooling bring the sample to a metastable state, and the
formation of its structure is mediated through the formation
of metastable intermediate and long-lived phases [9].

The morphological and dynamic features of crystal
growth were actively studied by direct observation of crystal-
lization of optically transparent samples [38, 58±60]. Experi-
ments with optically nontransparent droplets were carried
out by acoustic, electrostatic, and electromagnetic levitation
techniques as unique methods for supercooling metallic and
alloy samples with a diameter from a fewmicrometers to 1 cm.
These methods are equally efficacious for controlled crystal
nucleation initiated from the outside and the observation of
crystallization front propagation. Levitation techniques for
containerless processing of shots and drops are overviewed in
Refs [9, 36, 61].

Figure 3 shows electrostatic levitator (ESL) and electro-
magnetic levitator (EML) facilities employed in experiments
on heating and cooling shots with the initiation of crystal-
lization under controlled supercooling conditions or sponta-
neous avalanche high-speed solidification. In ESL (Fig. 3a), a
sample levitates under the effect of the electrostatic force
arose between two disks. Technical details pertaining to ESL
are described, e.g., in paper [62]. In EML (Fig. 3b), a sample
levitates in a nonuniform electromagnetic field generated by a
conical (sometimes cylindrical) coil.

The preliminary cyclic `heating±cooling' treatment is
effected by the containerless (crucibless) technique, in which
the walls (volume, shape) of the container do not exert
influence on heterogeneous nucleation of a new phase. This
approach allows strong supercooling (several hundred
degrees) to be reached in the liquid phase of the sample. As
a result, it solidifies at a high rate of up to 100m sÿ1. The rapid
crystallization front is recorded by a videocamera with a
writing speed of up to 4� 105 frames per second.

In the case of sample levitation in ESL, forced convection
is absent due to an electrostatic field [62±65]. However, an
ESL experiment is long enough for Marangoni (thermo-
capillary) convection, at which the maximum flow rate
reaches a few centimeters per second: U90:05 m sÿ1. This
value lies at the limit of accuracy of the method for measuring
the crystal growth rate in ESL. For this reason, it is usually
assumed in terrestrial ESL experiments that Marangoni's
convective flow can influence crystal growth only under
small or vanishingly small supercooling. In contrast, melting
a shot in EML and its further cyclic processing are associated
with intense forced convection in the drop liquid phase [62±
65, 67] that may have a marked effect on crystal morphology
and growth kinetics.

Figure 4 shows schematically the central part of the EML
facility with a levitating droplet. When alternating current
passes through the coil, the electromagnetic field induces eddy
currents in the hard electrically conductive shot. These
currents give rise to a repulsive force (Lorentz force FL)
directed opposite to both the main field and the heat release
(the cause of shot melting). As gravitational and Lorentz
forces become equal, i.e., at jFLj � jFgj, the shot begins to
levitate and simultaneously melt when heated. Then, the
melted shot in the form of a liquid droplet can be supercooled
to a temperature below the equilibrium solidification tem-
perature by a cooling gas that passes through the working
volume of EML. Solidification can either be initiated by a
trigger needlemade of the samematerial as the starting shot or
occur spontaneously The release of latent heat accounts for
heating the crystallizible part of the samplewith a recalescence
front that is the geometric envelope of primary crystal tips

a b

Figure 3.Overall view of levitation facilities with samples. (a) Levitation of

a liquid sample (droplet) in an electrostatic levitator in an ultrahigh

vacuum. (b) Levitation of a droplet in an electromagnetic levitator with

the application of an alternating electromagnetic field.
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usually having a dendritic structure. Heat and mass transfers
in the recalescence front control the growth dynamics of such
dendritic crystals. Computed images obtained with a high-
speed video cameramake it possible to record the recalescence
front and quantitatively evaluate its propagation velocity in
the supercooled droplet [9, 17, 67].

The alternating magnetic field induces an electric current
that causes themelt tomove so that the flow inside the droplet
splits into two. As shown in Fig. 5, two spatial tori are formed
in the fluid structure: the flow in the center of the sample (at
the bottom of the droplet, near its southern pole) is directed
downward, while at the top (near the northern pole) it is
directed upward. Soon after the onset of droplet solidifica-
tion, a convective flow with the mean velocity U is directed
towards the growing dendrites in the lower part of the droplet,

resulting in a rise in growth rate V and the formation of
mostly developed main dendritic trunks growing towards the
flow of the liquid phase (see Fig. 5). The results of calculations
of convective structures in the droplets processed in EML [63,
64, 68] confirm the hypothetical scheme of convective tori
formed during crystallization [16, 17]. The governing equa-
tions of the model can be formulated based on the scheme
depicted in Fig. 5.

3. Crystal growth model

Crystal growth in the incoming flow of fluid is described in
terms of the nonlinear Stefan type thermodiffusion problem
[69, 70] with the moving free boundary of phase transition.
TemperatureTint of the crystal±liquid interface depends on its
local curvature 1=R, crystallization temperature T0 of pure
matter, surface tension coefficient s, and latent crystallization
heat Q:

Tint � T0 ÿ T0s
QR

: �1�

Temperatures of solid (Ts) and liquid (Tl) phases taking
account of the incoming flow of fluid are given by the heat
conduction equation

qTs

qt
� DTH 2Ts;

qTl

qt
� �w;H�Tl � DTH 2Tl ; �2�

where DT is the thermal diffusivity, w is the fluid flow
velocity, and t is the time.

The distribution of an impurity in the liquid part of the
system is described by the convective diffusion equation
(impurity diffusion inside the growing crystal is neglected):

qCl

qt
� �w;H�Cl � DCH 2Cl ; �3�

where Cl is the concentration of the dissolved impurity, and
DC is the impurity diffusion coefficient.

Conditions of equality between phase temperatures and
the phase transition temperature, of temperature continuity,
and of heat±mass balance are fulfilled at themoving interface:

Tl � Tint ÿmCl ; Ts � Tl ;

Qvn � DTcp�HTs ÿ HTl� n ; �4�
�1ÿ k0�Clvn�DCHCl n � 0 ; �5�

where vn is the normal velocity of surface movements, cp is the
heat capacity, and k0 andm are the impurity distribution and
liquidus slope equilibrium coefficients, respectively. Notice
that the first expression in Eqn (4) gives the relationship
between temperature and concentration in the form of the
liquidus line equation on the phase diagram.

Let us consider subsequent to paper [32] the flow of fluid
at small Reynolds numbers. In this case, the velocity
distribution in a fluid satisfies Oseen and continuity equa-
tions [71]:

U
qw
qz
� ÿ 1

rl
Hp� nH 2w ; HHw � 0 : �6�

Here, U is the incoming flow velocity far from the growing
crystal, and rl and n are fluid density and kinematic viscosity
coefficients, respectively. It is worth noting that although the
Oseen approximation used in the equation of motion (6)
makes it possible to take into account only the most
important inertial terms, calculations yield sufficiently

Solid phase

Fluid

Droplet

Convective cells

U

V

Figure 5. Schematic of current lines in convective cells of the liquid phase

during dendritic crystallization of a droplet in an electromagnetic levitator

[17]. Two-dimensional cross section through the droplet shows the cellular

structure of the liquid represented in three dimensions by two tori; VÐ

dendritic tip growth rate, and UÐaveraged fluid flow velocity.

Infrared
pyrometers

Cooling
gas (He)

Droplet Forces

Magnetic
éeld

Inductive
current

AC coil

Support

High-speed
camera

Ultrapure
helium medium

Ic

FL

Fg

Figure 4.Levitating sample (droplet, shot) in the coil of an electromagnetic

levitator (the schematic taken from Ref. [66]). The sample levitates due to

the equality between gravity force Fg and Lorentz force FL, i.e., at

jFLj � jFgj; Ic is the current induced in the droplet by an alternating

electromagnetic field.

774 D V Alexandrov, P K Galenko Physics ±Uspekhi 57 (8)



accurate results (see, for instance, the classical problem of
sphere motion in a viscous fluid [72]).

The statement of the above-formulated problem by
equations (1)±(6) also implies that the coefficient of impurity
distribution between phases k0, impurity diffusion coefficient
DC, liquidus slope m, liquid phase density rl, and kinematic
viscosity n are constants. Moreover, thermal diffusivities in
the phases are assumed to be similar, which allows directly
employing the available methods for the description of
dendrite growth [73±75]. Such a simplified statement of the
problem ensues from the fact that the difference between
thermal diffusivities enters the `empirical constant' of the
condition being sought for the selection of the stable dendrite
growth regime. These simplifications collectively permit us to
make analytical calculations for the systems of nonlinear
equations with hydrodynamic contributions.

3.1 Analytical solution for a parabolic dendrite
Let us assume that a two-dimensional parabolic dendrite
grows with a constant rate V along the spatial z-axis (Fig. 6).
The fluid flow far from the crystal is oriented parallel to the
z-axis and opposite to the dendrite growth direction (the so-
called incoming flow). Let us further introduce the parabolic
coordinates x and Z related to the Cartesian coordinates x and
z by the expressions

x � r
�����
xZ

p
; z � r

2
�Zÿ x� ; �7�

where r is the dendrite tip diameter, and the phase boundary
lies at the Z � 1 level (generalization to a three-dimensional
case is considered in Section 5.3 below).

Equations (6) allow determining fluid velocity compo-
nents uZ and ux in the parabolic coordinates (7). Taking into
account the boundary conditions for liquid adhesion to the
dendrite surface, the specified incoming flow velocity, and
Ref. [32], the result can be written in the form

uZ � ÿ f �Z�
2
�����������
x� Z

p ; ux �
�����
xZ

p�����������
x� Z

p df

dZ
; �8�

with the functions introduced as follows:

f �Z� � 2�U� V� ���
Z
p ÿ 2Ug�Z� ;

g�Z� � ���
Z
p erfc

��������������
ZRe=2

p
erfc

�����������
Re=2

p
�

������������������
2=�pRe�p

erfc
�����������
Re=2

p �
exp

�
ÿRe

2

�
ÿ exp

�
ÿ ZRe

2

��
; �9�

and taking into consideration flow intensity depending on the
Reynolds number Re � rU=n.

Equations (2) and (3) can be integrated in parabolic
coordinates (7). To find the solution to the problem depend-
ing on Z alone, Eqns (2) and (3) with boundary conditions (4)
and (5) (see paper [31]) should be rewritten in the form

uZ
dTl

dZ
� 2DT

r
�����������
x� Z

p � ���
Z
p d2Tl

dZ 2
� 1

2
���
Z
p dTl

dZ

�
;

dTl

dZ

����
Z�1
� ÿQ

cp

rV
2DT

; �10�

uZ
dCl

dZ
� 2DC

r
�����������
x� Z

p � ���
Z
p d2Cl

dZ 2
� 1

2
���
Z
p dCl

dZ

�
;

dCl

dZ

����
Z�1
� ÿ�1ÿ k0�Ci

rV
2DC

; �11�

where Ci is the impurity concentration at the crystal±melt
interface. Solving equations (10) and (11) yields the impurity
temperature and concentration distributions:

Tl�Z� � Ti � �T1 ÿ Ti� IT�Z�
IT�1� ;

Cl�Z� � Ci � �C1 ÿ Ci� IC�Z�
IC�1� : �12�

Here, the following notations are introduced:

IT�Z� �
�Z
1

exp

�
Pf

�Z 0
1

g�Z 00�������
Z 00
p dZ 00 ÿ P0Z 0

�
dZ 0�����
Z 0
p ; �13�

IC�Z� �
�Z
1

exp

�
Pf

DT

DC

�Z 0
1

g�Z 00�������
Z 00
p dZ 00 ÿ P0

DT

DC
Z 0
�
dZ 0�����
Z 0
p ;

�14�

Pg � rV
2DT

; Pf � rU
2DT

; P0 � Pf � Pg ; �15�

Ti � T1 � Q

cp
Pg exp �P0� IT�1� ; �16�

Ci � C1
1ÿ �1ÿ k0� exp �P0DT=DC�PgIC�1�DT=DC

; �17�

where Pg and Pf are the growth and flow P�eclet numbers,
respectively, defined through the dendrite growth rate V and
the fluid flow velocity U, and T1 and C1 are fluid
temperature and concentration far from the interface,
respectively.

3.2 Microscopic solvability condition
Surface energy anisotropy for various rapidly growing facets
does not exceed 1.5±2.0% for traditional metals or alloys, and
is up to 5.0% for strongly anisotropic crystalline materials.
Given such a relatively small anisotropy of surface tension,
solutions with a constant dendrite growth rate can be found in
the neighborhood of classical solutions to Ivatsov's parabolic
dendrite. Mathematically, this means the fulfillment of the
microscopic solvability condition found as the approximate
solution of the axisymmetric problem in the case of lineariza-
tion of heat and mass transfer conditions on the Ivantsov
dendrite surface [73, 74]. This condition allows selecting a
stable growth regime in terms of velocity V and radius r=2 of
the anisotropic dendrite tip (i.e., in the case of superimposed
crystal lattice symmetry taking account of the anisotropy of

r

Z

x

x

z

V

U

Figure 6. Schematic representation of a growing dendrite in the fluid

counter flow, showing transformation to a new system of coordinates.
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the predominant crystal growth direction) [28, 29]. In what
follows, we shall utilize the microscopic solvability condition
in the form [75]�1
ÿ1

G
�
X0�l �

�
Ym�l � dl � 0 ; Ym�l � � exp

�
i

�l
0

km�l1� dl1
�
:

�18�

Expression (18) can be appliedwhen analyzing variousmobile
boundaries, e.g., Saffman±Taylor `viscous fingers' [28, 76]. It
implies knowledge of curvature operator G and solutions
X0�l � from which it is possible to find functions km�l � of the
local nonzero marginal mode of the conjugate dispersion
equation for perturbations (see, e.g., monograph [76]).

Relation (18) is derived with the aid of the Wentzel±
Kramers±Brillouin (WKB) approximation [77] that was
applied to obtain the flame front propagation regimes [78]
and the dendritic structure [79]. Functions Ym�l � in relation
(18) in the presence of the incoming flow of a viscous binary
fluid are defined in Section 5.

4. Linear stability analysis

Stability analysis in the linear approximation permits
determining the dendritic surface reaction near the tip to a
small perturbation. Finding stability, instability, and mar-
ginal (borderline) state regions depending on the perturbation
wave number is the main purpose of the analysis. The
marginal mode (the borderline regime between stability and
instability) is found from the critical value of wave number km
corresponding to the neutral stability curve. To obtain this
critical value at the dendrite tip, we now turn to the results of
linear stability analysis from Ref. [32], in which the perturba-
tion growth rate had a wavelength much shorter than the
characteristic spatial scale of the unperturbed solution.

Let us expand the stationary velocity components (8) in a
power series of Zÿ 1 on the outskirts of the parabola set by
the equation Z � 1. Taking into account only the main
contributions, we arrive at

ux �
�����������
x

1� x

s �
V� a�Re�U�Zÿ 1�� ; uZ � ÿ V�����������

1� x
p ;

�19�
where

a�Re� �
������
Re

2p

r
exp �ÿRe=2�
erfc

ÿ �����������
Re=2

p �_ �20�

It follows from formulas (19) and (20) that only the tangent
velocity component ux is dependent on the incoming flow
velocity close to the parabolic tip of the growing dendrite.

For further analysis, wewill introduce new local Cartesian
coordinates xc and yc fixed to the crystal, which specify the
tangent and normal axes, respectively, to the interface at a
point where the normal to the latter makes an angle ywith the
growth axis. These coordinates allow us to represent expres-
sions (19) through yc and yc:

u � ÿV sin yÿ aU

r
yc sin y cos y ; v � ÿV cos y ; �21�

where u and v denote the tangent and normal velocity
components near the dendrite surface, respectively. Expres-
sing the derivatives of temperature and concentration from

Eqns (4) and (5) as

dTl

dyc
� Qv

DTcp
;

dCl

dyc
� Ci�1ÿ k0� v

DC
at yc � 0 �22�

yields an expansion in a power series for temperature and
concentration in the vicinity of the dendrite tip:

T1�Ti ÿ QV

DTcp
yc cos y ; Cl�Ci ÿ Ci�1ÿ k0�V

DC
yc cos y :

�23�
Letting u 0, v 0, and T 0 designate perturbations of the

respective quantities, and x 0 perturbation of the stationary
interface with a wavelength l assumed very small compared
to radius r=2 of the dendrite tip enables one to represent the
solution of equations for perturbations obtained from
equations (2) and (6) in the Oseen approximation in the
form (see also paper [32])

u 0 � �Bÿ ieAyc� exp �ot� ikxc ÿ ekyc� ;
v 0 �

�
A

�
yc � e

k

�
� iBe

�
exp �ot� ikxc ÿ ekyc� ;

x 0 � S exp �ot� ikxc ÿ ekyc� ; �24�
A � ÿS

�
oke� i

akU

r
sin y cos y

�
;

B � S
aU

r
sin y cos y ;

where the equality v 0 � ÿqx 0=qt fulfilled at the interface was
taken into consideration. Here,o and k are the increment and
the wave number of the perturbations, respectively, para-
meter e has the same sign as the real part of k since
perturbations cannot increase unrestrictedly as yc goes to1,
and S is the perturbation amplitude of the dendrite surface.

Let us address the equation for temperature perturbations
in the liquid part of the system. Keeping up only linear terms,
one obtains from equation (2):

qT 0l
qt
� u

qT 0l
qxc
� v qT

0
l

qyc
� v 0 dTl

dyc
�DT

�
q 2T 0l
qx 2

c

� q 2T 0l
qy 2

c

�
: �25�

If the velocity of an incoming flow is negligible, the solution
has a form similar to T 0l �Tl0 exp �ot� ikxc ÿ ekyc� at large
k, Tl0 � const, consistent with the well-known Mullins±
Sekerka criterion [24] at k determined within the domain
boundaries of the thermal problem for one-component liquid
solidification (see Ref. [32] among others). Substituting

T 0l � g�yc� exp �ot� ikxc ÿ ekyc� �26�

into equation (25) and taking into account formulas (22), (23)
lead to the following equation for the g�yc� amplitude:

d2g

dy 2
c

ÿ 2ek
dg

dyc
� L

ÿ
g�yc�; yc

�
; �27�

where

L
ÿ
g�yc�; yc

� � SQV cos y
cpD

2
T

�
o� �oke� kN� yc

�
�
�
o� kV�e cos yÿ i sin y�

DT
ÿ kNyc

DT

�
g�yc� ; �28�

N � iaU sin y cos y
r

:
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To solve the set of equations (27), (28), we will apply the
method proposed in paper [32]. Because g varies on scale l,
the left-hand side of equation (27) prevails over its right-hand
side at large wave numbers, thus allowing the system (27), (28)
to be solved by expanding the solution at large k. The zero
approximation yields g � Tl0, where Tl0 is the constant
amplitude. Substituting it into the right-hand side of formula
(28) gives the solution of equation (27) in the form

g�yc� � Tl0 � Tl1yc � Tl2y
2
c ;

Tl1 �
�
N

4
ÿ o� Vk�e cos yÿ i sin y�

2e

�
Tl0

kDT

ÿ SQV cos y
4kD 2

Tcp
�3oe�N� ; �29�

where the strong inequality V=DT 5 k was taken into
consideration, with k being estimated from the Mullins±
Sekerka theory as � 106 ± 107 mÿ1 [24], and V=DT as
� 102 mÿ1 for binary metallic alloys.

Equation (3), written for concentration field perturba-
tions C 0l in the liquid, can be solved in the same manner. The
result is written out as

C 0l � �Cl0 � Cl1yc � Cl2y
2
c � exp �ot� ikxc ÿ ekyc� ;

Cl1 �
�
N

4
ÿ o� Vk�e cos yÿ i sin y�

2e

�
Cl0

kDC

ÿ SCi�1ÿ k0�V cos y
4kD 2

C

�3oe�N � : �30�

The expressions for perturbation amplitudes Tl2 and Cl2 are
not presented here, as they are unnecessary for further
analysis. The equation for solid phase temperature is solved
in a similar manner, and its solution is expressed in the form
(29) at U � 0.

Now, perturbing the boundary conditions (4) and (5), we
arrive at the following set of equations at the solid±liquid
interface yc � 0:

T 0l �
QV cos y
DTcp

x 0 ÿmC 0l

�mCi�1ÿ k0�V cos y
DC

x 0 ÿQd

cp

q 2x 0

qy 2
c

;

T 0s � mC 0l ÿ
mCi�1ÿ k0�V cos y

DC
x 0 �Qd

cp

q 2x 0

qy 2
c

;

1ÿ k0
DC

�Civ
0 ÿ C 0lV cos y�

� qC 0l
qyc
� Cik0�1ÿ k0�V 2 cos2 y

D 2
C

x 0 ;

Q

cp

qx 0

qt
� DT

�
qT 0s
qyc
ÿ qT 0l

qyc
ÿQV 2 cos2 y

D 2
Tcp

x 0
�
; �31�

where d � scpT0=Q
2 stands for the capillary length.

Substitution of perturbations (24), (26), and (30) into the
boundary conditions (31) gives four linear equations for the
perturbation amplitudes S, Tl0, Ts0, and Cl0 (where Ts0 is the
constant amplitude of temperature perturbation in the solid
phase). The zero value of the determinant of this set of
equations accounts in its turn for dispersion relation o�k�.

Let us consider a reference frame, the origin of which
moves normally to the interface at velocityV cos y. Because of
the rotational symmetry of the system, a perturbation with
the wave number k grows at the rate o�k�. If the origin of the
frame moves in the direction of the z-axis with a constant
velocity V, the perturbation growth rate will take the form
o�k� ÿ iVk sin y due to the present of the tangential velocity
V sin y in the new reference frame [33]. Therefore, replacing
o�k� ! ÿiVk sin y in the neutral stability curve (where
o � 0), eliminating the perturbation amplitudes, assuming
e � ÿ1, and substituting ÿi for i lead, in accordance with
Ref. [32], to the equation for the marginal mode of the wave
number k � km:

k 2 �
�

V

2dDT
�mCi�1ÿ k0�Vcp

dDCQ

�
exp �iy�

� i
aU sin y cos y

8rDT
� i

aU sin y cos y
4rDC

: �32�

Expression (32) is written out taking account of the following
estimates: k � 106ÿ107 mÿ1, V=DT � 102 mÿ1, V=DC �
106 mÿ1, d � 10ÿ9ÿ10ÿ10 m, and r � 10ÿ5 m. This expres-
sion defines the critical value of km that separates the unstable
and stable mode regions of the wave number.

Let us represent the capillary length as d�y� �
d0�1ÿ b cos �4y�� (where b � 15ec 5 1 is the anisotropy
factor, ec is the parameter of surface energy anisotropy at the
interface, and d0 is the capillary constant), and then introduce
the wave number

kTC � ÿ
�

VP

2d0DT

�1=2

; P�1� 2mCi�1ÿ k0�DT

DCQ=cp
; �33�

corresponding to the solution of the thermoconcentration
problem in the absence of a flow (see, for instance, paper [33]).
After these manipulations, the solution of equation (32) takes
the form

k � kTC

�
exp �iy� � ia

�
1ÿ b cos �4y�� sin y cos y
1ÿ b cos �4y�

�1=2

; �34�

where

a � ad0U

4rVP
� ad0UDT

2rVPDC
; �35�

and P is given by formula (33).
Expressions (32) and (34) contain limiting transforma-

tions to the earlier theories of dendrite growth with aniso-
tropic surface energy [24, 32, 33, 75, 76]. Assuming firstU � 0
andCi � 0 in equation (32) or (34) gives theMullins±Sekerka
wave number kMS for a one-component stagnant fluid [24, 32,
75, 76]:

kMS � ÿ
��������������������
V exp �iy�
2dDT

s
: �36�

Next, solution (32) [and accordingly (34)] leads at U � 0 to
the wave number kBAP obtained by Ben Amar and Pelc�e for a
stagnant binary fluid [33]:

kBAP � kMS

����
P
p

: �37�

Now, assuming DC !1, we arrive at the solution for kBP
obtained by Bouissou and Pelc�e for a one-component system
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in the presence of a counter flow of fluid [32]:

kBP � kMS

�����������������������������������������������������������
1� iadU sin y cos y exp �ÿiy�

4rV

s
: �38�

Expressions (37) and (38) disseminate the results of paper [54]
to concentrated binary liquids in the presence of a counter
flow of fluid.

It should be particularly noted that relations (32) and (34)
also lead to a new result describing dendrite growth in an
isothermal binary system in the presence of a counter flow of
fluid, which gives rise to the growth of so-called chemical
dendrite. AssumingDT !1 in expressions (32) or (34) leads
to the wave number kCD for the chemical dendrite:

kCD � ÿ
������������
Kchem

p
;

Kchem � V

d0DC

�
mCi�1ÿ k0� cp
Q�1ÿ b cos �4y�� exp �iy�

� iaUd0 sin y cos y
4rV

�
: �39�

Bearing in mind that d � d0�1ÿ b cos �4y�� � scpT0=Q
2,

relation (39) can be rewritten as

kCD � kd

�
1� iadCDU sin y cos y exp �ÿiy�

2rV

�1=2
; �40�

where the wave number kd characterizing the solution to the
diffusion problem for a chemical dendrite without a flow and
the chemical capillary length dCD are defined by the relations

kd � ÿ
��������������������
V exp �iy�
2dCDDC

s
; dCD � sT0

2QmCi�1ÿ k0� : �41�

The wave number kCD given by expression (40) for an
isothermal dendrite in a binary system with a flow and the
wave number kBP defined by expression (38) for a thermal
dendrite in a one-component system with a flow have a
qualitatively similar form ensuing directly from analysis of
the terms of the more general equation (32). The quantitative
difference between kBP (38) and kCD (40) is due to the fact that
the pure concentration problem, unlike the temperature one,
is solvable only in the liquid phase domain (the authors of
Ref. [33] called this case a `one-sided model'). Such an
asymmetry in solutions of the two statements of the problem
has already been reflected in formula (32) and passes to
expressions for the wave numbers kCD and kBP in the form
of factor 2.

Thus, the generalized solution (34) gives the critical wave
number for perturbations at the dendritic tip in the frame-
work of themass and heat transfer problem taking account of
the counter flow of fluid.

5. Stability criterion for dendritic tip

Wemake use of the selection theory developed in Refs [32, 75,
76] to obtain the stability criterion for dendritic tip growth.
Bearing in mind that the integration variable l in the
microscopic solvability conditions (18) is related to angle y as

l � ÿ r
2

�
tan y
cos y

� ln

�
1

cos y
� tan y

��

(see, for example, paper [75]), we write down the solvability
condition (18) by analogy with Ref. [32] in the form�1

ÿ1
G
��w�� exp � ����

C
p

Ca�w�
�
dw � 0 ; w � tan y ; �42�

showing that curvature operator G��w�� acts on function w:

Ca�w� � i

2

�w
0

��1� iw 0��1� w 02�5=2 � iaw 0B�w 0��1=2������������
B�w 0�p dw 0 ;

B�w� � �1� w2�2�1ÿ b� � 8bw2 ; �43�
while constant C is normalized to the dimensionless factor
VPr 2=�2d0DT�.

Let us evaluate integral (43) in the limit of small
anisotropy by the method developed in Ref. [32]. The
numerator of the integrand vanishes at w close to w � i
(stationary phase point), and the denominator at w �
i�1ÿ ������

2b
p � (point of singularity). Since the dominant con-

tribution to the integral is determined by the neighborhood of
the point w � i, function Ca�w� can be approximated by

Ct�j��29=8b 7=8

�j
1=
����
2b
p

�
j 07=2 ÿ t�j 02 ÿ 1��1=2���������������

j 02 ÿ 1
p dj 0; �44�

where

w � i
ÿ
1ÿ

������
2b

p
j
�
; t � 2ÿ5=4bÿ3=4a :

Integral (44) can be approximately calculated by the
methods developed in Ref. [32] for the analysis of a similar
problem of the dendrite growth in a one-component system
with a convective flow. Based on the results of this analysis,
the quantity C is defined as

C � n 2

b 7=4

h
1� b�bÿ3=4a�11=14

i
; �45�

where n is an integer, and b is a numerical constant. Now,
taking account of the normalization in integral (44) leads to
the expression for the scaling factor s � of the heat and mass
transfer problem with a fluid flow:

s � � 2d0DT

r 2V
� s0b

7=4P
h
1� b�bÿ3=4a�11=14

iÿ1
: �46�

Here, s0 is the numerical constant determined with the aid of
asymptotic methods [29] or by fitting the model results to
available experimental data [80, 81]. The scaling factor s �

describes the relationship between velocity V and tip radius
r=2 under the stable growth regime of parabolic dendrite
trunk. Expression (46), together with the supercooling
balance at the phase boundary, quantitatively defines V and
r (see Section 6.2.2).

5.1 Limiting cases and the role of convection
In the case of dendrite growth in a one-component system
under convection, the Bouissou±Pelc�e scaling factor [32] is
obtained from formula (46) as the limit for DC !1, when
a! aBP � ad0U=�4rV � and P! 1:

s �BP � s0b
7=4
h
1� b�bÿ3=4aBP�11=14

iÿ1
: �47�
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The scaling factor for a `concentration' dendrite (i.e.,
`chemical' or `solutal' crystal growing in an isothermal liquid)
is easy to derive from expression (46):

s �CD �
2d0CDDC

r 2V
� s0b

7=4
h
1� b�bÿ3=4aCD�11=14

iÿ1
; �48�

where

aCD � ad0CDU

2rV
; d0CD � Qd0

2mCi�1ÿ k0� cp : �49�

The relationship between capillary constants d0CD and d0 in
expressions (46), (48), and (49) ensues from formulas

dCD � sT0

2QmCi�1ÿ k0� � d0CD
�
1ÿ b cos �4y�� ;

d � sT0cp

Q 2
� d0

�
1ÿ b cos �4y�� : �50�

Worthy of mention is a similar form of expressions for
scaling factors s�CD (see factor (48) for an isothermal dendrite
in a binary system with a fluid flow) and s�BP (see factor (47)
for a thermal dendrite in a one-component systemwith a fluid
flow). These expressions are totally identical in terms of
structure, just like the expressions for the wave numbers kCD
and kBP discussed in Section 4.

Expressions (46) and (47) define criteria for the stable
mode of dendritic tip growth taking account of surface energy
anisotropy (parameter b), nonisothermicity of the binary
system, and the incoming flow of fluid. Criterion (46)
integrates certain earlier results, such as the model from
Ref. [32] for a nonisothermal one-component system with an
incoming fluid flow, and the model from Ref. [33] for an
isothermal binary system taking no account of the counter
flow of fluid. In other words, relation (46) serves as the
generalization of the earlier obtained criteria for the selection
of stable dendrite growth regimes.

Let us evaluate the influence of convection on the
selection criterion for the stable dendritic growth regime. To
this effect, stability criterion (46) needs to be estimated with
respect to the criterion without convection:

s �

s �ja�0
�
h
1� b�bÿ3=4a�11=14

iÿ1
; �51�

where a is given as in expression (35), s �ja�0 is determined for
the dendrite growth in the absence of a flow, namely

s �ja�0 � s0b
7=4P ; �52�

and P is given by formula (33). Figure 7 displays the
dependence of the dendritic tip stability criterion on the
growth Pecl�et number at different convective flow intensities
given by the flow Pecl�et numberPf. Evidently, a decrease inPf

corresponding to the fluid flow, and an increase in Pg

corresponding to the dendrite growth result in a reduced
contribution of convection to the stability of the dendritic tip
growth.

5.2 Estimation of dendrite growth stability
from experimental data
The values of parameters b and s0 in the generalized criterion
(46) for stable dendrite growth can be derived from natural
experiments. Indeed, experiments on the growth of dendrites

into trimethylacetic acid under convection [82] showed that
product r 2V is a constant depending only on the counter flow
velocity of the melt. The experimental value of this product
can be written down as [82]

�r 2V �exp � 2sÿ1expd0DC

�
1� wexp

Ud0
DC

�
; �53�

where sexp � 0:032, and wexp � 5300. Exponent 11/14 in
expressions (46) and (48) is rather close to unity, which
makes it difficult to see the difference between these
quantities using current experimental techniques [32]. There-
fore, the product r 2V from formula (48) can be approxi-
mately represented as

r 2V � 2d0DC

b 7=4sCD

ÿ
1� bbÿ3=4aCD

�
; �54�

sCD � 2mCi�1ÿ k0� cp s0
Q
:

A comparison of expressions (53) and (54) yields unknown
coefficients

sCD � sexp
b 7=4

; b � 4rVmCi�1ÿ k0� wexp b 3=4cp

a�Re�DCQ
; �55�

where function a�Re� is given by expression (20).
Notice that parameters s0 and b from formulas (55) are

determined at all other fixed parameters of dendrite growth in
trimethylacetic acid, as described in Ref. [82]. Thus, para-
meters entering the stability criterion can be evaluated from
experimental data.

5.3 Dendrite growth under convection
in a three-dimensional space
The above analysis qualitatively holds true for three-dimen-
sional dendritic growth. Let us introduce the coordinates of
a paraboloid of revolution whose z-axis coincides with the
z-axis for a plane case described by relation (7):

z � r�Zÿ x�
2

; x � r
�����
xZ

p
cosj ; y � r

�����
xZ

p
sinj ; �56�

1.0

s�
=
s�
j a�
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Pf � 10ÿ5

Pf � 10ÿ4

Pf � 10ÿ3

Pf � 10ÿ2

Growth Pecl�et number, Pg

Figure 7. Ratio s �=s �ja�0 obtained from expressions (51) and (52) as a

function of the growth Pecl�et number Pg � Vr=�2DT� for different values
of the flow Pecl�et number Pf � Ur=�2DT� and the parametersDT=n � 10,

d0=r � 10ÿ5, b � 0:195, DT=DC � 5� 103, k0 � 0:5, C1 � 0:01 at.%,

m � 10 K (at.%)ÿ1, Q=cp � 300, and b � 10.
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where the dendrite surface Z � 1 has the tip radius r=2 as
before, and j is the polar angle in the plane perpendicular to
the incoming fluid flow along the z-axis. In this case, the fluid
velocity components take the form analogous to expressions
(8):

uZ � ÿ f �Z������������
x� Z

p ; ux �
�����������
x

x� Z

s
d

dZ

ÿ ���
Z
p

f �Z�� ; uj � 0 ;

�57�

with the functions introduced as follows:

f �Z� � �U� V � ���
Z
p ÿ 2Ug�Z� ;

g�Z� �
���
Z
p

E1�Re Z=2�
2E1�Re=2� �

exp �ÿRe=2� ÿ exp �ÿRe Z=2����
Z
p

ReE1�Re=2� ;

E1�q� �
�1
q

exp �ÿu�
u

du : �58�

The temperature and concentration fields are described as
before by expressions (12), in which integrals (13) and (14)
assume now the form

IT�Z� �
�Z
1

exp

�
2Pf

�Z 0
1

g�Z 00�������
Z 00
p dZ 00 ÿ P0Z 0

�
dZ 0

Z 0
; �59�

IC�Z��
�Z
1

exp

�
2Pf

DT

DC

�Z 0
1

g�Z 00�������
Z 00
p dZ 00 ÿ P0

DT

DC
Z 0
�
dZ 0

Z 0
;

�60�
where P0 is defined by formula (15).

The velocity components (19) for three-dimensional space
remain unaltered, too; only coefficient a�Re� depending on
the Reynolds number changes. Indeed, there appears the
relation

a�Re� � exp �ÿRe=2�
E1�Re=2� �61�

instead of expression (20) for the three-dimensional case.
All other expressions of the linear stability theory (see

Section 4) contain only dependence on coefficient a�Re�.
Therefore, expressions (34), (46), and (48) presenting the
main result of our analysis are conserved in the three-
dimensional case after the substitution of dependence (61)
for the coefficient a�Re�.

5.4 Remarks. Special aspects and extension of the theory
Oseen equations (6) for the approximate description of
hydrodynamic transport hold, generally speaking, at small
Reynolds numbers (therefore, at the small flow Pecl�et number
Pf). This approximation is applied to obtain an analytical
solution to the problem of viscous fluid flowing around a
dendrite. The theory provides another analytical solution to
the parabolic dendrite problem, obtained using the ideal fluid
model [31]. This solution holds for Re4 1 and has, according
to Ref. [31], the following form in the two-dimensional case:

uZ � ÿ
�U� V � ���

Z
p ÿU�����������

x� Z
p ; ux �

�����������
x

x� Z

s
�U� V � : �62�

Thus, the solution for two asymptotic cases is known, viz.
expressions (8) hold for Re � rU=n5 1, and expressions (62)
for Re4 1. The natural question arises concerning the form
of the solution for the problem of interest in the case of all
remaining Reynolds numbers.

To estimate the validity limit of the above solutions, it
should be borne in mind that expressions (8) for a viscous
liquid transform into expressions (62) for an ideal fluid at
g � 1. Function g, formally dependent on the Reynolds
number, g � g�Z;Re�, tends toward unity with its rise (as
Re!1) for the fixed values of coordinate Z > 1. This means
that solutions (8) found at small Reynolds numbers transform
into solutions (62) for large Reynolds numbers. Because the
Oseen approximation [hence, formulas (8)] is in excellent
agreement with the numerical solution of the Navier±Stokes
equationsatReynoldsnumbersup toRe � 1 [30], formulas (8)
can be regarded as adequately describing the process over a
wide range of Re values, from small to large ones. This was
confirmed in Ref. [83] reporting that a theoretical description
of the flow in the Oseen approximation is consistent with
experimental data at large Reynolds numbers. Similar
reasoning also holds for the three-dimensional problem. It
lifts the formal constraints in terms of flow Reynolds
Re � rU=n and Pecl�et Pf � rU=�2DT� numbers, narrowing
the scope of applicability of the theory in question for an
incoming laminar flow.

Two important remarks as regards the theory being
considered are in order.

First, criteria (46) and (48) for stable dendrite growth in a
binary system under convection can be tested for compliance
with the results of computer simulation. Such testing is
possible by the phase field method for free space dendrite
growth with convection in a one-component system [42, 84].
Also, the stability criteria thus obtained can be verified
experimentally as in the case of dendrite growth under forced
flow of a transparent fluid [60].

Second, the application of criteria (46) and (48) is limited
by the relatively small values of the growth Pecl�et number
Pg � rV=�2DT�. In other words, the results of the analysis of
dendritic growth hold only for small gradients or super-
coolings of the liquid, maintaining low growth rates V of
dendritic crystals. For the purpose of extended analysis at
high growth rates and arbitrary Pecl�et numbers Pg, the
stability of high-speed dendrite solidification regimes needs
to be specially considered. The microscopic solvability
condition for the high-speed growth regime can be obtained
and analyzed in analogy with the same operations in the
framework of the marginal stability hypothesis [85, 86].
Specifically, the selection criterion for dendrite growth in the
problem of heat and mass transfer with convection and
surface tension anisotropy at arbitrary Pecl�et numbers was
determined in Ref. [87]:

s � � s0b
7=4

1� b�abÿ3=4�11=14
�

1

�1� a1
���
b
p

Pg�2

� 1

�1� a2
���
b
p

PgDT=DC�2
2mCi�1ÿ k0�DT

�Q=cp�DC

�
; �63�

where constants a1 and a2 have the form

a1 � 0:381s1=20 ; a2 � 0:505s1=20 ;
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while parameters P and a are given by expressions (33) and
(35), respectively. Constants s0 and b entering stability
criterion (63) can be obtained by asymptotic analysis and
simulation by the phase field method [42, 84], or from
experimental data [82] (see Section 5.2). Generalized stability
criterion (63) differs from (46) by the presence of the
additional quadratic dependence on the growth Pecl�et
number in the contributions from heat and matter transfer
[see the denominators in parentheses on the right-hand side
of formula (63)]. This dependence qualitatively and quanti-
tatively modifies the behavior of the dendrite tip radius and
the growth rate at elevated values of the growth Pecl�et
number [87].

This theory can be utilized to obtain the rate of stable
dendritic growth in multicomponent systems. By way of
example, there is criterion s � obtained in Ref. [88] in the
absence of convection:

s � � 2d0DT

r 2V
� s0b

7=4

�
1� 2

DTcp

Q

XN
j�1

mjCi j�1ÿ k0j�
DCj

�
;

�64�

where N is the number of impurity components, and mj, Ci j,
k0j, and DCj are the liquidus slope coefficient, surface
concentration, impurity distribution coefficient, and diffu-
sion coefficient of the j th impurity component, respectively.

Stability criteria (63) and (64) can be reduced to a single
criterion by the methods developed in Ref. [87]. This criterion
defining conditions for stable dendritic tip growth in a
nonisothermal many-component system under convection at
arbitrary Reynolds (in the laminar flow region) and Pecl�et
numbers has the form

s � � s0b
7=4

1� b�abÿ3=4�11=14
�

1

�1� a1
���
b
p

Pg�2

� 2
DTcp

Q

XN
j�1

mjCi j�1ÿ k0j�
DCj
�1� a2

���
b
p

PgDT=DCj
�2
�
: �65�

The theory can be extended to a description of the growth
of dendritic crystal-like structures on the surface of Earth's
solid core. In this case, analysis of microscopic solvability
should take account of the influence of pressure and the
smallness of the Pecl�et number [89]. The criterion for stable
crystal growth reported in paper [89] establishes the relation-
ships among the thermophysical properties of the liquid±solid
interface in Earth's core and allows quantitatively estimating
the dynamic viscosity coefficient of the liquid core.

6. Quantitative evaluation of the model

6.1 Model for determining dendritic tip growth rate
and radius
Let us construct, based on the theory expounded in
Sections 3±5, a model for determining the main parameters
of the dendrite growth, viz. tip growth rate and radius. Let us
consider for this purpose a dendrite growing at a rate V
against a viscous fluid flow possessing uniform velocity U
distribution under specified supercooling DT (Fig. 8). The
dendritic tip growth rate and radius, i.e., the main growth
parameters of primary crystals, are obtained from the
stationary model of axi-symmetric dendrite growth in a

supercooled melt [9]. The expression for total supercooling
DT � T0 ÿmC1 ÿ T1 is the first equation of the model and
contains the contributions shown in Fig. 8. Here,C1 and T1
are the starting concentration and temperature, respectively,
remaining constant far from the dendrite tip during its steady
state growth. The balance equation at the dendritic tip (see
Fig. 8) can be written out in the form

DT � DTT � DTC � DTR � DTk : �66�

Thermal supercooling DTT in Eqn (66) is presented as

DTT � Ti ÿ T1 � Q

cp
Iv �Pg;Pf� ; �67�

where the modified Ivantsov function Iv �Pg;Pf� defined by
formula (16) has the form

Iv �Pg;Pf� � Pg exp �Pg � Pf� IT�1� : �68�

Integral IT describes the conductive and convective mechan-
isms of heat transfer. It is defined by expression (13) for the
growth of a parabolic plate in two-dimensional space, and by
expression (59) for the growth of a paraboloid of revolution in
three-dimensional space. The thermal Pecl�et numbers Pg and

Cl

Ci

Cs � Cik0

�dCl= dZ�Z�1

�dCl= dZ�Z�1

Cs

z

z

r=2 V

U

T

Ti

T1

C1

DTT

DTC

TL�Cl�z��

DT

DTR � DTk

Figure 8. Concentration C�z� and temperature T�z� profiles in front of a

paraboloidal dendrite tip. The tip with radius r=2 grows at a rateV against

the counter flow of fluid having velocity U. Total supercooling DT �
TL ÿ T1 is an experimentally measured quantity (TL Ð liquidus tempera-

ture, T1Ðtemperature far from the dendrite tip), dCl=dZ and dTl=dZ are
concentration and temperature gradients on the dendrite surface (Z � 1)

defined by expressions (10) and (11), respectively.
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Pf for the growing dendritic tip and convective fluid flow,
respectively, are given by expressions [15].

The contribution DTC to supercooling (66) from a
temperature shift at the interface due to impurity is expressed
as

DTC � m
C1�1ÿ k0� Iv �Pcg;Pcf�
1ÿ �1ÿ k0� Iv �Pcg;Pcf� ; �69�

where the modified Ivantsov function assumes the form

Iv �Pcg;Pcf� � Pcg exp �Pcg � Pcf� IC�1� : �70�

Here, integral IC is given by expression (14) for the parabolic
plate growth in two-dimensional space, and by expression
(60) for the growth of a paraboloid of revolution in three-
dimensional space. The concentration (chemical) Pecl�et
numbers take the form

Pcg � Pg
DT

DC
� rV

2DC
; Pcf � Pf

DT

DC
� rU

2DC
�71�

for the growing dendrite tip and the incoming convective fluid
flow, respectively. Function g�Z� in expressions for viscous
fluid flow is defined by formula (9) for the parabolic plate
growth in two-dimensional space, and by formula (58) for the
growth of a paraboloid of revolution in three-dimensional
space.

The last contributions to balance (66) are found as
follows. Contribution DTR at the dendrite tip due to interface
curvature (Gibbs±Thomson effect) is expressed as

DTR � 2d0Q

cpr
: �72�

The contribution determining atomic kinetics intensity
related to kinetic supercooling DTk has the form

DTk � V

mk
; �73�

where the kinetic coefficient mk characterizes the mechanism
of atomic attachment to the interface.

Supercooling balance (66) is the first equation for
determining two dendrite growth parameters: velocity V,
and tip radius r=2. The second relation for determining V
and r is selection condition (46) for the stable mode of steady-
state dendritic tip growth in a viscous fluid:

s � � 2d0DT

r 2V
� s �0 �b�

�
1

2
ÿmCi�1ÿ k0� DTcp

QDC

�
: �74�

Here, Ci is the impurity concentration in the fluid at the
dendrite tip (see Fig. 8):

Ci � C1
1ÿ �1ÿ k0� Iv �Pcg;Pcf� ; �75�

and s �0 �b� is the anisotropy parameter depending on b � 15ec,
where ec is the interface anisotropy:

s �0 �b� �
2s0b

7=4

1� b
ÿ
bÿ3=4a0�Re��11=14 ; �76�

where s0 and b are numerical constants. The following
expression holds for an incoming fluid flow:

a0�Re� � d0Ua�Re� �1�DC=�2DT�
�

4rV
�
DC=�2DT� �mCi�1ÿ k0� cp=Q

� ; �77�

including the parameter a�Re� defined by equation (2) and
formula (61) for the two-dimensional and three-dimensional
cases, respectively.

6.2 Behavior of principal functions
In this section, we quantitatively characterize dendrite growth
parameters and compare them with data obtained by
numerical simulation applying the phase field method [90].
The parameters of the system used in the calculations are
listed in Table 1.

6.2.1 Modified Ivantsov function. Figure 9 illustrates the
solution of Eqn (68) taking account of functions (9), (13),
and (15) for the modified Ivantsov function. It can be seen
that the contribution from thermal supercooling,
DTT / Iv�Pg;Pf�, becomes smaller in the system with con-

Table 1. Parameters of TiAl alloy (taken from Ref. [91]).

Parameter Value

T0 ì solidiécation temperature, K
C1ì impurity concentration, at.%
k0 ì distribution coefécient
m ì liquidus slope, K (at.%)
DC ì diffusion coefécient in the liquid, m2 sÿ1

DT ì thermal diffusivity, m2 sÿ1

n ì kinematic viscosity of the liquid, m2 sÿ1

U ì êow velocity, m sÿ1

Q ì latent heat of solidiécation, J molÿ1

cp ì heat capacity, J (mol K)ÿ1

d0 ì capillary constant, m
mk ì kinetic coefécient at the interface, m (s K)ÿ1

ec ì surface energy anisotropy
s0 ì anisotropy constant
b ì stability parameter

1748
55
0.8
8.8
8:27� 10ÿ9

7:5� 10ÿ6

0:5� 10ÿ7

0.6
12268.8
45
7:8� 10ÿ10

0.209
0.01
10.0
0.1

U � 0

n � 0:5� 10ÿ5 m2 sÿ1

n � 0:5� 10ÿ7 m2 sÿ1

0.8

Iv
(P

g
;P

f)

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

Growth Pecl�et number

Figure 9. Modified Ivantsov function Iv �Pg;Pf� versus the growth Pecl�et
number Pg under forced convection of the fluid with various kinematic

viscosities n. The curves are given for the values of the flow Pecl�et number

Pf � nRe=�2DT�. Calculations for Iv were made for two-dimensional

growth using Eqns (68) and taking account of functions (9), (13), and (15),

as well as in comparison with the standard Ivantsov function

Iv �Pg;Pf � 0� for a stagnant fluid at U � 0.
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vective and conductive transport than in the one dominated
by purely conductive heat transfer. The difference is due to
the fact that the incident fluid flowing around the crystal
enhances heat transfer and reduces the thermal contribution
DTT needed for a given dendritic tip growth rate V. A similar
tendency emerges in the solution of the problem with an
incoming ideal fluid [67]. The Ivantsov function at a fixed
growth Pecl�et number decreases with decreasing viscosity (see
Fig. 9), which suggests that the influence of convection on
dendrite growth increases as the fluid viscosity decreases.
Moreover, Fig. 9 confirms the earlier discussed significance of
the convective heat transport effect [15, 17, 47] when the
incoming fluid flow velocity is comparable to or lower than
the dendrite tip growth rate.

Modified Ivantsov function (68) defines an infinite family
of solutions relating supercooling DT to growth and flow
Pecl�et numbers given by formulas (15). To estimate the
influence of convection alone on the dendritic tip growth
rate V and the tip radius r=2, the selection criteria (74)±(77)
should be additionally used.

6.2.2. Dendritic tip growth rate and radius. Solving the
complete model (66)±(77) permits us to find the two main
parameters: dendritic tip growth rate V, and dendrite tip
radius r=2, whose stationary values determine the primary
crystal structure. The present section reports the results of
testing V and r=2 parameters found from the solution of the
problem for a two-dimensional dendrite.

Figure 10 illustrate the action of an incomingmelt flow on
dendrite. The convective flow of fluid (solid curve) increases
the dendritic tip growth rate over that in a stagnant melt
(dashed curve). Generally speaking, the influence of the flow
becomes most significant at small growth rates and super-
coolings, when the flow velocity is comparable to or higher
than the dendrite growth rate: U0V. It follows from Fig. 10
that the tip growth rate at the flow velocity U � 0:6 m sÿ1

increases roughly tenfold (from 0.015 to 0.15 m sÿ1) at a
supercooling DT � 100 K.

Notice that the results of calculations presented in Fig. 10
are directly related to the incoming flow shown in Fig. 8. The
dendrite tip in the counter flow can be considered in the same

manner as was done earlier using the phase field method [41,
42]. The influence of the flow on dendrite growth is illustrated
in Fig. 11 by the results of modeling a dendritic crystal
growing into a supercooled Ni melt. In a stagnant melt, the
dendrite has geometrically identical branches (Fig. 11a),
whereas the flow in the upper plane of the computational
domain increases both the growth rate and the branch length
oriented along the flow (Fig. 11b). The flow compresses the
thermal interface layer in front of the protruding dendrite
branch, thereby creating a greater temperature gradient and
accelerating heat removal in comparison with those in the
lower part of the dendrite. Indeed, an extended thermal layer
forms around the downstream branch in the stagnant melt
zone beneath the dendrite (at the bottom of the computa-
tional domain, Fig. 11b).

The estimated radius of a parabolic dendrite is shown in
Fig. 12. It decreases under the effect of convection, thinning
the dendrite. The qualitative result is that branches growing
against the flow become thinner than those growing in a
stagnant supercooled fluid. Therefore, `thin' dendrites grow

U � 0.6 m sÿ1

U � 0

101

lg
�V

[m
sÿ

1
]� 100

10ÿ1

10ÿ2

50 100 150 200 250

Supercooling, K

Figure 10. Logarithm of dendrite growth velocity, lg �V �m sÿ1��, as a

function of supercooling DT for the growth of a two-dimensional

parabolic plate in a stagnant medium (U � 0) and in convective counter

flow with velocity U � 0:6 m sÿ1.

a b

Figure 11. Results of modeling a dendritic crystal growing into a super-

cooled Ni melt. Calculations were done by the phase field method in three

spatial dimensions [43]. (a) Dendritic structure without convective flow.

Branching is due to stochastic noise in interface kinetics. (b) Dendritic

structure growing in the convective counter flow with velocity 0.3 m sÿ1

directed from the top to bottom surfaces of the computational domain.No

stochastic noise occurs at the interface.

U � 0.6 m sÿ1

U � 0

1.4

r=
2
,m

m

1.2

1.0

0.8

0.6

0.4

0.2

0
50 100 150 200 DT, K

Figure 12.Dendrite tip radius r=2 of a growing parabolic two-dimensional

plate as a function of supercooling DT in a stagnant medium (U � 0) and

incident convective flow running with velocity U � 0:6 m sÿ1.
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faster than `wide' ones over a supercooling range in which the
flow velocity is comparable to the tip growth rate: U0V.
Figure 12 shows that the tip growth rate of a parabolic crystal
increases from 3:8� 10ÿ7 to 1:3� 10ÿ6 m sÿ1, i.e., by roughly
an order of magnitude, at supercoolingDT � 100 K and fluid
flow velocity U � 0:6 m sÿ1. As follows from Figs 10 and 12,
the counter flow at greater supercoolings,DT > 175K, has no
effect on two growth parameters,V and r (given that the table
parameters of the Ti±Al alloy are used). The flow affects the
crystallization kinetics and crystal shape only in a range of
growth rates comparable to the incoming flow velocity.

7. Comparison of theoretical predictions
with experimental results

Conductive (molecular) and convective heat and mass
transfer on a solidification front controls the crystal growth
dynamics. Therefore, a reduction or complete suppression of
convective transport under reduced gravity can markedly
affect the crystalline microstructure of solidifible samples,
permitting the use of experimental data on crystal growth
kinetics to test theoretical models when estimating the effect
of forced convection on microstructure formation under
terrestrial and microgravity conditions [34, 44±46, 48, 49,
56, 67].

The Lorentz force arising in electromagnetic levitation
lifts the sample, melts it, and induces mixing of melt (see
Section 2). However, the Lorentz force arising under
microgravity must be significantly smaller than in terrestrial
experiments, which lowers the convection intensity in the
droplets processed in an electromagnetic levitator. Both
experiments and calculations [48] have demonstrated that
dendrite growth in Ni±Al droplets slows down in EML under
reduced gravity at supercoolings DT < 100 K. Simulta-
neously, the crystalline structure becomes more homoge-
neous and contains fragmented grains. At a higher super-
cooling, DT > 100 K, the dendrite growth rate in Ni±Al
droplets is much higher than the convective flow velocity
both under microgravity and terrestrial conditions. There-
fore, the crystal growth rate measured from a recalescence
front passage (see Refs [9, 17, 67] for the method) and the
structure of solidified samples turn out to be similar in
experiments of either type.

The qualitative verification of the theoretical model
described in Section 6.1 is possible by comparing its results
with crystallization kinetics data and the morphology of
growing dendrites in a metal±metalloid Ni2B system [67].
Ni2B crystals are known to hold intermediate position among
crystals grown by a conventional mechanism and having
atomically rough facets and those grown by the tangential
or stepwise mechanism and having atomically smooth facets.
For this reason, modification of growth-controling para-
meters or ambient conditions in the case of Ni2B crystals
may give rise to structures with an atomically rough growth
surface and macroscopically rounded dendritic branches or
to structures with an atomically smooth growth surface and
macroscopically faceted dendritic branches.

Figure 13 presents experimental data on the dendrite
growth rate as a function of supercooling, obtained for
droplets solidified in an electrostatic levitator (dark circles)
and in an electromagnetic levitator (light squares) [92]. These
experiments were designed to estimate the influence of forced
convection on the growth rate and morphological changes in
the Ni2B crystal shape. Figure 13 shows that dendrite growth

rates measured in both ESLs and EMLs virtually coincide at
both smallest and high supercoolings. This finding corre-
sponds to the limiting cases of decreased influence of
convection: (1) growth rates decrease, tending to zero (as
DT! 0), and (2) dendrite growth rates are several times
higher than the fluid velocity (V4U). However, the growth
rates are significantly different in the intermediate super-
cooling range 304DT4 180 K. As was mentioned in
Section 2, convective flow velocities in ESL-processed
samples are much lower than in analogous droplet samples
treated in EMLs, where flow velocities are comparable to the
crystal growth rates. This accounts for the enhanced growth
rates in EML samples when the principal direction of the
liquid phase convective flow is opposite to the main direction
of crystal growth.

Let us adopt the scheme of dendrite growth in a
convective counter flow, shown in Figs 5 and 8. The basic
equations (66)±(77) of the model, along with crystallographic
and thermophysical parameters of the Ni2B phase (see
Ref. [92]), were utilized to calculate the dendritic growth rate
as a function of supercooling. In addition to this set of
equations, the peculiarities of the kinetic phase diagram
were taken into account, determined by the liquidus slope
and segregation coefficient in the functions of Ni2B crystal
growth rate [92, 93]. The results of calculations are shown in
Fig. 13 by the solid curve for ESL experiments (in the absence
of forced convection, U � 0) and the dashed curve for EML
experiments. For the crystallization calculation of samples
solidified in EML, the forced convection velocity was
assumed to beU � 0:25 m sÿ1 (see papers [65, 67]). Figure 13
demonstrates that the model of dendrite growth under
convection (see Section 6) adequately describes the experi-
mental growth kinetics of the samples processed and crystal-
lized in ESLs and EMLs. This result was achieved by
introducing a forced convective flow into the model. For
example, stability parameter (74) exerting a strong influence
on the growth kinetics in the above supercooling range and
the dendrite growth rate varies from s � � 5:0� 10ÿ5 in EML
to s � � 1:0� 10ÿ4 in ESL, while the flow velocity falls from
U � 0:25 m sÿ1 in EML to practically zero in ESL.

Convection affects not only the growth kinetics but also
the growth form and even the crystal morphology of an Ni2B
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Figure 13. Experimental growth rates V of dendritic Ni2B crystals,

depending on initial supercooling DT (denoted by different symbols) [92].

Measurements were made for different intensities of forced convection: in

an electrostatic levitator without convection (U � 0), and in an electro-

magnetic levitator in a convective flow with velocity U � 0:25 m sÿ1. The
curves correspond to calculations using equations (66)±(77).
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alloy. As shown in Ref. [92], droplike samples crystallized in
ESL have a regular structure with macroscopically rounded
dendrite tips, suggesting atomically rough growing facets. In
contrast, Ni2B alloy samples crystallized in EML have a
single-crystalline facetted structure suggesting atomically
smooth growing facets. Such an Ni2B single crystal has a
skeletal morphology (see Ref. [94]) analogous to the known
morphology of bismuth crystals. The structure of an Ni2B
skeletal crystal is irregular and grows in a convective flow at a
supercooling DT9225 K, i.e., in the DT region to the left of
the dotted vertical line in Fig. 13. At higher supercoolings,
DT0225 K, when the influence of convection decays due to
the high crystal growth rate, skeletal morphology, and
facetted shape are succeeded by a dendritic polycrystal
ensemble (in the DT region to the right of the dotted vertical
line in Fig. 13).

Thus, it has been established that forced convection
increases the growth rate of Ni2B crystals, stabilizes the
growth of atomically smooth facets, and changes the macro-
scopic growth form; specifically, the crystal habitus alters, i.e.,
a skeletal single crystal acquires a dendritic structure as its
growth rate increases. Theoretical predictions based on
calculations by the equations of model (66)±(77) quantita-
tively agree with experimental crystal growth rates with and
without convection (see Fig. 13 and details of calculations in
paper [92]). The applicability of the theory is confirmed by its
agreement with experiment under terrestrial and reduced
gravity conditions in EML and ESL facilities and with the
use of the melt fluxing technique [93]. Further development of
research and independent verification of the adequacy of the
above models for the available experimental data on the
changes of growing crystal morphology should be focused
on numerical simulations of solidification, taking account of
the anisotropic properties of moving liquid±crystal interfaces
and convective flows.

8. Conclusion

The theory considered in this review and the relevant
experimental data provide a basis for the formulation of an
approach to the problem of dendritic crystal growth under
liquid phase convection. The analytical solution to the
problem of the selection of the stable dendritic tip growth
regime in a binary system under forced convective flow of
fluid is proposed.

An analysis of the stable regime yields the criterion for
dendritic tip growth in a binary system, taking into considera-
tion convection and the anisotropy of surface tension at the
crystal±melt interface. The stable growth criterion can be
extended to the arbitrary Pecl�et numbers Pg [87] and to the
description of dendritic crystal growth on the surface of
Earth's solid core adjoining the liquid one [89].

The review presents, with reference to the dendritic tip
growth criterion, the model for qualitative analysis and
quantitative computation of the influence of a fluid flow on
the parameters of dendrite growth [see expressions (66)±(77)].
The model describes crystal growth in a viscous and weakly
viscous liquids, which makes it applicable to real melts and
solutions. In particular, it shows that the influence of
convection on the dendrite growth rate increases with
decreasing viscosity over a wide supercooling range (see
Fig. 9).

The model of dendritic crystal growth includes the
following limiting cases:

Ð equations for dendrite growth in an ideal liquid, i.e., at
zero viscosity, n! 0 (corresponding to the solutions from
Ref. [31]);

Ð equations for dendrite growth in a one-component
supercooled system in the absence of the second component
concentration, i.e., atC1 � 0 (corresponding to the solutions
from Ref. [32]);

Ð equations for dendrite growth in a stagnant binary
system, i.e., at U � 0 (corresponding to the solutions from
Ref. [33]).

The special limiting case of the model concerns the
calculation of the `concentration' dendrite (i.e., `chemical' or
`solutal' crystal) growing in a binary, i.e., composed of two
chemical components, system at constant temperature. The
theory in question is generalized to criterion (65) determining
the stable growth of dendritic tips in a chemically multi-
component system under convection at an arbitrary growth
Pecl�et number and anisotropic surface tension at the inter-
face.

The review leads us to recognize that the theory of
dendrite growth under forced convection can be applied to

Ð verify the results of numerical simulations of dendrite
growth;

Ð interpret experimental data on crystal growth under
microgravity (when convective flow is very slow) and Earth's
(when the role of convection in crystal growth kinetics
markedly increases) conditions.

Indeed, it is shown by an example of crystal growth from
an Ni2B melt that the above approach makes it possible to
predict the results of crystallization kinetics experiments and
the morphological features of crystal structure, depending on
convective flow intensity.
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