
Abstract. Equations of motion in mechanics and field equa-
tions in field theory are conventionally derived using the least
action principle. This paper presents a nonvariational deriva-
tion of Hamilton's and Lagrange's equations. The derivation
starts by specifying the system energy as a function of general-
ized coordinates and velocities and then introduces generalized
momenta in such a way that the energy remains unchanged
under variations of any degree of freedom. This immediately
leads to Hamilton's equations with an as yet undefined Hamil-
tonian. The explicit dependence of generalized momenta on the
coordinates and velocities is determined by first finding the
Lagrangian from the known energy function. We discuss elec-
trodynamics as an illustrative example. The proposed approach
provides new insight into the nature of canonical momenta and
offers a way to find the Lagrangian from the known energy of
the system.

1. Introduction

Equations of motion for a broad class of mechanical systems
can be derived from variational principles (see, e.g., the
courses [1±5]). On the one hand, it can be argued that this
fact reflects some special properties of the corresponding
differential equations and can be regarded as a more
compact form of writing these equations. On the other
hand, variational principles and related differential equa-
tions form the basis of quantum mechanics. In this
approach, the conservation of energy follows from the

absence of explicit dependence of the Lagrangian function
on time. Below we discuss an alternative approach. Relying
on the energy conservation law, we introduce the generalized
momenta and then find the Lagrangian function and explicit
expressions for momenta in terms of velocities and coordi-
nates.

2. Energy conservation and Hamilton's equations

Let E�q; v� be the system energy that depends on the
generalized coordinates q i, i � 1; . . . ;N, and generalized
velocities v i � dq i=dt. The state of the system is represented
by a point with coordinates �q; v� in a 2N-dimensional space.
The conservation of energy along the trajectory can bewritten
as

0 � dE�q; v� �
XN
i�1

�
qE
qq i

dq i � qE
qv i

dv i
�
: �1�

The sum in the right-hand side is equal to zero, but each of its
contributing terms differs from zero in general. In order to
provide a detailed energy conservation, i.e., the conservation
under independent changes in each degree of freedom, we
replace velocities by different variables pi such that
E�q; v� � H�q; p� and

0 � qH
qq1

dq1 � qH
qp1

dp1 � qH
qq 2

dq 2 � qH
qp2

dp2 � . . .

� qH
qqN

dqN � qH
qpN

dpN : �2�

If the system is composed of independent (noninteracting)
parts, the energy of each of them is conserved. It can therefore
be said that we have defined the 2N-dimensional space �q; p�
as the space in which the degrees of freedom are `most
independent'. Equations (2) can be rewritten as N propor-
tions:

dq1

qH=qp1
� ÿ dp1

qH=qq1
� dt1; . . . ;

dqN

qH=qpN
� ÿ dpN

qH=qqN
� dtN :

�3�
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Equations (2) and (3) describe N independent displacements
dq i. Because dq i � v i dt in motion, we can set v i � qH=qpi in
order to make all the terms in proportions (3) equal, i.e., to
obtain dt1 � . . . � dtN � dt. In this way, we arrive at
Hamilton's equations,

dq i

dt
� qH

qpi
;

dpi
dt
� ÿ qH

qq i
: �4�

We note that in writing Eqns (2), we assumed the existence of
as yet undefined variables pi and a functionH satisfying these
equations and the conditions v i � qH=qpi. In other words, we
seek differential equations (equations of motion) in form (4)
that would satisfy the energy conservation law (1). As is
shown below, the sought equations do exist, but there is a
wider class of equations that preserve energy.

Using a more formal line of reasoning, in order to obtain
energy conservation in the new variables X � �q1; p1; . . . ;
qN; pN�, 0 � dH�X �=dt � �qH=qXa�dXa=dt (a � 1; . . . ; 2N;
here and below, summation over repeated indices is assumed),
it suffices to require that dXa=dt � Jab qH=qXb for any skew-
symmetric matrix Jab. In matrix form, these 2N equalities can
be written as _X � JHH. Any real-valued skew-symmetric
matrix can be reduced by an orthogonal transformation to a
block-diagonal form with N diagonal blocks,

0 mk
ÿmk 0

� �
;

where �imk are the eigenvalues of the matrix [6]. By selecting
scaling factors at the variables p, all the eigenvalues can be
made equal to�i, and the matrix J can be transformed into a
unit symplectic matrix withN unit symplectic 2� 2 blocks on
the diagonal:

J � 0 1
ÿ1 0

� �
; . . . ;

0 1
ÿ1 0

� �� �
: �5�

We thus introduce the variables p in terms of which, as follows
from quasidiagonal form (5) of the matrix J, the degrees of
freedom are `maximally independent' and a symplectic
structure arises (hence, the Poisson brackets). We note that
the appearance of such a mathematically rich system in phase
space is, at least partially, a consequence of our selection of
very convenient, but to a certain degree artificial variables,
the generalized momenta.

Equation (3) also leads to an alternative explanation of
the derivation of Hamilton's equations (4). Let each degree
of freedom depend on its time ti. We require the conserva-
tion of H�q1�t1�; p1�t1�; . . . ; qN�tN�; pN�tN�� under indepen-
dent changes of each ti: dH=dti � 0. After this step, we carry
out the `synchronization' t1� . . . � tN� t. We recall that in
the relativity theory, a clock at each point in three-dimen-
sional space is considered; the clock synchronization can be
carried out in different ways (in particular, depending on the
reference system used). For this reason, for a system with
spatially separated parts, such an explanation acquires a
simple sense. It also clarifies the statement on `maximally
independent' degrees of freedom.

3. Finding momenta
and the Lagrangian function

Nowwe need to find explicit expressions for themomenta p in
terms of velocities v. Because v i � qH=qpi, according to
Donkin's theorem (see, e.g., [2]) there exists a function of

velocities L�q; v� � piv
i ÿH�p; q� that is dual to the Hamilto-

nian function, with pi � qL=qv i. Using the last expression, we
can obtain a partial differential equation for the Lagrange
function L,

v i
qL
qv i
� L� E�q; v� : �6�

In courses of analytic mechanics (see, e.g., [5]), Eqn (6) is used
to determine the energy E given the Lagrangian function L.
Here, we have to find L by solving partial differential
equation (6). We also note that although the Legendre
transformation has been used to derive Eqn (6), this equation
on its own does not fall into this class, because it relates two
functions of the same variables, the velocities.

The general solution of Eqn (6) is the sum of a particular
solution L1 and the complete solution of the corresponding
homogeneous equation,

L � L1�q; v� � ai�q�v i : �7�

The second term in the right-hand side of Eqn (7), containing
N arbitrary constants ai, describes hyroscopic forces that do
not contribute to the energy E�q; v�. The particular solution
of Eqn (6) can be found using the Taylor series expansion. If

E�q; v� �
X1
n�0

A
�n�
ik...l v

iv k . . . v l ; �8�

then

L1�v� � ÿA�0� �
X1
n�2

1

nÿ 1
A
�n�
ik...l v

iv k . . . v l �

� ÿE�q; 0� �
�1
1

�
E

�
q;
v

x

�
ÿ E�q; 0�

�
dx : �9�

Solution (9) exists only for A
�1�
i � 0. If series (8) is terminated

after n � 2, the energy E � A�0� � A
�2�
ik v

iv k � U�q� � T�q; v�
is the sum of potential U and kinetic T energies and Eqn (9)
leads to the usual formulaL1 � TÿU. It is easy to verify that
for a free relativistic particle, Eqn (9) also gives the correct
answer.

Using Eqns (7) and (9), we can determine the generalized
momenta

pi � ai �
�1
1

q
qv i

E

�
v

x

�
dx �10�

and the Hamiltonian function H � E�q; v�p��. The second
part of Hamilton's equations (4) can be transformed into the
Lagrange equations. From Eqn (7), we find an explicit
expression for the forces related to a `covector field' ai [2],

d

dt

qL1

qv i
� qL1

qq i
� v j

�
qaj
qq i
ÿ qai
qq j

�
: �11�

We see from Eqn (11) that only the nonintegrable (vortex)
part of ai contributes to the forces. Moreover, these addi-
tional forces do not change the system energy.

It is worth mentioning that instead of the energy E�q; v�,
we can use its arbitrary function F�E�q; v�� in the equations
above. Then, with the help of Eqns (7) and (9), we can find
other Lagrangian functions. A simple example is E �
A�0� � A

�2�
ik v

iv k � U�q� � T�q; v� and F�E� � E 2. In this
case, Eqn (9) gives L1 � T 2=3� 2UTÿU 2.
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Thus, from the constancy of the known functionE�q; v� of
generalized coordinates and velocities, we can derive Lagran-
ge's andHamilton's equations (up to a certain nonuniqueness
related to the existence of gyroscopic forces). This derivation
relies on the assumption of detailed energy conservation,
which is expressed by Eqns (2)±(4). If we use only the energy
conservation law, then, having determined the Lagrangian
function as a solution of Eqn (6), it is easy to obtain the
generalization of Lagrange's equations,

d

dt

qL
qv i
ÿ qL
qq i
� Gi j�q; v; _v�v j ; �11a�

where Gi j � ÿGi j is an arbitrary antisymmetric tensor. In the
special case in (11), it can be reduced to zero by adding the
term ai�q�v i linear in velocities to the Lagrangian function, in
agreement with formula (7).

4. Classical electrodynamics

Themethod described in Section 3 can be applied to a field. In
the Coulomb gauge �divA � 0�, the energy of charged
particles and an electromagnetic field can be written as [7, 8]

E � 1

8p

�����
1

c

qA
qt

�2

� �rotA�2
�
d3r

�
X
a

mac
2��������������������

1ÿ v 2a =c
2

p �
X
a<b

QaQb

jra ÿ rbj ; �12�

where A is the vector potential, ma, Qa, ra, and va are
respectively the mass, charge, coordinate, and velocity of a
particle with number a, and c is the speed of light. For the
field, the number of a degree of freedom i is replaced by the
coordinate r of the point of observations. For this reason, the
derivatives with respect to A and qA=qt must be variational.
With the help of Eqns (7), (9), and (12), we obtain

L � 1

8p

�����
1

c

qA
qt

�2

ÿ �rotA�2
�
d3r ÿ

X
a

mac
2

�������������
1ÿ v 2a

c 2

r
ÿ
X
a<b

QaQb

jra ÿ rbj �
X
a

aava �
���

a
qA
qt

d3r : �13�

Then

pi�r; t� � dL
d�qAi=qt� �

1

4pc 2
qAi

qt
� ai

ÿfAg; frag; r� ; �14�

where i � 1; 2; 3, and

pa�t� �
qL
qva
� mava��������������������

1ÿ v 2a =c
2

p � aa
ÿfAg; frbg� : �15�

The braces in Eqn (14) point to the fact that the as yet
undefined vector field a and vectors aa may depend on the
vector potential at all points of three-dimensional space
and on the coordinates of all particles (i.e., they are
functionals of A and functions of coordinates of all
particles). It can be readily seen that for a � aa � 0,
Lagrangian function (13) leads to equations with the
transverse field component not coupled to the particles. It
is therefore natural to select appropriate a in order to
couple them. Namely, the vector field a should depend on
the particle coordinates ra, and the vectors aa should
depend on the vector potential A. The simplest choice for
a is the longitudinal electric field with some coefficient ÿk:

a � k gradj, j �Pa ja �
P

a Qa=jrÿ raj. The simplest
choice for aa is the vector potential at the point where the
particle is located, aa � kaA�ra; t�. Under these assumptions,
expression (13) leads to Lagrange's equations

1

4pc 2
q2Ai

qt 2
ÿ k

X
a

va jqjqija �
1

4p
DAi �

X
a

kavaid�rÿ ra� ;
�16�

d

dt

mava��������������������
1ÿ v 2a =c

2
p � ka

�
qA
qt
ÿ va � rotA

�
� Qa

X
b6�a

Qb�ra ÿ rb�
jra ÿ rbj3

:

�17�

In order to satisfy the Coulomb gauge condition, the current
in Eqn (16) should be divergence-free,

qi
X
a

ÿ
kavaid�rÿ ra� � kva jqjqija

� � 0 : �18�

Hence, ka=k � 4pQa. For 1=k � 4pc, Eqns (16) and (17) take
their usual form:

1

c 2
q2A
qt 2
ÿ DA � 4p

c

X
a

Qavad�rÿ ra� ÿ 1

c
grad

qj
qt

; �19�

d

dt

mava�������������������
1ÿv 2a =c 2

p � Qa

�X
b6�a

Qb�raÿ rb�
jra ÿ rbj3

ÿ 1

c

qA
qt

�
�Qa

c
va�rotA :

�20�
Such a choice of the constant k cannot be substantiated in the
framework of this approach. The reason is the difference in
the description of transverse and longitudinal components of
the electromagnetic field. The former is described by the
respective degrees of freedom, and the latter is not. The
coupling between the transverse and longitudinal fields
cannot be established until we require the equations to be
relativistically invariant.

5. Conclusions

Hamilton's equations are equivalent to the Hamilton±Jacobi
partial differential equations [9]

qS
qt
�H

�
q;

qS
qq

�
� 0 ; �21�

H

�
q;

qW
qq

�
� E0 ; �22�

for S �Wÿ E0t, since Hamilton's equations describe char-
acteristic bands of the Hamilton±Jacobi equations. Addition-
ally, they are equivalent to variational principles for the
actions S and W. The variational principles show that W
and S have the geometrical meaning of natural symplectic
parameters (the `length' of curves) of trajectories in phase
space �q; p� and in the extended phase space �q; t; p;ÿE�.

The particular choice of momenta p, via `the principle of
detailed energy conservation' (2), ensures the preservation of
phase volume and phase density (Liouville's theorem). The
latter is used in statistical mechanics.

The definition of generalized momenta in Eqn (2) resem-
bles that of entropy S in the fundamental thermodynamic
equation dE � ÿPdV� TdS (traditional notation is used
for the pressure P, volume V, and temperature T ). The first
term in the right-hand side of the last equation is the work,
and the second describes the motion (of gas molecules) with
the help of the measurable parameter T � qE=qS [instead of
v i � qH=qpi in Eqn (2)] and the variation of the specially
introduced parameter S (instead of pi).
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To summarize, this article formulates the principle of
detailed energy conservation. It defines the generalized
momenta as special variables that provide `maximum
independence' between the degrees of freedom. Given the
dependence of energy on generalized coordinates and velo-
cities, the Lagrangian function is found with the help of
formulas (7) and (9). In turn, differentiating it with respect to
velocities gives generalized momenta. Their substitution into
the energy gives the Hamiltonian function. The Hamilton±
Jacobi equations and variational principles arise as a
consequence of the equations of motion (Lagrange's and
Hamilton's equations).

The viewpoint proposed here elucidates the meaning of
generalized momenta. These quantities are introduced for
obtaining (Hamilton's) equations with the `most indepen-
dent' degrees of freedom. We note that because the approach
proposed above assumes that the state of the system is
specified by generalized coordinates and related velocities,
the phase space has an even dimension. Dynamical systems
with odd-dimensional spaces require separate consideration.

We answer a naturally arising question as to why classical
equations have to be derived in one more way. Any
mathematical model hinges on some initial assumptions and
notions (axiomatics). Discussing different axiomatics, which
lead to the same results, might be helpful for understanding
the model applicability limits and their possible extension. A
well-known example is the comparison of different axio-
matics in thermodynamics. Mathematical models in physics
rely on experimental results. For this reason, the closer the
notions used in axioms are to quantities dealt with in
experiments, the more `transparent' the model seems. In this
sense, the conservation laws and their further developmentÐ
the principle of detailed energy conservationÐ look at least
no worse than integral variational principles with a physically
obscure and ambiguously defined (and hence nonmeasur-
able) Lagrangian function and generalized momenta. It is
anything but simple to explain why L � TÿU (once again,
using the notion of energy) and P � gmv� �Q=c�A (see,
however, Ref. [8] and a reference therein). Formulas (6)±(9)
allow finding the Lagrangian function (and, based on it, the
generalizedmomenta) from the experimentally known energy
function. Additionally, they help in obtaining the general
form of the equations of motion that preserve energy, the
generalized Lagrangian equations (11a). In any case, it is
enlightening to examine a task from various angles.

The work was supported by the World Class Institute
Program of the National Research Foundation (NRF) of
Korea (NRF grant number WCI 2011-001).
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