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Abstract. A state-of-the-art review is given of research by
computing physics methods on compressible magnetohydro-
dynamic turbulence in space plasmas. The presence of mag-
netic fields and compressibility in this case makes space
plasma turbulence much less amenable to direct numerical
simulations than a neutral incompressible fluid. The large eddy
simulation method is discussed, which was developed as an
alternative to direct modeling and which filters the initial mag-
netohydrodynamic equations and uses the subgrid-scale model-
ing of universal small-scale turbulence. A detailed analysis is
made of both the method itself and different subgrid-scale
parametrizations for compressible magnetohydrodynamic tur-
bulent flows in polytropic and heat-conducting plasmas. The
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application of subgrid-scale modeling to study turbulence in
the local interstellar medium and the scale-invariant spectra of
magnetohydrodynamic turbulence are discussed.

1. Introduction

Compressible magnetohydrodynamic (MHD) turbulence is a
widespread state of space plasma in a variety of astrophysical,
heliophysical, and geophysical processes. For example, MHD
turbulence in accretion disks originates from a magneto-
rotational instability (MRI) [1-3]. Stellar clouds are formed
due to magnetic field effects and gravitation under turbulent
conditions [4—6]. The dynamics of the interstellar and
interplanetary medium are also turbulent in character [7-9].
Most turbulent phenomena in solar physics are described by
MHD equations, including the solar wind, solar corona
expansion, convective zone, photosphere, and solar tacho-
cline [10-14]. Turbulent phenomena are observed in the near-
Earth space both in the solar wind and in different zones of
Earth’s magnetosphere. In particular, properties of space
plasma probed by satellites in the geomagnetic tail region
can be adequately explained only in the framework of
turbulence theory and models [15-19]. MHD turbulence
plays an important role in originating the dynamo processes
and space magnetic field generation [20-24]. Turbulent flows
in the magnetic field are also widespread in applied fields.
Engineering applications include the possibility of controling
the boundary layer and a flow resistance decrease [25, 26], as
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well as MHD flows in channels [27] in the processes of steel
casting and in tubes for thermonuclear reactor cooling [28].

The turbulence originates from an instability of the initial
state of space plasmas. The instability enhances the ampli-
tude of oscillations in electrically conducting plasma to the
nonlinear level, where complex processes of interaction and
mutual transformation of the oscillations become signifi-
cant. At large flow velocities, i.e., at large Reynolds numbers
Re (Re characterizes the relation between the inertial and
viscous forces), the flow becomes unstable and fragments
into large-scale eddies. Nonlinear interaction between the
eddies leads to their permanent splitting down to small scales
at which viscous damping due to molecular viscosity comes
into prominence. The scale fragmentation of eddies corre-
sponds to turbulent motion energy transfer from the long-
wave to short-wave parts of the spectrum. As a result,
irregular eddies of different sizes emerge in the flow, and
the flow velocity at each point changes chaotically. The most
important feature of the space turbulence is the presence of
random magnetic fields along with random velocity varia-
tions. In such flows, the nonlinearity, viscosity, diffusion,
anisotropy, and compressibility effects play a significant
part. The turbulence is three-dimensional; therefore, the
numerical modeling of the compressible MHD turbulence
is an important tool for the study of charged fluid in such
MHD flows. In addition, space plasma, as a rule, cannot be
directly probed in experiments.

Developing efficient numerical methods and enhancing
modern computational capacity, which allow MHD simula-
tions of compressible turbulent flows with realistic similarity
numbers, are important tasks for computational physics.
These simulations are extremely important for understand-
ing the complicated physics, especially when the object
studied is beyond direct experimental reach. Notice that
MHD problems are differed from those of neutral fluid
dynamics. MHD equations contain two fields that introduce
many more degrees of freedom into the system’s dynamics;
for example, both direct and inverse spectral cascades are
possible [29]. Additionally, self-organization processes
emerge in MHD turbulence that have no analogs in usual
hydrodynamics, namely, cross-helicity conservation [30],
which leads to the appearance of a high correlation between
the magnetic field and the flow velocity, whereas conservation
of the magnetic helicity may result in the formation of force-
free magnetic configurations [31].

Direct numerical simulations (DNSs) provide the most
complete information on turbulent flows in a fluid [32]. DNS
approach assumes a numerical solution to the complete
system of nonstationary MHD equations. This approach
resolves all scales of the charged fluid motion. DNSs do not
require a special closure of MHD equations. Direct numerical
calculations of MHD turbulence encounter fundamental
difficulties caused by large hydrodynamic and magnetic
Reynolds numbers, which are typical of space plasmas. In
this case, the number of degrees of freedom of the turbulent
motion is high, and, consequently, the minimal number of
nodes on the numerical grid must be restrictively large for
direct numerical simulations of realistic turbulent flows with
high Reynolds numbers.

The statistical approach to studying turbulent flows [33]
based on averaging the equations of motion (RANS—
Reynolds averaged Navier—Stokes) is an alternative to direct
numerical simulations. In the RANS method, all parameters
of the fluid motion are resolved into the mean and turbulent
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Figure 1. Comparison of DNS, RANS, and LES calculated results.

components. Reynolds stresses therewith arise in the equa-
tions of motion that need to be closed. Thus, all the
turbulence is modeled (for example, in the k—¢ model [34])
and not calculated, as in the DNS method. The RANS
method is commonly applied for theoretical studies of
averaged flows [35]. This approach does not contain informa-
tion about the turbulence dynamics.

The large eddy simulation (LES) method describes the
approximate turbulence dynamics, in which the large-scale
part of the turbulent flow is directly calculated, while the
small-scale part of the flow is modeled, i.e., LES is the
intermediate approach for turbulence studies between DNS
and RANS. This is illustrated in Fig. 1 which shows the
differences between the three methods of calculations used in
turbulence studies.

The LES method invokes a filtering operation to resolve
the turbulent motion characteristic into the large-scale and
small-scale parts, which is related to isotropy, homogeneity,
and the universality of small scales of the turbulent motion.
Small-scale motions are eliminated from the original system
of equations by the filtering procedure, and later their
influence on the motion is simulated using subgrid-scale
(SGS) model (or, in other words, SFS—subfilter scale),
expressed through the filtered parameters of turbulent flows.
The large-scale turbulent flow is calculated by solving filtered
nonstationary MHD equations. LES is commonly applied to
model flows with high Reynolds numbers, since this method
assumes that the energy is transferred from large scales to
small scales only inside the inertial interval. As the number of
degrees of freedom in LES is lower than in DNS, the former
requires much less computational capacity than DNS.

Originally, the large eddy simulation method was devel-
oped to model flows of a neutral fluid [36—41] in meteorology
and oceanology. Most of the simulations were conducted for
incompressible fluids. For compressible media, however, LES
is applied much more rarely due to the increased complexity
of the problem, which requires solving an energy equation. In
the filtered energy equation, several subgrid-scale additional
terms simultaneously emerge that need to be parametrized.
LES was first developed and used for a compressible neutral
fluid by Speziale et al. [42]. In the early applications of LES to
compressible flows, transport equations for the internal
energy per unit mass [43, 44], pressure [45], or specific
enthalpy [42, 46] were considered. Papers [47, 48] proposed
using the total energy equation to close the system of
hydrodynamic equations for a neutral compressible fluid,
with some of the subgrid-scale terms being identical to those
in the internal energy equation or enthalpy equation. Detailed



May 2014

Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas 423

information on different subgrid-scale models of the large
eddy simulation method for a compressible fluid can be found
in Ref. [49]. The authors of this paper consider and test
parametrizations for various forms of the energy equation:
the internal energy, enthalpy, and total energy.

In electrically conducting plasma flows, the LES method
has been applied and explored in extremely rare occasions. All
previous studies of this topic mainly used the incompressible
fluid approximation and treated engineering applications.
Papers [50-55] invoked LES to study incompressible MHD
turbulence, while paper [56] considered the effect of a
magnetic field in the LES method on the flow of an
incompressible electrically conducting fluid at low magnetic
Reynolds numbers without use of the magnetic induction
equation. In all the papers mentioned above, the system of
equations for incompressible MHD turbulence was analyzed
without employment of the energy equation.

Significant progress in studies of three-dimensional
compressible MHD flows was achieved in a series of papers
[57-68]. To close the system of MHD equations, either a
polytropic (or adiabatic) process was assumed, or pressure
was only treated as a passive scalar that provided the MHD
turbulence incompressibility [57, 59-61, 63-68]. However,
many plasma flows cannot be described by an incompres-
sible medium approximation or by equations for compres-
sible fluid in the polytropic approximation, and what is
needed involves considering a heat-conducting fluid with the
aid of the energy equation. The application of LES to a
compressible heat-conducting MHD fluid is significantly
complicated by the need to solve the energy equation in
which terms due to the magnetic field appear. Furthermore,
additional, fundamentally new subgrid-scale terms arise
after the filtration, thus requiring a new theory for their
parametrization [58, 59, 62, 65]. The study of the applic-
ability of the various subgrid-scale models is mainly
performed by comparing the LES and DNS results. As a
rule, the comparison of modeled results is made for
moderate values of the similarity parameters, which can
still be directly calculated; here, the developed parametriza-
tions of the subgrid-scale terms are assumed to correctly
reproduce the turbulent flow for large similarity numbers as
well.

Full nonlinear three-dimensional MHD equations includ-
ing dissipation, thermal, diffusion, and compressibility effects
are so complicated that they are amenable only to approx-
imate numerical solution. However, as space MHD flows are
characterized by large Reynolds numbers and Mach numbers
are nonzero, studies of the compressible MHD turbulence are
constrained by computational capacities and have been
carried out in much rarer cases than for incompressible
media. In such cases, therefore, one relies on simplified
models ignoring some effects. For example, in ideal MHD
flow simulations, one usually neglects dissipation and heat
conductivity and assumes infinite plasma electrical conduc-
tivity [69]. Here, the system of MHD equations becomes
hyperbolic and not parabolic, as for the dissipative system of
equations, which facilitates numerical solutions, since it
becomes possible to use the well-developed Godunov
schemes of a different order of accuracy (as a result, the
solution of the three-dimensional problem is reduced to
solving a series of one-dimensional problems; numerical
fluxes in each space direction are calculated from the
corresponding one-dimensional Riemann problem for arbi-
trary discontinuity decay [70]).

Several studies use TVD (total variation diminishing),
ENO/WENO (essentially nonoscillatory, weighted ENO)
calculation schemes and schemes based on the minimal
derivative value principle, etc., to solve the viscous compres-
sible gas equations in the MHD case [71] by adding
numerical viscous flows to the corresponding inviscid
flows. However, this frequently violates the monotonicity
of the difference scheme and can lead to incorrect results;
usually, this approach is commonly applied to inviscid fluids.
When using grids, such methods can also be considered as a
large eddy simulation method with implicit filtering and
numerical viscosity which can play the role of ‘subgrid
closure’. Sometimes, the anelastic approximation [72-74] is
used in MHD simulations, when acoustic wave modes are
assumed to be absent or stationary; however, such an
approximation is mainly applied only for modeling con-
vective zones in the Sun and stars. Frequently, the inter-
stellar and interplanctary media, as well as the solar wind,
are considered by assuming a polytropic (or adiabatic)
relationship between the density and pressure to close the
system of equations; in this case, the temperature of the
process plays a secondary role, and the system of equations
for compressible MHD turbulence is solved without the
energy equation [9, 75-79]. Another simplification consists
in the study of two-dimensional compressible MHD turbu-
lence [80-83]. In papers [80, 81], the initial conditions for the
velocity and magnetic field were taken in the form of a
deterministic, nonrandom distribution (the so-called Ors-
zag-Tang eddy [84, 85]); however, random distributions of
the initial velocities and magnetic fields seem to be more
appropriate for MHD simulations of space plasmas. The
influence of the magnetic Reynolds number on two-dimen-
sional MHD flows for different initial conditions is con-
sidered in more detail in paper [83]. Two-dimensional MHD
turbulence is substantially different from three-dimensional
turbulence, because the mean vorticity in a two-dimensional
flow (ignoring the viscosity) is conserved, whereas the vortex
tubes in a three-dimensional flow are deformed, and the
vorticity is not an invariant of motion. In addition, turbulent
dynamos and the generation of large-scale magnetic fields
are only possible in the presence of three-dimensional MHD
turbulence [86]. Sometimes, the plasma beta-parameter (the
ratio of the plasma pressure to the magnetic field energy) is
assumed in space flow studies so high that the magnetic field
can be neglected; thus, the problem is reduced to the
hydrodynamic one, and the system of equations for a
neutral fluid motion is solved [87-89].

The study of compressible turbulence in the framework of
both neutral fluid dynamics and magnetic hydrodynamics is a
challenging problem, since there is no analytical or approx-
imate theory of such phenomena. However, despite the
significant role of the compressibility in space plasmas, a
variety of observations suggest the Kolmogorov spectrum of
density fluctuations [90, 91]. To interpret these observations,
the last-cited two papers proposed a theory of a ‘nearly
incompressible’ medium that describes density fluctuations
of neutral [92] and magnetic [93] gases in the passive scalar
transfer regime. In paper [88], the analytical theory for a
compressible neutral gas was confirmed by direct numerical
simulations only for the two-dimensional case. In paper [79],
direct numerical modeling demonstrated that in compressible
MHD turbulence there occurs a similar effect of decreasing
the local turbulent Mach number from supersonic to subsonic
values, which corresponds to the transformation of super-
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sonic turbulence fluctuations to subsonic ones. However, the
density and kinetic energy spectra were not obtained in that
paper due to constraints of the direct numerical simulation
method, and their coincidence and the realization of the
passive regime for density in compressible MHD turbulence
were not demonstrated. In spite of this fact, the authors of
Ref. [79] utilized these results in interpreting data of satellite
observations in the solar wind and the local interstellar
medium.

Significant progress in understanding the local interstel-
lar medium turbulence was achieved in papers [64, 94-96].
These papers reported on the density and energy fluctuation
spectra, properties of plasma magnetization, and anisotropy,
which were obtained for the first time from three-dimen-
sional LES computations using MHD equations for com-
pressible plasma.

In the present paper, we discuss the state-of-the-art of
subgrid-scale simulation methods for studying compressible
MHD turbulence of space plasmas; its layout is as follows. In
Section 2, the large eddy simulation method, as applied to
polytropic and heat-conducting plasmas, is formulated,
filtered MHD equations for both cases are derived, and
subgrid-scale tensors to be parametrized are analyzed in
detail. In Section 3, we discuss various subgrid-scale models
proposed for compressible MHD turbulence. We also discuss
the prospects of the proposed models by comparing LES and
DNS results. Applications of LES to some important
problems of space physics, including turbulence in the local
interstellar medium, are considered in Section 4. Section 5 is
concerned with the investigation of scale-invariant spectra of
compressible MHD turbulence in the inertial interval using a
driving force. We discuss in detail different representations of
the driving force to obtain the clearly determined inertial
turbulence interval and analyze the advantages of the
proposed linear driving force representation in studies of
compressible MHD turbulence. In conclusion, we formulate
the main results of the discussed line of investigation into
computational physics of turbulent flows.

2. Large eddy simulation method
for magnetohydrodynamic plasma flows

2.1 Magnetohydrodynamic equations

for compressible plasma

The MHD equations were first considered by H Alfvén, who
combined the Maxwell equations with equations of ordinary
fluid dynamics. The governing system of equations for a
compressible electrically conducting fluid is written out as
follows:

continuity equation

O Opu; _

=0: 1
ot axj ’ ( )

momentum equation

Opu; 0 1 .
TR o (puitty + pdij — 01j) — — &ijic JiBrx = 0; (2)

energy equation

OpE 0
PR Y (0E g — o] —Ei—
a[ + ax/ [(p +p) u] + QJ 6’]”’] J 07 (3)

and magnetic induction equation

0B; ) o’B;

a = &jjk an Sklm(Blum) +7n W ) (4)
0B;

. =0 (5)

Here, the following notations are utilized: p is the density; p is
the pressure; u; is the velocity component in the x; direction;
0ij = 2uS;i; — (2/3)1uSkkdij + {Skkd;; is the viscous stress
tensor; S;; = (Ou;/0x; + Ou;/0x;)/2 is the strain rate tensor; u
is the dynamical (molecular) viscosity coefficient; { is the
volume viscosity coefficient; p = pRT is the equation of state
for an ideal gas, where R is the molar gas constant;
g; = —y(0T/0x;) is the dissipation due to heat conduction
(the Fourier law), where i is the heat conductivity coefficient;
E = ¢+ uu;/2 is the energy, including the internal energy
¢ = C,T and kinetic energy w;u;/2, where C, is the heat
capacity at constant volume; 5 = ¢?/4ncs is the magnetic
diffusion coefficient; ¢ is the electric conductivity;
F = (1/c)&iji jiBx is the Lorentz force; B; is the magnetic
induction in the x; direction; j is the electric current density; &
is the electric field strength; 6;; is the Kronecker symbol, and
&ij 1s the Levi-Civita tensor.

Let us transform the system of MHD equations (1)—(5)
using the Maxwell equations, and reduce it to the dimension-
less form. The MHD approximation assumes that the electric
field energy is much smaller than the magnetic field energy. In
this case, all electromagnetic characteristics can be expressed
through the magnetic field quantities. As a result, it is possible
to consider and study only the interaction between the
magnetic and hydrodynamic fields. To render equations
dimensionless, the standard procedure of normalization to
the characteristic values is used: uy — velocity, p,— density,
Ly/Uy—time, By—magnetic field, po— pressure, p,—
dynamic viscosity, 1, — magnetic diffusion, i, —heat con-
ductivity, and Ly—length scale. Then it follows:

e (©
agtui +a%/ (pu;u,- + pdij — é oi; +% 5""‘_]\/%12 B_/'Bi> 0,
(7)
A g ) 2232 =9, )
Tl ©)
% (PE—F%) +6ix,- <(pE+P)gj
" WE(V—I) o Rle it = ML? Bsz‘ui)
oy lreowi 25 50)] =© 10

In equations (6)—(10), the following dimensionless similarity
parameters are used [29]: Re = pyuoLo/u, is the hydrody-
namic Reynolds number, Rey, = 1L/, is the magnetic
Reynolds number, Mg = /¢ is the (acoustic) Mach num-
ber, and where ¢, is the speed of sound defined as
¢s = \/7P0/pg» Ma = tip/uy is the magnetic (or Alfvén) Mach
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number, where u, = By/ /4np, is the Alfvén velocity,
Pr = Cppy/ ¢y is the Prandtl number, with C, being the heat
capacity at constant pressure.

2.2 Filtering of magnetic hydrodynamic equations
in the large eddy simulation method
In the LES method, the original equations undergo filtering,
as proposed in paper [97]. Each physical quantity is resolved
into large-scale (filtered) and small-scale components. Then,
the large-scale effects are directly computed, while small-scale
effects are modeled. In other words, the information on
turbulent structures with sizes smaller than the filter width is
lost during the filtering operation, so, to close the filtered
system of equations, various subgrid-scale models are
utilized. To arrive at filtered equations of motion, filtering
operators can be introduced in explicit and implicit forms. In
the implicit approach, the filtering operator is represented by
difference discretization, and in this case the filtering scales
are smaller than the grid step [98]. Shortcomings of implicit
filtering are related to difficulties in comparing the results
obtained with direct numerical simulations and experimental
data. Additionally, implicit filtering does not allow a control
over the high-frequency spectral range, which may lead to
numerical errors. Therefore, explicit filtering is preferable in
the LES method.

For explicit filtering of MHD equations in the LES
method one can invoke a low-pass filter ¢ satisfying the
normalization condition

b
| ety —s.apa5 1. (1)

a

Here, &(x; — X;, 4,) is the filter, and 4 is the filter band. Then,
for example, the filtered velocity is expressed as

b
i = | ) e - 5.4 a5

a

(12)

where a =x; — 4;/2, b=x;+ 4;/2, 4;=(4,,4,,4.), and
Xj = (x,,z) are the axes of a Cartesian coordinate system.

Other flow characteristics are determined in a similar way.

Let us represent all variables of the problem as the sum
of filtered (corresponding to large scales) and unfiltered
(corresponding to small scales) parts: u=ua+u’, B=
B+B'.p=p+p,etc

Notice that, unlike statistical Reynolds averaging, this
resolution possesses more complicated properties:

T#7,

7' #0, (13)
of _of

dxp  Oxy

of _af

A o’

where [ is one of the characteristics of motion. The first two
properties in formulas (13) are fundamentally different from
those in the statistical approach [99].

To simplify equations describing turbulent MHD vari-
able-density flows, it is convenient to utilize Favre filtering
[100] (or density-weighted filter) in order to avoid the
appearance of additional SGS terms. Density-weighted

filtering is applied to all characteristics of the charged fluid
flow but pressure and the magnetic field, and is defined as

i
f= 5 (14)

To specify filtering operation, two symbols are used in
formula (14): the bar corresponds to the usual filtering, and
the tilde stands for the density-weighted filtering.
Thus, the Favre-filtered velocity takes the form
_ b AN
o P _ S e — %, 4;) A%
T 5 T b . , 7 ,
P p(%) E(xy = X5, 4)) dX;

(15)

Favre-averaged quantities can also be represented as a
sum; for example, the velocity is written downasu = &+ u”.
Here, the double prime is used to denote the small-scale part
of the Favre-filtered quantity.

The properties of the density-weighted filtering can then
be expressed as follows:

pu” #0,
i,
" £0.

(16)

It is important to note that there is no simple relationship
between the Favre-filtered and conventionally filtered vari-
ables. To obtain u from #, the density pulsations must be
known.

The magnetic field, like density and pressure, is filtered
using a conventional means in order not to complicate
calculations, since MHD equations do not contain products
of density and magnetic field induction.

Traditionally, a cylinder (box) filter, a Gaussian filter and
a spectral (Fourier) filter are utilized in the LES method [36].

The cylinder filter assumes the form

1. .4
AT s lf |X — X| < 5 s
&(x, %) = i (17)
g4
0, if |x—xX > 5
the Gaussian filter takes the form
’ 6 1/2 6|x . x‘Z 1/2
<(x, %) = (W) exp (—T) ; (18)
and the Fourier filter has the form
in [ko(x — X
E(x, X) = Smk[c(x(i)ix)x)] , where k. :AE_ . (19)

The Gaussian filter is smooth in both physical and
spectral spaces. The cylinder filter represents essentially a
step in the physical space, while the Fourier filter represents a
step in the spectral space. The Fourier filter is usually applied
to discretize the original fluid equations of motion using the
spectral approach.

In real physical problems, three-dimensional compressi-
ble turbulent flows are frequently considered, so it is
necessary to apply a three-dimensional filter (multidimen-
sional in the general case). The multidimensional filter can be
designed by two different means. In the first case, it can be
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represented as a linear combination of one-dimensional
filters, i.e., any physical parameter is filtered independently
along each direction [101]:

n_ln i
é—;;é,

where &' is the one-dimensional filter in the i direction, and n
is the dimensionality of the space considered. The linear
combination signifies the simultaneous application of all
one-dimensional filters along each spatial direction. The
second means assumes consecutive multiplication of one-
dimensional filters, which can be expressed as

¢ =1J¢"
i=1

Such a definition of the multidimensional filter £”, unlike the
first case, represents not simultaneous, but consecutive
application of one-dimensional filters. The accuracy of the
multidimensional filters constructed by two different meth-
ods is studied in depth and tested in paper [101], where the
consecutive multiplication of filters was shown to produce
more accurate results than the linear combination of one-
dimensional filters. Therefore, we used formula (21) in our
papers [57-68, 94-96] for executing three-dimensional filter-
ing in simulations of compressible MHD flows.

(20)

(21

2.3 Filtered equations of magnetic hydrodynamics

for a polytropic plasma

Polytropic processes are assumed in many problems of space
physics. Such a model is effectively applied to study and
simulate compressible turbulence in neutral [102] and
magnetized [82] fluids, solar wind turbulence [75, 76],
interstellar gas turbulence [9], and other problems of astro-
physical turbulence [77, 103]. This allows the polytropic
relation p = p” between the pressure and density, where y is
the polytrope index, to be used instead of the cumbersome
and complicated energy conservation equation to close the
system of equations. In this case, the system of compressible
MHD equations is reduced to a simpler form. After
performing the density-weighted filtering operation, we can
write down the system of MHD equations in the following
form [60, 63]:

filtered continuity equation

9  opu; _
ot ax, N

0; (22)

filtered momentum equation
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and filtered magnetic induction equation
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since nB; — 1B; = 0 and G;; — 6;; = 0, where
2

Gij = 20Sy — 3 [Skdi; + CSidij

.
0ij = 2uSij — 3 WSkk0ij + Sk -

In numerical computations, one usually neglects the last term
by assuming the volume viscosity coefficient { to be equal to
zero.

On the right-hand side of equations (23), (24), the terms
denote the influence of subgrid-scale terms on the filtered
part:

(26)

(27)

A significant simplification should be noted when using
the Favre type filtering. Indeed, the conventional filtering
results in the following form of the continuity and momentum
equations, respectively:

o  opw D

— —— (pw — iy 28
ot aw, o PO P (28)
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Itis seen that additional terms in equations (28) and (29) arise
due to making allowance for the mass transfer, in comparison
with the Favre-filtered equations, which is the principal
advantage of the density-weighted filtering for compressible
fluids.

Let us consider in more detail the above-introduced
equations (22)—(24). As the small-scale velocity (the same is
also true for other characteristics of motion of an electrically
charged fluid) u” = u — @ is unknown, it must be estimated
using the large-scale velocity obtained by the filtering
procedure. In principle, there is no functional dependence
between the small-scale (1”) and large-scale (i) velocities, so
any estimate of u” will be plagued with errors. As a rule, to
assess this error, the DNS results are used, and here the
analysis is performed for relatively low Reynolds numbers
because of computational restrictions.

The influence of the subgrid-scale terms that appear on
the right-hand side of MHD equations (23), (24) on the
filtered part of the equations is described by the SGS terms.
Taking into account compressibility leads to a complication
of the subgrid-scale stress tensor 7/ in the Navier—Stokes
equation, the tensor related to the appearance of the filtered
density, in comparison with an incompressible flow. How-
ever, the magnetic tensor of SGS stresses, ‘L',-b]-, arising in the
magnetic induction equation, keeps the form as for an
incompressible MHD flow. Nevertheless, these subgrid-scale
closures should be extended over the compressible MHD
turbulence. In Section 3, we will conserve the traditional
names for subgrid-scale closures, bearing in mind that these
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subgrid-scale models are extended and generalized to the case
of compressible turbulent MHD flows.

Let us write out nonlinear terms in the momentum
conservation equation in the form

puji; = p(i; + u,f’m + u,-’) = p(u,u] —|— U; u s uju "+ u”u”)
(30)

+ BiB] + B;B] + B/B] .
(31)

BjB,‘ = (Bi—I—BI-/)(Bj—I—Bj) EB

Because the nonlinear terms must be expressed through
large-scale variables, we write them as

O e = 2 pinity + 2 (pigts — piuy)
axjp/z—axjpt/ a/jp,/t pPUU;
0 0
—~l_~_ tu’ 32
ajP““./"‘axj Ji ( )
0 0 - = 0 _
= BB, =~ BB+~ (BB — BB
axj J ax/ .I+axj( J l)
0 - = 0
=_— BiB; b 33
axj I+axj i) ( )

where ¢ and tlb are the hydrodynamic and magnetic parts,
respectlvely, of the turbulent stress tensor t; on the right-
hand side of equation (23).

In a similar way, the tensor rl.bf arises in the filtered
magnetic induction equation (24), which has the form

o (u,-B,

i i;B;) — (Bu; — Bjiij) . (34)

Any subgrid-scale tensor can be resolved into three parts [97];
for example, for the tensor 7;; we have

. 1 I
vy = pluit; — i) = = (BiB; — B;B))
a

I
I
—~

Leonard term

1 = _
+p(”l“ + dju N)_W“?B BB} )
Cross term

1
+p(u”u”) —— (B/B]) = Lij+ Cij+ Ryj. (35)

J M2

Reynolds—Maxwell term

The Leonard term L;; on the right-hand side of equation
(35)is responsible for the energy redistribution between large-
scale and small-scale values of both velocity and the magnetic
field [36]. The cross term C;; includes both the direct energy
transfer cascade and the energy backscatter (i.e., from small
to large scales, for example, when several small eddies merge
into one large eddy). Finally, the Reynolds—Maxwell term R;;
accounts for the energy dissipation (outscatter) at small scales
(corresponding to large wave numbers). Generally speaking,
there are two approaches in LES simulations of subgrid-scale
stresses. The first relies on the idea of similarity of scales,
where the first Leonard term L;; dominates, i.e., the SGS
tensors are proportional to the Leonard stress tensor:
7;; < L;;. The second approach is based on the idea of eddy

viscosity, which is focused on the Reynolds—-Maxwell term R;;
and assumes the proportionality: 7;; oc R;;.

Thus, a filtered system of MHD equations comprise
unknown turbulent tensors 7;; and rfj In order to determine
them, it is necessary to utlhze the special turbulent closures
(parametrizations) based on large-scale values of quantities
characterizing a turbulent MHD flow. It is the subgrid-scale
SGS models that link the tensors 7, and 7; b with the quantities
i; and B;. The main purpose of any subgrld scale parame-
trization in the LES method consists in providing an adequate
description of the energy change for a large-scale motion;
here, essentially, the Richardson turbulent cascade is simu-
lated.

2.4 Filtered equations of magnetic hydrodynamics

for a heat-conducting plasma

The system of filtered MHD equations describing a heat-
conducting fluid that is used in large eddy simulations to
model three-dimensional compressible turbulence is taken
down in the following form [58, 62]:

Op Opu;
o ox 36
opu; 0O (__._. _ 1 B2 .
ot ax/- (pu,-u_, +p5,, ﬁ oij + 2_1\/13 01/ - _i B_,-Bl>
af;;
Ty (37)
j
B, o . ___ 1 B ot}
7l — (17 Bi _ ~,B _ 1 _ Ji 38
ot ax], (uj u ]) Re,, axlz axj ) ( )

6(734 32)+a ((*E+1’>)~+ 1 i

2 B2, C R S

a\"" oMz ) T\ 7 PrReM(y— 1) ¥
1

0 n B, 0B; 0B,
0x; \Rep, M 0x; Ay

T Re TV 2
0 1 1 1 1
e (————— 0= S+ — Vi——G; ), (39
@xj‘<(*/—1)M§Q]+2 j+M§ M2 ’)’ (39)
0B;
oo 4
0, (40)
where
_ - dT
1=V
Xj

The dimensionless filtered equation of state that is used to
close the system of equations is written down as
Tp

M (41)

ﬁ =

The total energy equation for MHD case has the form
(39), since the following relationships are fulfilled (for clarity,
we write them down in the dimensional form):

P = pRTu; = pRTu; = pRTi; + Rp (T — T,

pEu; = pC,Ti; + Cq,p(uj —uT)

1

+ 5 pilj uxti +

5 P (wjiity, — it i )

N —

1

:ﬁEﬁj+Cvp(uﬁ_ﬂjT)+ P(M]mk—ﬁjM)-

NS}
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In this derivation, the Mayer equation C, — C, = R, which
relates specific heat capacities at constant pressure (C,) and
constant volume (C,) with the molar gas constant R, is also
taken into account. Considering thaty = C,/C,, we can write
down the desired relation as C, = yR/(y — 1).

The influence of small-scale turbulence on the filtered part
of MHD equations is determined through the following SGS
terms on the right-hand side of equations (37)—(39): the
subgrid-scale stress tensor 7/, the subgrid-scale magnetic
stress tensor 1/, » the subgrid-scale heat flux Qj, the subgrid-
scale turbulent diffusion J;, the subgrid-scale magnetic energy
flux V;, and the subgrid-scale interaction energy of the
magnetic stress and velocity G;. These quantities are defined
as

m=Mﬁ%%@—$(B—E®v (42)
a

vy = (wB; — iiB;) — (B — Biy) (43)

0 =p(uwT—&T), (44)

J = ( Uil — u,@) s (45)

V; = (BB, — BiBiiyy) (46)

G; = (uxBiB; — By B)) . (47)

Paper [47] presented a detailed study of the contribution
from nonlinear diffusion terms to the momentum and energy
conservation equations in neutral fluid dynamics, and a priori
tests using DNS data obtained from calculations of a mixed
layer at Mach numbers in the range of 0.2-1.2 were
performed. It was also shown that the diffusion term can be
neglected, i.e., 6;j —6;; =0 and g; — ¢; = 0. In our papers
[57-68, 94-96], we also neglect the diffusion terms related to
the magnetic energy in equation (39). As found in paper [49],
the subgrid-scale diffusion of viscosity, defined as D; =
o;u; — Gijil;, is a small parameter in the total energy
equation, and amounts to only about 5% of the divergence
of the subgrid-scale heat flux O, so in calculations we neglect
this SGS term D; in Eqn (39).

3. Subgrid-scale modeling
of small-scale turbulence

As noted in Section 2, the filtering operation is applied to
exclude small-scale turbulence. The resulting system of
filtered equations turns out to be nonclosed, since it includes
terms describing nonlinear interactions of large eddies with
small-scale turbulence. The parametrization of such interac-
tions is called the subgrid-scale (SGS) model and makes up
the most important ingredient of large eddy simulations. All
subgrid-scale models are subdivided into functional and
structural models [98]. The functional models express the
influence of subgrid scales on large scales. Widespread
parametrizations based on the eddy viscosity belong to
functional models. This influence is usually described by the
energy transfer. The structural models are constructed in such
a way that the subgrid-scale stress tensor is approximated by
the formal replacement of an unknown (small-scale) para-
meter by the known (filtered) quantity. The structural models
include closings based on the scale simildrity idea [98].

First, let us discuss the tensors 7;; and r” To close the
system of equatlons it is necessary to flnd such parametriza-
tions for 7% and 7/, that would relate these tensors with known

ij ij
large-scale values of the flow characteristics. To guarantee the

nonnegativity of subgrid-scale energy, the turbulent subgrid-
scale tensors should satisfy the realizable conditions. The
necessary and sufficient condition of nonnegative energy is
provided by a positive value of the semidefinite form for the
turbulent tensor t;;; therefore, the following relations are
satisfied [47]:

7; =0
7l < V7t
det (z;)) > 0.

for ie{1,2,3},

We assume that the turbulent tensor t/; is connected with
the stram rate tensor and viscosity (the eddy viscosity model),
while r . is connected with dissipation due to resistance (i.e.,
this d1551pat10n is expressed via the generalized Ohm law and
equals 7/ [104], where j is the electric current density) as

follows:

1 . ~ 1 -
Tij 3 Tk = — 2V (S,-,- ~3 Skk5i./> ; (49)
1 _
T - 3 iy = = 20,75 (50)
Here,

- 1 /0w o
Si=3 (a—x_,- * ax,-)

is the large-scale strain rate tensor,

- 1 <6B,- aB,-)

Jij=5\30—

2 axj ax,»
is the large-scale magnetic rotation tensor, and v, and n, are
scalar turbulent functions depending on the spatial coordi-
nates and time.

On the right-hand side of equations (49) and (50),
symmetric terms containing the magnetic strain tensor
Sh = (0B;/0x; + 0B;/0x;)/2 and the eddy tensor J=
(0it;/0x; — Oi;/0x;) /2, respectively, are omitted since their
role is insignificant [53]. It should be noted that the main
goal of the subgrid-scale modeling is not to fully reconstruct
the information lost due to filtering, but to simulate the effect
of small-scale dynamics on the large-scale energy distribution.

Sometimes, the term 7} J;;/3 is neglected by connecting it
with the thermodynamic pressure V(p + (2/3)K0;;) [46],
where K = (711 + 722 + 733)/2 is the subgrid-scale turbulent
kinetic energy. A more general case is considered in papers
[57, 58, 60—65, 67] that takes into account the isotropic term
(the subgrid-scale term in formula (50) is equal to zero, since
Jij vanishes in this case).

The subgrid-scale isotropic term can be found from the
realizability conditions (48). Using these inequalities, it is
possible to write the following relation for the subgrid-scale
stress tensor z;;:

Th +th 13 < Tt + Tt + 1T (51)

Substituting relevant values from formula (49) into this

expression, the isotropic term can be estimated as [105]
1 ~

K> V3 (]S, (52)
where |S¥| = (25‘;1‘.5‘;;.)1/2,

Thus, by assuming different closures and parametrizing

v, we obtain the anisotropic part of the subgrid-scale term in
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Eqn (49), and the isotropic part from Eqn (52). In the next
section, we present some subgrid-scale models for compres-
sible MHD turbulence.

3.1 Smagorinsky model

for compressible MHD turbulence

The Smagorinsky model represents a model of the eddy
viscosity in which the subgrid scales are assumed to be
isotropic and in equilibrium with the large-scale flow [106].
An extended Smagorinsky model for compressible MHD
turbulence has the form [57, 60, 61, 63]

1 o~ 1 -~
‘Cil; — § Tl?kéfj = —2C1ﬁA2|Su| <S,] — g Skkéij) 5 (53)

‘CZ;: —2D1j2|j|j,'j. (54)
Here, j is the large-scale electric current density. The quantity
1, is an analog of the velocity shear that is present in Eqn (53)
for v,, which is replaced here by the shear in the magnetic field
(54) (which is the electric current density [104]).

Inequality (52) makes it possible to construct a subgrid-
scale model for the turbulent kinetic energy K, corresponding
to the eddy viscosity model [47]. By substituting the turbulent
viscosity from formula (53) into (52), we arrive at

K> %\/iclp52|§”|2. (55)
From here, we obtain the subgrid-scale closure for the
isotropic term in the form [47]

Ty = 2Y1pA %S, (56)
where Y; is the constant that ensures a transition from
inequality (55) to equality (56) and getting into the domain
of definition of the turbulent kinetic energy, i.e., the fulfilment
of condition (55).

For other subgrid-scale models that will be presented
below, isotropic terms can be specified in a similar way.

The Smagorinsky model extended to the MHD case
provides sufficient dissipation and diffusion, which, in
addition, stabilize numerical calculations [57]. The nonuni-
versality of Cj, Y, and D; constants has to do with
shortcomings of this model. Indeed, by specifying certain
positive or negative values of the constants, the energy
backscatter or direct energy transfer cascade, respectively,
cannot be described.

3.2 Kolmogorov model for compressible MHD turbulence
If the filter pass-band is in the inertia interval of fully
developed turbulence, the nonlinear interaction between the
large-scale kinetic and magnetic energies can be assumed to
be much smaller than the dissipation energy, so the subgrid-
scale kinetic and magnetic energies can be thought to depend
only on time [51]. It is also assumed that the coefficient
responsible for dimensionality is equal to unity [53]. These
parametrizations are based on the Kolmogorov scaling. The
extended Kolmogorov model for compressible MHD turbu-
lence takes the form [57, 60, 61, 63]

1 _ - 1 -
g oy = 200d (8, -3 Suay ) 9
1) =-2D,4%PJ;, (58)
Tl = 2Y,pA%3|5Y|. (59)

The constants used in one model are different from those
used in other methods of equation closure. All shortcomings
related to constants in the Smagorinsky model persist in the
Kolmogorov model.

3.3 Model based on cross-helicity

The cross-helicity between the velocity field and magnetic
field is defined as follows: H® = [, (uB)dV. In the case of
MHD turbulence, one finds the characteristic turbulent
velocity and magnetic field, and the cross-helicity is related
to the exchange between the kinetic and magnetic energies
due to the Lorentz force [52]. The cross-helicity characterizes
the energy exchange between the large and small scales in the
LES method. Papers [57, 60, 61] proposed a parametrization
based on the cross-helicity in the compressible MHD
turbulence:

1 aale e
‘Cil.li -3 ‘L';:k(sij = —2C5p4 2‘f| (Si,/' 3 Skkéi/’) ’ (60)
)= —2D3 4% sgn (joo)|jao| 7Ty (61)
T =2Y3pA?|f]]S"]. (62)

Here, the following notation was introduced:

f=18,S5'",

= 1 (3B, 0B; = 1 (Ou; Ou;
L el /i L

Sij - 2 <ax, + aX,‘) ’ SU 2 <6xj + ax,-) ’

and @ = V x uis the large-scale vorticity.

In the cross-helicity model, only the magnetic diffusion #,
can change sign [in formula (61) the function sgn (.) defines
the sign of the argument], since in the MHD turbulence only
the magnetic energy is responsible for the energy transfer
process from small (i.e., subgrid) to large scales [52].

3.4 Scale-similarity model

for compressible MHD turbulence

The scale-similarity model is not identical to the eddy
viscosity model. Thus, the unknown turbulence tensors are
modeled assuming that they are proportional to the Leonard
term. The theory of this approach relies on the idea of
turbulence universality at moderate scales, i.e., under the
assumption that the most energy-capacious subgrid-scale
components in the energy transfer cascade from large to
small scales can be estimated with a sufficient accuracy from
the smallest large-scale eddies obtained after the filtering
operation. This method is relatively simple. However, it
does not provide the necessary energy dissipation rate in the
neutral fluid dynamics. The scale-similarity model was
proposed in paper [107] and then explored in Ref. [108]. The
scale-similarity model was generalized to the case of com-
pressible MHD turbulence in papers [60, 67]:

AU
— tjtly) — M2 (BB —
a

u __ o 77
w; = p (it

S

iéj) ) (63)

S

<

rf/ = (u;B; — liz‘é/) — (Bittj —

) (64)

1

Thus, the scale-similarity model (63), (64), unlike other
models, is fully defined in the LES method by using filtered
variables of the turbulent motion.
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3.5 Mixed model for compressible MHD turbulence

In the hydrodynamic case, paper [42] has suggested joining
two different approaches— the scale-similarity model and
the eddy viscosity model —and in paper [109] the dynamic
form of the mixed model was used for the first time, where the
model constant was determined dynamically at each time
step. The extended mixed model for compressible MHD
turbulence is written out in the following form [60]:

] 12| Q & (3," ~
i 3 ti0ij = —2CspA2|S"| (Sij - ?j Skk>

—= =z=z 1 == = =
+ p (it — titl;) M2 (B:B; — BiBy) , (65)
a
—2D54°|j\Jij + (@:B; — i;B;) — ( Biit; — Bitij) , (66)
T zzysm 152 (67)

In expressions (65), (66), the mixed model is represented as
a combination of two models: the scale-similarity model, and
the Smagorinsky model for compressible MHD turbulence.

3.6 Dynamical constant determination procedure
To remove the problem related to the choice of model
constants in subgrid-scale closures, a dynamical procedure
was proposed [110, 111] that determines the value of
constants at each step. To this end, an additional test filter is
used, with the test filter width being larger than that of the
main filter. In other words, dynamical subgrid-scale models
imply the invariance of constants, which are present in
closures, with respect to the filtering width [110]. One and
the same subgrid-scale model is assumed to be applicable to
both lower and higher spatial resolution. From the solution
on a fine mesh, it is possible to derive the solution on a more
coarse mesh using additional test spatial filtering and to
estimate turbulent stresses for it. The generalization of the
dynamical procedure for compressible MHD turbulence can
be presented as follows [57].

Let T} and Ti’} be the test subgrid-scale tensors which are

produced by the test filtering for 77 and rfi, respectively:
T =+ L, (68
Th= b+ 1), (69)
where the Leonard tensors are defined as
(=T P (55— bb). ()
o (puiB ~ /ﬁié/) (Bz B, fu/) a1
P p p P

Here, the ‘hat’ mark ~ over a variable denotes its test filtering.
The Leonard tensors can be derived from the large-scale
values of velocity and the magnetic field induction. Equations
(70) and (71) link the initial subgrid-scale and test tensors.

The turbulent viscosity and magnetic diffusion can be
denoted as follows: v, = (forr ) v, = Yo" (fort/}), and
n, = Dq<p”(forr ), wheres =1,2, 3

To specify the constants, we can apply the least-square
method for minimizing the error from the functionals [112]:

Lu) >7
— LY.

The angular brackets stand for the spatial averaging.

Z <(TII; Au
Z <(le Ab

The constants are determined dynamically at each time
step using formulas [57]

Cy = (L, M) (72)
s <MIL; M“) )
<&u|§ | _ au‘5‘u|>
Lo mB
D= )
<mij m1k>
where
o N
M} =& (S‘ 31/ Skk) - {fxl’} (S,«l} - 31'/ Skk>:| ;
(?) j (/)B jz]
Here, [. }Ameans that the test filtering operation relates to the

whole expression in the square brackets.

Notice that Favre-filtered variables of the problem in
the original equations should also be Favre-averaged when
the test filtering is applied. The notation u is recognized
here as i = pu pti/p. The characteristic test filter pass-band,
as a rule, in most papers is taken to be twice as high:
A=24.

It is important to note that constant values may also
be negative, which corresponds to the inverse energy
transfer cascade (backscatter), i.e., to the energy increase
for large-scale flow. To avoid numerical instability, it is
necessary to restrict the constant values so as to provide a
nonnegative value of the full viscosity (turbulent plus
molecular).

3.7 Parametrization of subgrid-scale terms

for heat-conducting plasma

When closing the complete system of compressible MHD
equations without assuming a polytropic or adiabatic char-
acter of this process, the number of terms to be parametrized
drastically increases.

The presence of an energy equation in the system of MHD
equations (36)—(39) strongly complicates solving the problem
by the LES method. Unlike the momentum and magnetic
induction equations, fundamentally new SGS terms emerge in
the filtered total energy equation, which need be parame-
trized.

Consider first the subgrid-scale heat flux Q;=
p(u,T — iT). To parametrize this SGS term, the so-called
eddy diffusion model is used in the form

A%p|S¥| T
PI'T an ’

0;=-GC;

(75)

where C, is the coefficient determined earlier in the
extended Smagorinsky model for the MHD case. The
constant Cy is dynamically calculated from formula (72).
In expression (75), Prr is the turbulent Prandtl number
which is also calculated using the dynamical procedure as
follows:

(% Xi)
(&)

PrT = Cs (76)
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In formula (76), the following notations have been intro-
duced:

~ —

ion 2T -~ 3T
Y, = —A%5|SY =— + A%p|SH|— 77
g Pl |ax_,-+ Pl |ax,~’ (77)
T st
o =P PP (78)

p p

A nondynamical formulation for Q; was first proposed in
paper [113] to solve the Rayleigh—Benard problem. The
dynamical variant of the eddy diffusion model for subgrid-
scale thermal flux was demonstrated in paper [43] for LES.
The given model (75), based on the eddy diffusion, is similar
to the determination of the molecular heat flux; however, the
molecular viscosity and Prandtl number were replaced by the
dynamical eddy viscosity and turbulent Prandtl number,
respectively.

Consider the quantity J; describing the subgrid-scale
turbulent diffusion. The model for J; = p (ujuuy — i)
was proposed in paper [114]; it can be obtained by analogy
with the Reynolds averaging of the Navier—Stokes equations
and by assuming u; ~ #;. Then, we find for J; the following
expression:

Jj L?kr_/-',‘{ , (79)
where the subgrid-scale tensor Tj was set up above.

To finally close the complete system of equations for
compressible MHD equations, there is a need to parametrize
the SGS terms in energy equation (39), arising due to the
magnetic field. To obtain these subgrid-scale models, use is
made of the theory relying on the generalized central
moments [111]. In papers [58, 62], this approach was
extended and applied to the MHD case. The second-order
correlation moments read as follows:

@(Bj, By) = BiBx — BBy, (80)
@(ui, Br) = ;B — iiBy . (81)
The third-order correlation moments are given by
@(Bi, By, wj) = ( B;Biu; — BiByil;)
— ;o (By, By) — Biop(uj, Bi) — Bip(u;, Bi) . (82)
Let us change the subscripts in the above formula:
& (B, B, u;) = ( Bk Byu; — By Byity) — ijp(By, Br)
— B (uj, Bi) — Brp(uj, By) - (83)

Using the notations of the subgrid-scale magnetic energy
flux (46), we can write

Vj = BixBiu; — By Byt

_— o o 84
= By Byu; — By Byil; — By Byui; + By By (84)

from which the following equation can be obtained:
Vj:¢(Bk>Bkauj)+2Bk(p(ujaBk)' (85)

The SGS tensor G; can be expressed in a similar way. Using
formulas (82) and (47), we finally arrive at

G; = ¢(Bj, Bi,ux)+ Beo(ur, Bj)+ tixp(B;, B) + Bjop (g, By) -
(86)

Below, we will assume that the triple correlation
¢(Bj, B, ) in equation (86) can be neglected. The correla-
tion @(B;, Br) is not taken into account when simulating the
SGS tensor (42) in the momentum equation, because the
magnetic moments show much weaker correlation compared
with the velocity moments. As shown in paper [53], the model
coefficient Cj, in the magnetic part of Eqn (42), obtained using
the dynamical procedure, is much smaller than Cy, namely,
Cy/Cy ~ 1073, The second-order moment ¢(u,B;) in
expression (86) describes correlations in the direction where
the velocity vector is collinear with the magnetic field vector
and, hence, the Lorentz force is zero along this direction.
Thus, it is reasonable to neglect the last term in formula (86).
Therefore, the sum of the subgrid-scale tensors V; and G; can
be represented in the form

1
Vi~ G~

=) (2Bio(uj, B)) — Beop(ux, By) . (87)

The subgrid-scale magnetic stress tensor can be expressed
as

1) = (uB; — ;B)) — (B — Biiiy) = o(us, B)) — o(u;, By)
(88)

which suggests the following subgrid-scale closure for the
SGS terms in the total energy equation (39), which arise in
electrically conductive fluid due to the presence of a magnetic
field, namely, for fluxes of the subgrid-scale magnetic energy
V; and subgrid-scale energy G; of the magnetic tension
interaction with velocity:

1 _
V-G~ Bl

; (89)

Thus, using the subgrid-scale parametrizations elaborated
in papers [58, 62] for the system of filtered MHD equations,
we obtain the closed system of the LES method for modeling
compressible MHD turbulence in heat-conducting fluid.

3.8 Results of numerical simulations for polytropic plasma
In this section, we present the main results of simulations of
compressible MHD flows by the LES method applying
different subgrid-scale parametrizations. The analysis is
carried out by comparing the LES results obtained with
direct numerical simulations [60].

The LES method was realized in papers [57, 60, 61, 63] for
the five subgrid-scale models formulated in Section 3.7.
Different properties of compressible MHD turbulence at
different similarity numbers were examined. Details of the
numerical simulations, filtered equations, as well as the
algorithm, boundary and initial conditions, numerical grid,
and other aspects of compressible MHD simulations are
discussed in paper [60].

In time integration, a modified explicit third-order in
accuracy Runge—Kutta method (proposed by Williamson
[115]) was utilized, which requires less random-access
memory (RAM) compared with the standard low-storage
Runge-Kutta method. In this modified Runge-Kutta
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Figure 2. (a, b) Temporal dynamics of the kinetic (a) and magnetic (b) energies. (c, d) Spectra of the kinetic (c) and magnetic (d) energies. The solid lines
correspond to the case where the subgrid-scale tensors t i and T,b, are omitted, i.e., LES is, in fact, DNS on the rough LES mesh; this case is presented here
for a more complete analysis and understanding of the influence of subgrid-scale closures on simulations of MHD flows when comparing DNS results
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for MHD flows, the extended Kolmogorov model for magnetic hydrodynamics, the cross-helicity model, the scale-similarity model, and the mixed model

for the MHD case, respectively. DNS results are shown by diamond lines.

method, only two sets of variables should be allocated in
RAM. Such a numerical approach is applicable for arbitrary
high order in accuracy, although not all Runge-Kutta
schemes can be written in the modified form [115, 116]. The
numerical code with fourth-order finite difference schemes is
used for modeling compressible MHD turbulence. For most
MHD problems [84, 117-119], different spectral methods
(usually devised for an incompressible fluid) were utilized.
However, use is made of the finite-difference approach in the
present study, which, unlike the spectral method, is more
effective when solving problems with complex geometry and
with different boundary conditions; it also requires fewer
computer resources and less computational time [103, 120].

A numerical code was designed and realized in papers [57,
60, 61, 63] to solve MHD equations written in the conserva-
tive form. However, nonlinear terms are written in the skew-
symmetrical form:

pd — Opuit
! an
Ou; Opu;
Y2 = puj — +u (90)
J an an
1
'PiS = E(Tld + lPia) .

Expressions (90) demonstrate how the skew-symmetrical
form ¥; can be obtained. The skew-symmetrical form
represents, in fact, the result of taking an average between
the divergent (¥{) and convective (¥?) forms of the non-
linear term. Although analytically all three forms — the skew-
symmetrical, divergent and convective—are equivalent, the
results of numerical simulations will be different. As shown in
paper [121], the skew-symmetrical form provides more
accurate results, since errors related to the discretization in
the finite-difference simulations of turbulent flows decrease.

To resolve a turbulent flow into large-scale and small-
scale eddies, the fourth-order in accuracy Gaussian filter is
applied. In paper [101], optimal discrete forms of the cylinder
filter and Gaussian filter for central difference schemes of
various orders in accuracy were studied in detail. The one-
dimensional filter (for the x-direction) is written out as
follows:

_ et 42 ) 16€% — ¢*
(= ﬁ(@,z + g,~+2) +W(Ci—l + Ci+1)
€ —20e% + 192
- == 7%y 91
+ 13 G )

where {; is the characteristic of the fluid flow at point i, and
¢ is the parameter defined as the ratio of the mesh size to the
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Figure 3. Temporal dynamics of energy dissipation (notation is the same as in Fig. 2).

cut-off lengthscale of the filter [101]. Constants in subgrid-
scale models are specified using the dynamical procedure. For
this purpose, an additional test filter twice as wide as the
original pass-band is used. Because three-dimensional turbu-
lent MHD flow is studied, formula (21) is applied in the three-
dimensional filtering.

The LES results are being compared to the DNS
calculated results, and the quality of LES is determined by
the difference between the filtered DNS and LES results. The
DNS and LES results were obtained using the grids with
discretization densities of 256% and 643, respectively. The
simulation domain was taken as a cube with the dimensions
21 x 21t x 2n. The initial conditions for LES are found by
filtering the DNS initial conditions. The initial conditions are
chosen so as to provide the magnetic field solenoidity, i.e., so
that the condition divB =0 is fulfilled. The Courant—
Friedrichs—Lewy (CFL) condition was involved in simula-
tions to restrict the time step for maintaining stable calcula-
tions. Periodic boundary conditions were established at all
boundaries of the calculation domain.

Figures 2a, b show the time evolution of the kinetic and
magnetic energies. The main goal of the subgrid-scale closures
is to adequately describe the energy dissipation of large-scale
motion. As expected, the results obtained in the case without
subgrid-scale models turn out to be the least precise as
compared with the DNS data. As seen from Figs 2a and 2b,
the Kolmogorov model demonstrates the least accurate
results among other subgrid-scale models. An especially
strong deviation is observed at the initial time intervals, as is

seen in Fig. 2b for the magnetic energy, and in Fig. 2a for the
kinetic energy. The scale-similarity model demonstrates the
deficit of dissipation energy in both Fig. 2a and Fig. 2b,
similarly to the case of hydrodynamic turbulence in a neutral
fluid [122]. Other subgrid-scale parametrizations significantly
improve the accuracy of calculations.

In the magnetic hydrodynamics of an electrically charged
fluid, both the temporal dynamics of the magnetic and kinetic
energies and the evolution of the magnetic field and velocity
field cross-helicities are important. In this case, as for the
kinetic and magnetic energies, the model without subgrid-
scale parametrization and the scale-similarity model are less
precise [60]. Other models provide better agreement with
DNS results (Fig. 2c, d).

In Fig. 3a, shown is the molecular dissipation ¢, =
2uS;;S;j, which is always positive, as a function of time.
Figure 3b presents the time evolution of the subgrid-scale
kinetic dissipation defined as y, = —r,-lj‘.S’,-,- and chosen such
that the filtered kinetic energy decreases when y, > 0, and
increases when y, < 0 (corresponds to the energy back-
scatter). The value of j, determines the amount of energy
transferred from the large-scale part to subgrid scales, and y,,
depends on the SGS model that is used to find the subgrid-
scale tensor 7/5. In Fig. 3b, the subgrid-scale dissipation for
the case without SGS parametrization is absent, since here the
subgrid-scale parametrization is not used. As seen from this
figure, the subgrid-scale energy dissipation in the scale-
similarity model until the time ¢ = 0.13 is minimal; there-
fore, such a model does not provide adequately the kinetic
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Figure 4. Temporal dynamics of turbulent stresses (notation is the same as in Fig. 2).

energy dissipation, and in Fig. 2a the scale-similarity model,
like the case without subgrid-scale parametrizations, demon-
strates the worst results. The deficit of the subgrid-scale
dissipation is partially compensated by the fact that, as seen
from Fig. 3a, molecular dissipations of the scale-similarity
model have a somewhat higher value at the initial time
interval, even without SGS closures, than other models. The
highest value of the subgrid-scale kinetic energy is demon-
strated by the Smagorinsky and mixed models.

The magnetic molecular dissipation of the turbulent field
is found from the relationship ¢, = n|jI%, and its temporal
behavior is presented in Fig. 3c. The magnetic subgrid-scale
dissipation (Fig. 3d) is defined as y, = —T,'b,jij and also
represents a large-scale energy decrease due to the subgrid-
scale effects, with the direct energy transfer cascade being
observed for y, > 0, and the energy backscatter for y, < 0. As
in the case of the kinetic energy, the molecular magnetic
dissipation is somewhat larger for the scale-similarity model
and for models without SGS parametrization, whereas the
subgrid-scale magnetic energy is much smaller for the scale-
similarity model than for other models (in the case without
SGS closure it is, of course, equal to zero). These plots are in
good agreement with the magnetic energy plot shown in
Fig. 2b, where, after 1 = 0.1, the difference between DNS
results and various SGS closures is insignificant, and in
Fig. 3d, after r = 0.1, the subgrid-scale magnetic dissipation
for all models is almost the same and is much smaller than at
the initial stage of calculations.

Let us define the fluctuating part of the velocity as
v = o; — (pt;)/{p), and the fluctuating part of a magnetic
field as b; = B; — <E’i>, and let us compare the results of the
subgrid-scale models with DNS results for turbulent stresses.
The angle brackets (.) denote spatial averaging. Figures 4c
and 4a show the time evolution of {(pv,v,) and turbulent stress
tensor components (pv,v,), respectively. Clearly, the turbu-
lent tension in DNS dissipates more strongly, with (puv,v.)
demonstrating strong oscillations (shown in Fig. 4c by the
gray line for clarity). Similarly to the energy, the results of
calculations without applying subgrid-scale parametrization
demonstrate maximum deviation from DNS results. Shown
in Figs 4b, 4d are the magnetic turbulent stresses (b.b.) and
(byby), respectively; the dissipation in DNS calculations with
increasing time is slightly smaller than in LES. After r = 0.15,
the Smagorinsky model turns out to be the least dissipative
for magnetic turbulent stresses, even smaller than in the case
without an SGS closure.

To understand the structure of a turbulent MHD flow, its
statistical properties, and the intermittence of the motion
considered, the skewness and flatness of turbulent flows that
characterize the anisotropy of the considered fluid flow are
important parameters. The skewness and flatness for the
velocity components are defined as

(u) (u)
Wv Kuj = —"=—,

(<“,/2>)2

Suj = (92)
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Figure 5. Temporal dynamics of flatness (notation is the same as in Fig. 2).

respectively. The skewness and flatness for the magnetic field
have the corresponding forms

(B)
(<Bj2>)3/2 )

respectively.

Figure 5 displays a comparison of different subgrid-scale
LES models with DNS for flatness. Whereas for the magnetic
field the results demonstrate almost no dispersion and all
models virtually coincide with DNS results, the choice of the
subfilter-scale parametrization for the velocity is more
significant. Figure 6 presents the time evolution of the
skewness. It is interesting to note that the skewness of
magnetic fields, Sb, and Sb, (Fig. 6b,d), and velocities, Su,
and Su, (Fig. 6a, ¢), for the scale-similarity model and for the
case disregarding SGS closure, oppositely, turn out to be
closer to DNS results.

Paper [63] investigates in detail the skewness, the flatness
of the velocity components and the magnetic field compo-
nents at different Reynolds numbers, the sonic Mach number,
and the magnetic Reynolds number. It is shown that the
Smagorinsky model for the MHD case and the model based
on cross-helicity between the velocity and magnetic field are
the most suitable for the study of flatness and skewness of the
components of the velocity and the magnetic field. Numerical
results indicate that the velocity flatness and skewness are
more susceptible to the subgrid-scale parametrization choice
than analogous characteristics of a magnetic field. As a result,
the LES method was shown to provide adequate results and

(B}

Sb; = W ) (93)

j =

can be applied to study characteristics of the intermittency
(for example, the structure functions of different moments of
the velocity and magnetic field) of compressible MHD flows
at different similarity numbers [63].

An important test for the LES method involves analyz-
ing the spectral distribution of the kinetic and magnetic
energies, which characterizes the energy redistribution as a
function of the wave vector k (i.e., depending on scale). In
addition, the spectrum allows the subgrid-scale closure
effects to be assessed in compressible MHD flow simula-
tions. Figure 2c,d presents the spectra of kinetic and
magnetic energies, respectively. It can be noticed that on
large scales (corresponding to small wave vectors) all plots
almost coincide, and there is virtually no difference among
results calculated with different subgrid-scale models. This
means that the largest turbulent scales are almost indepen-
dent of the SGS parametrizations. Differences arise mainly on
small scales (at high k& numbers). Generally, the energy
spectrum confirms the earlier results for subgrid-scale
closures. The DNS spectrum is consistent with the Smagor-
insky modes, Kolmogorov model, the mixed model and cross-
helicity based model, especially with the last two subgrid-scale
models. Moreover, it is seen that in simulations utilizing the
scale-similarity model and ignoring subgrid-scale terms,
insufficient energy dissipation is obtained, i.e., these models
are characterized by the energy accumulation at large wave
vectors due to ineffective dissipation. These conclusions
drawn from the energy spectrum confirm the results
obtained from the temporal dynamics of kinetic and
magnetic energies.
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Figure 6. Temporal dynamics of skewness (notation is the same as in Fig. 2).

As shown in paper [60], when the magnetic Reynolds
number Re,, decreases, the difference among subgrid-scale
models diminishes for the magnetic energy, and all models
considered demonstrate good agreement with DNS results at
small Rep,. With a rising Reynolds number, the role of
subgrid-scale closures in simulations of compressible MHD
turbulence increases, and the rate of magnetic energy
dissipation decreases. The Smagorinsky model, Kolmogorov
model, and cross-helicity model demonstrate the best results
for the magnetic energy evolution. The same behavior is
evidenced for the cross-helicity: the role of subgrid-scale
parameters increases with rising Rep,. When decreasing a
magnetic Reynolds number, LES results show a large
difference in the kinetic energy behavior for different SGS
parametrizations. The scale-similarity model demonstrates
the worst outcomes, while other SGS closures increase the
accuracy of simulations [60]. The temporal dynamics of
turbulent stresses, both magnetic and kinetic, are affected
more strongly by the SGS parametrization in LES simula-
tions of MHD turbulence with increasing Rey,. The role of
anisotropy in simulations and discrepancy between LES and
DNS results for anisotropy become stronger with decreasing
a magnetic Reynolds number. It should be emphasized that
the kinetic energy decreases more sharply, and the magnetic
energy, in contrast, decreases more slowly with an increase in
magnetic Reynolds number Rep. Similar results were
reported in paper [83], where the influence of Re,, on two-
dimensional MHD turbulence was studied by the DNS
method.

As the Taylor’s Reynolds number Re; changes, the results
of simulations are qualitatively similar. This is because the
similar initial conditions for the magnetic field and the

velocity field did not change, so in the simulations the
Taylor’s Reynolds number only weakly affects the choice of
subgrid-scale parametrization [60]. The subgrid-scale Sma-
gorinsky, Kolmogorov, mixed, and velocity and magnetic
field cross-helicity models demonstrate adequate results and
good agreement with DNS results.

The Mach number Mj significantly affects the simulation
results. As My increases, DNS and LES results for the kinetic
energy strongly diverge. For kinetic energy, the Smagorinsky
model and the cross-helicity model demonstrate the best
agreement with DNS results at different Mach numbers [60].
Conversely, magnetic energy is observed to diminish discre-
pancy between calculated results with increasing M. It
should be noted that the magnetic energy more rapidly tends
to a constant value with decreasing Mach number. For the
cross-helicity of the magnetic field and velocity, the Smago-
rinsky model shows the best results for both high and low
Mach numbers. The skewness of velocity components
calculated in LES is in better agreement with DNS results as
Ms increases. The choice of SGS parametrization barely
affects the skewness of the magnetic field components. With
increasing a Mach number, turbulent stresses in LES are in
better agreement with DNS results [60].

In general, the subgrid-scale models have the least effect
on the temporal evolution of the flatness and skewness (the
model without subgrid-scale closures also demonstrates good
agreement with DNS results) [60, 63]. This is due to the
anisotropy and intermittency being properties of large-scale
structures, while discrepancies among SGS models and
models without subgrid-scale closures arise on small scales
of the turbulent flow.
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Figure 7. Temporal evolution of the kinetic energy (a), the magnetic energy (b), and the temperature (¢) for Mg = 0.38. Time evolution of the parameter Ft
for Mg = 0.38 (d). Diamonds show the DNS results, solid lines indicate the LES results without subgrid-scale closures, dotted lines show LES results with
all SGS parametrizations, and dashed lines mark LES results without SGS parametrizations in the energy equation.

On the whole, the best results are obtained with the
Smagorinsky model for the MHD case and with the model
based on the cross-helicity of the magnetic field and velocity
field [60]. The scale-similarity model does not provide
sufficient kinetic or magnetic energy dissipation, and this
model should be used only along with the eddy viscosity
models (for example, the Smagorinsky model), which is the
basic idea of the mixed model.

3.9 Results of numerical simulations

of a heat-conducting plasma

Results of LES simulations of compressible MHD turbulence
in heat-conducting plasma at different Mach numbers are
presented in papers [58, 62]. The obtained numerical LES
results are compared with direct numerical simulations of
heat-conducting plasma.

Numerical methods, algorithms, diagrams, and the
filtering function for resolving turbulence into small-scale
and large-scale parts, which are utilized in LES and DNS of
compressible MHD flows, are described in detail in paper
[62], where the extended Smagorinsky model for magneto-
hydrodynamics was used in subgrid-scale parametrization of
tensors 7/ and r,-_b-. Because the compressibility effects and
temporal dynamics of the temperature, as determined from
the total energy equation, depend nontrivially on the Mach
number, paper [62] reported on three cases considered: the
Mach number is Mg = 0.38, i.e., a mildly compressible flow;
the Mach number is Mg = 0.65, i.e., the compressibility plays

a significant role, and Mg = 1.45, which corresponds to the
appearance of strong discontinuities in a substantially
compressible flow.

The temporal dynamics of the kinetic and magnetic
energy for flows with Mach number Mg = 0.38 is presented
in Figs 7a and 7b, respectively. For a deeper understanding of
the subgrid-scale model effects on the energy equation, the
SGS terms are omitted in the total energy equation, and only
subgrid-scale tensors in the momentum equation and the
magnetic induction equation are evaluated.

As seen from Fig. 7a,b, taking account of the subgrid-
scale parametrizations for kinetic and magnetic energies
brings the LES curve closer to the DNS curve; consequently,
the accuracy of simulations increases. The subgrid-scale
closures in the total energy equation do not, in fact, affect
the time evolution of the kinetic and magnetic energies. The
plots suggest that the curves for the case that includes all
parametrizations coincide with curves corresponding to
parametrizations in magnetic induction and momentum
equations only. A similar behavior is observed for cross-
helicity between the magnetic field and velocity [62]. Subgrid-
scale models for SGS tensors (42) and (43) noticeably increase
the accuracy of simulations. As in the case of the magnetic
and kinetic energies, the subgrid-scale parametrizations in the
energy equation do not affect the time evolution of the cross-
helicity.

Figure 7c demonstrates the temporal behavior of mean
temperature. Unlike the magnetic and kinetic energy
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dynamics, the inclusion of SGS parametrizations in the total
energy equation significantly affects the results of numerical
simulations. As seen from Fig. 7c, the most accurate results
for the mean temperature are achieved when all subgrid-scale
closures are taken into account in the complete system of
filtered MHD equations. When all SGS parametrizations are
neglected, the largest deviations from DNS results are
obtained.

In paper [63], the influence of different parametrizations
and similarity numbers on the skewness, flatness of the
components of the magnetic field, and velocities is consid-
ered in detail. Whereas previous paper [62] focused on the
temperature behavior (in other words, on the total energy
equation) especially, as shown above, because the subgrid-
scale terms in the energy equation have almost no effect on
the calculation accuracy of the kinetic and magnetic
energies. The temperature asymmetry weakly grows with
time, and discrepancies among plots for all LES cases are
small. This fact implies that the anisotropy (basically, the
property of large-scale structures) and discrepancies between
SGS closures and the model without subgrid-scale para-
metrizations mainly arise on small scales of a turbulent
flow [62].

To better understand the behavior of temperature and its
fluctuations at different Mach numbers depending on the
SGS closures, let us define the parameter characterizing the
temperature fluctuations as follows:

Fo=[((T—(T))]".

The parameter Ft is plotted in Fig. 7d as a function of
time. More accurate results of numerical simulations are
obtained for LES taking into account all subgrid-scale
closures, which shows once again the importance of the
subgrid-scale models in the total energy equation [62].

It should be noted that, as the Mach number My increases,
the influence of viscosity and the role of nonlinear effects
enhance, which leads to strengthening oscillations and
fluctuations of characteristics of a turbulent flow [62].

It was ascertained that taking account of the subgrid-scale
terms in the total energy equation has almost no effect on the
kinetic and magnetic energies even at very high Mach
numbers, while for the temperature (and, correspondingly,
for the internal energy) the inclusion of SGS models in the
total energy equation is an important condition to increase
the calculation accuracy of thermodynamic variables [58, 62].
With increasing a Mach number, the kinetic energy and
temperature oscillations grow. Generally, the LES method,
including explicit density-weighted filtering, demonstrates
good results in modeling electrically charged and heat-
conducting plasmas in compressible magnetohydrodynamic
turbulence at various Mach numbers.

(94)

4. Study of the local interstellar medium
turbulence using subgrid-scale modeling

In this section, we present an MHD model for the local
interstellar medium and the characteristic quantities that are
utilized in the numerical modeling of compressible MHD
turbulence using large eddy simulations.

The interstellar medium includes matter and the fields
observed in the space between stars inside galaxies. Only
comparatively recently was it recognized that stars do not
exist in a vacuum and that the outer space is not completely

transparent. The presence of an absorbing rarefied medium
was convincingly revealed less than 100 years ago, in the first
half of the 20th century, by comparing the observed proper-
ties of remote star clusters at different distances. The
interstellar medium in our Galaxy, in the proximity of the
Solar System, is referred to as the local interstellar medium.
The Galactic interstellar medium strongly affects the Solar
System. The parameters of this gas significantly determine the
structure of the heliosphere, i.e., the region filled with the
solar wind.

A strongly ionized gas under cosmic conditions under-
goes continuous irregular motion. Even in regular flows (for
example, differential rotations, solar/stellar wind outflow,
accretion), fluctuations are present. The gas velocity then
represents a random field, with its magnitude and direction
changing chaotically. Abundance of turbulence under
cosmic conditions, namely in the interstellar medium, is
ubiquitous mainly because the Reynolds numbers are
typically extremely high due to the huge sizes of most of
the space objects.

Around sufficiently powerful energy sources, when the
flow velocity exceeds the propagation speed of any linear
perturbations in the medium considered (i.e., the sound and
Alfvénic velocities), turbulence becomes supersonic. The
analysis of observational data [90] suggests power-law
spectra for velocity and density fluctuations, close to the
Kolmogorov—Obukhov law [123-126]. Large-scale motions
of gas and the stellar subsystem, as well as active phenomena
in stars and stellar clusters, compose the main sources of
energy and momentum of MHD turbulence in the interstellar
medium [127]. The results obtained by satellites were
unexpected, since Kolmogorov-like spectrum k=33 was
theoretically derived for an incompressible fluid, whereas
the interstellar turbulence is magnetohydrodynamic and
essentially compressible. Therefore, the main issue consists
in understanding the reasons why the Kolmogorov spectrum
for density and kinetic energy fluctuations is produced in the
local interstellar turbulence. The solution to this problem is
significantly complicated because the interstellar medium
cannot be directly observed and probed in experiments;
numerical simulations of MHD turbulence on space scales
are limited by modern computational capacities of compu-
ters, since these processes are characterized by very high
Reynolds numbers and, hence, very high numbers of degrees
of freedom of the turbulent motion. For such flows in the
local interstellar medium, it is convenient to apply the LES
method described above for compressible MHD turbulence.
In paper [94], the interstellar turbulence was studied for the
first time by the LES method, which allowed new results on
the density and energy fluctuation spectra of the MHD
turbulence to be obtained.

Statistically homogeneous isotropic plasma in the local
interstellar medium is described by the one-fluid MHD model
for polytropic plasma [94].

Quantities that arise after normalization when reducing
the original equations to the dimensionless form are due to
large-scale plasma motions. In addition, there are turbulent
velocities, the Mach and Reynolds numbers that depend
locally on small-scale structures and relatively high fre-
quency fluctuations. The large-scale flow, or steady mean
background flow, leads, as a rule, to a constant Mach
number, while fluctuating local eddies change the Mach
number that depends on the local properties of small-scale
turbulent pulsations.
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Let us define the sound velocity for the small-scale
turbulent flows as

&= yipt2, (95)
and the hydrodynamic turbulence Mach number as

’ (luf*)

Mg=Y- " (96)

Cs

The fluctuating Alfvén velocity is i, = l?/ \/4mnp ; therefore,
the turbulent Alfvén Mach number is written out as

ALY, .
= ©7)
Here, ums = 1/ (|u*) is the rms velocity. The turbulent
Reynolds number and plasma parameter f§ are defined in a
similar way. Notice that the evolution study of the local
values of these quantities is important for understanding
fluctuations of characteristics of turbulent MHD flows in
the local interstellar medium.

To study compressible turbulence in the local interstellar
medium, three-dimensional numerical simulation of decaying
MHD turbulence is carried out. Numerical methods,
schemes, and algorithms are described in detail in papers
[64, 94]. In the study of the local interstellar turbulence, the
LES method is applied to solve the system of compressible
MHD turbulence equations (22)—(24); the extended Smagor-
insky model for the MHD case, which, as shown in Section 3,
demonstrated sufficiently accurate results at different simi-
larity numbers, was utilized for subgrid-scale parametriza-
tion. The initial isotropic turbulent spectra for the kinetic and
magnetic energies are defined in the Fourier domain and are
chosen to be close to the spectrum k2 with random
amplitudes and phases along all three directions. The choice
of exactly this spectrum as the initial conditions is due to the
velocity perturbations in the Fourier domain being analogous
to perturbations in the developed turbulence, and thus it can
be used to model the developed turbulence at the initial time
[4, 128]. The choice of the k~2 spectrum (the Burgers
turbulence spectrum) is also physically determined by its
rapid convergence to the k3 spectrum via direct energy
transfer cascade in hydrodynamic turbulence [89]. In addi-
tion, discontinuous shocks will also have a similar energy
spectrum (due to the Fourier transform of the step function),
and the Fourier transformation of the discontinuous shocks
will not alter this spectrum. Nevertheless, most of the
distributions with the k=2 spectrum do not involve shocks
[4, 129]. Then, using the inverse Fourier transform, the initial
conditions for the velocity and magnetic field were obtained.
The computational domain represents a three-dimensional
cube with a linear size w. In LES, a mesh with discretization
density of 64 was used. The initial hydrodynamic Reynolds
number is Re ~ 1000, and the magnetic Reynolds number is
Ren, = 200. The Re number is taken to be larger than Rey,
since the ambipolar diffusion effects may arise in the
interstellar medium, which enhances the magnetic diffusion
and, hence, decreases the Re,, number [29]. Other parameters
that were used in modeling turbulence in the local interstellar
medium were taken to be as follows: the Alfvén Mach number
and sonic Mach number are M, ~ M; ~ 2.2, the specific heat
capacity ratiois y = 5/3, the time stepis dz = 0.3 x 1073. The
periodic boundary conditions were respected at all bound-
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Figure 8. Decay of the small-scale turbulent Mach number M; with time.
The transition from supersonic regime Mg > 1 to subsonic regime M < 1
is seen.

aries of the computational domain. Small changes in the
initial conditions do not affect the results of calculations.
Similar conclusions about the insignificant influence of the
initial parameters were attained in paper [79].

4.1 Analysis of the results of simulations

and theoretical interpretation

In this section, results of simulations of compressible MHD
turbulence in the local interstellar medium by the large eddy
simulation method are presented. Numerical results are
analyzed and their theoretical justifications are given.

4.1.1 Compressibility properties of the medium. Compressible
MHD turbulence evolves due to nonlinear interactions in
which larger eddies transfer energy to smaller ones via direct
turbulent energy cascades. MHD turbulence dissipates owing
to the finite value of the Reynolds number and small-scale
motion decay, because viscous shear stresses perform work.
The time evolution of the hydrodynamic turbulence Mach
number M is shown in Fig. 8. It is seen that the local small-
scale Mach number decays from a supersonic value (Mg > 1)
to a subsonic value (I\U/IS < 1). This fact indicates that the
turbulent cascade related to nonlinear interactions in combi-
nation with dissipative effects on small scales leads to the
result that supersonic plasma fluctuations experience suffi-
ciently strong decay to subsonic fluctuations in an electrically
conducting flow, and turbulence becomes moderately com-
pressible. In Fig. 9, the time evolution of the velocity
divergence, divu = Ou; /0x; + Oup /0x; + Ou3 /0xs, is plotted.
In incompressible fluid, the condition divu = 0 is fulfilled
according to the continuity equation. As seen from Fig. 9, the
velocity divergence decays sufficiently fast and tends to zero
(but does not vanish), i.e., an essentially compressible
turbulent flow evolves into weakly compressible. This
corresponds to conclusions and results followed from Fig. 8
for the local small-scale turbulent Mach number 1\715. Thus, a
compressible MHD flow with a supersonic Mach number is
transformed in the local interstellar medium into a subsonic
flow of electrically conducting liquid, with an insignificant
contribution of the solenoidal velocity component, i.e., with
diva < 1.
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Figure 9. Temporal dynamics of the velocity divergence div u. The velocity
divergence, which characterizes compressibility of the fluid, decays, and
the flow becomes weakly compressible with time.
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Figure 10. Time evolution of the turbulent plasma parameter ff in
compressible MHD turbulence. Initially strongly magnetized plasma
becomes less magnetized with time.

The results obtained correspond to the conclusions
derived from an asymptotic analysis and estimates made in
paper [79], in which an essentially compressible MHD
plasma was shown to evolve toward a moderately compres-
sible flow with a velocity divergence decrease in the decaying
turbulence, i.e., divu— 0 (or [ikux| <1 in the Fourier
space).

4.1.2 Dynamics of magnetized plasma. The evolution of an
MHD plasma from an essentially compressible to moderately
compressible flow in the interstellar medium not only trans-
forms supersonic motion to subsonic motion, but also
weakens the plasma magnetization. This can be seen from
the time history of the turbulent plasma parameter 5 depicted
in Fig. 10. The plasma beta-parameter is the ratio of the
plasma pressure to the magnetic field pressure, defined as
Bo =8mpy/By. As evidenced from Fig. 10, the plasma
pressure on the initial time interval does not exceed the
magnetic pressure (i.e., f < 1) in a strongly compressible
MHD plasma. Later on, when essentially compressible
plasma fluctuations decay (as is clearly seen in Figs 8 and 9),
the plasma magnetization weakens and the plasma parameter
goes up from a low value (f < 1) to a high value (f > 1). This
suggests that the plasma pressure exceeds the magnetic
energy. In the inertial turbulence interval, we can write out
the relationship

kd>=1> k())vmfp s (98)
where d is the ion gyroradius, ko ~ 1/Lg, Ly is the integral
scale, and Amg, is a particle’s mean free path. Physically,
inequalities (98) mean that the plasma particles connected
with the magnetic field lines are expelled from their gyroorbits
due to the plasma pressure becoming dominate over the
magnetic energy. This ultimately leads to weakening of the
plasma magnetization and, hence, Qlasma fluctuations, and
to a transition to the regime with f > 1 and to a subsonic
weakly compressible flow. The mode transformation is
another factor that partially explains the MHD plasma
transition from the strongly compressible to the weakly
compressible state. The turbulent plasma parameter § can

be written in the form

v

8y & M
~ ™3

&
(SIS}

¢

(99)

M

=
)

As MHD plasma evolves into the regime with B > 1, the
Alfvén small-scale turbulent Mach number Ma decreases.
The monotonic decrease of My (in accordance with Fig. 8)
corresponds to a higher value of f, i.e., the MHD flow
becomes more and more weakly compressible. Also, the
temporal dynamics of the compressible MHD flow suggest
that the magnetosonic fluctuations decay faster than Alfvénic
fluctuations (the Alfvénic modes, nevertheless, also decay due
to dissipation). This conclusion coincides with the one
previously predicted theoretically in papers [79, 93].

The gradual increase in the turbulent plasma parameter 3,
in addition, changes the turbulent cascade rate in the subsonic
regime of the compressible MHD plasma. The state of a
turbulent flow with a high value of the plasma f-parameter
assumes that the Alfvénic shear modes propagate more slowly
than acoustic waves. Thus, magnetohydrodynamic perturba-
tions in the steady state are velocity-ordered as follows:

i< ily <Cs. (100)

The time scales of nonlinear interactions for these inequal-
ities can be written out as follows:

Ts < Ty < TNL, (101)

where 1, 7,, and TN denote the magnetosonic timescale, the
Alfvén timescale, and the timescale of one eddy turnover,
respectively. Inequalities (101) imply that the nonlinear
interaction time for Alfvénic modes increases in comparison
with magnetosonic modes. Therefore, the plasma motion
becomes weakly compressible on the Alfvén timescale.
During the gradual transition to the weak compressibility
regime, the compressible fast/slow magnetosonic modes are
weakly connected with the Alfvénic modes [79]. Therefore,
the Alfvénic shear modes (which are mainly incompressible)
start gradually dominating in the cascade, while the compres-
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Figure 11. (a) Kinetic energy spectrum. (b ) Normalized (multiplied by k°/?), smoothed spectrum of the kinetic energy. It is seen that the power-law index
of the spectrum is close to k —* for most of the turbulent cascade. However, a clearly defined Kolmogorov-like inertial interval (k =>/?) exists.
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Figure 12. (a) Density spectrum (solid line) and density fluctuation spectrum (dashed line). (b) Normalized (multiplied by k°/3), smoothed density
fluctuation spectrum. Both plots in the (a) figure are close to the power-law k —>. There is also a sharply cut Kolmogorov-like inertial interval (k —/3) for

the density fluctuations, which is confirmed by observations.

sible fast/slow magnetosonic waves suppress nonlinear
cascades by dissipating the longitudinal fluctuations, which
leads to anisotropic MHD turbulence (the anisotropy effects
will be considered in more detail below in Section 4.1.4). If the
compressible plasma magnetization weakens, and the turbu-
lent plasma pressure becomes highly dominant over the
turbulent magnetic energy with time, perturbations are
mostly unmagnetized, i.e., the situation is similar to the
hydrodynamic case. Thus, the fluctuating magnetic field
ultimately becomes sufficiently weak and has almost no
effect on the turbulent energy dissipation rate.

4.1.3 Turbulence spectra in the local interstellar medium.
Observations suggest that the density fluctuations in the
local interstellar medium demonstrate a Kolmogorov-like
spectrum in a wide range of turbulent scales [90, 91, 130]. In
the interstellar plasma turbulence, the density fluctuations are
random in both space and time. Similar results were obtained
numerically in the frameworks of the ‘almost incompressible’
fluid approximation [89, 131].

Shown in Fig. 1la is the kinetic energy spectrum for
¢ = 1.45 at the turbulent Mach number My < 1 (the subsonic

turbulence regime), which has a power index close to k3 in a
wide scale range, which corresponds to the dissipative
turbulence interval. However, there is a clearly shaped
inertial turbulence interval with the Kolmogorov spectrum
varying as k3. In order to show the existence of such an
interval and to determine at which wave numbers it emerges,
we present in Fig. 11b the normalized (i.e., the product Efk>/3
is plotted along the y-axis, where E[ is the kinetic energy in
the Fourier space, and k is the wave vector), smoothed kinetic
energy spectrum. It is seen that for 2 < k < 5 there is an
inertial interval with the Kolmogorov spectrum.

Figure 12a displays the density and density fluctuation
spectra. Both plots in this figure demonstrate a power law in
the Fourier space, namely, k3, which corresponds to the
spectrum in the dissipative interval of the Kolmogorov
turbulence in the direct energy transfer cascade regime for
the decaying turbulence. The normalized smoothed spectrum
of density fluctuations, P¥k3/3, is presented in Fig. 12b. It is
clearly seen that, as for the kinetic energy spectrum, there is an
interval that can be approximated by the Kolmogorov
spectrum k>3, and essentially for the same wave numbers
2 < k < 5. On the whole, the density fluctuation spectrum
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Figure 13. Energy spectrum change with time. The time arrow is shown by
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Figure 14. Time evolution of the anisotropy angle for velocity 6, (solid
line) and for magnetic field 0, (dashed-dotted line).

demonstrates the same behavior in the Fourier domain as the
kinetic energy spectrum (see Fig. 11). Thus, we can conclude
that the density fluctuations make up a passive mixture in a
moderately compressible subsonic turbulent flow. Theoreti-
cal models of turbulence, in addition, assume that any
physical flow characteristic that passively propagates in the
background turbulence field should demonstrate a similar
spectrum [132].

The change in the total energy spectrum (the sum of the
magnetic and kinetic energies) with time is presented in
Fig. 13. It is seen that energy-containing large scales of
turbulence diminish in the course of time. The spectrum
amplitude also decreases, suggesting dissipation of the
compressible flow considered. It is noticeable that the
dissipation interval in the energy cascade widens, while the
inertial interval becomes narrower, which corresponds to a
decrease with time of the hydrodynamic Reynolds number in
the decaying turbulence (the inertial turbulence interval is
directly proportional to the Reynolds number).

4.1.4 Anisotropy properties of turbulence. The Kolmogorov
turbulence model assumes that large and small scales are
independent from each other, thus leading to flow isotropy on
small scales [123, 124]. Kolmogorov assumed that, during the
energy transfer from large to small scales, the information on
its generation mechanism would be lost. If the number of
steps in the energy cascade is large, all the information can be
assumed to be lost. The smallest scales ‘may know’ only how
much energy was acquired on these scales, and they can be
expected to be isotropic, i.e., information on the possible
anisotropy of the energy-containing large scales is lost. The
interstellar turbulence is anisotropic, which was shown both
theoretically and inferred from observations [88, 90]. Papers
[64, 94] demonstrated that the large-scale flow in compres-
sible MHD turbulence is anisotropic, unlike the small-scale
flow. Numerical modeling [94] reveals a different behavior of
the velocity components in the spectral cascade at small
wave numbers k for x, y, and z components of the velocity
field, as well as almost no differences at large Fourier modes,
which means that anisotropic turbulence cascades arise
predominantly on large scales. Thus, the large-scale devel-

oped turbulence in the local interstellar medium is aniso-
tropic, which is confirmed by the results of independent
studies [88, 89].

To estimate the degree of anisotropy and the symmetry of
the flow, we make use of the Shebalin angle [133] (in other
words, the anisotropy angle), which is defined as

G+ G +GL
Gl + Gl + Gl
Gl + Gl + Gl
b b b 7
ny + ny + Gyz

tan’ 0, = 2 , (102)

tan? 0, = 2 (103)

where G} = (du;/0x;), and Gl-b]- = (0B;/0x;). For isotropic
turbulence, one has 6 = arctanv/2 & 54° ~ 1 rad. Figure 14
presents the anisotropy angles 0, (for velocity) and 0, (for the
magnetic field), characterizing the large-scale structures, as a
function of time ¢. After the initial time interval, neither the
velocity nor the magnetic field anisotropies really change,
saturating at some level.

At low values of the plasma f-parameter, when the role of
magnetic energy is significant, the anisotropy and symmetry
breaking are mainly due to the magnetic field. At high values
of f, when the role of the magnetic field is small, anisotropic
turbulence cascades are observed due to the propagation of
compressible acoustic modes, which hamper the spectral
transfer in the local Fourier space. These modes in MHD
turbulence may be excited either by large scales or by an
external velocity of the background turbulence [88].

To summarize, the local interstellar gas was modeled
using the LES method to solve the system of MHD equations
governing compressible MHD turbulence in the local inter-
stellar medium. Despite the local interstellar medium being
characterized by supersonic flows with high large-scale Mach
numbers, there are also evidenced subsonic fluctuations of
weakly compressible components of the interstellar medium.
It is these compressible subsonic fluctuations that are
responsible for the appearance of a Kolmogorov type
spectrum in the local interstellar turbulence, which is
suggested by observations. It is shown that density fluctua-
tions are a passive scalar in the velocity field of moderately
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compressible MHD turbulence and demonstrate the Kolmo-
gorov spectrum in the dissipative interval of the energy
transfer cascade. This supports the hypothesis for the weakly
compressible nature of the density fluctuations observed in
the local interstellar medium. The power-law spectrum
indexes for density and kinetic energy are almost the same
and are close to k3 for compressible decaying MHD
turbulence. It is also demonstrated that the kinetic energy
spectrum changes with time, which indicates the decrease in
the energy-containing large scales and the inertial interval and
the increase in the dissipation scale. The turbulent Mach
number M is shown to significantly decrease from a super-
sonic regime of turbulence (1\715 > 1), in which the medium is
strongly compressible, to a subsonic flow (MS < 1) with weak
compressibility. This conclusion on the diminishing role of
compressibility in turbulent fluctuations is confirmed by the
time evolution of the velocity divergence, which tends to zero
(but does not vanish). The plasma transition from an
essentially compressible turbulent MHD flow to a mildly
compressible flow in the local interstellar medium not only
transforms supersonic motion into subsonic motion, but
also weakens the plasma magnetization, since the plasma
p-parameter increases with time; thus, the role of magnetic
energy decreases compared to that of the plasma pressure.
The anisotropy of turbulent flows was also considered. It was
shown that the large-scale flow exhibits anisotropic proper-
ties, whereas small-scale structures are isotropic.

Large eddy simulations of three-dimensional compressi-
ble MHD turbulence in the local interstellar medium allowed
observational data to be interpreted and new insight into the
spectra of a local interstellar gas turbulence to be gained [94].

5. Scale-invariant spectra of MHD turbulence

In the previous sections, we discussed the large eddy
simulation method aimed at studying compressible MHD
plasma turbulence and showed that it can be applied to
explore homogeneous degenerating turbulence. Let us dis-
cuss whether the LES method is adequate when studying
physical processes in compressible MHD turbulence driven
by an external force. The fact of the matter is that for a
numerical solution of the filtered equations of compressible
MHD turbulence in the LES method, as well as of the original
equations in DNS, finite-difference and finite-volume meth-
ods in the coordinate space appear to be the most adequate
[78, 83, 134, 135]. Solving the original governing equations by
finite-difference methods, in addition, enables natural studies
of inhomogeneous and nonstationary turbulent flows. The
traditional way of introducing an external force for compres-
sible MHD flows relies on the experience of turbulence
studies in incompressible fluids and is based on the spectral
representation of the external force with a subsequent
recalculation of the given force into the coordinate space
[102, 103, 136]. Notice that in the magnetic hydrodynamics of
a compressible fluid there are four types of waves: Alfvénic,
slow magnetosonic, fast magnetosonic, and entropic [137,
138]. The spectra in the turbulence inertial interval can be
determined in this case by a richer picture of interactions
among these waves, and to describe such turbulence at
different values of the similarity parameters, the traditional
types of external force, based on the local spectral representa-
tions of the turbulence source, can strongly simplify the real
picture of processes in compressible MHD plasma turbu-
lence. The problem of adequacy of large eddy simulations in

this case is reduced not only and not to a large extent to
matching with direct numerical simulations (which was done
in our papers [57-63, 94], but rather to the possibility of
reproducing the scale-invariant Kolmogorov and Iroshni-
kov—Kraichnan spectra under the suitable physical condi-
tions for their origination. This section is dedicated to
highlighting this important aspect of large eddy simulations.

To study compressible MHD turbulence over the inertial
interval, papers [65-68] proposed using a linear external
force, recently suggested in incompressible neutral fluid
dynamics [139-141]. The idea is to utilize a force that is
directly proportional to the fluctuating velocity. This
approach to the driving force definition was dubbed ‘linear
forcing’. In spite of evident merits, this method has not been
widely applied to LES and DNS of turbulence. The main
advantage of using such a force is that it acts on all scales in
the coordinate space and so provides the production of
turbulent kinetic energy and the adequacy of stationary
solutions taking into account the nonlinear wave interac-
tions accumulating in the space [65, 67].

5.1 Basics of the theory of scale-invariant

MHD turbulence and methods of its modeling
Magnetohydrodynamic plasma turbulence, like hydrody-
namic turbulence, possesses a property of scale invariance
on the inertial interval [12, 13, 76, 117, 123-126, 142-157]. A
fully developed turbulence is possible if the integral scale L
and the dissipation scale d differ by several orders of
magnitude (L > d). According to the phenomenological
Kolmogorov theory, this state is characterized by two
properties. First, the energy dissipation rate is independent
of the viscosity of the fluid considered, i.e., it tends to a finite
value in the zero-viscosity limit. Because the nonlinear
interactions of eddies do not violate the energy conservation
law, the dissipation rate ¢ should be equal to the energy
transfer rate I1° to the system (i.e., I1° = ¢) either from an
external source or from the largest energy-containing eddies
with scale L. Second, the energy is not transported directly
from the largest scale to the dissipative scale, but is
transferred over the spectrum due to consecutive interactions
between progressively smaller scales, i.e., an energy transfer
cascade shows its worth. In this cascade, eddies with scale /
decay into smaller eddies, but are reproduced by larger eddies,
etc. According to the Kolmogorov theory, all scales are
assumed to be in energy equilibrium; the energy dissipation
rate for eddies of size / does not depend on the scale / and is
equal to e: I1(/) = IT1° = ¢. If t*(/) is the characteristic time
needed for an eddy with size / to transfer its energy E(/), then
one obtains

(104)

Because the energy transport in a neutral fluid is due to the
eddy deformation by its own motion, the transport time is
equal to the eddy’s turnover time t,;. Assuming the interac-
tions to be local in the wave number space, this time can be
written out as

[
Tnl = —7%

ik (105)

where u(/) is the characteristic velocity dispersion inside the
eddy. Using the relationship E(/) ~ u?(l), we get E(I) ~ ¢*/.
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Taking into account thatk ~ 1//and E(/) = jk E.dx ~ kE,
we can write the following equation
I ~ kK5PE? = ¢ (106)
The scale-independence of the flow thus leads to the
Kolmogorov spectrum:
Ep ~ MPk5 (107)
In an electrically conducting fluid placed in a homoge-
neous magnetic field, incompressible fluctuations appear as
Alfvénic waves. The principal assumption of the Iroshnikov—
Kraichnan theory is that the proper eddy deformations in the
large-scale magnetic field are due to weaker interactions
among propagating Alfvénic waves. The propagation of
Alfvénic waves introduces an additional timescale, the
Alfvén time 1o ~ [/ VA, where Vj is the Alfvén velocity, so
the effective time t*(/) of energy transfer along the spectrum
is no longer equal to the eddy turnover time t,; =~ //u ~ 1/b,
where b is the magnetic field fluctuation expressed in units of
velocity. The time of coherent interactions is reduced to 74,
and 7, differs from the eddy turnover time by factor b/Va.
Thus, by treating consecutive collisions of wave packets as
independent, one can show that
(108)

Tnl VA

* ~ n ~

T (Z) ~ Tnl =~ Tl
TA

b

and this time can be much longer than t,,. Substituting now
the effective transfer time t*(/) instead of the eddy turnover
time in equation (104) for the energy transfer rate I1, we
obtain the relationship

_kE* IPE;
T Ve Va

K (109)

Imposing the constancy condition on the energy dissipation
rate ¢ yields

E(I) = (Vale)'?. (110)

Expression (110) leads to the Iroshnikov—Kraichnan
spectrum:

Ep & (¢Va)Pk 32, (111)

In paper [158], the generalized formulas for the energy
transfer cascade in the Elsasser variables z = u & b [159] are
derived. The Elsasser variables are sometimes convenient in
MHD turbulence studies. This representation offers a more
clear description of fluctuations propagating either along the
large-scale magnetic field or in the opposite direction. The

turnover time of a type z* or z~ eddy depends on the field
amplitude of another type, i.e.,

ot
nl Z:F’

(112)

By allowing the destruction of correlations, as assumed in
the Iroshnikov—Kraichnan theory, the spectral fluxes IT* and
I1~ must be equal:

k3E; E} '

- ~1Il; ~
k k
K K VA

(113)

This relationship leads again to the Iroshnikov—Kraichnan
spectrum (proportional to k—/2) if the amplitudes are
comparable in magnitude.

In paper [160], it was assumed that the nonlinear timescale
(IS (kz,?c)*1 is defined as the eddy turnover time, i.e.,
interactions are coherent, as in the Kolmogorov cascade.
The spectral transfer rates are, thus, different:

— ot
n,fsz/zLE]’fzmi (114)
(£

In this case, the condition that both fluxes be constant
leads to the Kolmogorov spectra for both fields indepen-
dently of the flux ratio ¢*. In other words, the Kolmogorov
spectrum is recovered in the Elsasser variables:

Ef ~ (T3R5 (115)

The main difference between the two concurrent phenom-
enological theories (—3/2 and —5/3) consists in the choice of
the characteristic timescale for the interaction time. The main
assumption is that the Iroshnikov—Kraichnan hypothesis is
valid in a strong magnetic field, whereas the phenomenologi-
cal Kolmogorov theory for the MHD case (i.c., the assump-
tion made in paper [160]) is applicable when fluctuations
dominate the magnetic field (strong turbulence). Both
phenomenological theories are developed by assuming iso-
tropic turbulence, i.e., when there is no large-scale, perma-
nent, mean magnetic field. The large-scale mean magnetic
field usually suppresses energy transfer cascades along the
magnetic field direction.

There are several physical reasons why correlations
cannot be destroyed, as assumed in the Iroshnikov—Kraich-
nan model. The first is that when the large-scale magnetic
field is present, the energy cascade is not isotropic in the wave-
vector space, and for modes with wave vectors almost
perpendicular to the magnetic field, the decay time of the
Alfvén correlations becomes much longer than the nonlinear
interaction time [13]. The second reason is that fluctuations
are incompressible in most space physics problems, which can
lead to direct interactions among compressible waves propa-
gating in one direction. For example, the solar wind is not
incompressible, isotropic, or homogeneous, and what is more
it is an electrically conducting medium; most solar wind
turbulence observations suggest spectral power indices very
close to the Kolmogorov value, despite the fact that the
spectrum with the power-law index —3/2 is expected in
MHD turbulence. To resolve this issue, for example, paper
[161] proposes applying a renorm-group analysis and shows
that the scale-dependent ‘local mean magnetic field” affects
the Alfvénic fluctuations. By substituting the local mean
magnetic field, defined as k~'/3, into the energy cascade
equation in the Elsasser variables [158], we recover a
Kolmogorov type spectrum for MHD turbulence.

The possibilities of direct numerical simulations to
determine the scale-invariant spectra of compressible MHD
turbulence are restricted by the high Reynolds numbers
needed to obtain a clearly determined turbulence inertial
interval. Therefore, it is quite difficult to accurately measure
the spectrum slopes in order to determine which of the
phenomenological theories, Kolmogorov’s or Iroshnikov—
Kraichnan’s, is valid. To address this issue, paper [65]
proposed that the advantages of large eddy simulations be
used.
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The concept of isotropic homogeneous turbulence was
formulated to study the universal statistical spectral proper-
ties. If energy is not supplied to a turbulent flow, after some
time this flow becomes laminar due to contributions of
viscosity and diffusion. To obtain results with high statistical
significance, it is necessary to average sufficiently many
realizations of the turbulent flow. In numerical simulations,
it is much more effective to carry out one long calculation
than to run many calculations with different initial condi-
tions; therefore, the ensemble average is frequently substi-
tuted by the time average. In many space physics problems,
statistically stationary (quasisteady) turbulence should be
studied. The quasisteadiness implies that the energy and
energy dissipation rate are about constant in time, and only
small fluctuations around their mean values may arise. To
sustain three-dimensional turbulence, external forces are
invoked to inject energy into the system (energy forcing),
and this energy compensates for losses due to energy
dissipation on small scales. It should be noted that the
driving force determination (by different methods) is, in
fact, a technical problem and not a real physical issue. Most
of the methods were developed for determining the driving
force in neutral fluid turbulence studies and rely on introdu-
cing the external force into the Navier—Stokes equation for all
modes in the wave number interval |k| = |k¢| or inside the
sphere |k| < kf, where k¢ is the limiting value of k. These
intervals are bounded by the minimal wave numbers, such
that the external force acts only on large scales of the flow,
and thus the injected energy cascade arises, which is
dissipated due to viscosity effects on small scales.

To determine the driving force, various methods are
employed in turbulence modeling. Frequently, an approach
is applied in which the driving force is expressed in the form

Sk, 1) =la(k, 1), (116)
where the ‘hat’ symbol " over a variable denotes the Fourier
transformation. The coefficient { is chosen in the course of
modeling such that the injected energy holds constant. In
paper [162], the volume force was tapped in the form

2 Cﬁ(k, l)
f(k> t) - Nﬁz(k, l) (1 17)
for each wave number k in the range (0, k = ko) containing
N wave numbers, where ¢ is the dissipation rate. This
formulation for the external force assumes that the energy
delivered to the system is constant and is equal to the energy
lost by dissipation. However, there is a problem with such a
definition of the external force, since in that case it strongly
correlates with the velocity field. Paper [163] utilized the
same approach to define the driving force, but to ease the
problem related to the correlation, this method was mod-
ified. The modification consisted in involving only N < N
random wave numbers from a given interval to define the
external force.

Paper [164] proposed using the stochastic force in the form

p kik;

itk = (3 =52) w0 [0 - 0 ko) . (18
where w; is the Ornstein—Uhlenbeck stochastic process, and
© is the Heaviside function. However, as there is a certain
timescale on which the force is correlated, the force—velocity

correlation will significantly contribute to the total external
forcing effect. In paper [165], this method of defining the
external force was applied to study the subgrid-scale
closures in the large eddy simulation method, but these
simulations meet with difficulties in providing a constant
driving force for different sizes of the computational
domain.

Paper [166] reported using a stochastic scheme with a
driving external force in the form

filk, 1) = A(k, 1)e! + B(k, 1)e? . (119)
Here, ¢! and e? are unitary orthogonal vectors perpendicular
to k, and functions 4 and B are random complex functions
that depend on the force spectrum at the initial instant of
time. Such an external force was applied in papers [78, 137,
167] to study compressible MHD turbulence, the evolution of
different MHD waves (Alfvénic, slow and fast magnetosonic
waves), and the magnetic reconnection.

When exploring supersonic turbulence in magnetized
molecular clouds, paper [134] made use of a large-scale (at
fixed wave numbers k < 2), isotropic, solenoidal, external
force with zero helicity written in the form

f=pa—{pa), (120)
where a = uy/7 is the acceleration, and the angle brackets
(...) denote averaging over the entire computational domain.
This driving force formulation allowed the sonic Mach
number to be almost constant during the whole numerical
computation process.

It is worth noting that there are different methods as well
in which the kinetic energy for the lowest wave numbers is
held constant. In the method applied in paper [168], the values
of the u Fourier coefficients held constant in the range
1 < k < 2. This idea was later modified [169] so that the
value of |a(k, 7)| is kept constant for each mode from the range
1 < k <2, while their phases are evolving. However, it is
difficult to associate this external force with some physical
quantity. In paper [170], this method was applied with slight
modifications, namely, by assuming that the energy is
conserved within the range |k| < k¢, where k¢ can be larger
than two. Paper [171] utilizes the external force that keeps
constant the total kinetic energy via the repetitive supply of
the energy lost at each time step in the range 1 < k < 5. Thus,
the dissipated energy is transferred to large scales of the flow
considered. Papers [172, 173] proposed a method in which the
total energy is conserved on the first two wave number
intervals (1 <k <2 and 2 <k < 3) as time passes. Paper
[174] was concerned with other wave number intervals:
0.5 <k < 15and 1.5 < k < 2.5. The ratio between energies
on these wave number intervals was set so as to correspond to
the scale-invariant Kolmogorov spectrum & ~5/3. This method
was also utilized in papers [175, 176] in considering an
isotropic external force.

Paper [177] compares the results of simulations based on
stochastic turbulence excitation methods (118) with those
using a deterministic external force written as follows:
f(k,t) = a(k, ) gi(t)/z. The function gi(¢) is expressed
through the solutions of a differential equation for each
wave number. Both these methods were shown to give
consistent results; at the same time, the deterministic method
demonstrated smaller statistical variations for most of the
variables.
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All the methods discussed above have been developed to
solve the original governing equations in the wave number
domain. However, it is frequently necessary to employ the
finite-difference approach in the physical space, when
modeling turbulent flows. This approach, unlike the spectral
method in the wave number domain, is more effective for
treating problems with complex geometry and different
boundary conditions, and also requires less computational
capacity and time. The driving force definition methods
described above require knowledge of wave numbers and
the Fourier transforms of physical variables describing the
flow studied. Below, we will discuss another method for
defining the external force in the physical space to study
scale-invariant properties of compressible MHD turbulence,
in which the driving force is independent of the Fourier
transform.

5.2 Linear representation of the driving force
in compressible MHD turbulence in physical space
In this section, we address the generalization of the theory of
linear representation of the driving force to the case of
compressible MHD turbulence. We will devise expressions
for the external force entering the momentum equation and
magnetic induction equation, which can be tapped to model
MHD turbulence in physical space.

The governing equations of compressible MHD turbu-
lence with external forcing can be written out in the form

% _ Oy

= 121
2--2L (121)
Opu; 0 B? 1

=——— | pui; ij— 0ij+ o= 6ij— = BiB; | + I",
” 6x;(puuj+p51 a]JrST[éj e >+ ;

(122)

0B d 0°B;
e T (B — w;B, Ay 123
ot aX/ (Lt, u j) —l—i’] axlz + i ( )
0B; —o
6x,~ - (124)

Here, F* and F? are the external forces that maintain
turbulence, since, in addition to decaying turbulence, it is
often needed to study statistically stationary (quasistation-
ary) turbulence. If energy is not supplied to a turbulent flow,
after some time the flow becomes laminar due to viscosity and
diffusion effects. To sustain three-dimensional turbulence,
external forces are invoked to deliver energy into the system;
this energy compensates for losses due to dissipation on small
scales. The quasisteadiness implies that the amounts of the
supplied energy and the dissipated energy are approximately
constant in time, and that only small fluctuations around the
mean values can emerge.

To model the hydrodynamic turbulence of an incompres-
sible fluid with driving force in the physical space, so-called
‘linear forcing” method has recently been developed and
adopted [139, 140, 178]. The main idea of this approach
consists in adding an external force that is proportional to the
fluctuating velocity. The linear external force corresponds to
turbulence with a driving force caused by a mean velocity
gradient, i.e., the shear. This force emerges as one of the terms
in the fluctuating velocity equation which corresponds to the
energy generation term in the turbulent kinetic energy
equation. Here, we will generalize this approach to the case
of the compressible MHD flow of an electrically conducting
fluid [65, 66].

The equation for fluctuating velocity in a turbulent
compressible MHD flow is written out as

612,» i U aﬂ, 615 + , aUl
Oty |y Qi _ i QUi
Plar ™% oy oy, oy Yoy

[ Qe[ 2N] B B2
Py P\Vax/] "oy 8

1 0B, . oY 1. 0B . OB;
2 B — | B (B 25 (12
T { ! ox; T8 ax_,-] T { ! x; < ! axj>] (125)
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Here, use has been made of the following, the so-called
Reynolds, resolutions: u; = U; + i;, Bi = Y; + ) p=P+p,
0ij = 2ij + 6;5, where U, Y;, 2, and P are the mean values,
and 1;, Bl-, 6, and p are the fluctuating variables.

The third term on the right-hand side of equation (125),
p1;(0U;/0x;), corresponds to the source in the turbulent
kinetic energy equation. The turbulent kinetic energy equa-
tions can be derived as the difference between the statistically
averaged equation, obtained from the scalar product of the
velocity and nonaveraged momentum equations, and the
scalar product of the velocity by the averaged momentum
equation. In the symbolic form, the derivation of the
turbulent kinetic energy equation can be written out as
(u-NSeq.) — U(NS eq.), where NS eq. means the Navier—
Stokes equation with the Lorentz force. Therefore, the
turbulent kinetic energy equation takes the form

o/1 , 0 I ., | P ,
2 <§ pu > + o, <<§ pu >U/ + <§ pu ”_/> - <ﬁi_/”:>>
, 0p , 06;; .\ oU; Oul;
_<u’ @_xr> * <ul ax./> ot} ox; <ﬁi‘i axj> ’

(126)
where f3;; is the turbulent magnetic tensor:
BB B
ﬂij = 41tA T 5:’_/'- (127)

The terms entered into equation (126) can be interpreted
as follows: ((1/2)p#?)U; is the turbulent kinetic energy flux
related to the mean velocity; ((1/2)pui4;) is the diffusion
turbulent flux of the turbulent kinetic energy; (11;(06,;/0x;)) is
the viscous dissipation of the turbulent energy, and
(11;(0p/0x;)) is the pressure-strain rate term (turbulent
diffusion of the pressure via pressure and velocity correla-
tions). The last terms on the left-hand and right-hand sides of
Eqn (126) characterize the turbulent kinetic energy relation to
the magnetic energy, i.c., the effect of the magnetic force work
on the turbulent velocity. The term (pui;(0U;/0x;)) in
Eqn (126) is the source of the turbulent kinetic energy per
unit volume per unit time due to the interaction between
Reynolds stresses and shear in the mean flow. In equation
(125), this term is interpreted as the forcing term [139]
proportional to the velocity. Thus, it is assumed that this
term for isotropic homogeneous turbulence can represent the
appropriate force to sustain a stationary turbulent flow with
the force directly proportional to velocity (linear forcing):

Fi” = @/)l/ll'. (128)

Here, O is the coefficient that is determined from the kinetic
energy balance for a stationary statistical state, taking into
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account that the mean velocity gradient in homogeneous
isotropic turbulence is equal to zero:

1 0 1 0
=5 i 5 POij s+ —(uj=— B8 )|,
© 3<p>ur2ms |:<uj axi be ]> et 8 <u, axl 5/>:|
(129)

where ¢ = —(u;(00/0x;)) is the mean dissipation rate of the
turbulent energy into heat. In expression (129), it is taken
into account that 1/(pu?) =1/(3(p)ul), since ul =
(pu?)/(3(p)) is the mean-weighted averaging of the rms
velocity. Notice that the term (u;(0p/0x;)) = —(p(Ou;/0x;))
in compressible homogeneous turbulence. It should be noted
that the coefficient @ in expression (128) can be either kept
constant or recalculated in due course of simulations [140].

The functional representation of the external force
F}' = Opu; in the physical space is equivalent to the force
representation in the spectral (Fourier) domain, which acts on
all modes. This is, in fact, the sole distinction between the
linear forcing and the standard spectral representation of the
external force in the case where the energy is delivered into the
system only on the interval of small wave numbers, i.e., into
the integral turbulence scale.

In a similar way, we can find the external force F? in the
magnetic induction equation. The equation for the fluctuat-
ing part of the magnetic field in a compressible MHD flow
can be written out as

0B; 0B, ,0oU ,0U; o, OB
ay == =t_p =)y !
o Py T ey TP ey T ey e

. O 5 Ot L0, 0
o (asg)] v -aa

0B/ 0B
— | —— (i — ).

/ an / an
In the last equation, the first term on the right-hand side,
B;(0U;/0x;), corresponds to the generation term in the

turbulent magnetic energy equation. The turbulent magnetic
energy equation has the form

3 B’2+a B? U s B
o \8n/ Tox; [\8n/ 7 " \8x
<é,'éi> 6U, é,’éi ab,l, n 2 623,-
=i i} Ll =20 (31
4n 6xj+ 4n Ox; T ox7 (131)

Terms in the last equation describe the transport,
generation, and dissipation of the turbulent magnetic
energy in an electrically conducting gas. In equation (131),
the term (B2/8m)U; corresponds to advection of the
turbulent magnetic energy, the term ((B*/8n)i;) to turbu-
lent diffusion of the turbulent magnetic energy, the term
((B,B,- /4m)(011;/0x;)) to the interaction of magnetic turbulent
energy with fluctuating components of the mean shear, and
the term (17/4n)(B;(0*B;/ 0x})) to turbulent magnetic energy
dissipation caused by magnetic diffusion. The first term on
the right-hand side of equation (131), ((B;B;)/4n)(dU;/dx;),
is interpreted as the magnetic energy generation due to
interaction between the magnetic field and the mean shear.
It should be noted that this term corresponds to the term
—(puii;(0U;/0x;)) in the turbulent kinetic energy equation
(126). Let us assume that the driving force in the magnetic
induction equation is proportional to the magnetic field.

(130)

Therefore, the force F? can be defined as

F’ = ¥B;, (132)
where ¥ is a coefficient. As when finding ® above, to
determine the coefficient ¥ we make use of the magnetic
energy balance for a steady statistical state (i.e., we take into
account that the time derivative is zero):

X
3B2 °’

rms

(133)

where y = (r]B,«(azBi/axj-Z)> is the resistive dissipation of the
turbulent magnetic energy in MHD turbulence, and
B2, = (B*)/3 is an rms magnetic field. Like the parameter
® in Eqn (128), the coefficient ¥ in Eqn (132) during
simulations of forced MHD turbulence can be either kept
constant or recalculated at each time step.

Thus, we derived expressions for external forces in the
momentum conservation equation (128) and in the magnetic
energy equation (132) that will be used below for modeling
three-dimensional compressible MHD turbulence in physical
space.

5.3 Large eddy simulation method

for forced compressible MHD turbulence

In this section, we formulate the LES method to model
compressible MHD turbulence with external forcing as
derived in Section 5.2. The filtered equations with external
forcing can be written out as [65, 67, 68]

o %:o (134)
+2E_l\;§ 5 _LgB,B,) _ ‘ZZ,*F (135)
Wt -ab) - g S-SR
2_2_0. (137)

The first terms on the right-hand side of equations (135), (136)
contain the subgrid-scale turbulent tensors /¢ and tf;, which
describe the influence of the subgrid-scale terms on the large-
scale dynamics.

The right-hand parts of equations (135), (136) contain the
external forces F* and F?, respectively, as determined using
linear forcing to excite turbulence in Eqns (128) and (132),
respectively, which in the dimensionless form can be given as
follows:

Fu—
L 3(p)i,
~ (#,(0/0x))p"dij) . (#;(0/0x))B*0;;) ] _
R : : i, (138
x M ve pu;, (138)
— i+ h _
b 5 B (139)
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where & = —((#;/Re)(05/0x;)). The term R = (i;(01/;/0x;))

represents the SGS dissipation by which the energy, in fact, is
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Figure 15. Time evolution of the kinetic energy for forced compressible
MHD turbulence.
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Figure 16. Time evolution of the magnetic energy for forced compressible
MHD turbulence.

locally transferred from energetic large-scale eddies to small-
scale motion. The term 7 = <B,'(6‘C£«/@Xj)> stands for the
subgrid-scale magnetic energy dissipation.

It should be noted that, when applying the LES method to
study compressible MHD turbulence with external forcing,
an additional term arises, related to the subgrid-scale tensor,
in the energy balance when defining the coefficient tapped to
find the external force. However, if the eddy viscosity model
(for example, the Smagorinsky model) and the dynamical
procedure to find the model constants are used, the additional
terms N and 7 can be omitted, since the values of these model
constants are calculated self-consistently at each time step in
the course of turbulence simulations. In the dynamical
procedure, the model constant is obtained in such a way as
to minimize (by the least-square method) the dependence of
the turbulence statistics on the filter bandwidth 4 [179], and,
therefore, a suitable value of the dynamically determined
constant is provided. If the scale-similarity model is used as
the subgrid-scale parametrization, in which there are no
model constants, the terms N and 7 should be included in the
external force determination by the linear representation
method.

Distinctions in the external force determination by the
linear approach and in polytropic cases are due to the fact
that, when considering a heat-conducting gas, the pressure is
defined through the equation of state and depends on
temperature [65], while in the polytropic case the pressure is
assumed to be dependent on density as p = p”, where y is the
polytrope index.

5.4 Analysis of results of numerical simulations
Let us discuss the results of modeling of forced compressible
MHD turbulence obtained for both a polytropic [65, 67] and a
heat-conducting [65] electrically charged gas in the physical
space. The initial isotropic turbulent spectrum for the kinetic
and magnetic energies is determined in the Fourier space and
is chosen to be close to the spectrum k~2 with random
amplitude and phase along all three directions. For more
detailed information on different aspects of three-dimen-
sional simulations of forced MHD turbulence, see paper [65].
Figures 15 and 16 display the time evolution of the kinetic
(Ex) and magnetic (Ey) energies, respectively, for the case

EAK2

104

103

102 1 1 1 1 1
10° 10! k

Figure 17. Normalized smoothed spectrum of the total energy multiplied
by k3/2 for the case of Ey, < Ey.

where, at the initial instant of time, the magnetic energy
exceeds the kinetic energy: Ex < Ey. Notice that a rapid
growth in the kinetic energy and a simultaneous sharp
decrease in the magnetic field strength are observed. Then,
both the kinetic and magnetic energies take constant values.
Paper [65] also presents the time evolution of the mean
density, which suggests that density fluctuations arise until a
statistically stationary regime of compressible MHD turbu-
lence is established. After that, the mean density fluctuations
become negligibly small. The normalized smoothed spectrum
of the total energy EX (multiplied by k3/?) is shown in Fig. 17.
Analyzing the properties of the inertial interval is one of the
principal tasks in studies of scale-invariant spectra of MHD
turbulence. The properties of the inertial interval are
determined by averaging the statistics over the time period
during which statistically stationary turbulence is realized
[154]. The total energy spectrum is obtained after averaging
the total energy Et = Ey + Ey in the statistically stationary
turbulence regime. As seen from Fig. 17, there is a sharply
defined inertial interval of MHD turbulence with the
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Figure 18. Normalized smoothed spectrum of the total energy multiplied
by k3/3 for the case of Ex > Ey.

Iroshnikov—Kraichnan spectrum varying as power-law k —3/2,

which is consistent with theoretical expectations. In this case,
there are fluctuations in the form of Alfvénic waves in an
electrically conducting fluid, and magnetic interactions play a
significant role in the turbulent energy transfer cascade,
which results in the Iroshnikov—Kraichnan &k —3/2 spectrum
[144, 180].

If initially the kinetic energy is much larger than the
magnetic energy, Ex > Fy, then, a statistically stationary
turbulence is established after the initial time interval, when
large fluctuations are observed, and the values of Ey and Ey
are kept almost constant in time, i.e., a balance between
dissipated energy and energy delivered into the system is
observed [65]. In the case of MHD turbulence, when the
kinetic energy is much higher than the magnetic one, i.e.,
nonlinear interactions are much more important than
magnetic ones and the fluid is, in fact, hydrodynamic, the
Kolmogorov spectrum with index —5/3 is observed. The
normalized (multiplied by &3/3) smoothed spectrum of the
total energy is presented in Fig. 18. The total energy spectrum
has been obtained after averaging the variables in the
statistically stationary regime. Figure 18 suggests the Kolmo-
gorov spectrum [123, 125]. This result is consistent with
theoretical predictions. Moreover, the residual energy spec-
trum, which is determined as EX = |Ef — Ef|, was investi-
gated [65, 149]. This spectrum is of interest because it gives
insight into the spectral interaction between the kinetic and
magnetic energies and demonstrates a self-similar scaling.
Paper [65] studies in depth the normalized smoothed spec-
trum of the residual energy EX ~ k~7/3 on the turbulence
inertial interval, which was derived theoretically and con-
firmed numerically for incompressible MHD turbulence [119,
149]. Tt is seen that there are no significant differences in
statistical properties on the inertial interval due to weak
compressibility (this result has recently been obtained for
compressible hydrodynamic turbulence in a neutral gas
[181]). Therefore, this external force provides the correct
result.

Thus, it is shown that the determination of the external
driving force using the linear forcing to excite turbulence
provides correct and adequate results in modeling compres-
sible turbulent MHD flows and guarantees the detection of a

statistically stationary turbulent regime. The expressions
found are used to formulate the large eddy simulation
method. The potential possibilities of the LES method to
reproduce the physics of flows studied in the stationary
regime for both polytropic and heat-conducting plasma
have been addressed in Ref. [65]. It has been shown that,
when the initial kinetic energy of the flow is much larger than
the magnetic one, the Kolmogorov spectrum with power-law
index —5/3 is observed, whereas if the initial magnetic energy
is larger than the kinetic one, the Iroshnikov—Kraichnan
spectrum with power-law k32 arises. Thus, the efficiency
of the LES method for investigating the scale-invariant
properties of compressible MHD turbulence has been
demonstrated.

Several important remarks about the scale-similarity
model are in order. As noted above, this model implies that
large subgrid-scale eddies and small resolved scales possess a
similarity property. For decaying turbulence—in both the
MHD case and hydrodynamic case with a neutral fluid — the
SGS models relied upon the eddy viscosity concept and/or
mixed models demonstrated the most accurate results among
the subgrid-scale closures. As is well known, the ability to
dissipate energy appropriately is the most important feature
of the subgrid-scale parametrizations. The general conclusion
is that the scale-similarity model should be tapped along with
the eddy viscosity model (for example, with the Smagorinsky
parametrization, which is the key idea of the subgrid-scale
mixed model) for degenerating turbulence. However, the
scale-similarity model in a priori tests reproduces adequately
the correlation between the model and the actual turbulent
stress tensors, even if the flow is strongly anisotropic [122].
This suggests that the scale-similarity model correctly predicts
the location of turbulent structures. Furthermore, despite this
model being integrally dissipative, it is able to provide local
generation of turbulence energy by imitating the energy
backscatter from small to large eddies. This property turns
out to be important in modeling anisotropic turbulent flows,
when realizing the self-organization process of small-scale
turbulence into coherent large-scale structures. One of the
main advantages of the scale-similarity model is that this SGS
parametrization, unlike eddy viscosity-based models, does
not require entering special model constants. (Here, a second
filter, broader than the main filter, can be utilized, thus
resulting in the appearance of model constants [37, 182]
which, in turn, can be found using a dynamic procedure;
this, however, breaks the Galilean invariance [183].) Never-
theless, the insufficient dissipativity of the scale-similarity
model leads to inaccurate results in the case of decaying
hydrodynamic and MHD turbulences [48, 60]. The situation,
however, cardinally changes when addressing scale-invariant
properties of forced turbulence. In that case, the scale-
similarity model can yield more accurate results than the
closures based on the eddy viscosity. In forced turbulence,
where an external force is introduced to inject energy into a
turbulent flow (otherwise, the flow becomes in time laminar
due to viscosity and diffusion effects), the subgrid-scale
modeling should correctly provide the statistically stationary
regime and not only guarantee an adequate energy dissipation
rate, as in the case of degenerating turbulence. The scale-
similarity model, which has a range of key merits mentioned
above, can be applied to study the scaling properties of
turbulent MHD flows. It can be expected that the results of
modeling of forced compressible MHD turbulence by the
LES method, in which the scale-similarity model is involved
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Figure 19. Spectrum of the total energy EX. Diamonds show the DNS
results, the solid line corresponds to the Smagorinsky model for compres-
sible MHD turbulence, and the dashed line is in compliance with the scale-
similarity model for compressible MHD turbulence.

as the subgrid-scale closure, will be accurate enough. Thus,
such a parametrization, unlike decaying MHD turbulence,
can be utilized as an independent subgrid-scale model. It
should be noted that the Elsasser variables are frequently
tapped in magnetohydrodynamics to write the MHD equa-
tions in a more symmetric form, and in this case it is especially
important to provide a good correlation between the subgrid-
scale and real turbulent tensors. For example, a strong
correlation between all three components of the velocity
fluctuations and the magnetic field fluctuations is actually
observed in the solar wind, and it is shown that the total
energy spectrum can depend on the level of correlations [146].
It is also possible that a good correlation plays an important
role in problems where inhomogeneities of the turbulent flow
are taken into account. Therefore, paper [67] carefully studies
as well the efficiency of the scale-similarity model to model
forced compressible MHD flows.

Figure 19 depicts the total energy spectrum for the case
where Re > Rey and a Kolmogorov-like spectrum k—/3 is
observed. As seen from this figure, the scale-similarity model
provides even more accurate results than the Smagorinsky
parametrization for MHD turbulence, i.e., results obtained
with the scale-similarity model are in better agreement with
DNS results [67]. Thus, this subgrid-scale model with linear
forcing is able to correctly reproduce the scale-invariant
properties of turbulent MHD flows. This makes the scale-
similarity model a convenient subgrid-scale parametrization
in studies of different nondecaying turbulent plasma flows,
especially in astrophysical and space applications, taking into
account this model’s advantages, including, first of all, no
need to define the model constants.

6. Conclusions

We have reviewed the state of the art and the latest
achievements in computational studies of compressible
turbulent space plasmas. The complexity of the governing
MHD equations for compressible plasma requires developing
methods that are alternatives to direct numerical simulations.
The large eddy simulation method is an alternative to direct

numerical simulations of complex turbulent flows. This
method proved to be efficient in exploring the geophysical
turbulence and the turbulence of engineering flows. The basic
idea of the method is to take advantage of the filtering of the
governing fluid dynamics equations with the subsequent
parametrization of the universal part of the turbulent flow
by subgrid-scale closures. This method is more favorable than
alternative methods of turbulence studies. Unlike the Rey-
nolds treatment, the LES method resolves large eddies and
thus provides information on the statistical and spectral
properties of the turbulent field. Unlike direct numerical
simulations, LES allows one to study flows with higher
similarity parameters than in DNS for present-day computa-
tional capacities of supercomputers, since the number of
degrees of freedom of the turbulent motion is very high and
the minimal number of the numerical grid nodes must be
restrictively high for direct numerical simulations of turbulent
flows with realistic Reynolds numbers. The last advantage is
especially important for studying MHD turbulence in
compressible plasma which is characterized by high Rey-
nolds and Mach numbers.

We have described in detail the large eddy simulation
method for studies of compressible magnetohydrodynamic
plasma turbulence and have shown its applicability to the
investigation of homogeneous degenerating turbulence.
Possible parametrizations of subgrid-scale phenomena have
been analyzed in detail. It is shown that in the case of
polytropic plasmas the subgrid-scale models are designed by
combining and generalizing the known subgrid-scale terms in
compressible neutral fluid dynamics and in incompressible
magnetized fluid. A theory is considered of subgrid-scale
turbulent flows in a heat-conducting plasma for new sub-
grid-scale terms arising due to the presence of the magnetic
field in the total energy equation. Also shown is that the
extended Smagorinsky model and the model based on the
cross-helicity of the magnetic field and velocity provide the
most accurate numerical results in turbulence simulations of a
polytropic gas. We discuss the modeling of compressible
MHD turbulence of heat-conducting plasma at various
Mach numbers and show that the LES method can be
applied at small and moderate Mach numbers.

The efficiency of the LES method for solving important
space plasma problems is demonstrated. The exploration of
the three-dimensional dynamics of density fluctuations in
MHD turbulence of the local interstellar medium by the LES
method showed that there is a regime in which the originally
strongly compressible fluctuations become in time weakly
compressible, and the density fluctuation spectrum repro-
duces the kinetic energy spectrum. This corresponds to the
density fluctuations being transferred by the MHD flow in the
passive mixture regime. The temporal behavior of the proper-
ties of energy spectra obtained is analyzed. It is found that
energy-containing large scales of turbulence diminishes with
time, and the spectrum amplitude also declines. It is shown
that the dissipation interval in the energy transfer cascade
widens and the inertial interval narrows. The anisotropy
properties of MHD turbulence in space plasma in the weakly
compressible regime can be effectively studied by the
proposed large eddy simulation method. It is demonstrated
that the large-scale MHD flow is anisotropic, while the small-
scale flow should be isotropic.

In this review, we also discussed the linear forcing to study
compressible MHD plasma turbulence on the inertial inter-
val. This method implies that the driving force is directly
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proportional to the velocity in the momentum conservation
equation. If the compressible MHD turbulence is considered,
the governing MHD equations include the magnetic induc-
tion equation, and in that case the driving force is propor-
tional to the magnetic field in the magnetic induction
equation. Unlike the spectral representation of the driving
force, linear forcing acts on all scales in the physical space and
thus can more precisely reproduce the mode interactions in
turbulent compressible MHD flows. In fact, the linear forcing
corresponds to a forced turbulence caused by the mean
velocity gradient, i.e., by the shear. The linear external force
in the magnetic induction equation can be interpreted as the
magnetic energy generation due to interactions between the
magnetic field and the mean shear. We derive expressions for
the external force that provide the statistically stationary
turbulence regime. The equations found are used to formu-
late the large eddy simulation method. We highlighted the
potential prospects of the large eddy simulation method to
reproduce the physics of the flows in the stationary regime
both for polytropic and heat-conducting plasmas. It is shown
that, if the initial kinetic energy of the flow is much larger than
the magnetic one, the Kolmogorov spectrum k= is
evidenced, and if the initial magnetic energy exceeds the
kinetic one, the Iroshnikov—Kraichnan spectrum k~3/?2 is
established. Thus, the efficiency of the LES method is
demonstrated for the study of the scale-invariant properties
of compressible MHD turbulence.

The results obtained can be utilized to study turbulent
flows in various problems of space and astrophysical plasmas,
in thermonuclear plasma, in problems of plasma aerody-
namics, and in numerous engineering applications.
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