<u>ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК</u>

конференции и симпозиумы

К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ Б.М. ПОНТЕКОРВО

Результаты и перспективы нейтринных реакторных экспериментов

А.Г. Ольшевский

Обсуждается вклад реакторных экспериментов в изучение свойств нейтрино, а также перспективы дальнейших исследований в экспериментах с антинейтрино от реакторов.

PACS numbers: 13.15.+g, 14.60.Pq, 29.40.Mc

DOI: 10.3367/UFNr.0184.201405h.0539

Содержание

- 1. Введение (539).
- 2. Измерения угла смешивания θ_{13} в реакторных экспериментах (540).

Эксперименты на Калининской атомной электростанции (541).
 3.1. Измерение магнитного момента нейтрино. 3.2. Детектирование реакторных антинейтрино и контроль работы реактора. 3.3. Поиск стерильных нейтрино в реакторных экспериментах.

- 4. Заключение (544).
- Список литературы (544).

1. Введение

Впервые возможность использовать атомные реакторы в качестве интенсивных и чистых источников для детектирования антинейтрино обсуждал в работе [1] Б.М. Понтекорво, которому принадлежит много принципиальных идей, определивших направления развития физики слабых взаимодействий и нейтрино. В частности, им был предложен [1] первый (радиохимический) метод детектирования нейтрино, в его статьях впервые обсуждалась гипотеза мюон/электронной универсальности слабых взаимодействий [2] и предложение эксперимента по проверке того, что электронное и мюонное нейтрино являются различными частицами [3], а также была высказана гипотеза осцилляций нейтрино [4].

Практически все основные источники нейтрино, используемые в современных нейтринных экспериментах, известны довольно давно. Ещё в 1960 г. Ф. Райнес в обзоре [5] указывал на принципиальную возможность

А.Г. Ольшевский. Объединённый институт ядерных исследований, ул. Жолно-Кюри 6, 141980 Дубна, Московская обл., Российская Федерация E-mail: olshevsk@gmail.com

Статья поступила 10 марта 2014 г.

использования в экспериментах реакторов как источников антинейтрино низких энергий, пионных распадов на лету как источников мюонных нейтрино, интенсивных потоков нейтрино от термоядерных реакций на Солнце, потоков нейтрино от распадов мезонов в ливнях от взаимодействия космических лучей с атмосферой, нейтрино высоких энергий, летящих от астрофизических объектов. В современной терминологии это так называемые реакторные, ускорительные, солнечные, атмосферные и астрофизические нейтрино соответственно. Как известно, само экспериментальное открытие

Как известно, само экспериментальное открытие нейтрино было сделано Ф. Райнесом и К. Коуэном [6] в эксперименте на атомном реакторе в Саванна-Ривер (США) в 1956 г. Для регистрации антинейтрино от реактора Райнес и Коуэн использовали реакцию обратного бета-распада, ставшую с тех пор классической:

$$\bar{\mathbf{v}}_{\mathbf{e}} + \mathbf{p} = \mathbf{e}^+ + \mathbf{n} \,. \tag{1}$$

Интересно, что этому эксперименту в 1953 г. предшествовал эксперимент тех же авторов на реакторе в Хэнфорде (Hanford), благодаря которому, несмотря на его отрицательный результат, была осознана принципиальная необходимость защиты от фона космических лучей.

Таким образом, история реакторных нейтринных экспериментов насчитывает уже около 60 лет, в течение которых многочисленными экспериментами (ILL (аббр. от Institut Laue–Langevin) [7], "Bugey" [8], "Ровно" [9], "Goesgen" [10], "Красноярск" [11], "Palo Verde" [12] и др.) была развита методика детектирования антинейтрино и выполнены детальные измерения антинейтринных потоков на разных расстояниях от реактора. В 2003–2008 гг. в реакторном эксперименте KamLAND (Kamioka Liquid Scintillator Antineutrino Detector) [13] было проведено первое наблюдение исчезновения потока реакторных антинейтрино, согласующееся с гипотезой нейтринных осцилляций, получившей ранее подтверждение в экспериментах другого типа. Наконец, в 2012 г. реакторные эксперименты (совместно с указаниями из опытов другого типа) принесли ещё один результат принципиальной важности — было доказано, что угол смешивания первого и третьего массовых состояний нейтрино не только не равен нулю, но и относительно велик, что открывает новые возможности в осцилляционных измерениях.

2. Измерения угла смешивания θ_{13} в реакторных экспериментах

Участвующие в слабых взаимодействиях нейтрино трёх типов (ароматов) — электронное v_e , мюонное v_{μ} и тауонное v_{τ} — связывает с массовыми состояниями v_1 , v_2 и v_3 матрица смешивания Понтекорво–Маки–Накагавы—Сакаты (PMNS):

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}, \quad U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}.$$
(2)

Матрица смешивания *U* имеет следующий стандартный вид:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \\ \times \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} \exp(-i\delta) \\ 0 & 1 & 0 \\ -\sin \theta_{13} \exp(-i\delta) & 0 & \cos \theta_{13} \end{pmatrix} \times \\ \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
(3)

Угол θ_{12} введён для описания "солнечных" и "реакторных" осцилляций, а угол θ_{23} — для описания "атмосферных" и "ускорительных" осцилляций.

Связь между этими режимами осцилляций определяется углом θ_{13} , а с помощью δ параметризуется возможное нарушение *CP*-чётности в лептонном секторе. Соответствующие частоты осцилляций определяются разностями квадратов масс состояний m_1 , m_2 и m_3 . Измерены малая, $\Delta m_{21}^2 \approx 7.6 \times 10^{-5}$ эВ² (солнечная), и большая, $\Delta m_{31}^2 \approx \Delta m_{32}^2 \approx 2.4 \times 10^{-3}$ эВ² (атмосферная), разности квадратов масс. При этом, поскольку осцилляции не зависят от шкалы масс, неизвестно, в каком соотношении друг к другу находятся сами массы. Гипотезы m_1 , $m_2 \ll m_3$ и $m_3 \ll m_1$, m_2 называют нормальной и обратной иерархиями соответственно. Иллюстрация нормальной и обратной иерархий приведена на рис. 1.

 v_3 v_2 v_1 v_2 v_1 v_2 v_3 v_4 v_3 v_3 v_4

Рис. 1. Иллюстрация гипотез нормальной и обратной иерархий масс нейтрино.

Осцилляционные измерения показали, что углы сменивания θ_{12} и θ_{23} велики: $\theta_{12} \approx 35^{\circ}$, $\theta_{23} \approx 45^{\circ}$, однако для угла θ_{13} долгое время существовала только верхняя граница из эксперимента Chooz [14]: $\sin^2(2\theta_{13}) < 0,15$ на уровне достоверности 90 %. В 2010–2011 гг. из совместной интерпретации нейтринных осцилляционных данных [15], ускорительных экспериментов T2K (Tokai to Kamioka) [16] и MINOS (Main Injector Neutrino Oscillation Search) [17], а также эксперимента Double Chooz [18] появились первые указания на то, что угол θ_{13} , может быть, не так уж и мал.

Решающий вклад в измерение угла θ_{13} внесли реакторные эксперименты Daya Bay [19] и RENO (Reactor Experiment for Neutrino Oscillation) [20]. Идея этих экспериментов состоит в том, чтобы наблюдать уменьшение потока реакторных антинейтрино в результате осцилляций, определяемых θ_{13} . При этом оптимальное расстояние от реактора до детектора определяется величиной Δm_{31}^2 и для средней энергии реакторных антинейтрино ~ 4 МэВ составляет ~ 1,5 км.

Однако существенной неопределённостью при анализе данных такого рода экспериментов всегда были неопределённости вычисления начального потока антинейтрино от реактора. Выход был найден российскими физиками [21], которые впервые на конференции "Neutrino-2000" предложили постановку эксперимента на Красноярском реакторе с двумя детекторами — ближним (в котором ещё сохраняется полный поток) и дальним (измеряющим уменьшение потока) (рис. 2). Таким образом, с помощью проведения измерений в дальнем детекторе относительно ближнего можно избавиться от многих теоретических и экспериментальных неопределённостей предсказания потока, а также возможных общих систематических погрешностей в работе идентичных ближнего и дальнего детекторов.

Предложенные измерения на Красноярском реакторе не были реализованы, но идея использования двух детекторов на разных расстояниях была успешно осуществлена в других экспериментах. В таблице 1 приведены значения мощности реакторных комплексов, массы и глубины расположения подземных детекторов для трёх реакторных экспериментов, проводивших поиск осцилляций и измерение угла θ_{13} .

Эксперимент Daya Bay превосходит остальные как по величине ожидаемого сигнала (большее произведение мощности на массу), так и по надёжности защиты от фона космических лучей (бо́льшая глубина). В этом эксперименте в 2012 г. впервые было проведено измере-

Рис. 2. Схема предложенного Красноярского эксперимента с реактором на глубине 600 метров водного эквивалента (м.в.э.). Детектор 1 находится на расстоянии 45 м от реактора, детектор 2 — на расстоянии 1000 м. Предполагаемое число событий на первом детекторе 4200 в сутки, на втором — 55 в сутки, отношение сигнала к фону на первом много больше единицы, на втором — порядка 10:1.

Таблица 1. Параметры реакторных экспериментов по измерению угла θ_{13}

Эксперимент	Термальная мощность реакторного комплекса, ГВт	Масса детектора, т	Глубина распо- ложения даль- него (ближнего) детекторов, м.в.э.
Double Chooz	8,6	16 (2 × 8)	300 (120)
RENO	16,5	32 (2 × 16)	450 (120)
Daya Bay	17,4	160 (8 × 20)	860 (250)

ние угла θ_{13} , исключающее его нулевое значение на уровне более пяти стандартных отклонений [19]:

$$\sin^2(2\theta_{13}) = 0,092 \pm 0,016 \text{ (стат.)} \pm 0,005 \text{ (сист.)}.$$
 (4)

Это измерение однозначно подтвердило более ранние указания о ненулевом θ_{13} . Результаты, полученные в этом эксперименте, приведены на рис. 3.

Измерения угла θ_{13} также были выполнены в эксперименте RENO [20].

Современное значение для этого угла смешивания определяется величиной [22]

$$\sin^2(2\theta_{13}) = 0.095 \pm 0.010.$$
⁽⁵⁾

При этом доминирующими по точности являются измерения реакторных экспериментов.

Ненулевое и относительно большое значение угла θ_{13} позволяет планировать дальнейшие осцилляционные эксперименты, чувствительные к иерархии масс и возможному нарушению чётности в лептонном секторе. Чувствительность осцилляционных измерений к разным иерархиям обусловлена двумя эффектами: 1) осцилляциями в веществе и 2) интерференцией солнечного (Δm_{21}^2) и атмосферного ($\Delta m_{31}^2, \Delta m_{32}^2$) вакуумных режимов осцилляций.

Первый эффект изучат в действующих и планируемых ускорительных экспериментах (T2K, NOvA (NuMi Off-axis v_e Appearence), LBNE (Long-Baseline Neutrino Experiment) и др. (см., например, [23, 24])).

Рис. 3. Измерения потока реакторных антинейтрино на разных расстояниях от реактора в эксперименте Daya Bay. *N*_{detected} и *N*_{expected} — число зарегистрированных антинейтрино и их ожидаемое число.

Второй эффект, как и величину θ_{13} , можно изучать по исчезновению потока реакторных антинейтрино, но на расстояниях в несколько десятков километров. Эксперименты такого типа уже проектируются, но они являются исключительно сложными с точки зрения масштаба и параметров детектора. В проекте JUNO (Jiangmen Underground Neutrino Observatory), например, предполагается использование жидкосцинтилляционного детектора (с массой 20 кт и разрешением 3 % при энергии 1 МэВ), расположенного на расстоянии ≈ 60 км от реакторных комплексов общей мощностью 34,8 ГВт. Этот детектор позволит по эволюции осцилляций измерить со значимостью более трёх стандартных отклонений (3σ), какая из иерархий реализована в природе. В дополнение к своей основной задаче детектор такого масштаба даст возможность существенно уточнить параметры матрицы PMNS и выполнить измерения с нейтрино от сверхновых и геонейтрино, поиски стерильных нейтрино и др.

3. Эксперименты на Калининской атомной электростанции

Уже более 25 лет назад учёными из Института атомной энергии им. И.В. Курчатова были начаты эксперименты в нейтринной лаборатории на реакторе Ровенской АЭС. В докладе Л.А. Микаэляна [25] на сессии Отделений общей и ядерной физики АН СССР в 1986 г., например, приводятся результаты измерений спектров позитронов от реакции обратного бета-распада и абсолютных сечений этой реакции. Уже тогда измерения проводились на двух расстояниях, 18 м и 25 м, от центра реактора, а в качестве одной из целей измерений впервые ставилась задача изучения возможности контроля работы реактора по его антинейтринному излучению. Впоследствии эта задача стала приобретать всё большее значение, и сегодня в мире реализуется уже несколько проектов, нацеленных на измерение потоков и спектров антинейтрино с помощью относительно небольших эффективных детекторов с чувствительным объёмом около 1 м³. На этих установках, расположенных на расстояниях ~ 10 м от центра реакторов, планируют по измерению потоков и спектров антинейтрино вести независимый контроль мощности реактора, определять зоны выгорания топлива и наличие наработанных в топливе изотопов. Таким образом, нейтринные эксперименты демонстрируют своё не только фундаментальное, но и прикладное значение, обеспечивая получение информации, важной для проектирования реакторов, решения задач безопасности и нераспространения ядерного оружия.

Удобной, с точки зрения проведения нейтринных исследований, является Калининская атомная электростанция (КАЭС), расположенная на севере Тверской области. В её состав входят четыре водо-водяных энергетических реактора (ВВЭР) типа ВВЭР-1000 с термальной мощностью до 3 ГВт каждый. В качестве научных лабораторий используются технологические комнаты, расположенные на глубине 10-15 м под реакторами. На таком малом расстоянии от центра мощного реактора обеспечивается очень интенсивный ($\sim 3 \times 10^{13}$ см⁻² с⁻¹) поток нейтрино. Кроме того, вещество реактора, технологическое оборудование и элементы конструкции здания, расположенные над этими комнатами, обеспечивают защиту до 70 м.в.э. от космических лучей.

3.1. Измерение магнитного момента нейтрино

Первыми нейтринными экспериментами, проведёнными на КАЭС, стали эксперименты по поиску магнитного момента нейтрино. В рамках Стандартной модели (СМ), распространённой на массовые нейтрино, магнитный момент, связанный с их ненулевой массой, должен составлять малую величину: $\mu_{\nu} \sim 10^{-19} \mu_{\rm B} \, (m_{\nu}/1 \, \, {
m sB}),$ где *μ*_в — магнетон Бора. Однако в некоторых моделях магнитный момент может достигать $\sim 10^{-14} \mu_{\rm B}$ и даже $\sim (10^{-10} - 10^{-11}) \mu_{\rm B}$, что уже находится в пределах досягаемости современных экспериментов. При этом большие значения магнитного момента предсказываются в моделях с майорановскими нейтрино. Обнаружение электромагнитных свойств нейтрино на этом уровне указывало бы на новую физику за рамками СМ и предоставило бы аргументы в пользу майорановской природы масс нейтрино.

Эксперимент GEMMA (Germanium Experiment for measurement of Magnetic Moment Antineutrino) по поиску магнитного момента нейтрино был выполнен на КАЭС группой исследователей из Института теоретической и экспериментальной физики им. А.И. Алиханова (ИТЭФ) и Объединённого института ядерных исследований (ОИЯИ). В эксперименте использовался охлаждённый до сверхнизких температур германиевый полупроводниковый детектор массой 1,5 кг, расположенный на расстоянии ≈ 14 м от центра реактора. Сравнение спектров сигналов с этого детектора при работающем и остановленном реакторе позволило установить верхнюю границу магнитного момента электронного нейтрино (антинейтрино):

$$\mu_{\rm v} \leqslant 5.8 \times 10^{-11} \mu_{\rm B} \tag{6}$$

на уровне достоверности 90 %. Дополнительный набор статистики позволил ещё улучшить эту верхнюю границу [26]:

$$\mu_{\rm v} \leqslant 2.9 \times 10^{-11} \mu_{\rm B} \tag{7}$$

на уровне достоверности 90 %. В планы эксперимента GEMMA-2 входит увеличение массы детектора до 6 кг и установка его на расстоянии 10 м от центра реактора. В этом модернизированном эксперименте планируется достичь границы:

$$\mu_{\rm v} \leqslant 1.0 \times 10^{-11} \mu_{\rm B} \,. \tag{8}$$

3.2. Детектирование реакторных антинейтрино и контроль работы реактора

Одним из проектов эксперимента для измерения потока и спектра антинейтрино от реактора является проект DANSS (Detector of Anti-Neutrino based on Solid Scintillator), предложенный группой ИТЭФ-ОИЯИ для реализации на КАЭС. Регистрирующая часть детектора состоит из сцинтилляционных полос — стрипов, образующих плоскости и заполняющих общий объём 1 м³. Этот чувствительный объём окружён защитой из тяжёлых (медь, свинец) и лёгких (борированный полиэтилен) материалов для защиты от нейтронного фона и гаммаквантов. Кроме того, для защиты от фона, образованного космическими мюонами, установка сверху закрыта сцинтилляционной вето-системой.

Для регистрации антинейтрино используется хорошо известная реакция обратного бета-распада (1). Образо-

Рис. 4. Конструкция сцинтилляционных стрипов детектора DANSS.

ванный в в реакции (1) позитрон теряет энергию и аннигилирует. Этот сигнал, зарегистрированный в виде света в сцинтилляционных стрипах, несёт информацию об энергии антинейтрино и является первой меткой реакции. Нейтрон, образованный в реакции (1), теряет энергию (термализуется) в столкновениях с ядрами и спустя время порядка нескольких десятков микросекунд захватывается. Для того чтобы сделать этот захват более эффективным, в материал добавляют гадолиний, имеющий огромное сечение захвата термальных нейтронов. Возбуждение ядра гадолиния, захватившего нейтрон, снимается каскадом гамма-квантов с суммарной энергией около 8 МэВ. Таким образом, второй меткой реакции является регистрация ещё одного сигнала с энергией ≈ 8 МэВ, запаздывающего по отношению к первому на время термализации нейтрона. Схема конструкции стрипов детектора DANSS показана на рис. 4.

Данная конструкция была разработана совместно группой ОИЯИ и Институтом сцинтилляционных материалов (ИСМА) (г. Харьков) для экспериментов в физике высоких энергий. Стрипы производятся в ИСМА методом экструзии полистирольного сцинтилляционного материала сразу же со светоотражающим покрытием, в которое в случае эксперимента DANSS вносят также гадолиний. Сбор света со стрипа осуществляется вклеенными в канавки волокнами, смещающими спектр переизлучённого света в зелёную область. Часть волокон собирается с разных стрипов вместе на фотоэлектронные умножители (ФЭУ) для измерения энергии, другие волокна считывают полупроводниковыми лавинными фотодиодами с большим количеством ячеек.

Таким образом, детектор DANSS позволяет получить, в отличие, например, от жидкосцинтилляционных детекторов, дополнительную более точную координатную информацию, позволяющую разобраться в событиях и дискриминировать фон. Ожидаемые параметры детектора DANSS приведены в табл. 2.

Для проверки принципа работы детектора DANSS был подготовлен небольшой прототип этого детектора — DANSSino [27], который состоял из 100 стрипов, считываемых только двумя ФЭУ. Исследования прототипа в лабораторных условиях и на КАЭС с работающим и остановленным реактором позволили определить критерии отбора событий и подавления фона. Сравнение измерений, проведённых с работающим и остановленным реактором, позволило впервые измерить спектр реакторных антинейтрино в детекторе такого типа [27]. Измеренный спектр энергии позитронов от реакции

Чувствительный объём и сегментация	1 м ³ , <i>X</i> - и <i>Y</i> -плоскости, 2500 стрипов	
Полная масса (с защитой)	13 т	
Эффективность регистрации событий обратного бета-распада	70 %	
Ожидаемое число событий обратного бета-распада на расстоянии 11 м от центра реактора	$10^4 { m cyr}^{-1}$	
Ожидаемое число фоновых событий	50 cyt ⁻¹	
Разрешение по энергии	< 30 % при энергии 4 МэВ	

Таблица 2. Ожидаемые параметры детектора DANSS

Рис. 5. Измеренный в прототипе DANSSino спектр по энергии позитронов от реакции обратного бета-распада, вызванного реакторными антинейтрино. Штриховой кривой показан предсказываемый спектр. N(ON) — число событий при работающем реакторе, N(OFF) — при выключенном.

обратного бета-распада в сравнении с предсказываемым представлен на рис. 5.

Несмотря на малый объём DANSSino и наличие существенных краевых эффектов, результаты измерений и моделирования неплохо согласуются друг с другом, тем самым подтверждая ожидаемые параметры для детектора DANSS большего объёма, приведённые в табл. 2. Монтаж и запуск детектора DANSS на КАЭС планируется осуществить в конце 2014 – начале 2015 года.

3.3. Поиск стерильных нейтрино в реакторных экспериментах

В начале 2011 г. в серии статей (см., например, [28] и приведённые там ссылки) обсуждались новые теоретические расчёты потоков реакторных антинейтрино. Сопоставление результатов этих расчётов с реакторными данными указывает на дефицит потока в экспериментах по сравнению с теоретическими оценками.

Отвлекаясь от идущей с тех пор дискуссии о завышенной, возможно, оценке точности этих вычислений, следует отметить, что в качестве одной из интересных гипотез, объясняющих этот дефицит, обсуждается гипотеза существования ещё одного, стерильного, состояния нейтрино, имеющего массу ~ 1 эВ и небольшой угол смешивания.

Рис. 6. Чувствительность эксперимента DANSS к параметрам стерильного нейтрино.

Существование ещё одного, тяжёлого, нейтрино могло бы также объяснить аномальные результаты ускорительных экспериментов LSND и MiniBooNE (Mini Booster Neutrino Experiment), а также несоответствие в калибровках галлиевых солнечных детекторов GAL-LEX (GALLium EXperiment) и SAGE (Soviet-American Gallium Experiment) (см., например, [29], а также [30, раздел 2; 31, раздел 7]).

Несмотря на то что параметры стерильного нейтрино, необходимые для объяснения указанных аномалий, не вполне согласуются друг с другом, представляется интересным проверить эту гипотезу экспериментально. Если предположить, что она верна, то в реакторных экспериментах должны наблюдаться осцилляции на малых (около 10 м) расстояниях, обусловленные разностью квадратов масс ~1 эВ². Детектор типа DANSS может быть использован для проведения измерений и проверки данной гипотезы. Оптимальным представляется проведение измерений на разных расстояниях от центра реактора и исключение с помощью таких относительных измерений влияния теоретических неопределённостей в расчёте потоков антинейтрино от реактора. В лаборатории на КАЭС это возможно, поскольку один и тот же детектор можно перемещать, обеспечивая для измерений расстояния 9,7 м и 12,2 м. Результаты моделирования чувствительности такого эксперимента представлены на рис. 6.

Обозначенная как BBЭР-1000 кривая, соответствующая эксперименту DANSS на КАЭС, хорошо очерчивает основные области параметров разности квадратов масс и нового угла смешивания, предсказанные для стерильных нейтрино на основе результатов ускорительных экспериментов (LSND + MiniBooNE) и реакторных экспериментов и калибровок солнечных детекторов ("Реактор + Ga-аномалии").

Одной из существенных особенностей постановки эксперимента на КАЭС является большой размер активной зоны реактора. В реакторах такого типа он составляет порядка 3–5 м, что существенно размывает осцилляционные кривые и приводит к снижению чувствительности измерений. Возможность проведения эксперимента была рассмотрена также для высокопоточного исследовательского реактора СМ-3 (Научно-исследовательский институт атомных реакторов, г. Димитровград) — корпусного водо-водяного реактора на промежуточных нейтронах с нейтронной ловушкой. В этом реакторе измерения можно проводить на расстояниях 5-15 м, размер активной зоны ≈ 40 см, но термальная мощность составляет 100 МВт, что в 30 раз меньше, чем на промышленном реакторе КАЭС.

Результаты моделирования чувствительности эксперимента на реакторе СМ-3 также приведены на рис. 6. Видно, что меньшая мощность реактора в большой степени компенсируется "точечностью" активной зоны. Однако в этом сравнении на СМ-3 не учтены худшие, чем на КАЭС, фоновые условия из-за меньшей защиты от космических лучей. Проект эксперимента на реакторе СМ-3, получивший название "Нейтрино-4" [32], был выдвинут группой из Петербургского института ядерной физики им. Б.П. Константинова (ПИЯФ), входящего в состав Национального исследовательского центра "Курчатовский институт" (НИЦ КИ). Установка представляет собой секционированный жидкосцинтилляционный детектор с защитой и вето-системой, позволяющий определять координату нейтринного события и подавлять фон.

Следует отметить, что в мире существует уже несколько проектов подобных экспериментов на исследовательских реакторах сравнительно малой мощности. Группы, разработавшие для этих экспериментов детекторные методики, пока не получили возможности перенести их на промышленные реакторы из-за соображений безопасности.

Поэтому проведение эксперимента DANSS, основанного на использовании безопасного пластического сцинтиллятора, пока является уникальной возможностью.

Однако не стоит преуменьшать роль исследовательских реакторов в нейтринных экспериментах. Существует целый ряд измерений, принципиально важных для нейтринной физики и дальнейшего развития методов детектирования нейтрино. Например, на реакторе ПИК (ПИЯФ НИЦ КИ) [33] после начала его стабильной работы возможны: прецизионные измерения реакторных нейтринных и бета-спектров облучённых мишеней, необходимые для сравнения с теоретическими результатами; производство мощных калибровочных источников нейтрино типа ⁵¹Cr, ⁸Li в предельных потоках термальных нейтронов величиной до $4,5 \times 10^{15}$ см⁻² с⁻¹; проверка возможных методов детектирования когерентного рассеяния нейтрино на ядрах и др.

4. Заключение

Эксперименты на реакторах сыграли существенную роль в исследовании свойств нейтрино. Недавнее измерение относительно большого угла смешивания θ_{13} открывает

Reactor neutrino experiments: results and prospects

A.G. Olshevskiy. Joint Institute for Nuclear Research,

ul. Joliot-Curie 6, 141980 Dubna, Moscow region, Russian Federation. E-mail: olshevsk@gmail.com

The role of reactor experiments in understanding the properties of neutrinos are discussed together with prospects for further development.

PACS numbers: **13.15.** + **g**, 14.60.Pq, 29.40.Mc Bibliography — 33 references *Uspekhi Fizicheskikh Nauk* **184** (5) 539–544 (2014) новые перспективы для нейтринных экспериментов на реакторах, среди которых точное измерение параметров осцилляций, определение иерархии масс нейтрино. Российские институты и ОИЯИ внесли существенный вклад в подготовку и реализацию принципиальных реакторных экспериментов. Продолжение исследований на базе Лаборатории КАЭС и других исследовательских реакторах Российской Федерации позволит и дальше развивать методику детектирования нейтрино и проводить эксперименты фундаментального и прикладного назначения.

Список литературы

- 1. Pontecorvo B, Report PD-205 (Chalk River: National Research Council of Canada, Division of Atomic Energy, 1946)
- 2. Pontecorvo B Phys. Rev. 72 246 (1947)
- Понтекорво Б М ЖЭТФ 37 1751 (1959); Pontecorvo B Sov. Phys. JETP 10 1236 (1960)
- Понтекорво Б ЖЭТФ 33 549 (1957); Pontecorvo B Sov. Phys. JETP 6 429 (1957)
- 5. Reines F Annu. Rev. Nucl. Sci. 10 1 (1960)
- 6. Cowan C L et al. (Jr.) Science 124 103 (1956)
- 7. Kwon H et al. Phys. Rev. D 24 1097 (1981)
- 8. Declais Y et al. (Bugey Collab.) Phys. Lett. B 338 383 (1994)
- Афонин А И и др. ЖЭТФ 94 (2) 1 (1988); Afonin A I et al. Sov. Phys. JETP 67 213 (1988)
- 10. Zacek G et al. *Phys. Rev. D* **34** 2621 (1986)
- Кувшинников А А и др. Письма в ЖЭТФ 54 259 (1991); Kuvshinnikov A A et al. JETP Lett. 54 253 (1991)
- 12. Boehm F et al. Phys. Rev. Lett. 84 3764 (2000)
- 13. Gando A et al. (KamLAND Collab.), arXiv:1009.4771
- 14. Apollonio M et al. (Chooz Collab.) Eur. Phys. J. C 27 331 (2003)
- 15. Mezzetto M, Schwetz T J. Phys. G Nucl. Part. Phys. 37 103001 (2010)
- 16. Abe K et al. (T2K Collab.) Phys. Rev. Lett. 107 041801 (2011)
- 17. Adamson P et al. (MINOS Collab.) Phys. Rev. Lett. 107 181802
- (2011)
 18. Abe Y et al. (Double-Chooz Collab.) *Phys. Rev. Lett.* 108 131801 (2012)
- An F P et al. (Daya Bay Collab.) *Phys. Rev. Lett.* **108** 171803 (2012)
- 20. Ahn J K et al. (RENO Collab.) *Phys. Rev. Lett.* **108** 191802 (2012)
- Martemyanov V P et al. *AΦ* 66 1982 (2003); *Phys. Atom. Nucl.* 66 1934 (2003); hep-ex/0211070
- 22. Beringer J et al. (Particle Data Group) Phys. Rev. D 86 010001 (2012)
- Куденко Ю Г УФН 183 1225 (2013); Kudenko Yu G Phys. Usp. 56 1120 (2013)
- Куденко Ю Γ УΦΗ 181 569 (2011); Kudenko Yu G Phys. Usp. 54 549 (2011)
- Микаэлян Л А УФН 150 461 (1986); Mikaelyan L A Sov. Phys. Usp. 29 1063 (1986)
- 26. Beda A G et al. Adv. High Energy Phys. 2012 350150 (2012)
- 27. Alekseev I et al., arXiv:1305.3350
- 28. Mention G et al. *Phys. Rev. D* 83 073006 (2011)
- 29. Giunti C, Laveder M Phys. Rev. D 82 053005 (2010)
- Троицкий С В УФН 182 77 (2012); Troitsky S V Phys. Usp. 55 72 (2012)
- Гаврин В Н УФН 181 975 (2011); Gavrin V N Phys. Usp. 54 941 (2011)
- 32. Serebrov A P et al., arXiv:1205.2955
- Высокопоточный реактор ПИК, http://www.pnpi.spb.ru/win/ facil/pik.htm

DOI: 10.3367/UFNr.0184.201405h.0539 Received 10 March 2014 Physics – Uspekhi **57** (5) (2014)