
Abstract. We compare Ya B Zeldovich's ideas about Brans±
Dicke theory and Mach's principles, contained in now-classical
books, withmodern results in this field.Our recent results on the
Brans±Dicke cosmology with the cosmological term are pre-
sented. The Friedmann±Brans±Dicke equations are written for
the flat Universe. The initial conditions for the model are
provided by the presently observed Hubble constant, its first
time derivative (the deceleration parameter), and matter den-
sity. The cosmological scenario with the scale factor not vanish-
ing in the past, corresponding to the absence of the cosmological
singularity, is analytically calculated. Instead of the singularity,
the scale factor experiences a `bounce' and demonstrates reg-
ular behavior at all times. Some ideas related to Mach's princi-
ple are also discussed.

1. Introduction

Yakov Borisovich Zeldovich was as outstanding physicist of
the 20th century. He always paid special attention to new
physical theories and their astronomical applications. In
monographs [1±3], Yakov Borisovich discussed cosmologi-
cal consequences of the Brans±Dicke theory and ideas related
to Mach's principle. One of the present authors, I D N,

discussed these topics with Yakov Borisovich a great deal.
Results of these discussions can be found in the monographs
mentioned above. As far as we know, Yakov Borisovich did
not publish dedicated papers on these issues (see, however,
paper [4]).

Let us recall Yakov Borisovich's ideas about the Brans±
Dicke (BD) theory andMach's principle. In paper [1],Mach's
principle is expounded as follows: ``In the literature, there
continuously appear papers discussingMach's principle from
different viewpoints.... This principle essentially states that
the inertia of a body is determined by its interaction
(gravitational and inertial) with other bodies in the Uni-
verse. This principle played a large heuristic role in Einstein's
construction of GR. But after the development of general
relativity, it became clear thatMach's principle does not enter
the theory.... From this point of view, every confirmation of
general relativity strikes Mach's principle.''

And further: ``The direct application of Mach's principle
may lead to the conjecture that the reference frame connected
with receding galaxies is inertial. But then, a motion with
constant velocity (and not necessarily with acceleration
relative to this frame) must lead to physical distinctions.
However, this is not the case.''

In paper [2], Zeldovich wrote: ``The scalar theory of
gravitation gives results which are significantly different
from the tensor theory, and hence, from experimentsÐ for
rapidlymoving bodies.... Predictions for light rays grazing the
Sun vary. In recent years, the coincidence of experimental
results with GR has systematically improved, leaving less and
less room for possible admixtures of scalar interaction....
Presently, it can be stated that the scalar theory contribution
to gravitation is less than 10% of that of GR.''

Notice that, according to modern data, the accuracy of
this statement is much higher (see below). In monograph [3],
Zeldovich wrote: `` ...there is another hypothesis as wellÐ the
conjecture about a certain role of the Universe in local laws.
This hypothesis is called Mach's principle.... Thus, the
reference frame connected with the cosmic microwave back-
ground radiation, with the total mass of remote matter, is
indeed physically preferred, and it is inertial at each of the
points. Perhaps, this could somehow be treated in the spirit of
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Mach's principle? We believe this should not be done. The
direct application of Mach's principle in this context leads to
the following. Once a preferential reference frame is chosen,
even inertial motion with respect to it (and not necessarily
with acceleration or rotation) must lead to differences in
physical laws in the new frame relative to those in the
preferential frame. But this is not the case....''

Zeldovich next discusses the BD theory, which is closely
related to Mach's principle: `` ...along with known particles
and fields, a hypothetical... massless scalar field, the so-called
j field, is considered.... `The correspondence' to Mach's
principle, according to authors of the BD theory, is the
advantage of the theory. However, Mach's principle is not
proved... and the `correspondence' to it is not proof that the
BD theory is correct...

Note that in the BD theory, in addition to the `ordinary'
solutions with the initial condition t � 0, j � 0, one may also
consider the condition j0 6� 0 or ja 3 � const 6� 0, i.e., with
the `free' j-field. These solutions exhibit interesting features.
Under certain conditions, the field behaves like maximally
rigid... matter. With a certain choice of parameters... there
can be a smooth transition from contraction to expansion in
the isotropic Friedmann model....

...However, after eliminating the singularity, new ques-
tions arise: How does the nucleosynthesis occur? Howwas the
equilibrium Planck radiation formed? Infinite density, per-
haps, is not a prerequisite, but a density of about
106ÿ108 g cmÿ3 and a temperature above 1010 K are needed
to understand the observed Universe.

...Let us conclude the BD theory discussion. The diversity
of solutions turned out to be much larger than the authors of
this theory had assumed. New variants which are not
connected with Mach's principle appeared: free fields are
involved.Many papers devoted to the BD theory are issuing.''

In the present paper, we consider the developments of
ideas discussed by Ya B Zeldovich in light of advances in
modern cosmology [5].

Observational data collected by the beginning of the 21st
century evidence that the Universe expands with acceleration
[6±11], although the physical reasons behind this phenom-
enon are not completely clear. Thus, the construction of a
self-consistent cosmological model with a minimal number of
assumptions and adjustable parameters, which can explain
observational facts, seems to be a relevant task. Presently, the
simplest (and thus the most elaborated) of the proposed
models is the cosmological model with cold dark matter and
the cosmological constant (LCDMtheory). Thismodel, while
providing good quantitative agreement with observations,
does not explain the physical nature of dark matter and dark
energy. Another shortcoming of theLCDMmodel consists in
the fact that it does not offer an explanation of the observed
smallness of the cosmological constant (by assuming that it
characterizes the so-called vacuum energy). All these facts call
for the construction of a broader dynamical theory of dark
energy (see, for example, review [12]). The candidates most
discussed at present in the literature include the models of
gravitation with higher-order curvature corrections (for
example, f �R�-gravity first proposed in Ref. [13]) and
quintessence (slowly changing scalar field) [14]. In addition,
f �R� gravitation theories are closely related to the Brans±
Dicke theory, which is the main topic of the present paper
(see, for example, Ref. [15]).

The model constructed by Brans and Dicke (BD) is the
first extended version of gravitation theory with a scalar field

[16], proposed in 1961. The BD model also includes addi-
tional arbitrary parameter w to be fixed from observations.
The larger this parameter, the stronger the contribution from
the tensor part (the scalar curvature), and vice versa, the
smaller this parameter, the larger the contribution from the
scalar field. The BD theory converts into general relativity
(GR) in the limit of jwj ! 1. In this model, the gravitational
constant is inversely proportional to the scalar field value
(G � 1=F), i.e., an additional link between the parameters
exists. Presently, themost precise estimate of the parameterw,
which follows from observations by the Cassini±Huigens
spacecraft for the post-Newtonian parameter g, is
jwj > 50;000 (see Ref. [17]).

The BD theory is one of the most natural extensions of
GR. The interest in this theory has not decreased due to, first
of all, the fact that the model can represent the effective low-
energy limit of Grand Unification and Supersymmetry
theories (which, according to the latest data from the Large
Hadron Collider [18], are not rejected). Moreover, the scalar
field in the BD model can be identified with dilaton in string
theory. Second, the BD model is the simplest GR extension.
Therefore, when studying properties of the general theory,
this model seems to be the candidate of choice to search for
deviations from GR (see Ref. [19]).

Furthermore, the BD model is actively invoked in
inflationary cosmology which requires the presence of a
scalar field in the early Universe, and in the model discussed
this scalar field arises in the most natural way. Many
inflationary models [20±22] are based on both the BD theory
and more general scalar±tensor theories.

In 1973, Gurevich, Finkelstein, and Ruban [23] analyti-
cally calculated cosmology with bounce using the standard
BD theory. At that time, the accelerating expansion of the
Universe was not yet recognized. In the standard form, the
BD theory does not lead to accelerated expansion of the
Universe, so it is necessary to investigate extensions of the BD
theory. One of the most widespread extensions includes the
BD model with a scalar field potential (see Ref. [24]). As the
precise form of this potential is still unknown, the effective
contribution can be substituted by the L-term (BDL below).
The BDL theory offers an explanation of the smallness of the
cosmological constant, as was suggested in paper [25]. Using
the scalar field of the BDLmodel, a dark matter halo around
galaxies can also be modelled [26].

The BDL theory is mathematically much more compli-
cated than the BD theory. The exact solution of the Einstein±
Friedmann equations in the BDL theory was obtained for the
first time by Uehara and Kim [27]. The authors of this work
assumed a positive value ofw and zero initial condition for the
scale factor, a�tm� � 0, where tm is the Big Bang instant of
time. Particular solutions, by assuming a power-law depen-
dence of the scalar field on the scale factor, were obtained in
Refs [28±31]. Vacuum solutions are presented in papers [32±
34]. Some papers have considered the model with the L-term
depending on the scalar field (see, for example, Ref. [35]).
Numerical integration and the stability analysis of the
extensive family of BDL solutions with matter were per-
formed inRef. [36]. The BDL solution leading to the so-called
Big Rip is presented in paper [37].

In our work, we examined the BDL solution of the
Friedmann±Einstein equations with parameter w < 0 and
the scale factor a�t�, which takes the nonzero minimal value
of am > 0. The Friedmann equations are written down for a
flat universe, with the present-day value of the Hubble
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constant and its time derivative (the acceleration parameter)
being taken as initial conditions. When solving the field
equations, we apply the approach elaborated in Ref. [27].
However, the authors of this work considered only positive
values of w, so our solution represents a new branch, which
has not been described in Ref. [27]. The scale factor in our
model, unlike the standard LCDMmodel, does not vanish in
the past. This situation corresponds to the so-called bounce of
the scale factor from the minimal value am. Formula (24) (see
Section 4), leading to the bounce, is obtained for a `cold'
universe, p � 0, and it cannot be applied in a `hot' universe.
Therefore, near the bounce the results obtained are only
qualitative. They can be used to obtain the initial values of
all functions before the transition of a universe to the hot
stage (when considering evolution back in time) (see Section 6
for more detail).

The layout of the paper is as follows:
Ð in Section 2 we write down the metric of spacetime and

field equations;
Ð in Section 3 we determine cosmological parameters at

the present time for the solution of field equations;
Ð in Section 4 we present an analytical solution with

bounce for a `cold' universe (with p � 0);
Ð in Section 5 we discuss the preliminary results for a

cold universe;
Ð in Section 6 we investigate the solution for a hot

universe (with an ultrarelativistic equation of state of matter);
Ð in Section 7 we formulate our conclusions and

compare Ya B Zeldovich's ideas with modern cosmological
models.

2. Friedmann±Einstein equations

We assume our metric equal to the Friedmann metric 1

ds 2 � dt 2 ÿ a 2�t�
�

dr 2

1ÿ kr 2
� r 2 dO 2

�
; �1�

where O 2 � dy 2 � sin2 y df 2. The flatness parameter in
cosmology is k � 0; �1.

The action in the BDL theory is written out as

S � 1

16p

�
d4x

�������ÿgp �
F�R� 2L�

ÿ w

F
g mn qmF qnF� 16pLmatter

�
: �2�

Here, w is the BD theory parameter, F�t� is the scalar field,
and L is the L-term (constant) 2.

Variation of the action with respect to gmn andF yields the
Friedmann±Einstein equations and Klein±Gordon equa-
tions, respectively:

Gmn � 8p
F

Tmn � Lgmn � w

F 2

�
qmF qnFÿ 1

2
gmng

sl qsF qlF
�

� 1

F
�HmHnFÿ gmnHlH lF� ; �3�

8p
F

T m
m � 2L � 3� 2w

F
HlH lF ; �4�

where Hm is the covariant derivative, and

Gmn � Rmn ÿ 1

2
Rgmn ;

Tmn � �r� p� umun ÿ pgmn ; qmF � d t
m qtF : �5�

Here, r�t� and p�t� stand for the matter density and pressure,
respectively, and the energy±momentum tensor corresponds
to a perfect fluid.

Let us introduce new dimensionless variables: 3

F�t� � f�t�
G0

; E�t� � qtf����
L
p

f
; �6�

~H�t� � H�t�����
L
p � qta����

L
p

a
; ~r�t� � 4pG0r

L
; ~p�t� � 4pG0p

L
:

�7�

Here, H is the Hubble function, and ~H is the dimensionless
Hubble function.

Then, the dimensionless Friedmann equations for a flat
universe (with k � 0) in the matter-comoving frame of
reference �um � �1; 0; 0; 0�� take the form

Gt
t

L
� 3 ~H 2 � 2~r

f
� 1� w

2
E 2 ÿ 3 ~HE ; �8�

Gr
r

L
� 2 _~H� 3 ~H 2 � ÿ 2~p

f
� 1ÿ w

2
E 2 ÿ

�f
f
ÿ 2 ~HE ; �9�

and the Klein±Gordon equation (4) is transformed to the
following equation

2~rÿ 6~p

f
� 2 � �3� 2w�

� �f
f
� 3 ~HE

�
: �10�

Hereinafter, the dot above the quantity denotes the derivative
with respect to the dimensionless time ~t � ����

L
p

t.
Equations (8)±(10) lead to the continuity equation (which

include the equivalence principle)

_~r
~r� ~p

� 3 ~H � 0 : �11�

3. Determination of model parameters

Let us introduce the deceleration parameter of a universe, q,
and the parameter b corresponding to the present-day
dimensionless matter density:

_~H � ÿ�1� q� ~H 2 ; b � 4pG0�r0 ÿ p0�
H 2

0

� ~r0 ÿ ~p0
~H 2
0

: �12�

After excluding the quantities E and �f=f from equations
(8)±(10), at the present time we obtain for zero pressure
(p � 0):

w
�

~H 2
0 �2ÿ q0 ÿ bz� ÿ z

�2 ÿ 2 ~H 2
0 �3zÿ 1�

� ~H 4
0 �6ÿ 6q0 ÿ 6bz� 4b� � 0 ; z � 2� 2w

3� 2w
: �13�

1 Below we set the velocity of light equal to c � 1.
2 Here, the value of L can be different from its value in the LCDM theory.

3 Here inafter, the present-day values are marked with index 0, soG0 is the

present-day value of the gravitational constant. The preset-day time is set

to 0. In the new notation, f0 � 1.
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In the approximation 4 for jwj4 1, equation (13) in the
principal order in 1=w yields

1

~H 2
0

! �2ÿ q0 ÿ b� �
����������������������������
2�1� q0 ÿ b�

w

r
: �14�

In the leading approximation, the second term in formula (14)
can be neglected.

Observational data [38, 39] give the following values of
cosmological parameters: H0 � 2:3� 10ÿ18 sÿ1, r0 � 0:27�
10ÿ29 g cmÿ3 (with account of both baryonic and dark
matter), and q0 � ÿ0:6; the present-day pressure can be
neglected by assuming a universe is filled with dust-like
matter (a cold universe).

Hence follows the cosmological constant:

L! �2ÿ q0�H 2
0 ÿ 4pG0�r0 ÿ p0� � 11:3� 10ÿ36 sÿ2 :

�15�

From the lunar laser ranging experiments [40], one can infer
jqtG=Gj�0�4 4� 10ÿ20 sÿ1, which leads to the following
bound on jE0j (in our notations): jE0j < 0:01.

For jwj4 1, we arrive at the following cosmological
parameters:

~H0 � 0:68 ; ~r0 � 0:2 ; b � 0:4 : �16�

We add expressions (8) and (9), multiply the result by
1= ~H 2

0 , and, by expressing the quantity �f=f from equation
(10), get the following relationship for the present-day time:

E0
~H0

� 1

~H 2
0

ÿ �2ÿ q0 ÿ b� � b� 1= ~H 2
0

3� 2w
: �17�

By substituting expression (14) into equation (17), in the
leading approximation in 1=w we obtain 5

E0 ! �
����������������������������
2�1� q0 ÿ b�
w�2ÿ q0 ÿ b�

s
: �18�

4. Solution for a cold universe

Let us consider the problem for a cold universe, i.e., for p � 0.
By introducing the notation f � fa 3, from equation (11) we
find ~r=f � ~r0 f0=f.

Taking into account the relationship �f=f � �f=f�
6 ~HE� 3 _~H� 9 ~H 2 and by writing down the following combi-
nation of equations (8)±(10): �3=2���8� � �9����10�=�6� 4w�,
we get

�fÿ Z 2� f� ~r0 f0� � 0 ; Z 2 � 8� 6w

3� 2w
: �19�

The solution to this equation reads

f �~t �
f0
� c�E� cÿ

E
ÿ ~r0 ; E�~t � � exp �Z~t � : �20�

Here, c� and cÿ are constants determined via parameters of
our model.

Equation (10) can be rewritten in the form

2f� 2~r0 f0 � �3� 2w�� _fa 3 _� : �21�

From equation (21) with regard to Eqn (20), one can find the
expression for the Hubble function: 6

3 ~H �
_f

f
ÿ

_f
f
�

_f

f
ÿ 2f0
f �3� 2w�

�~t

const

�
f

f0
� ~r0

�
d~t

�
_f

f
ÿ 2�c�Eÿ cÿ=E� cH�
Z�3� 2w��c�E� cÿ=Eÿ ~r0�

� 6�1� w��c�Eÿ cÿ=E � ÿ 2cH
Z�3� 2w��c�E� cÿ=Eÿ ~r0�

: �22�

Here, cH is an additional constant determined through our
model parameters.

From expressions (20) and (22), we can find the coeffi-
cients

c� � 1� ~r0
2
� E0 � 3 ~H0

2Z
; cÿ � 1� ~r0

2
ÿ E0 � 3 ~H0

2Z
;

cH � ZE0�3� 2w�
2

ÿ E0 � 3 ~H0

Z
: �23�

Having integrated equation (22), we get the following
expression for the scale factor (see Fig. 1):

a

a0
�
�
c�E� cÿ

E
ÿ ~r0

�1=3

� exp

� ÿ1
3�4� 3w�

�E
1

�
c�E 2 � cHEÿ cÿ

c�E 2 ÿ ~r0E� cÿ

�
dE

E

�

�
�
c�E� cÿ

E
ÿ ~r0

��1�w�=�4�3w�
exp
ÿ2cH�AÿA0�
3�4� 3w� ����Dp ; �24�

where

D � 4c�cÿ ÿ ~r 2
0 � 1� 2~r0 ÿ

�3 ~H0 � E0�2
Z 2

� ÿ 3

8� 6w

�
~H0 ÿ E0�1� w��2 ;

A�E� � arctan
2c�Eÿ ~r0����

D
p : �25�

It is important to note that the solution for jwj4 1 exists only
as w < 0. 7

For the field f, we obtain from equations (20) and (24):

f �
�
c�E� cÿ

E
ÿ ~r0

�1=�4�3w�
exp

2cH�Aÿ A0�
�4� 3w� ����

D
p : �26�

In the limit jwj ! 1, equation (24) tends to the standard
Friedmann solution:

4 Hereinafter (unless stated otherwise), the arrow specifies the approxima-

tion for jwj4 1.
5 When deriving this expression, in the first term on the right-hand side of

equation (17) we have taken into account terms on the order of 1=
����
w
p

from equation (14); the last term in equation (17) was omitted by virtue of

the accuracy demanded, i.e., the terms on the order of 1=
����
w
p

inclusive.

6 We have taken into account that d~t � dE=�ZE �.
7 Interestingly, for w < 0 the BD theory allows the existence of wormholes

without violation of energy conditions (see Refs [41, 42]).
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HFr � 1���
3
p E� Ecr

Eÿ Ecr
; Ecr �

���
3
p

~H0 ÿ 1���
3
p

~H0 � 1
; ZFr �

���
3
p

; �27�

aFr
a0
� �

���
3
p

~H0 � 1�2=3�Eÿ Ecr�2=3
�4E�1=3

; �28�

note that in the Friedmann model at the point E � Ecr the
values D � 0 and a � 0 and the function a�t� demonstrate a
bend (which is absent forD > 0). The Big Bang instant of time
corresponds to t1 � ÿ1:46Lÿ1=2, with Lÿ1=2 � 1010 years.

5. Singularity-free cosmology

The scale factor in the BDL theory, unlike the scale factor in
the standard LCDM model, can remain nonzero all the time
in the past evolution. This situation corresponds to a bounce
from the minimal value am of the scale factor.

The parameter region, starting from which the bounce
becomes possible, corresponds to the scale factor local
minimum vanishing: am�Em��0 (i.e., when the scale factor
minimum `touches' the abscissa).

We can obtain from formula (24) the following condi-
tion for the bounce to exist in the past evolution of the scale
factor:

D > 0 ; �29�

while the value of E in the local minimum (at the bounce) is
estimated to be

Em �
�����
cÿ

c�

r
: �30�

The precise equalityEm �
�������������
cÿ=c�

p
holds forD � 0, i.e., when

the scale factor at the local minimum point is zero,
am�Em� � 0. In the scenario with D > 0, a universe does not
reach singularity in the past evolution, with the scale factor
remaining a smooth function of time at all times (including at
the bounce: see formula (22)).

Observations suggest a hot (radiation-dominated) stage in
the past evolution of the Universe, the direct evidence being
provided by the existence of the cosmic microwave back-
ground with the mean temperature T0 � 2:7 K (see mono-

graph [43]). Using the relation 8 ahot=a0 � 4� 10ÿ5 (corre-
sponding to the adiabatic expansion of the Universe: see
monograph [3]), for jwj4 1 we can obtain the upper limit on
D:

D � 2~r0a
3
m

a 3
0

<
2~r0a

3
hot

a 3
0

� 2:6� 10ÿ14 : �31�

This anomalously small value for jwj4 1 can be reached only
due to the flatness of a universe, i.e., at 1� q0 ÿ b � 0. Thus,
the very small values of j _G0=G0j correspond to very large
values of jwj, and, as a consequence, to an almost flat
universe. Therefore, bounds on j _G0=G0j from Solar System
observations are in agreement with the cosmological data for
our model.

The model considered above, as well the bounce-free
cosmology 9 in Ref. [27], ignores the pressure, and, conse-
quently, cannot be applied to a hot universe. Therefore, the
above results near the bounce should be considered only as a
qualitative description; they can be utilized to obtain the
boundary values of all functions before the Universe's
transition to the hot stage (when considering evolution back
in time).

6. Solution for a hot universe

Quantitative results near the bounce can be obtained only by
taking into account the ultrarelativistic equation of state of
matter. For a hot universe with pressure p � r=3, equations
(8)±(10) yield

_~H� 2 ~H 2 � 1

6

�
ÿ wE 2 � 6� 8w

3� 2w

�
� Q�~t � : �32�

As w < ÿ1:5, the value of Q is positive.
In the case of a Friedmann universe (i.e., at E � 0 and

jwj ! 1), we can easily derive from equation (32) analogs of

0.5

1.0

a�~t�=a0

ÿ1.5 ÿ1.0 ÿ0.5 0

Time ~t, 1010 years

a Dark energy,
Accelerated expansion

Development of galaxies,
planets, etc.

Dark agesAfterglow
light patterns
380,000 yrs

Inêation

Quantum
êuctuations

First stars,
about 400 Myrs

Big Bang expansion
13.7 Byrs

WMAP

b

Figure. 1 (a) The scale factor a�~t �=a0 (24) in the model of a cold universe with bounce for parameters w � ÿ1000, q � ÿ0:6, and b � 0:45 (for the upper
curve), b � 0:43653 (for the bottom curve). (b) Illustration (taken from NASA site http://map.gsfc.nasa.gov) of the scale factor evolution in the LCDM

model, corresponding to the Friedmann solution. (WMAP is the NASA Wilkinson Microwave Anisotropy Probe mission.)

8 Here, ahot is the scale factor at the instant of time of transition of the

Universe from radiation-dominated to the cold stage.
9 In paper [27], the analytical solution for the case of D < 0 and w > 0 was

obtained.
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equations (27), (28) for a hot universe:

HFr � 1���
3
p U� 1

Uÿ 1
; U�~t� � exp

�
4~t���
3
p
�
;

aFr
ahot
�
� �Uÿ 1�2Uhot

�Uhot ÿ 1�2U

�1=4
: �33�

Here, the subscript `hot' corresponds to the time of transition
to the cold stage from the hot stage of evolution of a universe,
and the dimensionless time ~t has been introduced, which is
reckoned from the instant of time of the scale factor
minimum; the relation between ~t and ~t is determined by the
expression ~tÿ ~t � age of the Universe� ����

L
p

.
Expression (33) for the scale factor has singular deriva-

tives [as well as in the case of a cold Friedmann universe: see
Eqns (27), (28)]. It should be noted also that in a cold
universe, as D! 0, the second derivative �a at the bounce
point tends to �1, and in the close vicinity to the bounce
point already tends to ÿ1. This means that the Hubble
function in a cold universe case near the bounce turns out to
be rapidly oscillating as D! 0.

A similar situation near the bounce must take place in a
hot universe. As a hot universe epoch corresponds to very
small (relative to a0) values of the scale factor and sufficiently
large values of ~H, this region spans a short interval of the
dimensionless time ~t. The above consideration implies that,
for jwj4 1 and E5 1, the solution in the BDL theory is
almost identical to the Friedmann solution (excluding the
region near the bounce).

Let us find the solution for a hot universe by expanding
the scale factor a�~t� near its local minimum (bounce) in power
series in time~t. To an accuracy up to the fourth order, we have

a � am � 1

2
am

_~Hm~t 2 ÿ 1

12
amb

2 _~H
2

m~t 4 � ::: : �34�

Here, _~Hm and b are constants, with the quantity _~Hm

corresponding to the second derivative of the scale factor at
the bounce time; thus, it must be positive, _~Hm > 0, as am > 0.
The third-order term can be neglected, since it does not
significantly affect the results.

Then, the Hubble function and its derivative to the second
order in ~t take the form

~H 2 � _~H
2

m~t 2 ; _~H �
_~Hm�1ÿ b 2 _~Hm~t 2�
1� _~Hm~t 2=2

ÿ _~H
2

m~t 2 : �35�

By substituting these expressions into equation (32), we
obtain

�a

a
� _a 2

a 2
�

_~Hm

�
1� ~t 2 _~Hm�3=2ÿ b 2��
�1� _~Hm~t 2=2�2

� Q > 0 : �36�

This necessary inequality [see Eqn (32)] remains valid at any
time only if 0 < b 2 < 3=2.

From expansion (34) it is seen that at the instant of time
~t1 � 1=� _~Hmb

2�1=2 the second derivative of the scale factor
changes sign (~t1 is the inflection point), i.e., there is one more
additional inflection point of the scale factor time evolution
curve , which is absent in the Friedmann solution. At the time
~t2 �

���
3
p

=� _~Hmb
2�1=2 � ���

3
p

~t1, the first derivative of the scale
factor changes its sign. Thus, sewing solutions for hot and
cold universes must take place between points ~t1 and ~t2.

After the time ~t1, at large 10 _~Hm and small b, the second
derivative of the scale factor takes a negative value with large
module, while the Hubble function is still positive (until the
time ~t2). So, in the time interval from ~t1 to ~t2 the solution for
the radiation-dominated universe can be coupled with the
solution for a cold universe. By adjusting parameters am,

_~Hm,
and b, it is possible to reach a smooth joint of these functions
at the boundary between the hot and cold stages of the
Universe's evolution.

7. Conclusion

Thus, we have shown that the Friedmann solution with the
cosmological term is the degenerate case of a more general
cosmological model (for example, in the framework of the
BDL theory).

The introduction of a cosmological constant into the
theory allows us not only to reach agreement with observa-
tional data, but also to explain the need for this constant and
to estimate its value; it is fundamentally impossible to
precisely measure a dimensional quantity (for example,
distance). It is only possible to count `units' (in this case,
`units' of parsecs in a distance). However, determination of
the size of the `units' is fraught with additional errors. The
introduction of a cosmological term allows us to make
distances (and not only distances) dimensionless. Thus, in
units of Lÿ1=2, the size of the Metagalaxy turns out to be of
order unity. Therefore, any speculation as to why the
cosmological constant in the theory is so large (or so small)
immediately becomes senseless! This is why we are persuaded
that the true fundamental physical theory must operate only
with dimensionless quantities!

In the Friedmann cosmology, the scale factor function
a�t� approaches zero vertically (after which a bounce is
possible), while in the framework of the BDL theory with
w > 0 the function a�t� passes through zero with a finite slope
(the value of the first derivative at the point a � 0 is finite),
and forw < 0 the scale factor does not vanish and experiences
a smooth bounce, with all functions at the bounce remaining
regular.

The quantitative theory with bounce can be considered
only numerically due to the inapplicability of the cold
Universe model near the bounce, as well as because near the
bounce the parameter k (which is responsible for the nonplain
geometry of the Universe; it was assumed to be zero in our
consideration) can play a big role. Therefore, for quantitative
estimates near the bounce, it is necessary to analyze equations
with different values of k � 0,�1, as well as with p 6� 0, which
is associated with major mathematical difficulties and can be
performed only numerically.

The cosmological solution with bounce enables many (yet
unsolved) problems of quantum gravity and quantum
singularity to be avoided.

The theory parameter jwj > 1040 Ð is it large or small?
The opponents of the Brans±Dicke theory argue that even

104 is toomuch for any parameter in theory, but we think that
in modern cosmology the number 1040 is quite normal. The
corresponding inverse value j1=wj5 1 just suggests an
extremely small difference between BD theory and GR. But
this is good! As a result, we avoid the cosmological
singularity! But the bounce in the Universe (if it actually
took place) must have occurred at very small values (relative

10 Here, the notion of `large' and `small' assumes a comparison with unity.
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to the present-day value) of the scale factorÐ in order to
allow the primordial nucleosynthesis and the hot radiation-
dominated stages of the Universe. It is this requirement that
leads to the bound jwj > 1040.

The Brans±Dicke gravitation theory is closely related to
Mach's principle. According to one possible formulation of
Mach's principle, the value of the inertia (mass) of any
physical body depends on the mass distribution of all bodies
in the Universe. Ideas ofMach's principle have many aspects.
These many aspects were called by Ya B Zeldovich in books
[1±3] as ``the many faces of Mach''. In the above formulation,
the connection of the Brans±Dicke theory with Mach's
principle is determined by the gravitational `constant'
G � 1=F�t�; here this quantity is a function of time.

The condition jwj > 1040 also implies that E0 � 1040, or
jqtG=Gj0 � 10ÿ56 sÿ1. This extremely small value suggests
that it is experimentally impossible to observe such a relation-
ship (with Mach's principle)!
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