
Abstract.We review discoveries in the nonlinear dynamics of
curved spacetime, largely made possible by numerical solu-
tions of Einstein's equations. We discuss critical phenomena
and self-similarity in gravitational collapse, the behavior of
spacetime curvature near singularities, the instability of black
strings in five spacetime dimensions, and the collision of four-
dimensional black holes. We also discuss the prospects for
further discoveries in geometrodynamics via observations of
gravitational waves.

1. Introduction

In the 1950s and 60s, John Archibald Wheeler [1] speculated
that curved, empty spacetime could exhibit rich, nonlinear
dynamicsÐwhich he called geometrodynamicsÐanalogous
to the writhing surface of the ocean in a storm. Wheeler
exhorted his students and colleagues to explore geometrody-
namics by solving Einstein's general relativistic field equa-
tions.

In 1965, Yakov Borisovich Zeldovich, with his young
proteÂ geÂ s Andrei Doroshkevich and Igor Novikov [2], gave
strong evidence that when a highly deformed star collapses to
formwhat would later be called a black hole, the hole's curved
spacetime, by its nonlinear dynamics, will somehow shake off
all the deformations, thereby becoming a completely smooth,
axially symmetric hole.

TheWheeler±Zeldovich challenge of exploring geometro-
dynamics in general, and for black holes in particular, has
largely resisted analytic techniques. In the 1980s and 90s, that

resistance motivated the authors and our colleagues to
formulate a two-pronged attack on geometrodynamics:
numerical solutions of Einstein's equations to discover general
relativity's predictions, and observations of gravitational
waves from black-hole births and black-hole collisions to
test those predictions. The numerical simulations have now
reached fruition, and the observations will do so in the near
future.

In this article, dedicated to the memory of Zeldovich and
Wheeler (who deeply respected each other, despite cold-war
barriers, andwhowere the primarymentors for one of us, Kip
Thorne), we present an overview of some of the most
interesting things we have learned about geometrodynamics
from numerical simulations, and a preview of what gravita-
tional-wave observations may bring.

More specifically, we describe geometrodynamic discov-
eries in four venues: gravitational implosion, where a phase
transition, discrete self-similarity, and critical behavior have
been observed (Section 2); the dynamics of spacetime near
singularities, where richly chaotic behavior has been observed
(Section 3); the unstable evolution of a black string in five
spacetime dimensions, where a dynamical sequence of strings
linking black holes has been observed (Section 4); and
collisions of black holes in four spacetime dimensions, where
dynamical interactions of tidal tendexes and frame-drag
vortexes have been observed (Section 5). Then, we briefly
describe the prospects for observing some of these phenom-
ena via gravitational waves (Section 6).

2. Gravitational collapse:
phase transition and critical behavior

The first numerical simulations to exhibit rich geometrody-
namics were done in 1993 byMatthew Choptuik [3], who was
then a postdoc at the University of Texas. Choptuik
simulated the spherical implosion (Fig. 1) of a linear,
massless scalar field (satisfying &C � 0). The field energy,
momentum, and stress (which are quadratic in the field)
generated spacetime curvature, with which the field inter-
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acted via the curvature's influence on its wave operator &.
That interaction produced surprising nonlinear dynamics.

If the wave amplitude p for some chosen ingoing wave-
form was larger than some critical value p�, the implosion
produced a black hole. If pwas smaller than p�, the imploding
waves passed through themselves, traveled back outward,
and dispersed. For p � p�, the imploding waves interacted
with themselves nonlinearly (via their spacetime curvature),
producing a sequence of frequency doublings and wavelength
halvings, with an intriguing, discretely self-similar pattern
that was independent of the initial, ingoing waveform.Waves
with ever decreasing wavelength emerged from the `non-
linearly boiling' field, carrying away its energy and ulti-
mately leaving behind what appeared to be an infinitesimal
naked singularity (a region with infinite spacetime curvature,
not hidden by a black-hole horizon). One year after
Choptuik's simulations, the mathematician Demetrios Chris-
todoulou [4] developed a rigorous proof that the endpoint for
p � p� was, indeed, a naked singularity.

The transition of the implosion's endpoint, from black
hole for p > p�, to naked singularity for p � p�, to wave
dispersal for p < p�, was a phase transition analogous to
those that occur in condensed-matter physics. And, as in
condensed matter, so also here, the phase transition exhibited
scaling: for p slightly larger than p�, themass of the final black
hole scaled as MBH / �pÿ p��b. For p slightly below p�, the
curvature radius of spacetime at the center of the `boiling
region' reached a minimum value, before field dispersal, that
scaled asRmin � �R mnsrRmnsr�ÿ1=4max / �p� ÿ p�b, with the same
numerically measured exponent b � 0:374. Here, Rmnsr is the
Riemann curvature tensor.

Choptuik's discovery triggered many follow-on simula-
tions. Most interesting to us was one by Andrew Abrahams
and Charles Evans [5], later repeated with higher resolution
by Evgeny Sorkin [6]. In their simulations, the imploding,
spherically symmetric scalar field was replaced by an
imploding, axially symmetric (quadrupolar) gravitational
wave, such that they were dealing with pure, vacuum space-
time as envisioned by Wheeler. Once again, there was a
critical wave amplitude p�: for p near p�, the behavior was
similar to the scalar-wave case, to within numerical error: for
p � p�, strong evidence for discretely self-similar evolution
leading to an infinitesimal final singularity; for p > p�, the
same black-hole mass scaling MBH / �pÿ p��b; for p < p�,
the same spacetime-curvature scaling R / �p� ÿ p�b; and to
within numerical accuracy, the scaling exponent was the
same, b � 0:38 for quadrupolar gravitational waves and
b � 0:374 for the spherical scalar wave. This is reminiscent,
of course, of the universality encountered in condensed-
matter phase transitions.

For a detailed review of these and many other studies of
critical gravitational implosion, see the article by Carsten
Gundlach [7].

3. Generic spacetime singularities

3.1 BKL singularity
The singular endpoint of the implosions described above is
nongeneric, in the sense that no singularity occurs if p� is only
infinitesimally different from p.

However, there are other situations that lead to generic
singularities.1 This was demonstrated analytically in the
1960s by Roger Penrose, Stephen Hawking, and others,
using tools from differential topology [10]. In 1969±1970,
Vladimir Belinsky, Isaac Khalatnikov, and Evgeny Lifshitz
[11] used approximate differential geometry techniques to
deduce the geometrodynamical behavior of spacetime as it
nears one generic type of singularity, a type now called BKL.

In the 1970s, 80s, and 90s, there was much skepticism in
theUS andUKabout this BKL analysis, because its rigor was
much lower than that of the Penrose±Hawking singularity
theorems. (This lower rigor was inevitable because the
geometrodynamical approach to a singularity is very com-
plex (see below) and deducing its details ismuchmore difficult
than proving that a singularity occurs.) As a result, the BKL
geometrodynamics came to be called, in the West, the BKL
conjecture.

There was little hope of proving or disproving this
`conjecture' by analytic techniques, and the skeptics turned
to numerical simulations to probe it. After nearly a decade
of code development, David Garfinkle in 2003 [12] carried
out simulations that demonstrated that Belinsky, Khalatni-
kov, and Lifshitz had been correct. The geometrodynamical
evolution, approaching a BKL singularity, is as they
predicted, although with one additional feature that they
had missed: a set of nonlocal spikes in the spacetime
curvature [13].

The BKL geometrodynamics can be described in terms of
tidal-gravity observations by observers who fall into the BKL
singularity on timelike geodesics (Fig. 2). As two observers, A
and B, approach the singularity, they lose causal contact, in
the sense that after passing through A's particle horizon (at
point P in the diagram), B can no longer influence A. This
causal decoupling is so strong in the BKL spacetime that
spatial derivatives cease having significant influence on the
geometrodynamics, as the singularity is approached: a spatial
decoupling occurs and, as a result, it turns out that there is no
correlation between the late-time observations of adjacent
observers.

Each observer's experience, when approaching the singu-
larity, can be described in terms of the tidal gravitational field
Ejk that they feel. This tidal gravitational field has compo-
nents, in the observer's local Lorentz frame, that are equal to

p

C

Figure 1. The implosion of a scalar wave C with the amplitude p and a

particular waveform.

1 Perhaps the most important generic singularity for astrophysics is one

that arises when matter with negligible pressure is present. Leonid

Petrovich Grishchuk in 1967 [8] showed that matter, generically, under-

goes gravitational collapse to form flat pancakes with infinite density and

curvature; and in 1970, Zeldovich [9] showed that, astrophysically,

pressure halts the collapse before the infinities but after the pancake

structure has been strongly established. A few years later, Zeldovich

realized that these pancakes, seen edge on, are filamentary structures that

astronomers observe in the distribution of galaxies in the sky.
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the space-time-space-time part of the Riemann curvature
tensor

Ejk � Rj 0k0 : �1�
The physical manifestation of the tidal field is the relative
gravitational acceleration

Daj � ÿEjk Dxk �2�
of particles with a vector separation Dxk. (The tidal field
acquires its name from the fact that the Sun's and Moon's
tidal field produces the tides on Earth's oceans. In the
Newtonian limit, the tidal field is Ejk � q2F=qxj qxk, where
F is the Newtonian gravitational potential.)

Being a symmetric tensor, the tidal field can be described
by three orthogonal principal axes (unit vectors e1̂, e2̂, e3̂) and
their eigenvalues, E ĵ ĵ � eĵ EE eĵ. If E1̂1̂ < 0, then an object is
tidally stretched along its e1̂ principal axis, and similarly for
the other principal axes. If E 1̂1̂ > 0, the object is tidally
squeezed along e1̂. The tidal field in vacuum is traceless, and
hence its eigenvalues must sum to zero, which means that
there must be a squeeze along at least one principal axis and a
stretch along at least one.

Figure 3 shows the pattern of stretches and squeezes
experienced by an observer falling into the BKL singularity.
The pattern is divided, in time, into cycles and eras. During a
single cycle, there is a stretch along one axis and a squeeze
along the other two. Between cycles, the stretch axis switches
to squeeze and the more strongly squeezing axis switches to
stretch. At the end of each era, the axes rotate in some
manner, relative to the observer's local Lorentz frame, and
the pattern begins over. The number of cycles in each era and
the details of their dynamics are governed by a continued-
fraction map that is chaotic, in the technical sense of chaos
(extreme sensitivity to initial conditions). This chaos plays a
key role in destroying correlations between the observations
of adjacent observers as they approach the singularity.

The full details of this, as worked out by Belinsky,
Khalatnikov, and Lifshitz [11], are occasionally violated (as
numerical simulations reveal): a cycle can be skipped, and
during that skip there is an extreme spike in the tidal field that
is more sensitive to spatial derivatives than expected and
whose details are not yet fully understood (see [13] and the
references therein).

3.2 Singularities inside a black hole
This BKL behavior is speculated to occur in the core of a
young black hole. However, numerical simulations are
needed to confirm or refute this speculation.

As the black hole ages, the singularity in its core is
speculated to break up into three singularities, one of the
BKL type and two that are much more gentle than the BKL
singularity. This speculation arises from the expectation that,
just as the hole's exterior spacetime geometry settles down
into the quiescent, axially symmetric state described by the
Kerr metric, its interior settles down into the Kerr-metric
state, except near two special regions called Cauchy horizons,
where the Kerr metric is dynamically unstable. Nonlinear
geometrodynamics is thought to convert those Cauchy
horizons into null, generic singularities (Fig. 4).

These singularities are null in the sense that ingoing or
outgoing photons, in principle, could skim along them
without being captured. The ingoing singularity (called a
mass inflation singularity) is generated, according to approx-
imate analytic analyses [16, 17], by radiation and matter that
fall into the black hole and pile up along the ingoing Cauchy
horizon, where they gravitate intensely. The outgoing
singularity (called a shock singularity [15]) is generated by
ingoing radiation that backscatters off the hole's spacetime
curvature, and then travels outward, piling up along the
outgoing Cauchy horizon, where it gravitates intensely. In
both cases, what piles up could be gravitational waves rather
than material or nongravitational radiation, in which case we
are dealing with pure vacuum spacetime curvatureÐpure
geometrodynamics.

Neither of these null singularities is oscillatory, but the
spacetime curvature goes to infinity at both of them (the
radius of curvature R of spacetime goes to zero). This
divergence of curvature happens so quickly at the shock
singularity that objects might be able to pass through it,
although with a destructive net compression along two
dimensions and a net stretch along the third. If so, they will
likely then be destroyed in the BKL singularity.

The mass-inflation singularity is also expected to produce
only a finite, not infinite, net compression and stretch of
objects falling through. If anything survives, its subsequent
fate is totally unknown.

Singularity

P

A B

Figure 2. The world lines of two observers, A and B, falling into a BKL

singularity (solid lines), and the particle horizon of observer A (dashed

lines; a past light cone). Events outside the particle horizon can never

influence observer A.
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Figure 3. The qualitative pattern of tidal stretches and squeezes experi-

enced by an observer falling into a BKL singularity. The three eigenvalues

of the tidal field are plotted vertically as functions of time, with one axis

shown solid, another dashed, and the third dotted. Adapted from [14].
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These (highly informed) speculations, which arise from
extensive, approximate, analytic analyses, mostly perturba-
tion theory, will be tested in the coming few years by
numerical simulations. And just as the BKL conjecture
missed an important phenomenon (curvature spikes), these
speculations about the geometrodynamics of black-hole
interiors may fail in some modest, or even spectacular, way.

For far greater detail on what we now know and speculate
about the interiors of black holes and the bases for that

knowledge and speculation, see [15] and the references
therein.

4. Black string in five spacetime dimensions

A remarkable example of geometrodynamics has been
discovered by Luis Lehner and Frans Pretorius [18], in
numerical simulations carried out in five spacetime dimen-
sions.

Lehner and Pretorius began with a black string in its
equilibrium state. This black string is a vacuum solution of
Einstein's equations in five spacetime dimensions, with the
metric

ds 2 � ÿ
�
1ÿ 2M

r

�
dt 2 � dr 2

1ÿ 2M=r

� r 2�dy 2 � sin2 y df 2� � dz 2 : �3�

This is precisely a four-spacetime-dimensional Schwarzschild
black hole translated along the z axis in the fifth (spatial)
dimension. The event horizon is at r � 2M; at a fixed time t, it
is a cylinder with a spherical cross section, R� S 2.

In 1993, Ruth Gregory and Raymond LaFlamme [19]
proved analytically that such a black string is unstable against
linear, axisymmetric perturbations with wavelengths longer
than about 1.2 times the string circumference. But little was
definitively known about the nonlinear, geometrodynamical
evolution of the instability until Lehner's and Pretorius's 2010
simulations [18]. They revealed that the string horizon evolves
as depicted in Fig. 5.

The string develops a sausage instabilityÐanalogous to
that of a magnetically confined plasma in a Z-pinch, and the
Rayleigh±Plateau instability for a cylinder of fluid confined
by its surface tensionÐbut with outgoing gravitational
waves carrying off energy. This instability gives rise to a
chain of five-spacetime-dimensional black holes linked by
segments of shrunken black stringÐsegments whose circum-
ferences are far smaller than that of the original string. The
instability then repeats on each shrunken string, producing
smaller black holes linked by segments of more extremely
shrunken string. Each successive sausage instability produces
its smaller black holes on an evolution timescale proportional
to the string circumference. These successively shorter time-
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Figure 4.Penrose diagram depicting the causal structure outside and inside

an old black hole, as we best understand it today. Ingoing and outgoing

null rays (hypothetical photons) travel along 45 degree lines, and a

conformal transformation has been used to compress our Universe into

a finite diamond in the diagram. The Kerr spacetime is shaded. The true

spacetime is superposed on the Kerr spacetime; it is the region bounded by

the center of the imploding star (thin left line), the BKL singularity (thick

horizontal line), the mass-inflation singularity (dashed line), and the

infinities of our Universe: future timelike infinity labeled I�, future null

infinity labeled I�, spacelike infinity labeled I0, past null infinity labeled

Iÿ, and past timelike infinity labeled Iÿ. It might well be that the true

spacetime ends at the shock singularity, and there is no BKL singularity

beyond [15].
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Figure 5. (Color online.) A sequence of snapshots from a simulation of the geometrodynamical evolution of a black string in five spacetime dimensions, by

Lehner and Pretorius [18]. Each snapshot is an embedding diagram of the black string's event horizon: the horizon's intrinsic geometry is the same as the

intrinsic geometry of the depicted surface in flat space. Colors (or shades of gray) labeled `AH radius' denote the real radius of the apparent horizon�����������������
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, where A�z� is the surface area of the horizon at a fixed value of z.

April 2014 Geometrodynamics: the nonlinear dynamics of curved spacetime 345



scales converge: an infinite sequence of instabilities presum-
ably ends in a naked singularity in finite time.

Because these simulations assumed two-sphere symmetry
from the outset, we cannot be certain that their predictions
are the black string's true geometrodynamical evolution. To
learn the true evolution, we need simulations in five spacetime
dimensions that do not assume any symmetry. Such simula-
tions are beyond current capabilities, but may be possible in a
decade or so. In the meantime, it is conjectured that the
Lehner±Pretorius evolution (see Fig. 5) is the true evolution,
because black strings have been proved stable against all
linear nonspherical perturbations.

5. Black-hole collisions

Recent advances in numerical simulations have enabled the
study of geometrodynamics in the violent collisions of two
black holes, including the generation of gravitational waves
and the relaxation of the remnant to a single, quiescent,
spinning black hole (as predicted by Zeldovich, Doroshke-
vich, and Novikov [2]). We and collaborators have developed
a new set of so-called vortex/tendex tools for visualizing this
black-hole geometrodynamics [20]. We first describe these
tools and then use them to visualize the geometrodynamics of
black-hole collisions.

5.1 Vortex-tendex tools
The gravitational field felt by a local observer is described by
the Riemann curvature tensor Rmnsr. Any such observer,
freely falling or accelerated, can decompose the Riemann
tensor into an `electric' part Ejk defined by Eqn (1) and a
`magnetic' part Bjk, defined by

Bjk � EjpqRpqk0 : �4�

Here, the indices are components on the observer's local,
orthonormal basis, the index 0 refers to the time component
(i.e., the component along the observer's world line), Latin
indices refer to the observer's three spatial components, and
Ejpq is the spatial Levi-Civita tensor. Both Ejk and Bjk are
symmetric and traceless in vacuum (the situation of interest to
us).

As discussed in Section 3.1, Ejk is called the tidal field, and
describes the tidal stretching and squeezing experienced by
objects in the observer's local reference frame, according to
Eqn (2). The `magnetic' quantity Bjk is called the frame-drag
field. The physical manifestation of this field is a relative
precession, or dragging of inertial frames: two gyroscopes
with a vector separation Dxk precess relative to each other
with the angular velocity

DOj � Bjk Dxk : �5�

This differential frame dragging is a general relativistic effect
with no analogue in Newtonian gravity. Its global (non-
differential) analog is one of the two relativistic effects
recently measured by Gravity Probe B [21].

We note that the decomposition of the Riemann tensor
into E jk and Bjk depends on the observer's reference frame.
Different observers at the same location, moving relative to
each other, would measure different tidal fields and frame-
drag fields. This is the same situation as in classical
electromagnetism, where the electromagnetic tensor Fmn can
be decomposed into the familiar electric and magnetic field

vectors Ej � Fj 0 and Bj � EjpqFpq in the same observer-
dependent manner. This correspondence between gravita-
tion and electromagnetism motivates the use of the names
`electric' and `magnetic' for Ejk and Bjk.

The frame-drag fieldBjk and the tidal field Ejk are useful in
describing geometrodynamics on the surface of a black hole
(its event horizon). If n is a unit vector normal to the horizon
with spatial components n i, then we define the horizon
tendicity Enn � n jnkEjk as the normal±normal component of
the tidal field. For a positive horizon tendicity, an object is
tidally squeezed normal to the horizon, and for a negative
horizon tendicity, an object is tidally stretched normal to the
horizon. This is illustrated in the left panel of Fig. 6. We call a
region on the horizon with large tendicity a horizon tendex.

We can similarly define the horizon vorticityBnn � n jnkBjk
as the normal±normal component of the frame-drag field on
the surface of a black hole. For a positive horizon vorticity, an
object experiences a clockwise twist; for a negative horizon
vorticity, the twist is counterclockwise.We call a region on the
horizon with large vorticity a horizon vortex. The horizon
vorticity of a spinning black hole is illustrated in the right
panel of Fig. 6.

We now turn to vortex/tendex tools in regions away from
the horizon. In Section 3.1, we discussed how, at any point, Ejk
can be described by three orthogonal eigenvectors (unit
vectors e1̂, e2̂, e3̂), and their eigenvalues, E ĵ ĵ � eĵ EE eĵ. We call
the eigenvalue E ĵ ĵ the tendicity associated with the corre-
sponding eigenvector eĵ; the tendicity measures the tidal
stretching or squeezing of an object oriented along the
eigenvector. In analogy with electric field lines, we define
tendex lines as the integral curves along each of the three
eigenvectors eĵ. In electromagnetism, there is a single electric
field line passing through each point, but in geometrody-
namics, there are generically three tendex lines passing
through each point: one tendex line for each of the three
eigenvectors of Ejk. Because (in vacuum) Ejk has a vanishing
trace, the eigenvalues must sum to zero, and hence generically
both positive and negative tendex lines exist at each point.

Figure 7a shows the tendex lines outside a rapidly rotating
black hole. A collection of tendex lines with particularly large
tendicity is called a tendex. The rotating hole has a fan-

a b

Figure 6. (Color online.) A spinning black hole. (a) Colors represent the

horizon tendicity Enn. There is a positive (blue or light gray) tendex on each
of the poles, and a negative (red or dark gray) tendex on the equator. Other

(green or medium gray) regions have small tendicity. (b) Colors represent

the horizon vorticity Bnn. There is a negative (red or dark gray) vortex on

the north pole, and a positive (blue or light gray) vortex on the south pole.

Other (green ormedium gray) regions have small vorticity. The spin vector

points out of the north pole.
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shaped, stretching (red or dark gray) tendex sticking out of its
equatorial horizon tendex, and a poloidal squeezing (blue or
light gray) tendex that emerges from its north polar horizon
tendex and reaches around the hole to its south polar horizon
tendex.

As with E jk, the frame-drag field Bjk can be described by
three orthogonal eigenvectors and their eigenvalues. An
integral curve of one of these eigenvectors is called a vortex
line, and the corresponding eigenvalue is the vorticity
associated with that vortex line. The vorticity of a vortex
line describes the twist, or differential frame dragging,
experienced by an object oriented along that vortex line:
positive vorticity corresponds to a clockwise twist, and
negative vorticity corresponds to a counterclockwise twist.

The vortex lines associated with a spinning black hole are
shown in Fig. 7b. A counterclockwise (red or dark gray)
vortex (collection of large-negative-vorticity lines) emerges
from the horizon's north polar vortex, reaches around the
south polar region, and descends back into the north polar
vortex. Similarly, a clockwise (blue or light gray) vortex
emerges from the south polar horizon vortex, reaches around
the north polar region, and descends back into the south
horizon vortex.

The black holes in Figs 6 and 7 have stationary (time-
independent) vortex and tendex structures. Vortex and tendex
lines, and their associated vortexes and tendexes, can also
behave dynamically. The equations of motion for Ejk and Bjk
are similar to Maxwell's equations and, like Maxwell's
equations, they have wavelike solutionsÐgravitational
wavesÐ in which energy is fed back and forth between Ejk
and Bjk. Figure 8 shows vortex and tendex lines for a plane
gravitational wave without any nearby sources. As the wave
passes an observer, the tendicities and vorticities oscillate in
sign with one oscillation per gravitational wave period,
leading to an oscillatory stretch and squeeze in horizontal
and vertical directions, and an oscillatory twist in diagonal
directions, out of phase with the stretch and squeeze.

5.2 Black-hole collisions
We illustrate the geometrodynamical richness of black-hole
collisions by describing the vortex/tendex behaviors in several
numerical simulations. All these simulations were performed
by members of the Collaboration to Simulate Extreme
Spacetimes (SXS), which included numerical relativists from
Caltech, Cornell, the Canadian Institute for Theoretical

Astrophysics, and Washington State University at the time
of these simulations, and has since been expanded. We are
members of this collaboration, and one of us (Scheel) played a
significant role in most of these simulations.

5.2.1 Head-on collision of two black holes with transverse spins.
Our first example is a simulation [22] of the head-on collision
of two transversely spinning black holes, depicted in Fig. 9.

As the black holes merge, the vortexes retain their
individuality. When the four vortexes (one pair from each
hole) discover each other, all attached to the same horizon,
they begin to interact: each one tries to convert those adjacent
to it into a replica of itself. As a result, they exchange
vorticities; each oscillates back and forth between clockwise
and counterclockwise. At the moment when all are switching
direction, such that the horizon momentarily has zero

S S

a b

Figure 7. (Color online.) (a) Tendex lines and (b) vortex lines near a

spinning black hole. Lines with positive eigenvalues (tidal squeeze or

clockwise twist) are shown blue or light gray, and lines with negative

eigenvalues (tidal squeeze or counterclockwise twist) are shown red or

dark gray. At each point in space, there are three intersecting tendex lines

and three intersecting vortex lines.

a b

Figure 8. (Color online.) Snapshot of vortex and tendex lines for a

gravitational plane wave traveling into the page. Two orthogonal sets of

tendex lines (a) are oriented 45 degrees with respect to two orthogonal sets

of vortex lines (b). The third set of vortex (and tendex) lines is normal to

the page, with zero vorticity (tendicity).

S

S

z

x

y

a b

c d

Figure 9. (Color online). Event horizons and vortex lines of spinning black

holes, colliding head-on with transverse spins; from the simulation in [22].

(a) Horizon vortexes and spin directions just before merger. (b) Horizon

vortexes just after merger, which retain their individuality. (c) Vortex lines

linking horizon vortexes of the same polarity (red to red or dark gray to

dark gray; blue to blue or light gray to light gray). Lines are color coded by

vorticity (different scale from the horizon). (d) Sloshing of near-zone

vortexes generates toroidal vortex loops (two shown here) composed of

orthogonal vortex lines, traveling outward as gravitational waves; these

are accompanied by intertwined tendex lines (not shown). The horizon,

with attached vortex lines, is visible in the center. Figure adapted from [20].

See [23] for a movie of horizon vortexes for this simulation.
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vorticity, the vortex lines pop off the horizon and join onto
each other, creating a toroidal structure, much like a smoke
ring, that begins to travel outward. Simultaneously, adjacent
to the horizon much of the oscillation energy is stored in
tendexes, which then regenerate the horizon vortexes, but
with the twist directions reversed. As the toroidal bundle of
vortex lines travels outward, its motion generates toroidal
tendex lines, intertwined with the vortex lines in just such a
manner that they become, locally, the gravitational-wave
structure described in Fig. 8 above.

The process repeats over and over, with successive,
toroidal, tendex/vortex structures being ejected and morph-
ing into gravitational waves. The waves carry away some
oscillation energy, and some oscillation energy goes down the
hole, so the oscillations die out, with an exponentiation time
of the order of the oscillation period.

5.2.2 Collision of identical, spinning black holes in an
inspiraling circular orbit. For collisions of orbiting (i.e., non-
head-on) black holes, the vortex and tendex lines similarly
travel to the wave zone and become gravitational waves.

Figure 10a shows a schematic diagram of the horizon
vortexes and the vortex lines for the collision of two orbiting,
spinning black holes that are about to merge. Just after
merger, the horizon vortexes retain their individuality and
travel around the horizon of the merged black hole, trailing
their vortex lines outward and backward in a pattern like
water from a spinning sprinkler head (shown schematically in
Fig. 10b). In the wave zone, the vortex lines acquire tendex
lines and become gravitational waves.

Similarly, the near-field tendex lines attached to the
merged hole horizon tendexes trail backward and outward
in a spiral pattern, acquiring accompanying vortex lines as
they travel and becoming gravitational waves. These horizon-
tendex-generated gravitational waves have the opposite
parity from the horizon-vortex-generated waves, and there is
a remarkable duality between the two sets of waves [24].

Figure 10 is a schematic. For a more precise depiction,
we focus on the merged hole at late times, when it is
weakly perturbed from its final, Kerr-metric state, and its
perturbations are predominantly ` � 2, m � 2 quasinormal
modes [24]. Then the perturbations of the frame-drag field
dBi j generated by the horizon vortexes have the vortex lines
and vorticities shown in Fig. 11a, and the perturbations of the
tendex field dEi j generated by the horizon tendexes have the
tendex lines and tendicities shown in Fig. 11b. We note that
the two figures are very nearly identical, aside from sign

(interchange of red and blue, or dark and light gray). This is
due to the (near) duality between the two sets of perturba-
tions.

5.2.3 Extreme-kick black-hole collision. An interesting exam-
ple of geometrodynamics and of the interplay between
vortexes and tendexes is the `extreme-kick' black-hole
collision first simulated not by our SXS collaboration but by
Campanelli et al. [25] and others [26, 27]. Our collaboration
has repeated their simulations in order to extract the vortex
and tendex structures.

In these simulations, two identical black holes merge from
an initially circular orbit, with oppositely directed spins lying
in the orbital �x; y� plane. The name `extreme-kick' arises
because gravitational waves generated during the merger
carry linear momentum preferentially in either the �z or ÿz
direction, resulting in a gravitational recoil of the remnant
black hole with speeds as high as thousands of km sÿ1. The
magnitude and direction of the recoil depend on the angle
between the holes' identical spin axes and the distance
between the holes at the moment they merge. This angle can
be fine-tuned (for instance, to produce the maximum recoil in
the �z direction) by adjusting the initial conditions in the
simulation.

To understand the mechanism of the recoil, we consider
the remnant black hole just after merger. Figure 12a shows
the horizon tendicity and the tendex lines emerging from the
remnant black hole at some particular time. The tendex
structure rotates counterclockwise around the hole's hori-
zon. The rotating tendex lines acquire accompanying vortex
lines as they extend into the wave zone in a pattern like that
shown in Fig. 11b, and there they become gravitational
waves. During the merger, the horizon vortexes (Fig. 12b)
lock onto the same rotational angular velocity as the horizon
tendexes and generate gravitational waves in the same
manner, with a pattern that looks like the one in Fig. 11a.

In the wave zone, the gravitational waves produced by the
rotating near-zone tendexes and those produced by the
rotating near-zone vortexes superpose coherently, and the
resulting radiation pattern depends on the angle between the

a b

Figure 10. (Color online.) (a) Schematic of vortex lines and horizon

vortexes for two orbiting, spinning black holes about to merge.

(b) Schematic of vortex lines of the remnant black hole just after merger,

showing vortex lines extending to large distances; the entire pattern is

rotating counterclockwise.
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Figure 11. (Color online.) Vortex and tendex structures for deviations

from the final Kerr black hole at late times after the merger of a black-hole

binary. These are the structures in the final hole's equatorial plane, and the

final hole has the dimensionless spin S=M 2 � a=M � 0:945. (a) Perturba-
tions generated by horizon vortexesÐvortex lines (solid black for clock-

wise, dashed for counterclockwise) and vorticity of the dominant vortex at

each point (colored blue or light gray for clockwise and red or dark gray

for counterclockwise). (b) Perturbations generated by horizon tendexesÐ

tendex lines (solid black for squeeze, dashed for stretch) and tendicity of

the dominant tendex (blue or light gray for squeeze and red or dark gray

for stretch). Adapted from Fig. 12 in [24].
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horizon tendex labeled `E' and the vortex labeled `B' in
Fig. 12. For the case shown, this angle is 45 degrees, with
E� B in the ÿz direction (into the page). This is the same as
the structure of a gravitational wave propagating in the ÿz
direction (see Fig. 8). As a result, the gravitational waves
produced by the vortexes and those produced by the tendexes
superpose constructively in theÿz direction and destructively
in the �z direction, resulting in a maximum gravitational-
wave momentum flow in the ÿz direction and a maximum
remnant recoil in the �z direction.

5.2.4 Generic black-hole collisions. The geometrodynamic
behaviors of more general black-hole collisions are now
being explored numerically. For example, Fig. 13 shows the
trajectories of two black holes in a fully generic orbit.
Vortexes from the larger, rapidly spinning black hole pull
the orbit of the smaller black hole into a complicated
precession pattern. The spin directions of both black holes
also precess as the holes orbit each other. Eventually, a
common apparent horizon2 forms around the two individual
apparent horizons, and the two holes merge into one. The
Ricci scalar (approximately equal to ÿ2 times the horizon
tendicity) is shown on the two individual horizons and on the
common horizon at the moment the common horizon forms.

5.2.5 Tidal disruption of a neutron star by a spinning black hole.
Our final example illustrates the interaction of geometrody-
namics andmatter. Figure 14 shows a simulation of a neutron
star orbiting a black hole, a binary system important for
gravitational-wave detectors and possibly for high-energy
astrophysical phenomena such as gamma-ray bursts. Here,
the black hole has 3 times the mass of the neutron star and a
dimensionless spin S=M 2 � 0:5 in a direction inclined
approximately 45 degrees to the orbital angular momentum.
When the orbit has shrunk sufficiently because of energy lost
to gravitational radiation, the black hole's tidal tendexes rip
apart the neutron star, and its frame-drag vortexes then pull

the stellar debris out of its original orbit and into the black
hole's equatorial plane. If the black hole has a small enough
spin or a large enoughmass, the neutron star is not disrupted,
but instead is swallowed whole by the black hole [32].

6. Gravitational-wave observations

Geometrodynamics generically produces gravitational
waves. We are entering an era in which these waves,
generated by sources in the distant universe, will be detected
on Earth.

E

B

a b

Figure 12. (Color online.) Remnant horizon, shown in the xy plane, just

after merger, for a superkick simulation tuned for the maximum remnant

recoil in the �z direction; from a simulation presented in [20]. The black

hole and vortex/tendex structures rotate counterclockwise. (a) Colors

show the horizon tendicity; tendex lines are shown emerging from the

strongest horizon tendexes. (b) Colors show horizon vorticity; vortex lines

are shown emerging from the strongest the horizon vortexes. Figure

adapted from [20]. See [28] and [29] for movies of horizon vortexes and

tendexes of this simulation.
Figure 13. (Color online.) The two thin curves are the trajectories of the

centers of two black holes in a generic orbit; from a simulation presented

in [30]. The mass ratio of the two holes is 6:1, and the dimensionless spins

of the larger and smaller holes are S=M 2 � 0:91 and 0.3, respectively

(compared to the maximum possible spin S=M 2 � 1). The initial black

hole positions are shown in black, and the initial spins are shown as

arrows. The spins are initially oriented in generic directions, such that the

orbital plane precesses. Shown also are the apparent horizons of both

holes and the common apparent horizon that encloses them, at the time the

common apparent horizon first forms. The horizons are colored by the

scalar Ricci curvature, which is approximately ÿ2 times the horizon

tendicity. See [31] for a movie of this simulation.

2 An apparent horizon is a surface of zero outgoing null expansion and lies

inside or on the event horizon. Apparent horizons are local quantities that

are much easier to find in numerical simulations than the event horizons,

because the location of the event horizon depends on the full future

evolution of the spacetime.
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S

a b

c d

Figure 14. (Color online.) Four successive snapshots of a collision between

a black hole (black) and a neutron star (blue or gray), viewed edge-on in

the initial orbital plane; from a simulation in [33]. (a) The initial black-hole

spin S is inclined with respect to the initial orbital angular momentum L.

(b) The black hole's tendexes begin to rip apart the neutron star. (c) Some

of thematter falls on the black hole, but some remains outside the horizon.

(d) The black hole's vortexes pull the remaining matter into the black

hole's equatorial plane, forming a disk and a tidal tail. Figure adapted

from [33]. See [34] for a movie of this simulation.
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The first generation of interferometric gravitational-wave
detectors has operated at sensitivities where it would require
luck to see waves. We were not lucky [35, 36]. Second-
generation detectors, much more advanced and complex in
their design, are under construction. The first two of these
(the advanced LIGO detectors in theUS) will begin operating
in 2015 and should reach their design sensitivity by 2019 or
perhaps sooner [37]. They will be joined a bit later by the
advanced VIRGO detector in Europe, KAGRA in Japan,
and an advanced LIGO detector in India [38]. These
advanced detectors will cover a volume of the universe
1000 times larger than the initial detectors did, with
estimated event rates for mergers of black-hole and neutron-
star binaries ranging from a few per year to a few per week
[39±41]. Plans are being developed for further improvements,
which should increase the event rate by another factor of ten
or more, without major changes in detector design.

The most interesting gravitational-wave sources for these
detectors, we think, are the dynamically evolving vortexes
and tendexes attached to merging black holes and to a black
hole tearing apart a neutron starÐ the geometrodynamic
phenomena discussed above.

The numerical relativity community is building a catalog
of binary simulations and associated gravitational waveforms
to underpin the advanced detectors' searches for these waves.
Simulations of binary black holes with several hundred
different sets of parameters (mass ratios and initial vectorial
spins) have been completed [30, 42±46], and many more are
underway or planned. A sample of computed waveforms
from our SXS collaboration is shown in Fig. 15.

Once waves are detected, comparisons of observed wave-
forms with those from simulations will be crucial for under-
standing the wave sources. By such comparisons, we can
deduce the geometrodynamics of the sources and test
predictions of general relativity.

7. Conclusions

Physicists have barely scratched the surface of geometrody-
namics. As numerical simulations continue to improve and
are used to explore more complicated and generic situations,
we expect to learn more about the geometrodynamics of
critical behavior, singularities, dynamical black holes, and
other phenomena. We look forward to observations of
gravitational waves from strongly gravitating astrophysical
sources, which will enable us to test the geometrodynamical
predictions of Einstein's equations for the first time.
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