
Abstract. We use general concepts and simple models to exam-
ine the role of randomness in chaotic systems, like Earth's
climate, in response to external forcing. The response of a
simple homogeneous system is determined by its correlation
function in accordance with the fluctuation±dissipation theo-
rem. A structured (patterned) system responds in a more com-
plicated way. Whereas its mean state (for example, Earth's
global temperature) is changing only slightly, extreme events
(such as floods and droughts) are increasing more dramatically
in number. The statistics of extremes reveals remarkable prop-
erties, in particular, clustering (troubles never come alone, the
saying goes) and are here illustrated by precipitation and space
climate processes.

1. Introduction

In 1987, the last year of Zeldoich's life, Yakob Borisovich,
Dmitry Sokoloff, and I wrote the book Almighty Chance [1].
It was a time when scientists were rediscovering randomness
in physics. There were very active discussions on whether
turbulence could be described as a mix of a large number of
modes with irrational ratios of frequencies [2] or as a simple
chaotic system with a few degrees of freedom [3]. Mathema-
ticians brought out Lapunov's exponents, phase space
trajectories, and strange attractors. Our book exposed that
fascinating time by discussing the role of randomness in the
origin of magnetic fields of planets, stars, and galaxies, our
main interests at that time. Zeldovich was pleased to dust off
the classical work of Einstein and Smoluchowsky on
Brownian motion, which we, together with Stanislav Mol-
chanov, a talented mathematician from Kolmogorov's

school, extended to the transport of scalars and vectors
using modern mathematical techniques [4, 5].

One of the great features of Zeldovich's personality was
keeping the pulse of time. He instantly and actively responded
to new paths in science and in many cases greatly contributed
to their progress. In the spirit of his style, I believe it would be
appropriate to discuss the role of randomness at the current
level of scientific and public interests. And the most exciting
issue, at least from the author's viewpoint, is the role of
randomness in our Earth's very chaotic climate system.

Today, nobody denies that the climate of Earth is
changing. Earth's global temperature is rising on a long
time scale, and the number of extreme weather events such as
floods and droughts is increasing in magnitude and fre-
quency. The current news is full of reports of devastating
consequences of these extreme events. We can easily pick up a
few major events from the Internet: The heat wave in Europe
in the summer of 2003 cost almost 40,000 lives. The July 2010
Pakistan floods resulting from heavy monsoon rains covered
about one-fifth of Pakistan's total land area and affected
about 20 million people. The great Russian heat wave of
July 2010, with nothing similar of thatmagnitude over the last
one thousand years, ended with about 15,000 dead. Sandy,
the deadliest and most destructive hurricane of the 2012
Atlantic hurricane season, and the second costliest hurricane
(after Katrina) in the United States history, cost over 68
billion US dollars. Not to mention the August 2013 painful,
unprecedented flood in theAmur region, the birth place of the
author of this review.

The debates are now centering around the question of
whether current climate change is caused by humans, mostly
due to the release of carbon dioxide (CO2) and other
greenhouse gases into Earth's atmosphere. There are skep-
tical scientists and non-scientists who believe that the climate
is changing mainly due to natural processes intrinsic to
Earth's ocean±atmosphere system and that the anthropo-
genic (human) effect is small. Answering this question
requires a careful investigation of Earth's climate system
responses to external forcing and finding whether the
response to anthropogenic forcing, such as release of CO2, is
different from the response to natural forcing, such as
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volcanos or the sun. An extensive account of the current state
of research and analyses of observations related to this
question can be found in the recently released 5th IPCC
Report [6]. In Physics±Uspekhi, Byalko [7] gave a nice
introduction to climate change over an extended time period
using a simple relaxation approach.

Discussions of statistical issues close to those to be
touched on below can be found in books [8] and [9]. Numeric
methods of modeling atmospheric circulation and climate
changes are being rapidly developed, but we do not discuss
them here. This modest review, which is written in the spirit of
book [1], is biased towards the author's own research and
focused on only one aspect, the role of randomness in the
climate response to external forcing.

The review is organized as follows. In Section 2, we start
with the introduction towell-known studies of the response of
purely random or chaotic homogeneous systems to weak
external forcing. We then discuss the role of structures
embedded into the system, by first using the examples of the
attractors of the Lorentz dynamical system and of a simple
dynamical system based on the double-well potential, and
then considering Earth's real climate structures, called
`climate patterns'. A key conclusion of these discussions is
that forcing only weakly affects the mean states of the system
but strongly increases the probability of large deviations
(extreme events). Section 3 is devoted to discussing the basics
of statistics of extremes and presents examples of the
application of the extreme value statistics to space weather
and precipitation extremes.

2. Response to forcing

Linear and nonlinear systems respond differently to external
forcing. A classic example of a linear system response is
Hooke's law of elasticity, which states that the amount by
which a material body is deformed is linearly proportional to
the force causing the deformation. This linear approximation
is still widely used in climate studies [6], for example, in
evaluating the sensitivity s of the change in Earth's global
temperature T caused by a change in radiative forcing F:

DT � sDF :

The radiative forcing is defined as the difference between the
solar energy received by Earth and the energy radiated back
to space. It is usually quantified as a change in the heat flux
DF at the atmospheric tropopause in units of [W mÿ2]. A
typical value s � 0:8 K Wÿ1 m2 allows making a quick
estimate of global warming caused by any heat imbalance.
For example, for the evaluation of global warming due to the
increase in CO2, the formula DF � 5:4 ln�CO2=C0�, where C0

is a reference concentration of CO2, is often used (cf.
wikipedia.org/wiki/Radiative_forcing).

The response of nonlinear systems to external forcing is
conceptually different. The issue is not the magnitude
(sensitivity) of the response but the greater involvement of
the system's rich characteristics of randomness and the
different ways these characteristics are treated. For example,
it was suggested that averaged atmospheric variability, after
subtracting clearly observed periodicities such as seasonal
cycles, can be completely characterized as a fluctuating
system that displays a different behavior on shorter
(< 10 days typical for weather) and longer (years, typical for
climate) time scales [10]. Such a `soup' type treatment of

Earth's climate system interprets the fluctuations as combina-
tions of external forcings (anthropogenic, solar, volcanic,
etc.) and internal feedbacks caused by processes such as
deep-ocean or land-ice dynamics. We here adopt a different,
more traditional view of separating the system fluctuations
from the external forcing.

The classical approach to studying the response of a
random system to forcing is based on considering an
isotropic, uniform medium that is fully defined by the
second-order correlations (covariances) of its fluctuations.
The response of this type of system is determined by the
general fluctuation±dissipation theorem (FDT), which can be
applied to a wide range of physical systems [11±15].

2.1 Fluctuation±dissipation theorem
According to the FDT, the response of a random system to
weak external forcing is determined by covariances and
lagged covariances of fluctuations of the undisturbed sys-
tem. This theorem was applied in [16, 17], among others, to
Earth's climate system, and in [18±20], to barotropic and two-
level baroclinic atmospheric models in a multivariate setting
to find the sensitivity of the atmospheric dynamics to weak
forcing.

The equations for unperturbed and perturbed systems
have the form

du0
dt
� N�u0; l� ; �1�

du

dt
� N�u; l� � F ; �2�

where u0 and u are the unperturbed and perturbed climate
variables, l is a set of parameters, and N is a nonlinear
operator. Under the assumption that the probability distribu-
tion function of solutions of Eqns (1) and (2) is the Gaussian
exp �ÿCÿ1�0��u u�=2�, it follows that the difference between
the mean values of u0 and u is

hu0i ÿ hui �
�t
0

C�t�Cÿ1�0�Fdt ; �3�

where C�t� is the lag-t covariance matrix of u.
This is themain result providedby theFDT. It canbe easily

understood if we treat the system as a well-mixed random
system similar to classical, uniform, isotropic turbulence. In
this approximation, the system is fully described by its second-
order correlations, and therefore its response to external
forcing is determined by the correlation (covariance) func-
tion. In fact, all proofs of the FDT are based on assumptions
that reduce the system to a uniformly mixed, Gaussian,
stationary medium.

The classic FDT characterizes the response of a fluctuat-
ing, dissipative system to small, stationary, external forcing.
In an excellent review in Physics±Uspekhi, devoted to the
legacy of V L Ginzburg, Pitaevskii discussed the general
situation where the external force is not small and not
stationary [21]. He showed what can be done in this highly
nonlinear situation using the approach developed by Boch-
kov and Kuzovlev [22] and the Jarzynski equality [23]


exp �ÿbW �� � exp �bDF� ;

whereW is the work on the system done by the external force,
1=b is the temperature, and DF is the difference between the
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equilibrium free energy and its value before the force
application. A non-evident fact is that extreme values of W,
when it takes rare, very small values, substantially contribute
to hexp �ÿbW �i due to the exponential dependence. Pitaev-
skii described mechanical and biological experiments con-
firming this extension of the FDT and emphasizing the
benefits of using traditionally unrelated branches of science.
We here show that there is another potential domain of
application of these fundamental ideas: climate.

The FDT is focused on changes in the mean value of the
random system variables in response to an external forcing.
But real systems are usually highly structured and the
standard statistical mean does not provide a sufficient
measure of the response. Mathematically, nonlinear system
structures are characterized by preferred states defined by
their internal processes and called `attractors'. The dynamics
are defined by residence in the states and transitions between
them. The question is how an external forcing changes the
states, residence times, and other characteristics of the system.
The answer to this question is critical to our understanding of
climate change, because Earth's real climate is a good
example of a very structured system. In the following
sections, we discuss a possible approach to understanding
the effects of external forcing of structured systems. We start
with the simplest dynamical system, which has two basic
attractors in its phase space. We then discuss how Earth's
climate structures fit into this category.

2.2 Forcing a two-state dynamical system
Insight into a structured system response to a weak forcing
can be gained by considering the forcing of a dynamical
system with known states (attractors). The simplest and best
known is the Lorenz system [24]

_x � ÿs�xÿ y� � F0 cos y ; �4�

_y � ÿxz� rxÿ y� F0 sin y ; �5�

_z � xyÿ bz ; �6�

which (for the parameters chosen as r � 28, s � 10, b � 8=3,
and F0 � 0) has two attractors (Fig. 1a). What happens when
this system is perturbed by a force of a constant amplitude F0

[see the right-hand sides of Eqns (4) and (5)] applied at an
angle y was investigated in [25]. It was shown there that the
probability density functions of the residence time in these
two attractors are exponential, and that the strongest
response to forcing is a change in the frequency of the
occurrence of extremely persistent events, rather than a
much weaker change in the mean residence time; in other
words, the tails of the density have enhanced sensitivity to
forcing.

To understand this interesting result, in the spirit of the
approach in [26], we consider an even simpler system than the
Lorenz one, a mechanical system

dx

dt
� ÿ dU

dx
; �7�

where U is a double-well potential complemented with a
constant external force F0:

U � ÿ x 2

2
� x 4

4
ÿ F0 x : �8�

The potential wells are similar to the two attractors of the
Lorenz system (Fig. 1b).We now generate random transitions
from one potential well to another. This can be done by
applying a random forcing to the right-hand side of Eqn (7).

In the absence of the force, F0 � 0, the mean residence
times in the positive (right) and negative (left) wells are equal:
tp � tn. But when F0 6� 0, one well becomes deeper than the
other, and the residence times become different.

Figure 2 shows the difference found by numerical
simulation for F0 � ÿ0:05. In this case, tp becomes smaller
than tn, i.e., the system spends more time in the negative well.
It is also true that the duration of random times spent in the
negative well becomes larger. This less trivial fact can be
discerned from the difference in the tail of probability
distributions of the well duration times shown in Fig. 2c.

These results suggest that the most significant effect of
forcing can be a change in the frequency of the occurrence of
negative events (or positive events if the positive well is made
deeper), rather than a change in the mean state. In the next
section, we return to this issue and consider an application of
the concept developed here to real structures of Earth's
climate system, called `climate patterns' here.

2.3 Climate patterns
The concept of climate patterns was introduced by the
celebrated British scientist Sir Gilbert Walker in his address
to the Royal Society, and was published in [27]. Walker
looked into the surprising anecdotal reports of connections
between the weather in distant parts of Earth. By analyzing
the available observations, he recognized that the correla-
tions are real and introduced three large-scale coherent
oscillating patterns of the atmosphere±ocean variability,
which he called `swayings' and which are now known as the
North Atlantic Oscillation, North Pacific Oscillation, and
Southern (South Pacific±Indian Ocean) Oscillation. Subse-
quently, numerous studies have demonstrated that the
atmospheric and oceanic anomalies (deviations from the
mean) are associated with spatially coherent patterns. From
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Figure 1. (a) Two attractors of the Lorenz system seen in the (x, z) plane.

(a) Two states in a double-well potential dynamical system.
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a mathematical standpoint, the patterns can be effectively
represented by the empirical orthogonal functions (EOFs)
introduced into atmospheric science in [28]. They can be
calculated from monthly grids of the sea level pressure (or
geopotential heights), temperature, and zonal wind anoma-
lies (cf. [29]).

The time series of principal components (PCs) of these
EOFs can be used as empirical indices of patterns. One of the
most explored patterns is the North Atlantic Oscillation
(NAO), which was originally defined as a December-to-
March mean of the sea level pressure difference between
Iceland and Portugal [30]. It is closely related to the more
spatially extended North Annular Mode (NAM) [31]. The
counterpart of the NAM in the southern hemisphere is called
the SAM (Fig. 3). These modes are influenced by solar
variability [43, 76, 77]. The weather conditions in the north-
ern (southern) hemisphere substantially depend on the state
of the NAM (SAM), as is illustrated by the data on weather
extremes compiled from [32] (Table 1). The first column
defines the type of weather event and its location. The
numbers in the second and third columns show those events
falling on positive and negative states of theNAM that exceed
one standard deviation in absolute value. Many more cold
temperature and frozen precipitation anomalies (extreme
events) occurred during the negative state of the NAM when
the polar regions were warmer. ``Blocking Days'' refers to
days when the normal eastward progression of synoptic
disturbances is obstructed, leading to episodes of prolonged
extreme weather conditions. The results, which are based on
daily data from 1958±1997 winters, are adapted from [32].
The negative NAM state means a warm Arctic and cold

Eurasia. In fact, observational evidence shows that significant
cold anomalies over the Far East in early winter and zonally
elongated cold anomalies from Europe to the Far East in late
winter are associated with a decrease in the Arctic sea-ice
cover in the preceding summer-to-autumn seasons [33].
Results from numerical experiments using an atmospheric
general circulation model support these notions. An anom-
alous decrease in the wintertime sea ice concentration in the
Barents±Kara Seas was associated with extreme cold events
like the 2005±2006 winter in Europe [34].

Other examples of climate patterns are the Pacific±North
America (PNA) pattern, the Cold Ocean±Warm Land
(COWL) pattern [35], the Pacific Decadal Oscillation (PDO)
[36], the well-known El Ni~no±Southern Oscillation (ENSO)
in the Pacific [37], and the Quasi-Biennial Oscillation (QBO)
in the stratosphere [38]. As shown in [39], the QBO during
mid-winter has an impact on the northern hemisphere
weather similar to the NAM but somewhat weaker. This
impact operated through the change in the strength and
stability of the stratospheric polar vortex. The easterly
(westerly) phase of the QBO favors an increased incidence of
extreme cold (warm) events. The signature of the QBO in NH
wintertime temperatures is roughly comparable in amplitude
to that observed in relation to the El Ni~no±Southern
Oscillation phenomenon.
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Figure 3. Illustration of the (a) NAM and (b) SAM patterns of the

tropospheric temperature. Low-temperature anomalies (deviations from

the mean over about a 50-year period) over the poles (area 1, dark grey)

are surrounded by a warm ring (area 2 and 3, light grey), which includes

Eurasia and USA. The cold poles are accompanied by a cooling of the

tropics. For more details, see www.jisao.washington.edu/wallace/ncar-
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2.4 Origin of climate patterns
What is the origin of climate patterns? It is generally agreed
that climate patterns are naturally excited by the atmosphere±
ocean dynamical system. However, physical mechanisms of
the excitation are still in an early state of investigation and
vary from pattern to pattern. Carl Gustaf Rossby [40,
pp. 656±661] was the first to emphasize the importance of
two main ingredients of atmospheric dynamics: the zonal±
mean zonal wind and nonzonally symmetric deviations of
pressure. He described the nonzonally symmetric deviations
as waves, which are now known as Rossby or planetary
waves.

Rossby waves are driven by the Coriolis force. Their
lowest mode changes sign once over the whole longitudinal
circle. These large-scale waves are most effectively generated
by winter flow over mountains and by sea±land temperature
contrasts. The waves propagate in horizontal and vertical
directions [41]. The vertical propagation of the waves into the
stratosphere with decreasing the air density dramatically
increases their amplitude. This increase often leads to non-
linear wave breaking accompanied by energy release that
produces temperature anomalies and sometimes reverses the
direction of the zonal wind. The zonal wind, in turn, affects
the wave propagation by modifying the refractive index. It
was suggested and demonstrated in numerical simulations
that the excitation of the NAM, which characterizes the
zonally symmetric anomalies of atmospheric circulation,

involves interaction between planetary waves and the zonal
mean flow in the atmosphere [42, 43, 45]. The same
interaction produces an orthogonal mode, the PNA climate
pattern [29]. This nonlinear wave±zonal flow interaction can
be envisioned as a dynamical system with two basic states in
its phase space corresponding to positive (negative) NAM
states [43±45], thus justifying the simple double-well potential
model discussed in Section 2.2.

2.5 Forcing the climate patterns
Introducing an external forcing can change either the states
themselves or the residence times spent in the states. In [40], it
is hypothesized that forcing does not change the states and
only affects the mean residence times (occupation frequen-
cies) of the states.

The Rossby conjecture was further developed in [46] and
[47]. For visual illustration, Palmer presented a picture with
two tea cups representing the states, a ball randomly thrown
from above to simulate occupation of the states, and a fan
imitating the external force (Fig. 4a). However, the analysis
presented in Section 2.2 shows that the change in the mean
residence times is a small effect compared to a stronger change
in the tail of the probability distribution of the residence times,
i.e., the increase in the frequency of occurrence of extreme
events.

To understand why the system responds strongly via
extremes, we recall [77] that the energy barrier DU separating
the two wells impedes the system from transition to the other
state (Fig. 4b). This critical feature is missing in the Palmer
figure of two equal solid tea cups (Fig. 4a) and in the original
Rossby hypothesis. In fact, the external force affects the state
by making one potential well deeper than the other. When a

Table 1. Extreme weather events associated with the state of the NAM.

The first column defines the event type.

Events and location NAM+ NAMë

Daily min temperature

< ÿ15 �C Chicago 29 84

< 3 �C Paris 23 97

< ÿ29 �C Novosibirsk 21 85

< ÿ19 �C Bejing 21 55

< ÿ1 �C Tokyo 20 95

Frozen precipitation

Trace snow, Dallas, TX 1 17

> 5 cm snow, Baltimore 11 63

> 0:5 cm snow, Paris 11 25

> ÿ0 cm snow, Tokyo 8 25

Winds

> 25 knots, Seattle 78 27

> 35 knots, Astoria, OR 55 20

> 30 knots, Boston 22 45

> 50 knots, Keêavik, Iceland 81 19

Blocking days

Alaska (170� Eë 150� W, 60� ë 75�N) 53 98

North Atlantic (50� ë 0�W, 60� ë 75�N) 1 225

Russia (40� ë 70� E, 60� ë 75�N) 29 82 a

b

0ÿ2 ÿ1 1 2
x

DU

U

Figure 4. (a) Illustration of forcing a two-state system suggested in [47].

Note that the tea cups are solidly fixed. (b) Illustration of forcing a two-

state system suggested in [77] using a two-well potential. The forcing

affects the depth of the potential well, making the transition from one state

to another biased toward one of the states.
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change in the depth is significant, the systemmore often stays
longer in the deeper well, which explains the prolonged
persistence of this state (pattern). An example of a real two-
state climate system is the NAM. The long residence time in
one of its states may be relevant to the predominance of the
negative NAM pattern during the prolonged period of
reduced solar forcing of climate at the Maunder Minimum
of solar activity [48] and the recent Arctic warming accom-
panied by the cooling of Eurasia [33].

This reasoning is supported by simple estimations based
on the two-wellmodel described above.As iswell known from
20th-century studies, the probability p of having a residence
time t is proportional to exp �t=tK�, where tK / exp �DU=s� is
the mean residence time, with s describing the rate of
stochastic forcing that provides transitions from one state to
the other [26]. An external forcing that affects the depth of one
of the states effectively increases (or decreases) the barrier.
Due to the exponential sensitivity of the mean residence time
tK to the height of the barrier, even a small change in the
barrier can induce a noticeable change in the mean residence
time. But the change in the probability of having a very long
residence time tc 4 tK is larger by the factor tc=tK because
dp=p��tc=tK� dtK=tK! Numerical simulations of a model
double-well potential system with stochastic transitions
between the wells described in Section 2.2 support this
rough estimate. When one of the wells is made deeper by
changing the forcing in potential (8), the probability distribu-
tion of residence times in this well displays a longer tail
(Fig. 2c).

Does external forcing also change the spatial structure of
the patterns? Model studies of the simple Lorenz and double-
well systems discussed above show that the positions of the
attractors or wells change only slightly. Climate variations
during periods over the past 165,000 yr, when the ice sheet
distribution resembled that of the present day, are accumu-
lated in [49]. This condition is met during the Holocene
period, extending approximately 11,000 yr before the pre-
sent. These numerical experiments revealed that the orbital
forcing led to variations in the NAM but preserved its spatial
structure. Nonetheless, it remains unclear whether changing
the boundary conditions, for example due to large-scale
melting of ice in Greenland or Antarctica, could change the
NAM pattern.

Based on the model estimations discussed, the following
conjecture of the climate system response to external forcing
emerges: external forcing (such as solar or anthropogenic)
only weakly affects the climate patterns and their mean
residence times but increases the probability of the occur-
rence of long residence times. In other words, under external
influences, the changes in mean climate values, such as the
global temperature, are less pronounced than the increased
duration and intensity of certain climate patterns that can be
associated with cold, wet conditions in some regions (floods)
and warm, dry conditions (droughts) in other regions (see
Table 1). Hence, studying extremes has a high priority. In the
next section, we outline some ideas related to the statistics of
extremes.

3. Extremes, extremes

The history of scientific studies of extremes goes back to the
early 18th century. In 1709, the Swiss mathematician
Nicolaus Bernoulli formulated the following problem: if n
men of equal age die within t years, what is the life expectancy

for the last survivor? He also suggested a method for solving
this problem: multiple times, place n points at random on a
line of length t and calculate the mean largest distance from
the origin. This was the commencement of statistics of
extremes. Nicolaus Bernoulli and Daniel Bernoulli, who is
well known to physicists for his pioneering work in hydro-
dynamics, were among the first foreign scientists to have been
invited to join the newly opened Russian Academy of
Sciences in Saint Petersburg in 1725.

3.1 Stable probability distributions
The statistics of extremes appears to be completely different
from the standard statistics of large numbers familiar to
physicists. The familiar statistics is based on the central limit
theorem, which states that a sample of a large number of
random numbers has a nonrandom mean value, and the
deviation from this value obeys the Gaussian distribution.
But the number of extremes is usually very small, and
therefore the central limit theorem is not applicable. Amaz-
ingly enough, 20th-century statisticians figured out what to
do with the statistics of small numbers. There were earlier
anecdotal attempts, such as the work of Polish statistician
Ladislav von Bortkiewich (1868±1931), who was born in St.
Petersburg and graduated from St. Petersburg University. In
his paper ``Klienen Zahlen'' published in Leipzig in 1898,
Bortkiewich tried to solve the so-called Prussian army horse-
kick problem of the probability for an army officer to be
killed by a horse.

The fundamentals of the statistics of small numbers were
later laid out by three outstanding statisticians: Ronald
Fisher (1890±1962), Leonard Tippett (1902±1985) [50], and
Boris Vladimirovich Gnedenko (1912±1995) [51]. The result
of their work is formulated in the Fisher±Tippett±Gnedenko
(FTG) theorem, which states that if e1; e2; ::; en; ::: are
independent, identically distributed random events, then the
cumulative probability of the maxima of n events Mn �
max �e1; e2; :::; en� when n!1 must obey one of the three
cumulative probability distributions:

PG � exp

�
ÿ exp

�
ÿ xÿ m

s

��
; �9�

PF � exp

�
ÿ
�
xÿ m
s

�ÿa�
; xÿ m > 0 ; �10�

PW � exp

�
ÿ
�ÿx� m

s

�a�
; xÿ m < 0 ; �11�

where m, s, and a are parameters defining the centroids,
scaling, and the rate of convergence to unity. For simplicity,
we keep the same notation of the parameters, although they
are different for each of the three distributions.

The first distribution had been discovered previously by
the German statistician Emil Gumbel (1891±1966) in his
studies of floods, the second by the brilliant French
statistician Maurice Fr�echet (1878±1973), and the third by
the Swedish engineer Waloddi Weibull (1887±1979).

The three distributions in Eqns (9)±(11) can be combined
into the so-called generalized extreme value distribution

G�x��exp

�
ÿ
�
1� g �xÿ m�

s

�ÿ1=g�
; 1� g �xÿ m�

s
> 0 ;

�12�
where s > 0 is the scale, m is the location, and g is the shape
parameter of the distribution.
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When g! 0, we obtain the Gumbel cumulative distribu-
tion exp fÿ exp �ÿ�xÿ m�=s�g. If g < 0, the right-hand tail is
bounded and G becomes the reversed Weibull law. Finally,
if g > 0, then the right-hand tail decays as a power law, and
G reduces to the Fr�echet distribution with a � 1=g.

The base on which the proof of the nonevident FTG
theorem stands is the so-called `stability postulate' intro-
duced by Fr�echet in 1927. In short, it condenses to the
following: if the distribution of random events is P�x�, i.e.,
Prob �ei < x� � P�x�, then, due to the independence of the
events,

Prob �Mn < x� � Prob �e1 < x�
� Prob �e2 < x� :::Prob �en < x� � �P�x��n :

The stability postulate states that there is a set of distributions
for which the complicated function �P�x��n reduces to a
rescaled original distribution P�x�:�

P�x��n � P�an x� bn� : �13�

The FTG theorem identifies Eqns (9)±(11) as the only
distributions satisfying condition (13). In particular, it was
shown in [51] that the constants an and bn are only weakly
dependent on n and are equal to an � 1, bn � ÿs log �n� for
the Gumbel distribution and to an � nÿ1=a, bn � m�1ÿ nÿ1=a�
for the Fr�echet distribution.

The FTG theorem provides a statistical foundation for
the characterization of extremes. In principle, we should just
take a sample of extremes and fit it to one of the distributions
described by Eqns (9)±(11) or to the generalized extreme-
value distribution function (12). However, in practice, the
quality of the fit is difficult to evaluate because of the scarcity
of extreme events and a lack of precise mathematical
techniques to do the fitting. The fitting curve depends on the
selected samples of data, adjustable parameters, and the skill
of the researcher. A simpler approach is fitting only the tail
of the distribution. With the full distribution remaining
unknown, this allows using only the data above the selected
threshold. The weakest point of the tail fitting is the arbitrary
selection of the threshold.

There are other practical limitations on the direct use of
the FTG theorem. One of them is the severe restriction on
independent extreme events. Observed extremes often arrive
in clusters, i.e., close to each other (see Section 3.2), in
accordance with the folk wisdom that troubles never come
alone. Another limitation is that the FTG theorem applies to
only the distribution of their magnitude and does not directly
answer the question of how often extremes happen, i.e., what
is the rate of the occurrence of extremes. For practical
purposes, we need to know the distribution of time between
extreme events. If timing of the events were similar to the
arrival of random telephone calls, i.e., controlled by the well-
known Poisson process, then the times between the arrival of
subsequent events t � t�i� 1� ÿ t�i� would be distributed
exponentially as exp �ÿt=t0�, where t0 is the mean time
between the events. But in general, the times of arrival of
extremes do not follow this classic distribution.

Fortunately, there are simple, practical methods to
determine the extreme tail of the distribution and the
frequency of the occurrence of independent and correlated
(clustered) extreme events. One method is called the max-
spectrum [52], which was applied in [53] to the study of
extreme solar events.

The method uses the scaling of the data maxima observed
at different time scales and does not involve a fit to an
empirically determined distribution function. The scaling
approach is familiar to physicists and widely used in many
physical applications, e.g., in turbulence studies (recall the
Kolmogorov±Obukhov law for velocity fluctuations). The
simplicity and usefulness of scaling methods is nicely
illustrated in [54, 55]. Scaling can naturally be extended
when new data become available, which is useful in studying
extreme events due to the scarcity of data samples at the time
of data analysis. It also allows interpolating the behavior of a
variable beyond the limits of a given data set if there is no
indication of any preferred value that could break the scaling.

The max-spectrum method uses a range of data to
effectively estimate the threshold separating extreme values
from typical values without any additional assumptions. It
produces two exponents: one defines the high tail of the
distribution function and the other characterizes the cluster-
ing of extremes in time. Thismethod is briefly described below
in application to data samples presented by time series. For
technical details and mathematical proofs, the reader is
referred to [52] and [56].

We consider the data time series X�i� of length N,
14 i4N and form nonoverlapping time blocks of length
2 j for each time scale index j � 1; 2; 3; . . . ; � log2 N � (brackets
denote the integer value), i.e., we progressively double the
time scale. At each fixed scale, we calculate the datamaximum
within each block:

D� j; k� � max
14 i4 2 j

X
ÿ
2 j�kÿ 1� � i

�
; k � 1; 2; . . . ; bj ;

where bj � �N=2 j� is the number of blocks (of the length 2 j)
and i labels the data points within the kth block. We note that
j, the log-block-size, plays the role of a time-scale parameter.
We observe that the blocks of scale j are naturally nested in
the blocks of the larger scale � j� 1�.

We now average the logarithms of the maxima D� j; k�
over all blocks having the scale j:

Y� j� � 1

bj

Xbj
k�1

log2 D� j; k� :

The function Y� j�, i.e., a set of �log2 N� numbers, is called the
`max-spectrum' of the data. An important result, established
in [52], is that if the max-spectrum is linear for sufficiently
large j,

Y� j � ' j

a
� C ; �14�

where C and a > 0 are constants, then the tail of the data
distribution follows a power law with the exponent a. If the
tail is not a power law, e.g., exponential, Gaussian, or
lognormal, then the max-spectrum levels off at large scales.
It is proved in [52] that the exponent a is the same for both
statistically independent and dependent (correlated) data if
the time series are stationary and have the same distribution
function. The dependence, which means the clustering of the
times of extreme events, affects only the intercept in Eqn (14):

Y� j � ' j

a
� C� log2 y

a
; �15�

where the quantity y (0 < y4 1) is called the extremal index.
The extremal index is used in statistical studies to

characterize the temporal clustering of extreme events [57, 58].
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It allows representing the distribution function ofmaxima of n
dependent events as a distribution function of the maxima of
roughly ny independent events, i.e., grouping the n dependent
events into ny independent clusters. It also allows generalizing
the FTG theorem to the case of dependent (clustered) random
events:

P
�
Mn ÿ dn

cn
4 x

�
�G y�x�; P

�
M �

n ÿ dn
cn

4 x

�
�G�x� ;

where Mn and M �
n are the maxima of n dependent and

independent random events deduced from the same prob-
ability distribution as the data time seriesXt, cn > 0 and dn are
normalization constants, and G�x� is the cumulative extreme
value distribution function (12). The constants cn > 0, and dn
depend on the distribution function of the data. For example,
if theXt are distributed in accordance with the power lawwith
an exponent a > 0, then cn � n1=a and dn � 0. We note that
the constants cn > 0 and dn are the same for both dependent
and independent events.

The extremal index refers only to the temporal depen-
dence between extreme events but not between all events. The
smaller the index is, the stronger the extreme events are
interdependent, as is exhibited by clustering of time intervals
between events. In the limit case y � 1 (independent events),
we consider the onset times ti of events exceeding a specified
threshold Xt � u, which can be chosen, e.g., as the 90th or
95th percentile of the data distribution, or from physical
considerations. Then the distribution of times between
two consecutive events ti � ti ÿ tiÿ1, i � 1; 2; ::: is simply
P�t � k� � �1ÿ p�kÿ1p; where k � 1; 2; 3; ::: labels the time
steps and p � p�u� is the probability of the occurrence of one
event in unit time. For large thresholds, p is small and this
distribution is essentially exponential with the expectation
value 1=p � 1=P�Xt > u�.

Equations (14) and (15) suggest a method for estimating
both a and y [52, 56]. The inverse exponent 1=a is obtained as
the slope of the line fitted to the max-spectrum of the data.
The best linear fit outlines the self-similar part of the max-
spectrum. Itmust be taken into account that in practice, as the
scale j increases, fewer block-maxima D� j; k� (indexed by k)
are available and the variability of the max-spectrum Y� j�
increases. The best way to deal with this problem is to apply
the method of generalized least squares, which accounts for
the bias±variance trade-off [52].

Taking Eqns (14) and (15) into account, we can easily
obtain estimates of the extremal index. By permuting the data
with a substitute of data points (bootstrap) or by simply
randomly permuting the original data time series, we can
obtain a time series X �i , 14 i4N, that has the same
distribution function as the original data set, but with the
dependence (i.e., correlations between data points) destroyed.
Repeating this operation creates a large set of pseudo time
series in which the original data dependence is destroyed and
the events can be viewed as nearly independent in time. For
each such time series, we compute the max-spectrum Y�� j�,
14 j4 �log2 N�, that satisfies Eqn (14). The max-spectrum of
the original data Y� j� satisfies Eqn (15) with the same
constant C; thus, the difference between the two spectra
yields an estimate of y:

by� j � � 2ÿâ
ÿ
Y �� j �ÿY� j �

�
; �16�

where ba is the estimate of the tail exponent a obtained from
the slope of themax-spectrum. Because there is a large sample

of pseudo-independent time series, we obtain many realiza-
tions of by� j� at each scale j. The median or the mean of these
estimates can be taken as a point-estimator of y on the scale j.
The whole sample of estimates can be used to quantify the
estimation error on each scale.

3.2 Clustering of extremes
When the time intervals between extreme events do not follow
the standard exponential law for independent events, the
extreme events are correlated, i.e., occur in clusters. The
standard tools of time series analysis, such as the autocorrela-
tion function of a process under consideration, cannot
provide information about clustering of extremes. Two basic
ideas have been introduced to tackle the problem: the cluster
Poisson process [58] and an asymptotic covariance function
called an `extremogram' [59].

The mean time interval between events within a cluster
depends on the threshold defining the extremes. It was shown
in [58] that, with the asymptotically larger and larger thresh-
olds, the time intervals ti between the extremes converge
(under time rescaling) to a cluster (compound) Poisson
process, which is similar to the standard Poisson process,
but with a random number of events arriving clustered in
time. A cluster Poisson process can be distinguished from the
standard Poisson process by the extremal index 0 < y < 1, the
reciprocal of which defines the mean size of clusters [57].

To obtain more detailed information about the clusters,
we can apply the statistical methodology called `declustering'.
The methodology employs a `declustering threshold time' tc
defined by the extremal index [60]. If the time interval between
two extreme events is less than tc, these events can be grouped
into a cluster, i.e., tc separates intra-cluster time intervals
from inter-cluster time intervals.

To estimate the declustering threshold time, we consider
an ordered collection of all times between consecutive
extreme events,

t1 5t2 5 . . . 5tmÿ1 ; �17�

and take tc as the y�mth largest among them [60]. This
choice of the declustering time is justified by the fact that the
extremal index taken as the inverse mean of the cluster size
allows estimating the number of clusters. Indeed, if our time
series consists of m extreme events (i.e., m events exceed a
threshold u), they are on average grouped into y�m clusters.
We now consider the time intervals ti between the extreme
events as they occur in a real time sequence, i � 1; 2; 3; :::. If
m1 subsequent time intervals have ti < tc, the associated
extreme events constitute a cluster of size m1. If the time tk
exceeds tc, the extreme events occurring in the time step k and
k� 1 belong to different clusters, which can, in particular, be
size-one clusters, i.e., single extreme events.

The declustering threshold time can be estimated in
other ways. For example, one can use the observed
distribution of time intervals between extremes in compar-
ison with the exponential distribution expected for indepen-
dent events.

The extremogram method used for clustering extremes
generalizes the concept of the tail dependence coefficient,

L�t� � lim
x!1P�X�t� > xjX�t� t� > x� ; �18�

which describes the correlation between a pair of extreme
data points shifted by a lag equal to t.
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The collection of values of L contains information about
the serial dependence between extremes in the time series X.
The following limit is called the extremogram [59]:

rAB�t� � lim
n!1

P
ÿ
aÿ1n X�t� 2 A; aÿ1n X�t� t� 2 B

�
P
ÿ
aÿ1n X�t� > A

� ; �19�

where A and B are selected sets and aÿ1n is an increasing
sequence of numbers such that P�jXj > an� / nÿ1. If we
choose A � B � �1;1�, the extremogram rAB�t� simply
becomes the probability lk of observing another extreme
event after the time k an extreme event has already been
observed, i.e.,

lk � P
ÿ
Xk > ujX0 > u

�
; k � 1; 2; . . . ; �20�

for a threshold u. If the Xk were time independent, this
conditional probability would equal the unconditional prob-
ability P�Xk > u�. Therefore, the Xk are statistically depen-
dent on time if lk is significantly different from P�Xk > u�.
The parameter lk can be estimated with the following
empirical statistics:

blk � �P nÿk
j�1 I�Xj�k > u;Xj > u��=�nÿ k��P n

j�1 I�Xj > u��=n ; �21�

where I�A� equals unity if the event A occurs and zero
otherwise.

In the next two subsections, we illustrate the application
of the described statistical methods to real data.

3.3 Precipitation extremes
We first consider the application of the max-spectrum
method to precipitation extremes over the Pacific Ocean.
Rainfall over the oceans determines surface layer stratifica-
tion, the ocean freshwater balance, and ocean mixing. Its
variations are often determined byElNi~no.Here, we consider
the rainfall over the so-called Ni~no 3.4 region located in the
middle of the Pacific Ocean (5�S±5�N; 170�W±120�W) using
satellite data obtained from the Advanced Microwave
Scanning Radiometer ±Earth Observing System (AMSR-E)
sensor on NASA's Aqua satellite. The data can be down-
loaded from http://nsidc.org/data/amsre/. The AMSR-E
instrument provides measurements of land, ocean, and
atmospheric parameters for the investigation of global water
and energy cycles, including precipitation rates, sea surface
temperatures, sea ice concentration, snow water equivalent,
soil moisture, surface wetness, wind speeds, atmospheric
cloud water, and water vapor.

The rainfall data used were generated daily in the period
from June 2002 to June 2010 and averaged over the Ni~no
3.4 region (Fig. 5). There is a slight influence of the annual
cycle seen in Fig. 6. It was filtered out in the search for the
extremes, although it does not produce a substantial effect on
the max-spectrum. The cumulative distribution function of
this time series and themax-spectrum are shown in Fig. 6. The
spectral index is found to be a � 2:2� 0:1. The extremal
index is quite small (< 0:2), indicating substantial clustering
(more than 5 events in a cluster on average) of extreme rain
events in this region.

3.4 Space climate extremes
Another example is the application of the max-spectrum
method to the study of extreme space climate events [53].

The currently popular term ``space weather'' refers to severe
disturbances in Earth's upper atmosphere and in the near-
Earth space environment that are driven by solar activity [61].
Similarly to the meteorological terminology, external dis-
turbances in Earth's atmosphere and its space environment
on a long time scale (e.g., a year or the 11-year solar cycle) are
referred to as space climate [62]. The main space disturbances
come from the solar plasma and particle ejection and galactic
cosmic rays [63]. Space climate estimates are required for the
design of space missions. Manifestations of these distur-
bances are seen in beautiful natural extreme events, the
auroras. Whether the aurora is seen as moving white and
green bands or a diffuse red light depends on observer's
position on Earth. The aurora takes place in an annulus
around the geomagnetic poles [64]. Within 20 degrees of
latitude of the equator, the sky is red during an aurora and
seeing it would be a once in a lifetime experience. In the far
north, the light is most likely green, and can be seen during
most dark nights. Atmid-latitudes, the phenomenonmight be
seen once or twice a year and the moving light would be either
whitish or greenish or a vivid red. Documentation of auroras
in Europe and the Orient cover the time period as far back as
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Figure 5. Rainfall record over the Ni~no 3.4 region in the Pacific Ocean.
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the seventh century BC. These observations have been
gathered in a catalog [65] that has been used in scientific
research on solar variability and its influence on Earth's
climate.

During strong auroras, ionospheric currents can be
hazardous by inducing damaging electrical currents in
electric power grids, as happened during the great geomag-
netic storm ofMarch 1989, when the collapse of northeastern
Canada's Hydro-Quebec power grid left millions of people
without electricity for up to 9 hours. Such currents also
contribute to the corrosion of oil and gas pipelines [66].
Space-driven ionospheric density disturbances interfere with
high-frequency radio communications along airplane routes,
requiring aircraft to be diverted to lower latitudes, and
affecting navigation signals from Global Positioning System
(GPS) satellites [61]. Bursts of energetic particles and
radiation belt enhancements during strong space weather
events can cause operational anomalies and damage the
electronic equipment on spacecraft [67].

Themain solar plasma events are initiated by disturbances
due to the sudden release of large amounts (> 1016 g) of solar
plasma from the solar corona into the solar wind. These
events, which are called coronal mass ejections (CMEs), are
generated by dynamo activity in the solar interior that
produces magnetic fields permeating into the solar corona.

A part of this field erupts as a result of an instability or
loss-of-equilibrium process. Once a CME is underway, a
whole host of additional processes are triggered, including
magnetic reconnection, shock formation, and particle accel-
eration [68, 69]. Coronal mass ejections propagate from the
Sun through the interplanetary space, some of them toward
Earth. They varywidely in their speeds.When viewed near the
Sun, some are relatively slow (< 200 km sÿ1) and others have
very high speeds exceeding 2,500 km sÿ1 [70]. These high-
speed (fast) CMEs are most interesting in the context of space
climate extremes. The fast CMEs and the shocks they
generate in the solar wind are directly responsible for solar
energetic particle (SEP) events [71]. The interaction of a
strong southward magnetic field associated with fast CMEs
with Earth's magnetic field causes major geomagnetic storms
[72, 73]. The fast CMEs are especially geoeffective, because
this interaction is governed by the induced electric field, which
is a product of the speed and magnetic field of the CME
propagating in the solar wind.

Coronal mass ejections are associated with active (sun-
spot) regions, which appear on the surface of the Sun. The
frequency of occurrence of active regions is regulated by the
solar cycle. Observations have shown that active regions have
a tendency to cluster, i.e., new active regions preferably
emerge in the vicinity of old ones [74]. The clusters can live
for as long as six months, and there are indications that the
fastest CMEs originate mainly from them [75].

The plane of the sky speed of a CMEpropagating through
the solar corona has been measured by coronagraphs carried
on spacecraft, such as the CMEs measured by the Large
Angle and Spectrometric Coronagraph Experiment on board
the Solar and Heliospheric Observatory (LASCO SOHO).
They are listed in a catalog developed in cooperation with the
Naval Research Laboratory and the Solar Data Analysis
Center at the Goddard Space Flight Center and at the Center
for Solar Physics and Space Weather at the Catholic
University of America. The entries begin in January 1996.
This data record was used in [53]. To avoid the obvious large
nonstationarity due to the solar cycle dependence, the data set

was limited to the high-activity part of solar cycle 23 (from
January 1999 to December 2006), resulting in 9.408 CMEs.
The CME speeds used in this paper are given in the catalog as
obtained by a 2nd-order polynomial fit to the time±height
measurements during the CME propagation through the
solar corona. The data input to the max-spectrum method
includes all CMEs without preselection of those with high
speeds. Notably, the threshold speed at which the tail of the
distribution function begins was not preselected but esti-
mated from the onset of the power tail.

The resulting max-spectrum of the CME speeds is shown
in Fig. 7. The best fit to the slope gives evidence that the
cumulative distribution function of the CME speeds has a
Fr�echet-type power-law tail with the exponent a � 3:4. The
lower boundary of the linear portion of the max-spectrum
identifies the onset of the power-law tail, i.e., the correspond-
ing speed threshold, and the onset of the self-similar range.
This gives a meaningful definition of the `fast' CMEs loosely
used by solar scientists previously. Bearing in mind the
analogy with the standard, self-similar cascade process in
turbulence, which is fully defined by a Kolmogorov-type
spectral index, it is reasonable to conjecture that the physical
process leading to fast CME production is the same from
about 700 km sÿ1 to the highest velocities in the data set.

Figure 8 shows the extremal index estimated by the max-
spectrum method. It also provides `confidence intervals' as
illustrated with the histogram on the lower panel in Fig. 6
plotted for the thresholds 1,000±2,300 km sÿ1. The resulting
empirical 95% confidence interval for y is from 0.33 to 0.60
with the mid-point y � 0:49 � 0:5. The y in the range 0.3±0.6
with the mean 0:5 can be taken as an estimate of the extremal
index. The inverse value of the index gives the estimate of the
average cluster size equal to 2±3; on average, therefore, the
appearance of a fast CME is followed by one or two other fast
CMEs.

Application of the declustering methodology allows
finding the number and content of clusters of fast CMEs. As
an example, we consider the threshold U � 1000 km sÿ1 and
y � 0:5.With this threshold, we have n � 586 fast CMEs with
the `declustering time' tc � 42 h. The maximum number of
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fast CMEs in a cluster found from the LASCO catalog used
here is 9. The average duration time between CMEs within a
cluster is 18 hours, with the standard error of 2 hours. Table 2
providesmore detailed information about the probability and
the corresponding duration of clusters as a function of their
size (the number of CMEs in a cluster). The first column (size)
lists the number of CMEs in the cluster. The second and the
third columns give the number of clusters of this size and the
total number of CMEs in these clusters. The fourth column
provides estimates and the standard error (in parenthesis) of
the probabilities that a cluster of the corresponding size is
recorded. The last column lists the expected mean durations
of the clusters (with the standard error in parentheses).We see
that about 30% of the fast CMEs are single; the rest appear in

clusters of different sizes. There is a statistically significant
portion of clusters (about 35%) with five or more members,
with the average duration of about 110 hours. Similar
estimates can be made using different threshold speeds.

4. Summary and reminiscences

The main conclusion of this review is that climate changes
caused by humans do not so much affect the mean state of
Earth's climate, such as its global temperature, but greatly
increase the number of extreme events, such as floods and
droughts. This may add to our understanding of climate
change. The application of advanced statistical methods to
space climate may be of interest to scientists and engineers
involved in space exploration.

Reflecting on the quote ascribed to Mark Twain, ``Go to
heaven for the climate and hell for the company,'' [78] I also
hope that the review exposes us to another side of con-
temporary scientific knowledge. In old times, physicists had
no need formost statistics or details of noise. They lived in the
realm of the law of large numbers; knowing how to calculate
means and standard deviations was sufficient to take care of
experimental errors. Nowadays, they have discovered that
rare random events can play a critical role in physical
processes and they appreciate the importance of the law of
small numbers, which was actually formulated by outstand-
ing mathematicians and statisticians long ago.

This review, written by a student of Zeldovich's school of
physics, tries to reflect on this striking revolution in ourminds
by discussing the role played by randomness in chaotic
systems, such as Earth and space climates, in response to
external forcing. In the style of Zeldovich's school, it uses
general concepts and simple models. But being his under-
graduate student and PhD student and having worked with
Zel'dovich for 20 years, I noticed that he often based his
simple, toy model presentations on deep mathematical
theorems. Once, I witnessed how he surprised a mathemati-
cian at the Keldysh Institute of Applied Mathematics, where
we worked, with exact knowledge of some topological
invariants. Another time, I saw him proudly exiting his office
after giving a lesson on the correct use of statistics in a non-
trivial case to a famous experimental physicist. I believe that
other students and colleagues of Zeldovich may have other
examples of the deep mathematical knowledge of this great
physicist.
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