
Abstract. We study the energy spectrum of atomic hydrogen in
strong (B > Ba � 109 G) and ultra-strong (B0Bcr � 1014 G)
magnetic fields, in which the hydrogen electron starts to move
relativistically and quantum electrodynamics effects become
important. Within the adiabatic approximation, highly accu-
rate energy level values are obtained analytically for
B > 1011 G, which are then compared with asymptotic and
numerical results available in the literature. A characteristic
feature noted in electron motion in a strong magnetic field is
that for B0Bcr, the transverse motion becomes relativistic,
while the longitudinal motion (along B) can be described by
nonrelativistic theory and is amenable to the adiabatic approx-
imation. Topics discussed include: the qualitative difference in
the way odd and even levels change with the magnetic field (for
B4Ba); the removal of degeneracy between odd and even
atomic states; spectral scaling relations for different quantum
numbers �n; nq ;m� and different field strengths; the shape, size,
and quadrupole moment of the atom for B4Ba; radiative
transitions np! 1s in a strong magnetic field; relativistic
QED effects, including the effects of vacuum polarization and
of the electron anomalous magnetic moment on the energy level
positions; Coulomb potential screening and energy level freez-
ing at B!1; and the possibility of the Zeldovich effect in the

hydrogen spectrum in a strong magnetic field. The critical
nuclear charge problem is briefly discussed. Simple asymptotic
formulas for Zcr, valid for low-lying levels, are proposed. Some
of the available information on extreme magnetic fields pro-
duced in the laboratory and occurring in space is given. The
Coulomb renormalization of the scattering length is considered
in the resonance situation with a shallow level in the spectrum.

1. Introduction

The problem of the spectrum of atomic hydrogen in a strong
magnetic field B4Ba � 109 G is of considerable interest for
astrophysics 1 [1±4], solid state physics, and atomic physics
and has been treated by many investigators starting from the
pioneering work of Shiff and Snyder [5], whose adiabatic
approximation has been used by all subsequent authors. The
literature on this topic contains dozens of studies (see, e.g.,
Refs [6±26] and the references therein). Because the variables
involved in the SchroÈ dinger equation are not separated,
various numerical methods have been used to solve the
SchroÈ dinger and Dirac equations [13±16], and a number of
analytic approximations are available. We consider appro-
ximate asymptotic formulas (obtained both by us and by
others) for the atomic hydrogen energy levels in a strong
magnetic field. Among the topics to be discussed are: the
accuracy of these formulas as a function of the field B; the
difference in the way odd and even levels change with the
magnetic field for B4Ba; compression and deformation of
atoms in a strong magnetic field; how vacuum polarization in
an ultrastrong magnetic field and the electron anomalous
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1Magnetic white dwarfs (fields up to 350MGon the surface of a star) and,

in particular, neutron stars: pulsars with B0 1012 G and magnetars, a

special class of neutron stars with magnetic fields reaching record values

1015 G.



magnetic moment affect energy level positions; energy level
freezing at B4 1016 G; and the Zeldovich effect in (or
rearrangement of) the hydrogen spectrum. Appendices A, B,
and C discuss problems related to the critical nuclear charge,
Z > 137, and provide brief information on the maximum
magnetic fields obtained in the laboratory and known in
astrophysics.

We start by giving formulas for and numerical values of
the basic quantities involved in the problem to be considered
(below, e � 4:80� 10ÿ10 is the electron charge in CGSE,
me � 9:11� 10ÿ28 g is the electron mass, and aB �
�h 2=mee

2 � 0:529� 10ÿ8 cm is the Bohr radius). The atomic
unit of magnetic field strength2 is Ba � m 2

e e
3c=�h 3 �

2:349� 109 G; H � B=Ba is the dimensionless reduced field;
Bcr � m 2

e c
3=e�h � 4:414� 1013 G is the `critical' [27, 28] or

Schwinger [29] field in quantum electrodynamics (QED) [30]
(note that Ba=Bcr� a 2 � 5:325� 10ÿ5, with a � e 2=�hc �
1=137; aH �

�������������
c�h=eB

p
is the magnetic length or Landau radius

aH � aB�����Hp � aB ; B � Ba ;

a aB � lC ; B � Bcr ;

�
�1:1�

where lC � �h=mec � 3:861� 10ÿ11 cm is the Compton elect-
ron wavelength; and oH � eB=mec is the circular rotation
frequency of a classical nonrelativistic electron in a magnetic
field B. The Landau level separation is given by

�hoH � e�h

mec
B � mee

4

�h 2
H

�
mee

4

�h 2
� 2Ry � 27:21 eV ; B � Ba ;

mec
2 � 0:511 MeV ; B � Bcr ;

8<: �1:2�

and the atomic level energies are

En � ÿl2n Ry ; �1:3�

where Ry � mee
4=2�h 2 � 13:61 eV (Rydberg) and ln is the

dimensionless momentum of a bound state.

2. Problem formulation and basic equations

The following features should be noted regarding the motion
of an electron in a central attracting field U�r� (in particular,
in a Coulomb potential UC � ÿe 2=r) in the presence of a
uniform magnetic field B parallel to the z axis. The system
Hamiltonian in the nonrelativistic approximation, the Pauli
Hamiltonian

Ĥ � 1

2me

�
r̂

�
p̂� e

c
A

��2

�U�r� ; �2:1�

in cylindrical coordinates takes the form (in the atomic units
where e � �h � me � 1)

Ĥ � ÿ 1

2
D? � 1

8
H 2r2 � 1

2
H�l̂z � ŝz�

ÿ 1

2

q2

qz 2
�U

ÿ ����������������
r2 � z 2

p �
; �2:2�

r �
����������������
x 2 � y 2

p
, and the magnetic field vector potential is

A � �Br�=2. Because this Hamiltonian is axially symmetric,
its eigenfunctions can be written in the form

CE � 1������
2p
p exp �imj�jsz�s�c�r; z� ; �2:3�

m � 0;�1;�2; . . . ; sz � �1 ;

wherejsz�s� is the spin function. The functionsc�r; z� have a
definite parity under reflection in the plane perpendicular to
the vector B, i.e., under the transformation z! ÿz; however,
the variables r and z do not separate.

Whenever the potential U�r� can be considered a
perturbation in the background of the magnetic field, the
adiabatic approximation [2, 5, 6] can be used to solve the
SchroÈ dinger equation. Thewave functionsc�r; z� in Eqn (2.3)
are then written (for both even and odd states) in the form

c�r; z� � Rnrm�r� wnnrm�z� ; nr � 0; 1; 2; . . . ; �2:4�

where Rnrm�r� are known functions for the radial transverse
motion of an electron in a purely magnetic field [6], and the
spectrum of bound states of the Hamiltonian has the form

Ennrmsz � NHÿ 1

2
l2nnrm ; �2:5�

N � nr � 1

2

ÿjmj �m� sz � 1
�
:

Here, N � 0; 1; 2; . . . labels the Landau levels, sz � �1 is
twice the projection of the electron spin on the magnetic
field direction, n � 0; 1; 2; . . . is the longitudinal quantum
number, and l2n=2 determines the corresponding level
energies due to the potential U�r�. These energies are found
from the SchroÈ dinger equation for the longitudinal part of the
electron wave function,�

ÿ 1

2

q2

qz 2
�Ueff

ÿjzj�� l2

2

�
wn�z� � 0 ; ÿ1 < z < �1 ;

�2:6�

in which the effective potential energy [i.e., the potential U�r�
averaged over the fast transverse motion of the electron in the
magnetic field] is given by [2, 5, 6]

Ueff

ÿjzj� � �1
0

U
ÿ ����������������

r2 � z 2
p ���Rnrm�r�

��2r dr : �2:7�

The specific form of Ueff depends on the transverse quantum
numbers nr and jmj.

Thus, the adiabatic approximation allows separating the
variables r and z. We note that the size of the transverse
localization region of the electron, determined by jRnrm�r�j2,
is of the order of r � aH � aB=

�����Hp (for the lower Landau
levels). Therefore, for the potential range r0 4 aH, the
magnetic field strongly confines the transverse motion of the
electron, resulting in the electron density distribution jc�r�j2
taking a spoke-like shape (along the z axis) with the center at
r � 0. Accordingly, if the central potential U�r� is not too
singular at zero, such that rjU�r�j ! 0 as r! 0, then
U�

����������������
r2 � z 2

p
� can be replaced by U�jzj� in the integrand in

Eqn (2.7). Therefore, in this case, the one-dimensional
effective potential coincides with the original central poten-
tial and is no longer dependent on the magnetic field. Hence,

2 The interaction energy between the magnetic moment m � e�h=mec and

such a field is equal to the Coulomb interaction energy e 2=aB �
mee

4=�h 2 � 27:21 eV. The magnetic field strength in the hydrogen atom

is typically B � Bat � a 2Ba � 105 G.
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the electron density distribution along the z axis and the
spectrum of the longitudinal motion cease to depend on the
field strength.

We now compare the spectrum of one-dimensional
motion in a symmetric potential U�jzj� defined on the entire
axis ÿ1 < z < �1 with the spectrum of the ns states in the
same central potential U�r�, r5 0. As is known, if the wave
function of an ns state is written as cns � wnr�r�=�

������
4p
p

r�, then
the SchroÈ dinger equation for wnr�r� takes a form similar to
Eqn (2.6). This time, however, r5 0, and the function wnr�r�
satisfies the boundary condition wnr�0� � 0. For odd states,
the wn�z� in Eqn (2.6) also satisfy the condition w �ÿ�n �0� � 0,
and it then follows that the spectra coincide,

E �ÿ�n � Ens ; n � 1; 2; . . . : �2:8�
For even states, this analogy does not hold, because now

~cns�r� � w ���n �r�=r / 1=r!1 as r! 0, and such singular
solutions are excluded from consideration (because we then
have D ~cns�r� / d�r� as r! 0), with the exception of a three-
dimensional zero-radius potential. Such a potential, localized
at r � 0, is determined by requiring that the wave function
satisfy the boundary condition [31, 32]

d ln w�r�
dr

� ÿ 1

as
; or ~cns�r� � const

�
1

r
ÿ 1

as

�
as r! 0 :

�2:9�
Here, as is the scattering length for the short-range potential
Us�r� of radius r0 modeled by such a zero-radius potential.
The parameter k0 � 1=as here determines the energy
E0 � ÿ�h 2k 2

0 =2m of a shallow real (for as > 0) or virtual (for
as < 0) s level, which exists in the system if jE0j5 �h 2=mr 20
�jasj4 r0�.

It is therefore readily seen that the even solutions w ���n �jzj�
of Eqn (2.6) on the entire z axis with the one-dimensional
potentialU�jzj� (solutions for which w ���n �0� � const 6� 0 and
w ���

0
n �0� � 0) are in a 1:1 correspondence with those solutions

~cns�r� � w ����r�=� ������2p
p

r� of the three-dimensional SchroÈ din-
ger equation for s states with the same potential U�r� that
satisfy boundary condition (2.9) with as � 1, i.e., k0 � 0.
This means that the spherically symmetric potential is a
superposition of a potential U�r� [here, the effective potential
Ueff�r�] and the zero-range potential (at r � 0), for which
k0 � 0, i.e., at the instant a bound state occurs in this
potential.

Importantly, the case k0 � 0 implies that such a zero-
range potential models a `strong' short-range potential of the
radius r0 at the moment when it gives rise to a bound state
(with zero binding energy).We note that the scattering of slow
�kr0 5 1� particles by such a potential is resonant in
character,3 with the scattering cross section s � 2p�h 2=mE (E
is the electron energy) [6].

Such a potential produces a rearrangement in the
spectrum of s levels in a long-range potential UL�r� of radius
rL 4 r0, as can be seen from the classical quantization rule for
this case,4

1

�h

� b

0

�����������������������������������
2me

�
Enr0 ÿU�r��q

dr � p
�
nr � 3

4
� ~g
�
; �2:10�

where b is the turning point. Corresponding to levels in an
isolated potentialU�r� is the value ~g � 0, and to the shifts due
to the zero-radius potential with k0 � 0, ~g � ÿ1=2 (the levels
are strongly shifted downward: nr ! nr ÿ 1=2).

For the hydrogen atom, however, there is no justification
for replacing the Coulomb potential UC � ÿe 2=

����������������
r2 � z 2

p
in

Eqn (2.7) with a one-dimensional Coulomb potential
Ueff�jzj� � ÿe 2=jzj. The reason is that in two and three
dimensions, the Coulomb potential at short distances acts as
a small correction, which manifests itself such that for
Z9 10, the structure of the nucleus has little effect on the
level shift. In one dimension, with U � ÿe 2=jzj on the entire
z axis, the situation is totally different. Two independent
solutions of the SchroÈ dinger equation for z! �0 have the
form5 (to the right and left of z � 0):

c�E �z� � C�E; 1

�
1ÿ 2jzj

aB
ln
jzj
aB
�O

�
z 2

a 2
B

ln
jzj
aB

��
� C�E; 2

�
jzj �O

�
z 2

aB

��
; z! �0 ; �2:11�

and the conditions (usual for regular potentials) of the
continuity of the wave function and its derivative cannot be
satisfied at z � 0 because we then have jdcE�z�=dzj ! 1
(except for odd states). Therefore, the energy spectrum of
even states is strongly dependent on exactly how the potential
is cut off at distances � aH, i.e., on the form of Ueff�jzj� at
jzj5 aB.

For the purpose of further discussion, the following
properties of the effective Coulomb potential should be
noted. At distances jzj9L, where

aH 5L5
�����������
aHaB
p � H 1=4aH � Hÿ1=4aB ; �2:12�

we have jUeffj9 e 2=aH for this potential, resulting in

jUeffj5 �h 2

meL2
: �2:13�

At such distances, Ueff�jzj� is therefore a shallow one-dimen-
sional potential well, which allows solving Eqn (2.6) per-
turbatively. The logarithmic derivative w 0=w for jzj � L is then
obtained as a simple closed expression using the explicit form
of the effective potential [see Eqn (3.3) below]. On the other
hand, at distances jzj0L4 aH, the effective potential
already becomes a Coulomb one, Ueff � ÿe 2=jzj, and the
exponentially decaying solution of the SchroÈ dinger equation
is the Whittaker function. Matching the logarithmic deriva-
tives in their overlap region, Eqn (2.12), leads to an equation
for the energy spectrum of even states.

We note that other studies using the adiabatic approxima-
tion to solve SchroÈ dinger equation (2.6) make additional
assumptions about the properties of the effective potential,
which leads to less accurate results. For example, in Ref. [6],
the cut-off Coulomb potential is specifically chosen as
Ueff�jzj� � ÿe 2=�jzj � aH�. Therefore, a correct use of the
adiabatic approximation at distances jzj9L gives simple
analytic expressions for the spectrum of even levels, which
provide higher accuracy than numerical solutions.

We next discuss the odd levels. The zeroth-order approx-
imation for them is obtained by using the nondistorted

3 As noted in Section 9, a similar distortion in the Coulomb potentialU�r�
at small distances gives rise to the Zeldovich effect.
4 This rule is a simple generalization of the Bohr±Sommerfeld quantization

rule. We note that for a spherical oscillator, Eqn (2.10) yields an exact

expression for the spectrum.

5 We note the choice of the argument in the logarithmic term and the fact

that the term is energy independent; only the correction terms in

asymptotic expression (2.11) depend on energy.

March 2014 Hydrogen atom in a strong magnetic éeld 259



Coulomb potential (i.e., by setting Ueff � ÿ1=r) in Eqn (2.6),
and hence their spectrum for states with various values of the
quantumnumbers nr andm is identical to that of unperturbed
Coulomb ns levels in the central potential U�r� � ÿ1=r:

E �ÿ�n � ÿ 1

2n 2
; n � 1; 2; . . . : �2:14�

The fact that the effective potential is not purely Coulomb can
be taken into account by the perturbation theory, with the
result

E �ÿ�nmnr
� ÿmee

4

2�h 2

ÿ
l�ÿ�nmnr

�2
� ÿ mee

4

2�h 2n 2
�
��

Ueff�r� � e 2

r

�
c 2
ns�r� d3r ; �2:15�

where cns�r� are the unperturbed wave functions of ns states
in a Coulomb potential. We note that the integrand in
Eqn (2.15) is positive, and hence the levels are slightly
upshifted with respect to the unperturbed Coulomb levels.

In concluding this section, we present the radial wave
functions of the transverse motion [6]:

Rnrm�r� �
1

a
1�jmj
H

� ÿjmj � nr
�
!

2 jmjnr!
ÿjmj!�2

�1=2
exp

�
ÿ r2

4a2H

�

� r jmjF
�
ÿnr; jmj � 1;

r2

2a 2
H

�
�2:16�

[with F�. . .� being the degenerate hypergeometric function],
normalized by the condition

� 1
0 R 2

nrm
�r� rdr � 1, and the

explicit forms of the effective Coulomb potential for
m � nr � 0 states,

Ueff

ÿjzj� � ÿ ���
2
p

aH

�1
0

exp

�
ÿ

���
2
p jzjx
aH

ÿ x 2

�
dx

� ÿ
����
p
2

r
erfc

� jzj���
2
p

aH

�
exp

�
z 2

2a 2
H

�
1

aH
; �2:17�

and its limit expressions

Ueff

ÿjzj� � ÿ
� ����

p
2

r
ÿ jzj
aH
� . . .

�
1

aH
; jzj5 aH ;

ÿ
�
1ÿ a 2

H

z 2
� . . .

�
1

jzj ; jzj4 aH :

8>>><>>>: �2:18�

Here, erfc �x� � �2= ���
p
p � � 1x exp �ÿt 2� dt � 1ÿ erf �x�.

The value of the potential at zero for nr � 0 states is

Ueff; nr�0;m�0� � ÿ
����
p
2

r ÿ
2jmj ÿ 1

�
!!

2 jmjjmj!
1

aH

� ÿ
����
p
2

r
1

aH

1 ; m � 0 ;
1=2 ; m � 1 ;

3=8 ; m � 2 ;

63=256 ; m � 5 :

8>><>>: �2:19�

As jmj increases, the well becomes shallower,6 and hence the
deepest levels correspond to m � 0.

3. Asymptotic formulas for the spectrum
of even levels of a hydrogen atom
in a strong magnetic field

As noted in Section 2, the effective one-dimensional Coulomb
potential in the distance range jzj9L has the form of a
shallow one-dimensional potential well, and Eqn (2.6) can be
solved perturbatively. The wave functions of even levels
remain almost unchanged at such distances, w�z� � const.
Therefore, neglecting the energy term in Eqn (2.6), setting
w�z� � const in the Ueff term, and integrating over z, we find
the logarithmic derivative of the wave function in the form

w 0�z�
w�z� � 2

� z

0

Ueff�z 0� dz 0; z > 0 ; w 0�0� � 0 : �3:1�

Substituting expression (2.7) for Ueff�z 0� with U �
ÿ�r2 � z 0 2�ÿ1=2, changing the order of integrations over r
and z 0, and using the formulas (for z4 r � aH)� z

0

dz����������������
z 2 � r2

p � ln
z�

����������������
z 2 � r2

p
r

� ln
2z

r
�O

�
r2

z 2

�
; �3:2�

�1
0

xsÿ1 exp �ÿx� ln x dx � G 0�s� � G�s�c�s� ; �3:2 0�

where c�s� is the logarithmic derivative of the Gamma
function, we rewrite Eqn (3.1) as

w 0�z�
w�z� � ÿ2 ln

z

aH
� Anrjmj ; �3:3�

where

Anrjmj � 2

�1
0

r ln
r

2aH
R 2

nrjmj�r� dr : �3:4�

We note that Anr jmj is independent of both the magnetic field
and the sign of m.

On the other hand, at distances z0L, where the effective
potential is already identical to the Coulomb potential, the
solution of Eqn (2.6) that decreases exponentially at infinity is
expressed in terms of the Whittaker function,

wn�z� � constWn; 1=2�x� ; x � 2lz ; n � 1

l
; z > 0 ; �3:5�

for which the following expansion holds:

Wn; 1=2�x�� 1

G�1ÿ n�

� �1ÿ c1x lnxÿ c2x� c3x
2 ln x�O�x 2�	 ; x! 0 ;

c1 � n ; c2 � 1

2
� n
�
c�1ÿ n� � 2gÿ 1

�
; c3 � 1

2
n 2; . . . :

�3:5 0�

It hence follows that

w 0�z�
w�z� � ÿ

n
l� 2

�
ln
ÿ
ljzj�� c�1ÿ lÿ1� � 2g� ln 2

�o
�O

ÿ
z ln2 �lz�� ; �3:6�

where z5 1, l � ����������ÿ2Ep
, E is the level energy, and

g � ÿc�1� � 0:5772 . . . is the Euler constant.
When logarithmic derivatives (3.3) and (3.6) are matched

in region (2.12), where they both apply, a � L, the depen-

6 This is because the repulsive centrifugal energy �h 2m 2=2mer2 acts to

confine the electron more tightly in the transverse direction as jmj
increases, thus decreasing Ueff. For the same reason, as jmj (and also nr)

increases, higher magnetic fields are needed for the adiabatic approxima-

tion to be valid.
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dence on the coordinate z disappears, and we arrive at an
equation for the spectrum of even levels for the longitudinal
motion of the electron:

lnH � l� 2 ln �2l� � 2c
�
1ÿ 1

l

�
� 4g� Anr jmj : �3:7�

A few remarks are in order on the implications this
equation has for the properties of the spectrum of even levels
E � ÿl2=2 in the case of a strongmagnetic field (formally, for
lnH4 1).

(1) For each pair of the nr and m quantum numbers for
the transverse electron motion (with any sign of m), there is
one level for which l � lnH4 1 and which is deep on the
atomic scale (the deeper, the larger jmj is). We emphasize that
for m 6� 0, their binding energy is independent of the sign of
m, but they lie below various Landau levels [see Eqn (2.5)].

(2) Besides this deep level, an infinite number of levels are
located between neighboring unshifted Coulomb n 0s levels,
En 0 � ÿ1=�2�n 0�2�, with the principal quantum numbers n 0

equal to n and n� 1 for n5 1.7 In the limit as lnH !1,
n 0 ! n; however, the transition to the asymptotic regime is
extremely slow (see Section 4 below).

(3) For a known value of lnnr jmj, Eqn (3.7) directly
determines the magnitude of the corresponding magnetic
field.

(4) We next rewrite Eqn (3.7) as F�l� � Fnrm�H�, where

F�l� � l� 2 ln l� 2c
�
1ÿ 1

l

�
;

�3:8�
Fnrm�H� � lnHÿ 4gÿ 2 ln 2ÿ Anrm ;

and note the following consequence of this equation.
As can be seen from Eqns (3.7) and (3.8), the level energy

dependence is here determined by the universal function F�l�,
which depends neither on the magnetic field nor on the
quantum numbers nr, m, and n [their effect comes through
the function Fnrm�H� in the right-hand side of the equation].
This means that in the adiabatic approximation, the entire
even spectrum Ennrjmj�H� � ÿl2=2 lies on this universal
curve, independent of the values of the quantum numbers
and the magnetic field.

Figure 1 illustrates how scaling is fulfilled for the ground
1s level with the quantum number nr � 0 for various values of
m and the magnetic field [24]. The figure plots the function
F�l� and indicates the values of F0m�H� for the corresponding
levels for a numerical solution of the SchroÈ dinger equation. It
can be seen that this scaling is fulfilled to good accuracy for
states with different m for l2 > 12. For l2 < 10, a deviation8

from F�l� occurs; however, also in this region the positions of
the levels are grouped along a smooth curve close to F�l�.

(5) For even states near the ground Landau band N � 0
(nr � 0, m � ÿjmj � 0;ÿ1;ÿ2; . . . ; sz � ÿ1),

A0jmj � ÿ ln 2� c
ÿ
1� jmj� ; A00 � ÿ�ln 2� g� ; �3:9�

c�n� 1� � ÿg�P n
k�1 k

ÿ1, n � 1; 2; . . . ; we let these deepest
states be denoted by LLL (lowest Landau levels) [33±35].

(6) The value we obtained for logarithmic derivative (3.3)
for even states of Eqn (2.6) at distances r0 5 z5 aB, where
the potential has a Coulomb form, can be extrapolated to
z � �0 with the simultaneous replacement of the effective
potential Ueff�jzj� by the one-dimensional Coulomb poten-
tialUC�jzj� � ÿe 2=jzj. This is equivalent to modeling a short-
range distortion of this potential by a point-like interaction
(at z � 0).9 Using the values of logarithmic derivative (3.3) for
z! 0 for even solutions (2.11) of the SchroÈ dinger equation
with a Coulomb potential, we then obtain the relation

Cÿ1 � C�1 ;
C�2
C�1
� b ; �3:10�

where the energy-independent parameter b with the dimen-
sion of inverse length is given by

b � 1

aB

�
2 ln

aH
aB
� 2� Anrjmj

�
: �3:11�

The dependence of b on the quantum numbers nr and m is
related to how these quantumnumbers affect the nature of the
Coulomb potential distortion at small distances [see Ueff�jzj�
in Eqn (2.7)], whose influence persists in the limit as r0 ! 0.

In the case of a singular Coulomb potential UC�jzj�, the
matching conditions at z � 0, Eqn (3.10), replace the usual
continuity conditions for the wave function and its derivative
for regular potentials. Mathematically, these conditions
specify a self-adjoint extension of a Hermitian Hamiltonian
with a one-dimensional Coulomb potential (for more details,
see the discussion of problem 8.61 in Ref. [36] 10). The need to

7 These shifted Coulomb levels are easily understood as resulting from the

following property of c�z� in Eqn (3.7): in the interval �ÿnÿ 1;ÿn� of the
values of z with n � 0; 1; 2; . . . , the function c�z� increases monotonically

from ÿ1 to �1; the values z � ÿn are its poles.
8 This comes as no surprise because, with increasing m, the range of

applicability of the adiabatic approximation shifts toward higher mag-

netic fields due to the increase in the centrifugal energy.

0 10 20 30
l2

2

4

6

F

Figure 1. Verifying the scaling relations. Solid line, the function F�l� from
(3.8); *, �, &, *, 4, �, numerical results [13±16] for states with quantum

numbers nr � 0 and m � 0, ÿ1, ÿ2, ÿ3, ÿ4, ÿ5.

9 The fact that solutions with distorted and undistorted Coulomb

potentials look totally different at distances jzj9 r0 is of no conse-

quence, because this distance range contributes little to the normalization

integral.
10 We use this opportunity to draw attention to a misprint in formula (14)

[the analog of our Eqn (3.10)] in this problem, which can be corrected by

making the replacement b! 2b. Formula (18) determines the atomic

hydrogen spectrum in a strong magnetic field.
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introduce additional conditions to ensure the mutual ortho-
gonality and completeness of eigenfunctions of the Hamilto-
nian in this case was first noted in Ref. [37] in connection with
the so-called `fall onto the center' phenomenon in quantum
mechanics [6, 38].

In the limit case where the Coulomb potential is turned
off, i.e., for aB !1, matching conditions (3.10) at z � 0 take
the form

c��0� � c�ÿ0� ; c 0��0� ÿ c 0�ÿ0� � 2bc�0�

and are modeled by a point-like interaction in the form of a
delta potential U�z� � ad�z� at a � �h 2b=m.

(7) As noted in Section 2, even solutions of the SchroÈ din-
ger equation with a potential U�jzj� defined on the entire
z axis and bounded as jzj ! 0 correspond to solutions of this
equation for s states in a similar central potential U�r�, but
subject to boundary condition (2.9) that models a zero-range
potential. However, in the case of the attractive Coulomb
potential UC � ÿe 2=r (at small distances), this condition,
according to Eqn (3.10), should be written as

w 0�r�
w�r� � ÿ

2

aB

�
ln

r

aB
� 1

�
� b ; r! 0 : �3:12�

The parameter b has a clear physical meaning in the case
where the Coulomb potential has the same form for all r > 0.
The solution of the SchroÈ dinger equation is then written as

w�r� � const
ÿ
F0�kr� cot d0�k� � G0�kr�

�
; �3:13�

where F0�z� and G0�z� are respectively a regular and an
irregular Coulomb wave function [6], and d0 is the distortion
of the Coulomb scattering phase, due to the short-range
potential modeled by boundary condition (3.12). Taking the
limit r! 0 in Eqn (3.13) and using the effective range
approximation in the case of a Coulomb potential distorted
at small distances, r0 5 aB, we obtain (for k! 0)

b � ÿ 2

aB
�ln 2� 2gÿ 1� ÿ 1

acs
: �3:14�

Here, acs is the s scattering length of the short-range potential
renormalized due to Coulomb interaction at small distances.
In the problem under consideration, the value of b is given by
Eqn (3.11). Boundary condition (3.12) becomes

w 0�r�
w�r� � ÿ

2

aB

�
ln

2r

aB
� 2g

�
ÿ 1

acs
; r! 0 : �3:15�

When the potential is switched off, i.e., in the limit as
aB !1, Eqn (3.12) becomes Eqn (2.9), b � ÿ1=as, and,
according to Eqn (3.14), acs � as, as should be expected.

The results above for the spectrum of Hamiltonian (2.1)
with a Coulomb potential are asymptotically exact for
B!1. The trouble is, however, that the electron transverse
velocity increases to infinity,11 the SchroÈ dinger equation is no
longer applicable, and the Dirac equation should be used
instead. As shown in Section 7, the adiabatic approach allows
a direct generalization to the Dirac equation. Moreover,
formula (3.7) for the spectrum turns out to also be applicable

in the relativistic range, up to a magnetic field B � 1016 G, at
which quantum electrodynamics effects become important
(see Section 8 below).

Naturally, the question arises as to the range of applic-
ability and accuracy of Eqn (3.7), whose derivation used the
condition lnH4 1.

4. Equation (3.7) versus other approximations
and numerical calculations

A number of analytic adiabatic approximations are available
in the literature for the hydrogen atom energy levels as a
function of the magnetic field. Below, they are listed and
compared with Eqn (3.7) and with numerical results.

4.1 1s ground state
In the book by Landau and Lifshitz [6] (Section 112,
problem 3), the value of the ground state binding energy12

is given as

e0 � mee
4

2�h 2
ln2

�h 3B

m 2
e e

3c
� l20 Ry ; or l0 � lnH : �4:1�

This is only an order-of-magnitude estimate, however. For
B � Bcr (i.e., for H � aÿ2), Eqn (4.1) yields l0 �
2 ln �1=a� � 9:840 and e0 � 1320 eV, to be compared with the
numerically obtained values l0 � 5:735 and e0 � 448 eV [13].

Equation (4.1) is a simplification of a formula from
Loudon's paper [17] (see also Refs [18, 19]), according to
which

lnH � l� 2 ln �2l� : �4:2�

This result was improved in Ref. [20] to give

lnH � l� 2 ln �2l� � gÿ ln 2 ; �4:3�

where the term gÿ ln 2 � ÿ0:116 appears in the right-hand
side.

In [21], the equation (see Eqn (6) in Ref. [21] with n � 1=l)

lnH � l� 2c�1ÿ lÿ1� �4:4�

is given, which for a deep level, l4 1, becomes

lnH � lÿ 2g �4:5�

and in fact differs from Eqn (4.1) only by a shift.
Finally, from Eqn (3.7) in Section 3, we have [22±24]

lnH � l� 2

�
ln l� c

�
1ÿ 1

l

��
� 3g� ln 2 : �4:6�

We now compare these approximations with the exact
results (to within 10 digits in Ref. [13]) of numerical work [13±
16]. Figure 2 plots l0�H� for values of H between � 10 and
106. It is seen that Loudon's formula (4.2), although only
moderately accurate, does provide a qualitative description of
l0�H� for values of H from � 103 to 106. On the other hand,
expressions (4.1) and (4.5) have no range of applicability.

11 For B � Bcr, the kinetic energy of the transverse motion is T � mec
2=2

[see Eqn (1.2)]. 12 `Logarithmically accurate', as noted in Ref. [6].
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The highest accuracy is achieved with Eqn (4.6): for
B0 5� 1011 G, curves 1 and 2 are already indistinguishable
within the accuracy of Fig. 2, and the larger H is, the more
accurate this equation becomes. As regards asymptotic
formula (4.3), it approaches an exact solution, albeit fairly
slowly. We stress that except for Eqns (4.4) and (4.6), the
equations presented above relate only to the ground 1s state
and do not apply to the excited hydrogen-atom states.

We note the properties of the formal asymptotic expres-
sion (4.6),

~l0 � ln
H

ln2H ; ~e0 �
~l20
2

as H !1 ; �4:7�

which is functionally different from Eqn (4.1) and for which

~e0
e0
� 1ÿ 4

ln lnH
lnH �O

�
1

lnH
�
; e0 ÿ ~e0 � 4 ln lnH : �4:8�

Formally, ~e0=e0 ! 1 asH !1, but this limit is attained very
slowly and occurs in physically unrealistic fields (for example,
the difference between e0 and~e0 is of the order of 30% even for
B � 108Bcr � 1022 G).

The values of l0�H� for the ground state, nr � m � 0,
were recently obtained in [35] by numerically solving the
SchroÈ dinger and Dirac equations. Their comparison with
asymptotic formula (4.6) (see Table 1) shows that this
formula also remains highly accurate in the region of
ultrastrong fields B0Bcr, up to B � m 2

e =e
5 � 1018 G. For

B � 105Bcr � 4� 1018 G, the error it introduces is d � 0:2%,
and even in fields B � 1010Bcr G, we have d � 0:5%. We note
that in fields B9 1015 G, the Coulomb potential screening
[35] can be neglected, but for B > 1017 G, it becomes
important and leads to the `freezing' of the ground-state
energy at l1 � 11:3, or E0�1� � ÿ1:71 keV. This deter-
mines the range of applicability of Eqn (4.6).

From the perspective of neutron star astrophysics, of
particular interest is not l�H� but its inverse H�l�, which

determines the magnetic field on the surface of a star from the
experimental level shift (i.e., l20=2). Referring to the data in
Table 2, we see that for fields B0 1013 G, the error that
Eqn (4.6) introduces into H does not exceed 0.3%, and even
for B � 1012 G, a typical value for a neutron star, the error is
of the order of 10%, an apparently acceptable value for many
astrophysical applications. On the other hand, Eqns (4.1) and
(4.5) lead to large errors (of 2±3 orders of magnitude, growing
larger as the field increases), and cannot therefore compete
with Eqn (4.6).

The preceding equations assumed that nr � m � 0 (the
nodeless ground state). Among the LLL states also are
states with nr � 0 and m � ÿjmj. The binding energies of
these are given by Eqn (3.7) with the constant A0jmj defined
in Eqn (3.9). Table 3 compares the results of numerical
calculations [13±16] with the solution of Eqn (3.7) for states
with quantum numbers nr � 0 and m � 0, ÿ1, ÿ2, ÿ4, and
ÿ5. As jmj increases, the binding energy of these states
decreases, and for a quite understandable reason: because
the centrifugal energy �h 2m 2=2mer2 increases, the electron
moves away from the nucleus in the direction perpendicular
to B, leading to a decrease in the effective potential Ueff�z�
(for a given H).

1
0

4

L

K

8

12

\3

4

1

2

1, 2

2 3 4 5 6 lgH
Figure 2. Plot of the momentum l�H�: curve 1, numerical computations

[13, 15, 16]; dashed curve 2, calculations by Eqn (4.6); curve 3, asymptotic

formula (4.7). Corresponding to (4.1), (4.5), and (4.2) are curve 4 and

dashed curves K and L, respectively. Here and in all subsequent figures,

lgH � log10H.

Table 1. Dimensionless momentum l0�B� for the ground state of the
hydrogen atom [35].

B=Bcr KP S D �D

10ÿ2

10ÿ1

100

101

102

103

104

105

106

108

3.108

4.289

5.737

7.374

9.141

11.00

12.93

14.91

16.93

21.06

3.032

4.272

5.735

7.374

9.141

11.00

12.93

14.91

16.93

21.05

3.032

4.272

5.734

7.371

9.135

10.99

12.91

14.88

16.89

20.98

ì

ì

5.7

7.4

9.1

10.6

11.2

11.3

11.3

11.3

Note. The values of l0 obtained neglecting screening [35]:KP, according

to Eqn (4.6); S, from SchroÈ dinger equation (8.9); D, numerical calcula-

tion using the Dirac equation. The results in column D are obtained

from the Dirac equation with the Coulomb potential B=Bcr � a 2H
screened in accordance with Eqn (8.1).

Table 2.Magnetic field calculation from the binding energy of the ground
LLL state (1s).

l20

H � B=Ba

jE0j, eV
a b c

3.4956

7.5796

11.875

15.325

28.282

32.92

47.783

65.84

74.84

10

100

425.5*

1000

1.0 (4)

1.878 (4)**

1.0 (5)

5.0 (5)***

1.0 (6)

3.50

79.6

388

962

0.9991 (4)

1.880 (4)

1.003 (5)

5.017 (5)

1.0014 (6)

6.49

15.7

36.6

50.1

204

310

1.005 (3)

3.334 (3)

5.69 (3)

47.5

103

161

208

385

448

650

896

1017

Note. a, numerical results [13±15]; b, calculations with Eqn (4.6);

c, Eqn (4.1). The notation used is as follows: x�y� � x� 10 y.

* B � 1012 G.

** B � Bcr � 4:414� 1013 G.

*** B � 2:35� 1015 G.
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4.2 Excited levels
As noted above, Eqn (3.7) describes the entire discrete
spectrum of even states. Importantly, the excited levels, both
even and odd, lie in the energy range of the unperturbed
hydrogen atom l � ln�H� < 1, with ln ! 1=n as H !1
[here, n � 1; 2; . . . are the poles of the function c�1ÿ 1=l� �
c�1ÿ n�]. A remark is in order here. In the absence of a
magnetic field, Coulomb states are characterized by the
quantum numbers n, l, m. In a magnetic field, l is no longer
a `good' quantum number, except for its parity �ÿ1�l. Still, for
the purpose of classifying states, it makes sense [13] even in
this case to use �nl � instead of the notation n� suitable for the
adiabatic approximation. Thus, levels are labeled by l in the
order of their energy positions as the magnetic field is varied.
Without delving into the details (for which the reader is
referred to Refs [22±25]), we note the correspondence
between different notations for the lower levels:
1s! 0��LLL�, 2s! 1�; 3d (not 3s�!�� ! 2�, 2p! 1ÿ, etc.
(see, in particular, Fig. 8 in Ref. [24]).

A comparison with numerical calculations for 2s and 3d
states shows (see Fig. 3 and the details in Table 4) that the
binding energies of these levels l2n=2 for H0 100 are
determined by Eqn (3.7) to a few percent or even higher
accuracy. From Fig. 3, we also see a marked difference in the
behavior of lnl�H� and enl�H� for even and odd levels (see also
Section 5).

A number of asymptotic formulas for the energies of even
excited levels of the hydrogen atom are available in the
literature. According to Eqn (3.24) in Ref. [19],

lnH � 2
�
ln �2l� � c�1ÿ lÿ1�� ; 0 < l < 1 ; �4:9�

forH9 103, this formula has only a qualitative value.
The recently obtained asymptotic formula [25, 34]

ln � 1

n
ÿ 2=n 2

lnHÿ ln 2ÿ g� 1=n� 2
�
ln nÿPnÿ1

k�1�1=k�
� ;

n � 2; 3; . . . �4:10�
is valid for lnH4 1. For the first excited states, the sum over
k in Eqn (4.10) should be omitted, giving

l1 � 1ÿ 2

lnHÿ 0:2704
�O

�
1

�lnH�2
�
; n � 1 : �4:11�

While not yet sufficiently accurate in the rangeH � 102ÿ104
typical of neutron stars, these asymptotic formulas are valid
for ultrastrong fieldsH > 105, or B0 1014 G.

Table 3. Binding energies for the lower LLL states, nr � 0 and m � ÿjmj.

H
m � 0 m � ÿ1 m � ÿ2

a b a b a b

102

103

104

105

1

7.580

15.32

28.28

47.78

ì

8.082

15.49

28.29

47.76

125.7

5.270

11.28

21.83

38.41

ì

6.132

11.70

21.97

38.42

108

4.376

9.610

19.05

34.22

ì

5.374

10.15

19.26

34.26

99.7

H
m � ÿ3 m � ÿ4 m � ÿ5

a b a b a b

102

103

104

105

1

3.860

8.617

17.35

31.60

ì

4.938

9.230

17.61

31.68

94.4

3.510

7.929

16.16

29.74

ì

4.643

8.598

16.45

29.84

90.6

3.251

7.412

15.25

28.32

ì

4.425

8.125

15.57

28.42

87.6

Note. Presented are the values of l2m: a, numerical calculations [13, 16];

b, from Eqn (4.6), the limit atH � 1 is obtained from Eqn (8.8).

Table 4. l2nl for excited levels.

H
2s 3d 2p 3p

a b a b a b a b

0

10

102

103

104

105

106

0.2500

0.4179

0.5124

0.5917

0.6554

0.7054

0.7444

ì

0.4429

0.5176

0.5921

0.6552

0.7053

0.7443

0.1111

0.1543

0.1738

0.18870

0.19986

0.20814

ì

ì

0.1594

0.1747

0.18876

0.19983

0.20812

0.21433

0.2500

0.7653

0.9272

0.9850

0.9976

0.9996

0.9999

ì

0.6708

0.9162

0.9843

0.9976

0.9997

1.0000

0.111

0.2197

0.2419

0.2482

0.2497

0.2499

0.2500

ì

0.2122

0.2400

0.2481

0.2497

0.2500

0.2500

Note. a, numerical calculations [13, 14, 16]; b, calculations using Eqns (4.6) and (5.6) for even and odd states, respectively. As regards the mutual

position of the 3s and 3d levels, see Fig. 8 in Ref. [24].

10

0.4

0.6

0.8

0.2

lnl

1.0

2 3 4 5 6
lgH

3d

3s

3p

2s

2p

Figure 3. Dimensionless momentum lnl�H� for excited s, p, and d levels:

solid curves, numerical calculations [13, 16]; dashed-dotted curves, from

Eqns (3.7) and (5.6) for even and odd levels. Dashed curves indicate the

limit �H ! 1� values of lnl.
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We close this section by giving the characteristic values of
the Landau radius aH �

�������������
c�h=eB

p
: 4� 10ÿ11 cm and

1� 10ÿ12 cm for respective fields Bcr � 4� 1013 G and
B � 6� 1016 G. The large values of aH compared to the
proton radius rp � 10ÿ13 cm justify approximating the
nucleus by a point-like charge. However, as we show in
Section 8, in fields B0aÿ1Bcr � 5� 1015 G, the Coulomb
potential of a point-like charge is distorted (screened) at small
distances due to the vacuum polarization by the magnetic
field, a phenomenon that considerably changes the depen-
dence of the spectrum of even levels on themagnetic fieldB, as
opposed to the case of a point-like charge.

5. Odd levels

As noted at the end of Section 2, the spectrum of odd levels
(2p, 3p, 4f, etc., according to the classification in Ref. 13]) is
described by Eqn (2.15), in which cns�r� are the unperturbed
Coulomb potential wave functions [6]

cns�r� �
1��������
pn 3
p exp

�
ÿ r

n

�
F

�
1ÿ n; 2;

2r

n

�

� 1��������
pn 3
p

�
1ÿ r� 2n 2 � 1

6n 2
r 2 � . . .

�
; �5:1�

where F�. . .� is the degenerate hypergeometric function. We
note a slight upward shift with respect to the unperturbed
Coulomb levels E

�0�
n � ÿ�1=n 2� Ry. Figure 3 illustrates the

qualitative difference between the spectra of even and odd
levels in a strong magnetic fieldH4 1.

Equation (2.15) implies the following asymptotic expan-
sion for the binding energy [24]:ÿ
lÿnmnr

�2 � 1

n 2
ÿ 4

n 3

�
amnr

lnH
H � a

�1�
nmnr

H � a
�3=2�
mnr

H 3=2
� . . .

�
; �5:2�

H ! 1:

The leading logarithmic term in the expression for the level
shift is determined by the integration region aH 9 r9 aB in
Eqn (5.1). A logarithmically accurate expression for the shift
of an odd level can be obtained by setting

Ueff�r� � ÿ e 2

r
� e 2 r2mnr

2r 3
; c 2

ns�r� � c 2
ns�0� �

1

pn 3a 3
B

�5:3�

to give

dEÿnmnr
�
��

Ueff � e 2

r

�
c 2
ns�r� d3r �

2e 2 r2mnr

a 3
Bn

3

� aB

aH

dr

r

� e 2 r2mnr

a 3
Bn

3

ÿ
lnH�O�1�� : �5:4�

Because

r2mnr
�
��

r2
��Rnrm�q �

��2 d2r � 2
ÿ
2nr � jmj � 1

�
a 2
H ;

the (n-independent) coefficient amnr is found to be

amnr � 2nr � jmj � 1 : �5:5�

Determining the subsequent expansion coefficients
involves more tedious calculations (for which the reader is

referred toRef. [25]). In the simplest casem � nr � 0, we have

ÿ
lÿn00

�2 � 1

n 2
ÿ 4

n 3

�
lnH
H ÿ kn

H �
4
������
2p
p

H 3=2
� . . .

�
; �5:6�

where n � 1; 2; 3; . . . is the quantum number for the longitu-
dinal electron motion, and the values of kn are

k1 � 2� ln 2� g � 3:270 ; k2 � 3:384 ; �5:7�
k3 � 3:407 ; k4 � 3:417; . . . :

The point to note here is the marked energy difference
between even and odd levels, E�n � ÿ�l�n �2=2, in an ultra-
strong magnetic field (see Table 4), which is easily seen by
changing from the energiesE�nl to the Rydberg correctionsD�nl
used in atomic physics (see Table 5 and its more detailed
discussion in Section 9).

For the even levels 2s, 3s, and 3d for H0 100, the
numerically obtained values of D�nl �H� [13, 14, 16] and those
calculated from Eqn (3.7) are virtually identical and slowly
decrease with H: D�nl / 1= lnH, such that even at H � 105

(i.e., in fields B0 1014 G), they are still far enough from
their H !1 limit, and therefore the spectrum of even levels
is strongly perturbed compared to the Coulomb spectrum
E
�0�
n � ÿ1=2n 2. At the same time, for the odd levels 2p,

3p, 4f, etc., the Rydberg corrections Dÿnl �H� are very
small numerically for H0 100, Dÿnl / �lnH�=H5D�n and
Eÿn � E

�0�
nÿ1, which suggests a revision of the claim in [6, 19]

about the double degeneration of the even and odd levels of
the hydrogen atom in a strong magnetic field.

Asymptotic formula (3.7) provides a higher accuracy for
excited even states than for the ground state. The physical
explanation is simple: the localization region of the wave
function in the longitudinal direction increases as n 2, thus
decreasing the Coulomb interaction and extending the
adiabatic approximation to lower magnetic fields.

6. Size and the quadrupole moment of the atom
and radiative transition probabilities
for B4Ba

As noted in Sections 2 and 3, the wave function w�z� that
enters Eqn (2.4) and describes the longitudinal motion of an
electron in its main localization region jzj0 aH is given by
Whittaker function (3.5). Because distances jzj9 aH contri-
bute little to the normalization integral, the spatial character-
istics of the electron cloud over the entire z axis can be
calculated from Eqn (3.5). The normalization integral for

Table 5. Rydberg corrections D�nl for even and odd levels.

H
D�nl �H� Dÿnl �H�

1s 2s 3s 3d 2p 3p 4f

1

10

102

103

104

105

106

0.7756

0.5349

0.3632

0.255

0.188

0.145

0.116

0.7652

0.5469

0.3970

0.300

0.235

0.191

0.159

0.7407

0.5452

0.3994

0.303

0.237

0.192

0.160

0.7476

0.5456

0.3989

0.302

0.237

0.192

0.160

0.3867

0.1431

0.0385

0.0076

0.0012

0.0002

0

0.3541

0.1335

0.0368

0.0074

0.0012

0.0002

0

0.3435

0.1312

0.036

ì

ì

0

0

Note. The values D�nl [13, 14, 16] refer to the ground Landau level 1s and

the tower of its adjacent levels: 2s, 3s, etc.
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cn�z� and the average radius of this state can be calculated
using the results obtained previously [39, 40] in the theory of a
�pp atom. Eventually, for a hydrogen atom in a strong
magnetic field, we find that

ak
aB
� l���

2
p �lÿ 1=2��lÿ 1=3�

�
�

3F2�ÿlÿ1;ÿlÿ1; 3; 4ÿ lÿ1; 4ÿ lÿ1; 1�
3F2�ÿlÿ1;ÿlÿ1; 1; 2ÿ lÿ1; 2ÿ lÿ1; 1�

�1=2

; �6:1�

where 3F2 is the generalized hypergeometric series [41]. For a
deep �n! 0� level, c0�z� �

���
l
p

exp�ÿljzj� and
ak
aB
� �2l�ÿ1=2 � 1���

2
p
�
ln
H

ln2 H

�ÿ1
; �6:2�

where we have used asymptotic formulas (4.7). As H
increases, the longitudinal size of the atom ak decreases
much more slowly than a?:

ak
a?
�

�����Hp
2l
�

�����Hp
lnH ; H4 1 �6:3�

[such that the atom becomes spoke or needle shaped (see
Table 6)].

There is a clear physical explanation for the above-
mentioned longitudinal contraction ak / 1= lnH. As noted
in Section 2, the 1s state under consideration is a state with a
small binding energy, l2 � �lnH�2 (shallow level), in a
potential well of the radius r0 � aH � 1=

�����Hp 5 1=l, which
describes a distortion of the Coulomb potential. In this case,
the exponential decay length of the wave function
c / exp �ÿljxj� outside the well, jxj � 1=l4 r0, is much
larger than the well width. Therefore, we here have a
manifestation of the `anticlassical' quantum mechanical
property of the bound states of a weakly bound particle in a
short-range potential: even though the particle is bound in the
well, the probability of finding it within the well is small,
w � lr0 5 1 (i.e., most of the time it is outside the well).
Systems with this property are the deuteron13 and the
negative hydrogen ion Hÿ. In the latter case, the outer
electron has the binding energy e � 0:75 eV (the electron
moves in the electrostatic field of a proton completely
screened at distances r0 aB by the inner atomic electron).

The deformation of the electron cloud jc�q; z�j2 by a
magnetic field results in the atom acquiring a quadrupole
moment. In a strongly magnetized plasma, in addition to the

usual van der Waals interaction, a quadrupole±quadrupole
interaction arises between the atoms. The quadrupole
moment Q of the ground state of the hydrogen atom was
found numerically [26] by the variational method. Below, we
give a simple asymptotic formula for Q, valid forH0 100.

Due to the axial symmetry, only the diagonal components
of the quadrupole moment tensor are nonzero:

Qxx � Qyy � 1

2
Q ; Qzz � ÿQ ; Q � 2hz 2i ÿ hr 2i �6:4�

(the z axis is taken to be along the magnetic field; Qzz < 0
because the electron charge is negative). Hence,

Q�H� � 2
�
a 2
k �H� ÿ Hÿ1

	
; m � nr � 0 ; �6:5�

or asymptotically,

Q � Lÿ2 �
�
2�g� ln 2� � 5

3

�
Lÿ3 � . . . ;

�6:6�
L � ln

H
ln2H 4 1

(we set aB � 1 here). As can be seen from Fig. 4, analytic
formulas (6.1)±(6.4) yield virtually the same results as given
by numerical calculations [26] if H0 10. As regards expan-
sion (6.6), we note that for H < 1000, it gives only a
qualitative behavior of Q�H�, but its accuracy increases with
increasing H. The decrease in the quadrupole moment with
increasing H4 1 is explained by the fact that an ultrastrong
magnetic field squeezes the atom both transversely and
longitudinally.

A brief discussion is appropriate of radiative transitions
np! 1s near the ground Landau band, where H4 1,
aH 5 ak5 aB. In this limit, the shift of the odd np level,

Eÿn � ÿ
1

2n 2
; cÿn �z� �

������
2

n 3

r
exp

�
ÿ z

n

�
F

�
1ÿ n; 2;

2z

n

�
;

can be neglected, the wave function of the deep ground state
can be approximated by wl�z� �

���
l
p

exp �ÿljzj� (which

Table 6. Characteristic dimensions of the hydrogen atom in a strong
magnetic field.

H a?=aB
ak=a?

1s 2s

102

103

104

105

0.100

0.032

0.010

3.16 �ÿ3�

3.52

7.12

15.7

36.7

32.5

89.6

257

759

13 The deuteron, the nucleus of the heavy hydrogen atom, is a proton±

neutron system weakly bound by the nuclear interaction. Its binding

energy is ed � 2:23 MeV, the interaction potential is typically

U0 � 50 MeV, and the radius is R � 2� 10ÿ13 cm.

10 2 3 4 5 6 7

lgH
ÿ1

10ÿ2

10ÿ1

Q

5�10ÿ1

Figure 4. Quadrupole moment Q for the ground state of the hydrogen

atom. The solid line is obtained from Eqns (6.4) and (6.1); * and �:
numerical results [22].
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corresponds to a one-dimensional d potential), and the
transition probability is estimated to be

w�np! 1s� � 16a 3

9n 3l

�
1ÿ 2

3l
�O�lÿ2�

�
o0 ; �6:7�

where o0 � mee
4=�h 3 � 4:13� 1016 sÿ1 and l � l�H� is

determined from Eqn (3.7). For B � 1013 G, we have
jE1sj � 300 eV, l � 5, and w�2p! 1s� � 1012 sÿ1, which is a
few orders of magnitude larger than the probability of a
similar transition in a free �H � 0� hydrogen atom,
w0 � 6:27� 108 sÿ1.

In the dipole approximation, the angular distribution of
escaping photons has the form

w�y� / �n� dfi�2 � sin2 y ; �6:8�

where y is the angle between the magnetic field and the
phonon momentum k (notably, photons are not emitted
along the magnetic field B). It can be shown (as noted by
M I Vysotsky) that these photons are 100 percent linearly
polarized in the �k;B� plane.

Detailed computational research on radiative transition
probabilities can be found in [16] and the studies cited therein.

7. Relativistic effects14

As noted in Section 3, in fields B0 1013 G, the transverse
motion of an electron becomes relativistic, requiring the use
of the Dirac equation.

We first note the following property of bound states in this
case. There is a wide range of high magnetic field strengths,
B0Bcr � 1014 G, in which the adiabatic approximation is
valid as before, and the variables of the transverse and
longitudinal motions separate. The transverse motion of an
electron here is relativistic (or even ultrarelativistic), whereas
its longitudinal motion remains classical and can be treated in
the framework presented in Sections 2 and 3. An example to
illustrate this point is the boundLLL states of an electron that
arise from the transverse ground Landau state of the
Coulomb potential.

The Dirac Hamiltonian for an electron in the problem
under discussion has the form [30]

ĤD � a

�
p̂� e

2
�B� r�

�
� bme �U�r� ; �7:1�

whereU�r� � ÿej�r� is a central electrostatic potential. From
the Dirac equation ĤDCe � eCe for the bispinor

Ce � jD�r�
wD�r�

� �
;

we find the following equations for two-component spinors:

r

�
p̂� e

2
�B� q �

�
wD �

ÿ
eÿme ÿU�r��jD ; �7:2 0�

r

�
p̂� e

2
�B� q �

�
jD �

ÿ
e�me ÿU�r�� wD ; �7:2 00�

where e is the energy eigenvalue of the Dirac equation (e
includes the rest-mass energy me).

The characteristic values of the magnetic field are

Ba� m 2
e e

3 ; Bcr� m 2
e

e
; B1 � 3paÿ1Bcr � 5:70� 1016 G :

�7:3�
With the potential U�r� neglected, Eqn (7.2) yields

1

2me

�
r̂

�
p̂� e

2
�B� q �

��2

jD �
1

2me
�e 2 ÿm 2

e �jD �7:4�

and a similar equation for the spinor wD [equations of a
similar form but for different spinors that are related by
Eqns (7.2)]. Equation (7.4) is identical to the Pauli equation
for a nonrelativistic electron, with the nonrelativistic energyE
replaced by �e 2 ÿm 2

e �=2me. This immediately yields the well-
known spectrum of a relativistic electron in a uniform
magnetic field,

enrmszpz �
������������������������������������������������������������
m 2

e � 2me

�
�hoHN� 1

2me
p 2
z

�s

�
�������������������������������������������
m 2

e

�
1� 2NB

Bcr

�
� p 2

z

s
�7:5�

[see Eqns (2.5) and (2.6) with U � 0 and with the kinetic
energy p 2

z =2me of free longitudinal motion], where the values
of N are given by Eqn (2.5) and the transverse part of jD is
identical to the nonrelativistic spinor in Eqns (2.3) and (2.4).

According to Eqn (7.5), the lower bound of the spectrum
�N � 0, pz� 0� coincides with the electron rest-mass energy
(here, nr � 0, m � 0;ÿ1;ÿ2; . . . ; and sz � ÿ1 for LLL
states). Using this fact and the first-order perturbation
theory in the potential U�r� � ÿe 2=r, we obtain a formula
for the spectrum of LLL states, which is identical to
nonrelativistic expression (3.7). Namely, as seen from
Eqn (7.2 0), the spinor wD is in this case small compared with
jD and, neglecting the potentialU�r� in Eqn (7.2 00), we obtain

wD �
1

2me
r

�
p̂� e

2
�B� q �

�
jD ; �7:6�

which, when substituted in Eqn (7.2 0), yields the Pauli
equation with the energy E � eÿme and the already known
Eqn (3.7) for the spectrum of nonrelativistic LLL states,

enr�0;m; sz�ÿ1 � me ÿ 1

2
mee

4l2 � me

�
1ÿ 1

2
a 2l2

�
: �7:7�

It hence follows that the relativistic corrections to Eqn (3.7)
are extremely small until the field B greatly exceeds Bcr (see
Table 1). This is explained by the relation��Ueff�0�

��
mec 2

� a

������������
p
2

B

Bcr

r
; �7:8�

whence we see that for B < 5� 1017, the depth of the
potential well in Ueff is smaller than mec

2, and the transverse
size of the hydrogen atom aH decreases to the Compton
length lC for H � aÿ2 (or B � Bcr) and to the proton radius
rp � 10ÿ13 cm forH � �aB=rp�2 � 1010, i.e., B � 1019 G.

Thus, the fields B9 1018 G still allow neglecting the finite
size of the nucleus.

14 In Sections 7 and 8, we use relativistic units for which �h � 1, c � 1, and

e 2 � a � 1=137.
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8. Quantum electrodynamics effects

We now address the question of how ultrastrong magnetic
fields B0B1 � 5:7� 1016 G affect the positions of atomic
levels.

An interesting recent discovery is that such fields can
influence atomic spectra: due to the vacuum polarization by
an ultrastrong magnetic field, the Coulomb potential of a
point-like charge is distorted (screened), and hence the
deepening of a level with increasing the field is slowed down,
and as B!1, the levels are `frozen' at the finite limit value
E1 � ÿl21=2.

This surprising effect was first observed by Shabad and
Usov [42, 43] and subsequently investigated by Vysotsky,
Machet, and Godunov [33±35, 44]. While qualitatively
similar, the results of the two groups differ in some details
and numerical estimates. For example, for the ground level of
the hydrogen atom, Refs [42, 43] give E1 � ÿ4:0 keV,
whereas Ref. [34] gives E1 � ÿ1:7 keV. The reasons for this
discrepancy are explained in Section 4.2 in Ref. [34]. Our
discussion below follows Refs [34, 35].

With screening taken into account, the effective Coulomb
potential (2.7) for nr � 0 states takes the form [see Ref. [34],
Eqn (52)]

~Ueff�z� � Ueff � dUeff ; �8:1�
dUeff�z� � e 2

�1
0

1����������������
r2 � z 2

p R 2
0m�r�

�
h
exp

ÿÿmjzj�ÿ exp
ÿÿ �����������

1� b
p

mjzj�i rdr ;
where r �

����������������
x 2 � y 2

p
,Ueff�z� is, as before, given by Eqn (2.7),

m �
���
6
p

me ; b � a 3

3p
H � HH1 ; H1 � 2:423� 107 �8:2�

(or b � B=B1, where B1 � 3paÿ1Bcr � 1017 G). According
to Eqn (8.1), dUeff�z� > 0, and hence the inclusion of
screening shifts the levels upward.

We note the following properties of the potential dUeff�z�.
Due to the difference in exponential terms in Eqn (8.1), the
screening of the potential is most important at jzj � 1=m (at
larger distances, the screening is exponentially small). On the
other hand, the integral over r is dominated by r � aH.
Therefore, in the case 1=m4 aH, i.e., for H4 aÿ2 � 104, r2

can be omitted under the square root in Eqn (8.1), giving15

dUeff�z� � e 2

jzj
h
exp

ÿÿmjzj�ÿ exp �ÿ
�����������
1� b
p

mjzj�i : �8:3�
As a result of screening, the logarithmic derivative in

Eqn (3.3) changes by an amount that, according to Eqn (3.1),
is given by (in atomic units)

d
�
w 0�z�
w�z�

�
� 2

� z

0

dUeff�z� dz

�
�z0L�

2

�1
0

e 2

z

h
exp �ÿmz� ÿ exp

ÿÿ �����������
1� b
p

mz
�i

dz �8:4�

and which is independent of z in the region where the
logarithmic derivatives are matched. Hence,

d
�
w 0�z�
w�z�

�
� ÿ2 ln m� 2 ln

ÿ
m
�����������
1� b
p �

� ln

�
1� a 3

3p
H
�
; z � L : �8:5�

Therefore, mathematically, the screening effect amounts to
adding this term to logarithmic derivative (3.3), i.e., to
replacing

H ! H
1� �a 3=3p�H : �8:6�

in the logarithmic derivative. As a result, the equation for the
spectrum of even levels takes the form [34, 35] [cf. Eqn (3.7)]

ln

� H
1�H=H1

�
� l� 2

�
ln �2l� � c

�
1ÿ 1

l

��
� 4g� A0m ;

�8:7�

where a � 1=137, nr � 0, and A0m � ÿ ln 2� c�1� jmj�.
It follows from Eqn (8.7) that in fields H5H1, the

influence of vacuum polarization is negligibly small. With
increasing the field, forH0H1, the polarization effect slows
the deepening of the levels and `freezes' them at fields
H4H1 [35] (Fig. 5 for the ground level clearly illustrates
the freezing effect for B!1).

The limit values l � l1 forH !1 follow fromEqn (8.7)
as

l1� 2

�
ln �2l1� � c

�
1ÿ 1

l1

��
� lnH1ÿ 4gÿ A0m : �8:8�

Table 7 lists the l1 values and the limit binding energy values
e1 for a number of deep (on the atomic scale) LLL levels and
their adjacent excited levels from among those in the `tower'
[33±35] of states with n � 1; 2; 3; . . . and with the magnetic
quantum number m4 0.

15 In fieldsH9 104, this expression does not hold. However, the screening

of the potential is important only in fieldsH0 107.

4 6 8h1

l1

l0

hcr 10
lgH

8

16

12

2

1

1, 2

Figure 5. l0�H� for the ground level in the region of ultrastrong magnetic

fields without (1) and with (2) taking the vacuum polarization into

account; the limit value is l1 � 11:2 �E1 � ÿ1:71 keV). Values marked

on the horizontal axis are hcr � lg �Bcr=Ba� and h1 � lgH1.
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In [35], the Dirac equation averaged over the transverse
motion of the electron was used to numerically calculate the
spectrum. A trick known from the theory of the critical
nuclear charge [45±50] was also used in [35] (with respect to
Zcr, see Appendix A), which allowed reducing the Dirac
equation for two-component spinors to a second-order
SchroÈ dinger-type equation:

d2w
dz 2
� 2me

�
Eÿ V�z��w � 0 ; E � e 2 ÿm 2

e

2me
� ÿ 1

2
mee

4l2 :

�8:9�

In this equation, the potential V�z� is expressed in terms of �U
(or ~U) in an explicit, although somewhat cumbersome form as
[45±47]

V � e
me

Uÿ 1

2me
U 2 � Uzz

4me�e�me ÿU �

� 3

8

U 2
z

me�e�me ÿU �2 ; �8:10�

where Uz � dU=dz, etc.
We compare the accuracy of asymptotic formulas (3.7)

and (8.7) against the numerical calculations in [35] using, in
particular, the solution of the Dirac equation including the
screening of the Coulomb potential in a strong magnetic field
(see Table 1). As is seen, already in fields B=Bcr � 10ÿ2 (for
which aH � 0:1aB), the error in Eqn (3.7) is of the order of one
percent and rapidly decreases as B increases to the values
B � 102Bcr � 4� 1015 G, which exceed the highest magnetic
field values known in astrophysics (see Appendix B). In this
range of fields, the effects of the screening of the Coulomb
potential on the positions of the atomic levels can be
neglected. Bur the influence becomes stronger as the
magnetic field increases further. In this case, instead of
Eqn (3.7), we should use Eqn (8.7), which for B0 105Bcr

causes the atomic spectrum to freeze in accordance with the
Dirac equation �D (see Table 1). We note that l0 � 11:2
according to Eqn (8.7) and that the Dirac equation �D yields
l0 � 11:3.

Until this point, we have neglected the anomalous
magnetic moment of the electron Dm, which arises due to
radiative QED corrections [30]; however, for B0Bcr, its
contribution becomes significant. In such strong fields, the
magnetic moment is itself field dependent; in the first order

in a [51, 52],

Dm�B� � a
2p

mB
1� 8

3
L lnL ; L5 1 ;

ÿLÿ1 ln2 L ; L4 1 ;

8<: �8:11�

where L � B=Bcr � a 2H and mB � jej�h=2mec is the Bohr
magneton. The value Dm=mB � a=2p for B! 0 was obtained
by Schwinger [30]; as B increases, the anomalous magnetic
moment of the electron changes sign [51, 52].

The energy of the ground Landau level for B4Bcr is

E0 � me � 1

2
oH � �mB � Dm�Bÿ 1

2
mee

4l2

� me �
�

1

2pa
ln2 Lÿ l2

�
mee

4

2
; L4 1 : �8:12�

For a `Dirac' electron, i.e., for Dm � 0, for the LLL states
�N � 0, sz � ÿ1�, the zero-point energy of oscillations in the
�x; y� plane completely cancels the spin magnetic energy,

oH

2
� mBB �

1

2

meL

2
: �8:13�

But the anomalous magnetic moment leads to an energy shift
DE0 � ÿDmB, universal for all atomic levels. For L4 1, the
contribution of the anomalous moment Dm to Eqn (8.12)
increases in proportion to ln2 L and is comparable to the level
binding energy for lnL � ��������

2pa
p

l or L � L�,16

L� � exp
2 ln �1=a�
�2pa�ÿ1=2 ÿ 1

� 15 : �8:14�

For L > L�, i.e., B0 1015 G, the level shift exceeds the
binding energy l2. This shift, however, is determined by
QED rather than by atomic physics; it is the same for all
levels and does not enter energy differences. Therefore, the
inclusion of Dm leaves the potentially measurable energies of
the radiative transitions np! 1s in the hydrogen atom
virtually unchanged.

9. Zeldovich effect in atomic structures

In his paper ``Energy levels in a distorted Coulomb field''
[53] (see also Ref. [54]), Zeldovich considered the energy
spectrum of valence electrons in an impurity semiconductor
with a dielectric constant e4 1 and predicted a curious
physical effect to be observed when the interaction potential
can be divided into parts with strongly different ranges,
V�r� � Vsh �UL. Namely, at those values of the coupling
constant �g � g0� for which the short-range (`strong')
potential Vsh�r� � ÿg��h 2=2mr 20 � v�r=r0� produces a bound s
level (or gives rise to a scattering resonance for low-energy
particles, i.e., to a real or virtual level with the angular
momentum l � 0 and near-zero energy), a small change in g
causes a dramatic change in the spectrum of the atom: the
Coulomb levels Ens with n � 1; 2; . . . go down to take the
positions of E�nÿ1�; s, and the ground level E1s falls deeply (on
the atomic scale). The width of the rearrangement region
(measured in terms of the constant g of the strong potential)

Table 7. `Freezing' of the atomic level with the vacuum polarization taken
into account.

LLL states,
nr � 0, m4 0

Excited levels,
nr � m � 0, n � 1; 2; . . .

m l1 e1, keV n l1 e �n�1 , eV

0

ÿ1
ÿ2
ÿ3
ÿ4
ÿ5

11.21

10.39

9.986

9.718

9.518

9.359

1.71

1.47

1.36

1.28

1.23

1.19

1

2

3

4

5

10

0.877

0.470

0.320

0.242

0.195

0.0985

10.7

3.00

1.39

0.798

0.517

0.132

Note. Presented are the limit (B!1) values of l1 and the binding

energies e1 for hydrogen atom levels calculated including the screening

of the potential; calculations for LLL states are made using Eqn (8.8)

(neglecting relativistic corrections).

16 We have set l � lnH � lnLÿ 2 ln a for estimation purposes.
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is Dg=g0 � r0=aB 5 1, where r0 is the range of the potential
Vsh�r�, r0 5 aB.

Rediscovered later in the context of the nonrelativistic
Coulomb problem with a charge Z > 137 [55] and in the
theory of the lightest hadron atoms (atomic spectrum
rearrangement [39, 40, 56, 57]), this effect came to be known
as the Zeldovich effect [58±60]. The cited papers used specific
models of the strong potentialVsh�r�: a rectangular well [53], a
parabolic potential corresponding to the uniform proton
charge density inside the nucleus [55], and separable finite-
rank potentials [56].

The following model-free equation to describe the Zel-
dovich effect for s states was given in [57]:

F�l� � l� 2
�
ln l� c�1ÿ lÿ1�� � aB

acs
: �9:1�

Here, l � 0, aB � �h 2=mee
2, and acs is theCoulomb interaction

renormalized s-scattering length for a short-range potential.
The parameter aB=acs determines not only the spectrum of
states in a distorted Coulomb potential but also the change in
the Coulomb phase of the s-scattering in the radial function

w0�r� � sin

�
kr� 1

kaB
ln �2kr� � dCoul

0 �k� � d0�k�
�
;
�9:2�

dCoul
0 �k� � argG

�
1ÿ i

kaB

�
; r!1 ;

in the case of slow �kr0 5 1� particles,
d0�k� � ÿarccot aB

2pacs
; k! 0 : �9:3�

Equation (3.7) is identical to Eqn (9.1) for the scattering
length

acs�H� �
ÿ
lnHÿ 4gÿ 2 ln 2ÿ Anrm

�ÿ1
aB ; �9:4�

or

1

acs�H� �
ÿ
lnHÿ 4gÿ 2 ln 2ÿ Anrm

�
aÿ1B : �9:5�

We note that the analogy between the level arrangements
in these two problems (i.e., the hydrogen atom for B4Ba,
aH 5 aB and a short-range distortion of the Coulomb
potential for r0 5 aB) may have first been noticed in
Refs [22±24]. For states with nr � 0,

acs�H� �
�
lnHÿ 4gÿ ln 2ÿ c

ÿ
1� jmj��ÿ1 aB ; �9:6�

where the short-range cutoff radius r0 for the Coulomb
potential is aH � aB=

�����Hp .
It is shown in [57] that the shifts of the Coulomb ns states

in the Zeldovich effect for the hydrogen atom are suitably
described by the effective principal quantum number n � and
its associated Rydberg corrections Dn known in atomic
physics [6] ��h � me � e � 1�:

Ens � ÿ 1

2
l2n � ÿ

1

2�n ��2 � ÿ
1

2�n� Dn�2
;

or n � � 1

ln
� n� Dn :

�9:7�

For excited states, irrespective of the Coulomb potential
distortion at small distances, Dn � const (depends weakly

on n). The validity conditions for Eqn (9.1) are r0 5 aB and
lr0 5 1 for any value of the scattering length acs. In the
problem considered by Zeldovich [53], these conditions are
ensured by the fact that the Bohr radius aB �
e�me=meff�4 r0, where me is the electron mass, meff 5me is
the electron effective mass in a lattice, and the ion radius r0
is of the order of aB.

We next discuss some level shifting aspects that follow
from Eqn (9.1) in the case where the scattering length is given
by Eqn (9.6) with m � 0; we consider the difference between
the Coulomb potential and an arbitrary strong short-range
potential in terms of how their distortions work. The
following table shows the relation between numerical values
of the magnetic field and the scattering length:

(9.8)

where acs�H�� � 1 and lnH� � 3g� ln 2 � 2:4248. Equa-
tion (9.6) for the scattering length can be rewritten as

acs�H� � 1

ln �H=H�� aB ; �9:9�

showing that the scattering length depends very sensitively on
H near H�: acs�H� � �H�=�H ÿH���aB and that it slowly
decreases asH !1: acs�H� / 1= lnH.

We first consider the most impressive manifestation of the
Zeldovich effect, with the scattering length acs � 1. The table
that follows presents the values of theRydberg corrections for
this (resonance) case:

(9.10)

It is seen that in the region of the unperturbed Coulomb
spectrum, E

�0�
n � ÿ1=2n 2, the energy levels shift most

significantly (in terms of n �): they are located at the middle
between neighboring levels with quantum numbers n and
n� 1, and for them Dn � 0:5. It is interesting that in this case,
for the shift of the ground (`deep') 1s level, we also have
D1s � 0:5, and l21s � 4:535, i.e., this level also lies close to the
unperturbed Coulomb spectrum as, according to Zeldovich,
it should. Finally, it is in this case that, according to Eqn (9.3),
the Coulomb s-scattering phase is distorted most,
d0�0� � �p=2.

As acs decreases (H increases), the levels lower. For
lnH4 1, the ground state falls deeply (for it, l1s � lnH),
and the atomic levels ln�H� with n5 2 approach the lower
adjacent Coulomb levels �nÿ 1�with equal values of Dn ! 0.

This is clearly seen for small scattering lengths, acs 5 aB,
and hence for large values of the right-hand side of Eqn (9.1).
As already noted, the function c�1ÿ 1=l� in the region of the
Coulomb spectrum, l4 1, has poles at the points ln � nwith
n � 1; 2; . . . (the unperturbed spectrum for acs � 0). From
Eqn (9.1), using

c
�
1ÿ 1

z

�
� c

�
1

z

�
� p cot

p
z

�9:11�

H 10 11.25 H� �
11:30

11.33 20 100 104 106

acs=aB ÿ8:1773 ÿ224 1 339 1.7514 0.4587 0.1474 0.0878

Level 1s 2s 3s 4s 5s 1 s

Dn 0.4696 0.4964 0.4987 0.4993 0.4996 0.5
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with z � 1=ln � n � � n� Dn, we obtain

Dn � 2acs � const ; jacsj5 1 : �9:12�

From Eqns (9.7) and (9.12), the shifted Coulomb ns levels are
given by

Ens � ÿ 1

2�n� D�2 � ÿ
1

2n 2
� D
n 3
� . . . ; �9:13�

and noting that cns�0� � 1=
��������
pn 3
p

for unperturbed Coulomb
ns states [6], we obtain the level shifts

Ens ÿ E �0�n � D
n 3
� 2pc 2

ns�0�acs : �9:14�

It was noted by Zeldovich [53] that although the
perturbation theory in a strong, short-range distorting
potential does not work here for r � r0 5 aB, the shift of a
level is nevertheless proportional to the probability of finding
the electron in this region in the unperturbed state c 2

ns�0�. We
recall in this connection that in the first-order perturbation
theory, the shift of an ns level due to a weak short-range
potential Vsh�r� is given by [6]

DEns �
�
Vsh�r�c 2

ns�r� d3r � c 2
ns�0�

�
Vsh�r� d3r

� 2p�h 2

m
c 2
ns�0�~aB ; �9:15�

where

~aB � ÿfB�E � 0� � m

2p�h 2

�
Vsh�r� d3r : �9:16�

Here, ~aB and fB�E � 0� are the scattering length and the
scattering amplitude with the energy E � 0 in the Born
approximation [6].

Zeldovich's work provides justification for extending
perturbative formula (9.15) to the nonresonant case (9.14) of
a short-range distortion of the Coulomb potential, a distor-
tion which amounts to replacing the Born s-scattering length
~aB with the exact (nonperturbative) value acs (see also
Refs [61±63]).

Formula (9.14) (known as the perturbation theory with
respect to the scattering length) applies when the short-range
distortion of the potential allows inelastic processes, such as
annihilation into pions in a p�p-hadron atom or the annihila-
tion of a positronium eÿe� into two or three g-quanta. In
these cases, the scattering length acs and the level shift DE are
complex quantities, and the corresponding states are quasis-
tationary, with the lifetime t � �h=G;G � ÿ2 Im �DE �. We
note that Eqn (9.14) relates the lifetime of a state to the
behavior of the corresponding inelastic (annihilation) cross
section in the limit kr0 5 1 (see Ref. [36] for the application of
this equation).

Table 5 lists Rydberg corrections Dnl � D�n to the
hydrogen atom spectrum in an ultrastrong magnetic field
that were obtained from the numerical calculations of level
binding energies [13±16].We note that inRef. [13], states of an
atom in amagnetic field were classified in terms of the states nl
(2s, 3d, 2p, etc.) of the unperturbed hydrogen atom, instead of
labeling them as n� with n � 1; 2; . . . for even and odd states
in the presence of amagnetic field (1� � 1s is a deep level) (see
the remark on this point in Section 4). Therefore, the energy

of a level is given not by Eqn (9.7) but by17

n � � 1

lnl
� nÿ 1� Dn ; �9:17�

i.e., the value of n is shifted by 1.
It follows from Table 5 and Eqn (9.8) that even in fields

H � 10, Eqn (9.1)with the scattering length given byEqn (9.5)
is applicable to describing Zeldovich effect manifestations in
the problem under discussion (even though the Coulomb
potential cutoff radius r0 � 0:3 aB is not quite small in this
case).

On the other hand, it may seem odd that as the magnetic
field increases to H � 106, with the corresponding Coulomb
potential cutoff radius r0 � aB=

�����Hp � 10ÿ3aB, the scattering
length acs and the (weakly n-dependent) Rydberg corrections
Dn for excited even states decrease very slowly, to Dn � 0:16.
At the same time, the Rydberg correction for the ground
1s level is alreadymarkedly different from them (by a factor of
1.5; cf. the resonance-caseH� considered above). In this case,
the perturbative scattering length formula (9.14) gives only a
qualitative description of level shifts. For H � 106,
Dn � 0:160 according to Table 5 and Dn � 0:176 according
to Eqns (9.8) and (9.12) (clearly, as the field is further
increased, these values come closer together and become
zero).

It is easy to explain why acs and Dn behave in this way. As
H increases, the distortion of the Coulomb potential at small
distances leads not only to an increase in the depth but also to
a decrease in the width of the well. As a result, the resonant
1s level also lowers; however, its depth, which is proportional
to ln2 �1=aH�, is much less than the well depth / 1=aH, and
hence, as previously, the level is a weakly bound state in a
short-range potential,18 and for it

jE1sj5 �h 2

mer
2
0

; �9:18�

and the scattering length acs is much greater than the radius r0
of this potential.

17 In Fig. 6, marked on the plot of the graphical solution of Eqn (9.1) are

the positions of the levels shifted due to the distorted Coulomb potential

(ground 1s and a series of the Coulomb levels 2s; 3s; 4s; . . . ). It is seen that

in the presence of the Zeldovich effect, the spectrum of the atom is periodic

in n � to good accuracy.
18 For this reason, the natural estimate acs � r0 for the resonance case of a

strongly distorted Coulomb potential in this problem in fields H � 106

does not yet apply.

n� � 1=l

aB=acs

1
0

F

1s 2s 3s 4s2 3 4

Figure 6. Zeldovich effect. The perturbation of the atomic spectrum by a

nearby resonant (`quasinuclear' [46±48]) level. Figure 1 from Ref. [57] is

used.
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Importantly, this level corresponds to a weakly coupled
state, not only in the distorted potentialU�r��Vsh�r��UC�r�
but also in an isolated short-range potential Vsh�r� with UC

`switched off'. With as denoting the s-scattering length in the
potential Vsh, acs and as in the resonance case are given by

1

acs�H� ÿ
1

as
� ÿ 2

aB

�
ln

r0�H�
aB
�O�1�

�
: �9:19�

This is Schwinger's formula [64] for the renormalization of
the s-scattering length as in a short-range potentialVsh�r� by a
Coulomb attraction potential. We note that its logarithmi-
cally accurate derivation uses the perturbation theory to take
the Coulomb potential into account within the range of the
short-range potentialVsh�r� [see Appendix C on the scattering
lengths as and acs at resonance �El ! 0, g � gl�].

The reason why Eqn (9.19) is especially useful in the
present context is the knowledge that r0�H� / 1=

�����Hp . This
allows applying Eqn (9.19) to the field values H and H� to
exclude incalculable constants entering that formula
and using Eqn (9.9) to obtain the scattering length acs. In
particular, for lnH4 lnH�, Eqn (9.19) yields acs � aB= lnH,
which is the perturbative result for a small scattering length,
Eqn (9.14).

Equation (9.1) can be extended to states with an arbitrary
angular moment l 6� 0 [65, 66]. In this case, the effect of the
short-range potential Vsh�r� on the states in the long-range
potential UL cannot be included by imposing a boundary
condition on the wave function at r! 0, as was the case for
s states according to Eqns (2.9) and (3.1) (when the long-range
potential had a Coulomb singularity at zero). The reason is
that as r! 0, the general solution of the radial SchroÈ dinger
equation has the form

Rl�r� � c1r
l � c2r

ÿlÿ1

and for l5 1, the singular solution should be dropped
because it is not square integrable. The method of zero-
range potentials [31, 32] was extended to the case where
l 6� 0 in [67, 68].

We consider Fig. 7, which illustrates the difference
between the Zeldovich effect manifestations in the case of
s states �l � 0� and for an orbital moment l5 1. In this figure,
the horizontal axis corresponds to the coupling constant g in
the short-range potential Vsh�r� � ÿ�g=2r 20 � v�r=r0� (this
constant determines the position of a resonance level when it

is in the atomic region), and the vertical axis shows the
positions of the unperturbed Coulomb levels E

�0�
nl � ÿ1=2n 2

with their corresponding angular momentum values l (for the
lowest n � l� 1). In the case of a resonance, all excited ns
levels19 are shifted downward with equal values of the
Rydberg correction D (see Table 5).

In the case l 6� 0, the Zeldovich effect shows up in a totally
different way [65, 66]. The spectrum then consists of weakly
shifted nl levels and a resonant level in Vsh�r�. Such a
spectrum undergoes a rearrangement only when an increase
in the coupling constant g causes the resonant level to
approach one of the atomic levels.20 (We note the intersec-
tion-of-terms nature of the level interaction in a certain
narrow range of g values.)

The difference in the manifestation of the Zeldovich effect
between the l � 0 and l 6� 0 cases is explained by the presence
of a low penetrability barrier �h 2l�l� 1�=2mr 2 at l 6� 0, which
separates two regions with attractive potentials: one with a
short-range potential Vsh�r� with a shallow resonance level
and the other with a Coulomb potential with nl levels. As long
as the resonance level and the nl levels are not close in energy,
the low penetrability of the barrier prevents them from
affecting each other noticeably.

10. Concluding remarks

We have discussed various approaches to studying the energy
spectrum of the hydrogen atom in a strong magnetic field
B4Ba. It is shown that using the explicit form of the effective
potential within the adiabatic approximation to solve the
SchroÈ dinger equation (or the Dirac equation in the case
B0Bcr � 1014 G) yields simple analytic expressions for the
spectrum. A detailed discussion is given of atomic levels
adjacent to the ground Landau level with nr � 0 and
magnetic quantum numbers m � 0;ÿ1;ÿ2; . . . : A compari-
son with available numerical simulations shows that for
H � B=Ba 0 100, Eqn (3.7) has a few percent or better
accuracy.

A few concluding remarks are in order.
(1) There is a marked difference between the energies of

even and odd excited levels, E�n � ÿ�l�n �2=2, as is already
qualitatively seen from the asymptotic expressions (neglect-
ing vacuum polarization)

l�n �
1

n

�
1ÿ 2

n lnH� . . .

�
;

�10:1�
lÿn �

1

n

�
1ÿ 2

n

lnH
H � . . .

�
; H4 1 ;

n � 1; 2; . . . : We see that the excited even levels are much
higher than the odd ones, and the Rydberg corrections to
them are given by

D� � 2

lnH ; Dÿ � 2 lnH
H : �10:2�

(2) For H � 103ÿ104, the odd levels are already close to
the unperturbed Coulomb values En � ÿ1=2n 2, whereas the
even ones are still far from this limit. There is, therefore, a
need for further elaboration of the statement (see Refs [6, 19])
about the approximate twofold degeneration of even and odd
excited levels.

�nl�

l � 0
E

g

(3s)

(2s)

(1s)

0

a
l5 1

E

g
0

b

Figure 7.Rearrangement of the atomic spectrum (a) for s levels and (b) for

l 6� 0.
19 The level s shifts more significantly.
20 The trajectory of the level is shown dashed.
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(3) In Section 3, we noted the occurrence of a peculiar
kind of scaling in the energy spectrum, according to which for
any levelE � ÿl2=2, the dependence F�l� [see Eqn (3.8)] is, in
the adiabatic approximation, a universal function (i.e., its
value is the same irrespective the magnetic field and the level
quantum number).

As can be seen from Fig. 1, this scaling holds well for
l2 > 12. Interestingly, as l2 decreases and the adiabatic
approximation ceases to apply, the levels still continue to
group together along a curve close to F�l�.

(4) Spectrum equation (3.7) was obtained by solving the
SchroÈ dinger equation. However, in fields B0 1013 G, the
transverse motion of the electron becomes relativistic. The
solution of the Dirac equation with a point-charge nucleus
showed that Eqn (3.7) for the electron binding energy remains
valid for ultrastrong fields up to B > 1017 G (see Table 1).

(5) It was found in [33±35, 42, 43] that, interestingly, a
strong magnetic field B > 1016 G influences the hydrogen-
atom spectrum via the vacuum polarization and the screening
of the proton's Coulomb field.

With the vacuum polarization taken into account in the
limit as B!1, the lowest even LLLs with different m do
not decrease to zero but rather approach finite limit values
(level `freezing' effect), whose magnitudes E�1 � ÿl21=2
depend on the magnetic quantum number m and are large
compared to the levels of the discrete spectrum of the
unperturbed hydrogen atom. Their binding energy remains
nonrelativistic, however, and (neglecting relativistic correc-
tions) is determined by Eqn (8.7), which includes the
screening of the effective Coulomb potential. For example,
e1 � l21Ry � 1:71 keV according to Ref. [34].

Similarly, in the case of excited cases, the asymptotic form
of the energies E�n for B!1 differs from E 0

n � ÿ1=2n 2 (see
Table 7).

(6) Including the QED vacuum polarization effect usually
yields small corrections (the contribution to the Lamb shift
DLS � 1058 MHz for the atomic hydrogen levels 2s1=2 and
2p1=2 [30]). In an ultrastrongmagnetic fieldH0H1, vacuum
polarization produces a qualitative change in the spectrum of
even levels.

(7) Up to this point in our discussion, the hydrogen atom
has been assumed to be at rest and the magnetic field to be
static. Situations exist, however, where an atom should be
considered as moving, a noted example (from astrophysics)
being the motion of neutron stars (with magnetic fields
B � 1011ÿ1013 G and higher) through a cloud of interstellar
gas. Substantial literature exists on how this motion (in the
presence of a magnetic field) influences atomic spectra in
terms of level energies, radiative transition probabilities,
photoionization cross sections, etc. These problems are
beyond the scope of this paper, however, and we limit
ourselves to referring the reader to Refs [69±72] and the
references therein.

(8) L D Landau, I Ya Pomeranchuk, and K A Ter-
Martirosyan, in their (unpublished) 1957 paper ``Interaction
and annihilation of antinucleons with nucleons'' considered
the question of the spectrum of the proton±antiproton atom.
Including the distortion of the Coulomb field due to the
strong �pÿp interaction at small distances and matching the
inner and outer wave functions in the region where the strong
interaction can already be neglected, these authors obtained
results similar to those in Refs [39, 40, 57]. One of the present
authors (VP) gratefully remembers the discussions on this
subject with Ter-Martirosyan (who told VP about the 1957

paper and showed him its manuscript) and with EMLifshitz,
who made a number of useful comments. It should be noted,
however, that when writing papers [39, 40, 57], we were
unaware of, and hence did not refer to, the work of Landau,
Pomeranchuk, and Ter-Martirosyan.
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11. Appendices

A. Critical nuclear charge
The Dirac equation with an attractive point-like potential,

V�r� � ÿZa
r
; 0 < r <1 ; �A:1�

is solved analytically [30] to give the well-known Sommerfeld
formula

enj � me

(
1� z 2h

nÿ � j� 1=2� �
��������������������������������
� j� 1=2�2 ÿ z 2

q i2
)ÿ1=2

;

0 < z < j� 1

2
;

�A:2�

where 04enj < me, n � nr � l� 1 � 1; 2; 3; . . . is the princi-
pal quantumnumber and j � l� 1=2 � 1=2; 3=2; . . . ; nÿ 1=2
is the total angular momentum of the level.

Notably, the energy e0 (including the rest mass me) of the
1s1=2 ground state is 21

e0�Z� � me

�������������
1ÿ z 2

q
; z � Za � Z

137
; �A:3�

and for j � 1=2 as z! 1,

en; 1=2 �
���������������
1ÿ 1

N 2

r
� 1

N 3

�������������
1ÿ z 2

q
�O�1ÿ z 2� ;

where

N �
������������������������
n 2 ÿ 2n� n

p
:

For Z > 137, the energies e0 become imaginary, indicating
that theDiracHamiltonian for a point-like charge, Eqn (A.1),
is no longer a self-adjoint operator and is therefore physically
unacceptable; the reason for this is the `falling onto the center'
phenomenon, well known in quantum physics [6, 36±38],
which arises in the Coulomb problem for the Dirac equation
with Z > 137. As shown by Pomeranchuk and Smorodinskii
[73, 74], including the finite size of the nucleus remedies this
difficulty.

The term `critical nuclear charge Zcr' is used in QED to
refer [45±50, 75±78] to the value of Z at which a discrete level

21 As z! 1, the function e0�z� has a singularity and the curve undergoes a

discontinuity before reaching the lower continuum boundary. Similar

singularities arise for all excited states.
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of the atomic spectrum drops to the lower continuum (`Dirac
sea') boundary

e0�Zcr� � ÿmec
2 : �A:4�

The factors that determine the value of Zcr are the nuclear
radius rN, the level quantum numbers �njl �, the way the
electrical charge is distributed over the volume of the nucleus,
and the degree of ionization of the atom's outer electron shells
(see Refs [48, 50, 77, 78]).

Simple asymptotic estimates for Zcr obviate the need for
tedious numerical work. If the nuclear radius is taken to be
rN > 0, the square root singularity in Eqn (A.3) disappears,
giving [48, 79]

e0�z� � me

�������������
1ÿ z 2

q
coth

�
L

�������������
1ÿ z 2

q �
; �A:5�

where L � ln �1=merN�4 1. Unlike Eqn (A.3), Eqn (A.5) can
be analytically continued to the region z > 1,

e0�z� � meg cot �Lg� ; g �
�������������
z 2 ÿ 1

q
; z > 1 ; �A:6�

such that, for example, for Z � 137 we have e0�z � 1� �
me=L > 0.

From Eqn (A.6), the lower level e0�z� is in the middle
between the upper and lower continuum boundaries for
Lg0 � p=2, or

z � z0 �
�����������������
1� p2

4L2

s
� 1� p2

8L2
� . . . ; L4 1 ; �A:7�

[for rN ! 0, this gives z0 � 1 in accordance with Eqn (A.3)].
Noting that function (A.6) has a pole at g � g1 � p=L, we
obtain the estimate 22

zcr � Zcra �
��������������
1� g 2

1

q
� 1� p2

2L2
� . . . : �A:8�

This formula can be improved in accuracy by calculating
the next �/ Lÿ3� term in the asymptotic expansion of zcr
in powers of 1=L. This is achieved by substituting
Eqn (A.6) in boundary condition (A.4), with the result
tan �Lg�=Lg � ÿ1=L, whence g � p=�L� 1� �O�Lÿ3�,

zcr�1s1=2� � 1� p2

2L�L� 2� �O�Lÿ4� ; n � 1 ; �A:9�

and for the excited ns levels [79]

zcr�ns1=2� � 1� n 2p2

2L�L� 2n� � . . . : �A:10�

Similarly, for the 2p1=2 level,

e2p � me

���������������������������
1�

�������������
1ÿ z 2

p
2

s
!
�z>1�

me���
2
p
�
1� 1

2
g cot �Lg� � . . .

�
;

�A:11�

whence g cot �Lg� � ÿ2�1� ���
2
p �, or

zcr�2p1=2� � 1� p2

2L�L� ���
2
p ÿ 1� �O�Lÿ4� : �A:12�

Here, it is assumed that L4 n, and therefore the asymptotic
expressions apply only to the lower levels; we note that these
expressions are reasonably accurate (Table 8), even though
the expansion parameter 1=L � 0:25 is not very small.
Subsequent terms in these expansions depend not only on
the radius rN but also on the specific way the Coulomb
potential is cut off inside the nucleus.

We note that the values of Zcr depend weakly on the cut-
off details. For example, if all the shells of superheavy atoms
(except for 1s1=2) are filled, then the Thomas±Fermi screening
calculation gives the value Zcr � 171:5 [80], instead of
Zcr � 170 (see also Ref. [77]).

From Eqn (A.2), for the excited state with j � nÿ 1=2
(the maximum possible value of j for a given n), we have

en; nÿ1=2 � me

��������������
1ÿ z 2

n 2

s
; 0 < z < n : �A:13�

With the Coulomb potential cut off for r < rN, the level
energies smoothly continue to the region e < 0, reaching the
lower continuum boundary at z � zcr�njl �, and the (finite)
slope of entering the lower continuum is

de0
dz
� mezcr

�
1

g
cot �Lg� ÿ L

sin2 �Lg�

�
� ÿme

p2
L�L� 1��L� 2�

�A:14�

[here, g �
��������������
z 2cr ÿ 1

q
� p=

�������������������
L�L� 2�p

5 1; see Eqns (A.6) and
(A.9)].

A similar problem of the critical distance Rcr between
colliding nuclei with Z1 � Z2 > Zcr � 170 was considered in
Refs [81±87]. We refer the reader to these references for the
details and present a few characteristic results here.23 For two
uranium nuclei, Rcr � 35 Fm, we have Rcr � 43 Fm for the
system �Cm�U�, Rcr � 51 Fm for �Cm�Cm�, and
Rcr � 70 Fm for �Fm�Fm�. The values of Rcr exceed the
sum of the two nuclear radii, which, in principle, offers the
hope of performing experiments on spontaneous positron
creation in slow (adiabatic) collisions of heavy nuclei [48, 50,

22 While correctly describing the qualitative dependence of Zcr on the

Coulomb cutoff radius, this formula is not accurate. For example, for

rN � 10 Fm �L � 3:653�, Eqn (A.8) gives Zcr � 190, whereas the im-

proved-accuracy asymptotic formula (A.9) gives zcr � 1:24 andZcr � 170,

which is already close to the exact numerical values (for the ground level).

Table 8. Critical charge of a superheavy nucleus for lower levels.

Level rN, Fm L Z
�0�
cr Zcr Z

�as�
cr zcr=� j� 1=2�

1s1=2

2p1=2

2s1=2

3p1=2

9.14

9.38

10.1

10.5

3.743

3.717

3.643

3.604

168.8

181.3

232

254

172

184

239

263

169

181

234

ì

1.23

1.32

1.69

1.85

Note. Nuclear radius rN � 1:2A1=3 Fm, A � 2:6Z, L � ln �1=merN�,
1=me � 386 Fm; Z

�0�
cr is the critical charge of a bare nucleus; Zcr is the

same including the screening of the Coulomb potential by the outer

electron shells; Z
�as�
cr is obtained from asymptotic formulas (A.8) and

(A.11). The values Z
�0�
cr and Zcr are taken from numerical computations

[46, 75, 80].

23 Because Z1; 2 < 137, the `falling onto the center' phenomenon does not

occur in the Coulomb field of either of the two nuclei, allowing them to be

considered point-like (relativistic two-center problem); to correct for the

finite nuclear size, perturbation theory is used.
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77]. We also note the availability [81] of an approximate
analytic formula forRcr�Z�, which was obtained by matching
the asymptotic behaviors of the wave function c�r� at small
and large distances from the nuclei andwhich shows sufficient
accuracy for Z1; 2 < 100. For example, for Z1 � Z2 � 92, it
gives R cs

cr � 35:5Fm, whereas exact numerical calculations
with the Dirac equation [83, 86] yield Rcr � 34:3 Fm
(correspondingly, R cs

cr � 42:8 and 42.6 Fm for Z1 �
Z2 � 94, and we also have close values for the U� Cf
system, Z1 � Z2 � 188).

A detailed discussion of the problem of the critical
nuclear charge and of other problems that arise in strong-
field QED is given in [48±50, 75±77]. A physically
transparent description of supercharged electrons in the
lower continuum �Z > Zcr, e < ÿm� is given in Refs [48,
50, 77, 87]. The value Zm

cr� 2300 for a muon ion [88] should
be mentioned here.

We note that for Z > Zcr, spontaneous creation of
positrons is only possible when the level with the energy
E0 < ÿmec

2 that has descended to the lower continuum is not
filled with electrons. This level can, in theory, be ionized via
the collision of two heavy ions with the total charge
Z1 � Z2 > Zcr � 170 because their collision velocity is finite
(a well-known process in atomic physics). In the field of a
`bare' 24 nucleus with Z > Zcr�1s1=2� � 170, the spontaneous
creation of e�eÿ pairs from the vacuum is possible, after
which the electrons go to and fill the vacant 1s1=2 level
�sz � �1=2�, whereas the two positrons penetrate through
the Coulomb barrier and escape to infinity, where they can be
detected. The charge of the nucleus decreases in this process
by two, Z! Zÿ 2 (for an outer observer). As Z increases,
new positrons appear only for Z > Zcr�njl �, when the next
level �njl � of the discrete spectrum goes down to the lower
continuum (see Table 8).

The effect of an ultrastrong magnetic field on the critical
nuclear charge Zcr�B� is considered in [34, 44, 78, 89]. It is
found that with increasing the magnetic field, the value of
Zcr�B� decreases: Zcr � 92 (uranium) for B � 5:5� 1015 G
[89], Zcr � 80 for B � 1016 G [78], Zcr � 41 for B � 1018 G
[34, 35], etc. The basis for this conclusion was the following
property of the energy spectrum of a Dirac particle in a
uniform magnetic field. As noted in Section 8, in the case of
the Dirac equation, the lower boundary of the upper
continuum remains equal to mec

2 (as is the case for a free
particle), because for a `Dirac' electron (and hence for a
positron), the zero-point energy of oscillations in the �x; y�
plane is compensated by the spin magnetic energy.

In Refs [78, 89], this effect was considered without
including the Coulomb potential screening due to vacuum
polarization. But this screening has the consequence that an
energy level is `frozen' and thus becomes unable to reach the
lower continuum boundary as long as the limit energy is
EZ
1�B!1� > ÿme; this condition is satisfied [35] for

Z < 52. For such nuclei, the ground level remains subcritical
in an arbitrarily strong magnetic field, and the spontaneous
creation of positrons in the field of a chargeZ is impossible. If
Z > 52, the `critical' state of an electron at the edge of the
lower continuum can be achieved with increasing B, but this
requires stronger magnetic fields than when screening is
neglected.

B. Extreme magnetic field
In this appendix, we briefly discuss the maximal magnetic
fields that can be achieved in the laboratory or encountered in
space.

(1) The atomic unit of the magnetic field, Ba, is defined
from the condition mBBa � mee

4=2�h 2 � 1Ry, whence Ba �
m 2

e ce
3=�h 3 � 2:349� 109 G25. A permanent magnetic field

does not lead to the creation of e�eÿ pairs from the vacuum
[29]; therefore (unlike with the electric field), the production
of arbitrarily strong magnetic fields B0Bcr is not incon-
sistent with QED and is possible in principle.

(2) Permanent magnetic fields produced in the laboratory
do not exceed a few kilogauss.

In 1951, Sakharov proposed [90±92] the method of
magnetic cumulation, in which the magnetic field enclosed
in a well-conducting capsule (a cylindrical tube of a high-
conductivity metal like copper) is compressed by a shock
wave due to the explosion of an explosive surrounding the
capsule. The magnetic flux conservation conditionF � pR2B
implies that B=B0 � �R0=R�2 4 1, where R�t� is the capsule
radius and B0 is the initial magnetic field (which is created by
conventional means). Experimentally, the magnetic field
strength B � 25 MG �H � B=Ba � 0:01� was reached [90],
which is a record high value in terrestrial conditions, and
further progress is possible [93].

Equations that describe the dynamics of magnetic
cumulation are considered in Ref. [94]. Using energy con-
servation andMaxwell's equations for a quasistationary field
in a well-conducting medium, we arrive at the equation

�x � 1

Kx 3

�
1� m���������

ÿx _x
p �2

; 0 < t < tm ; �B:1�

with the boundary conditions

x�0� � ÿ _x�0� � 1 ; �B:2�

x�t� � 1ÿ t� �1� m�2
2K

t 2 � . . . ; t! 0 ;

where x � R=R0, R0 � R�t � 0�, _x � dx=dt; K is the ratio of
the capsule kinetic energy to the magnetic energy contained
in the capsule at the start of the explosion t � 0;
m � c=

������������������
2psR0v0
p

is the (dimensionless) coefficient of the
capsule Ohmic loss; s is the capsule conductivity, with the
dot denoting the derivative with respect to the dimensionless
time t � v0t=R0; and the values xm and tm refer to themoment
of maximum compression.26 In the ideal case, i.e., in the
absence of Ohmic loss, for s � 1 (superconductor) and
m � 0, Eqn (B.1) has the energy integral

_x 2 � 1� Kÿ1
�
1ÿ 1

x 2

�
�B:3�

25 For comparison, for the electric field Ea � m 2
e e

5=�h 4 �
5:142� 109 V cmÿ1, which is equal to the electric field strength on the

K orbit (1s) of the hydrogen atom, Ea � e=a 2
B � aBa.

26 Equation (B.1) refers to cylindrical geometry and applies only at the

compression stage, when _x < 0. For t > tm, the capsule flies to pieces due

to the magnetic field pressure, _x > 0, and this equation no longer holds. In

this case, calculating the magnetic field requires solving the equation of

thermal conductivity (or the equation of magnetic field diffusion), which

does not reduce to a simple form like Eqn (B.1). This, however, is not

necessary if we are interested in the maximum achievable magnetic field

Bm rather than (expressly) the motion of the capsule at the fly-away stage.24 That is, nuclei with a stripped (fully ionized) K shell.
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and is solved analytically to give

x �0��t� �
���������������������������������������������������
x 2
m � �1� Kÿ1��tÿ tm�2

q
:

In this approximation, at the moment when the capsule is
compressedmost strongly andwhen themagnetic field is at its
maximum, t � t �0�m ,

x �0�m � �K� 1�ÿ1=2 � Kÿ1=2 ;

t �0�m � K

K� 1
� 1ÿ 1

K
; �B:4�

B �0�m � �K� 1�B0 ;

where B
�0�
m is the maximum field (in an actual experiment,

K4 1). With the Ohmic losses included, the last of these
equations becomes

Bm

B0
� �K� 1�

"
1� 2m

�tm
0

�
1� 2

Kx 2

� ����������
ÿ

_x

x 3

s
dt

#ÿ1
: �B:5�

Numerical calculations using these equations were performed
in Ref. [95]. We refer the reader to that paper for the details
and only present some estimates here. For the initial capsule
radiusR0 � 3 cm, the initial compression rate v0 � 10 km sÿ1,
and K � 1000, we respectively have m � 0:01 and m � 0:037
for s � 6�105 Oÿ1 cmÿ1 (room temperature conductivity of
copper) and s � 4� 104 Oÿ1 cmÿ1 at T � 1500 �C (the metal
is already in a liquid state). Taking the initial field to be
B0 � 105 G (which is achievable by conventional means) for
K � 100, 104, 108, we respectively find

Bmax � 107 G ; 109 G � Ba; 1013 G � Bcr : �B:6�

The last value of K corresponds to the magnetic field being
compressed by a relatively low-power underground nuclear
explosion (see the note on p. 85 in Ref. [92]) rather than by a
conventional explosion.

Equation (B.5) includes Ohmic losses (due to Foucault
currents) that arise as the capsule is being compressed; as a
result, for example, for K � 1000 and m � 0:05, the magnetic
flux f decreases in the course of compression by a factor of
1.5±2.0 and themaximum achievable fieldBmax, by a factor of
2±3 compared to the ideal case where F�t� � const, m � 0;
these estimates are consistent with the brief remarks made in
Refs [90, 91].

Hence, the magnetic cumulation method, while in theory
suitable for generating fields B > Ba, requires an extremely
high initial energy for the compressing shock wave; another
experimental difficulty is that this method is pulsed in nature:
it takes a short time ta � aB=va � �h 3=mee

4 � 2� 10ÿ17 s to
create a field of the order ofBmax. However, themagnetic field
lifetime in this experiment is orders of magnitude larger than
the characteristic atomic time ta � aB=va � �h 3=mee

4 �
2� 10ÿ17 s. Therefore, from an atomic physics perspective
(in particular, for the Lorentz ionization of atoms and ions
[95]), this field can be regarded as permanent (in the adiabatic
approximation).

(3) The maximum magnetic fields currently achievable
in the laboratory are apparently those resulting from
collisions of heavy relativistic particles using the RHIC
and LHC [96]: Bst � m 2

p c
3=e�h � 1018 G. It goes without

saying that the lifetime of such fields is extremely short,
t9 �h=mec

2 � 10ÿ21 s.

High-power lasers are another possible source of strong
magnetic fields, and there is considerable recent research on
this topic. Values B � 50 MG achieved on the surface of
plasma blobs in the vacuum are reported in [97] (the field
lifetime being t � 10ÿ10 s), and according to Ref. [98],
quasistatic fields B9 700 MG with the lifetime t � 10ÿ10 ±
10ÿ9 s (which is comparable to the laser pulse duration) can be
produced in a laser plasma. The authors thank S V Popru-
zhenko for drawing their attention to [97, 98].

(4) Superstrong magnetic fields are encountered in astro-
physics. For illustration, the surface magnetic field of a
magnetic white dwarf can be as high as � 1000 MG �H � 1�.

Neutron stars observed as pulsars have much higher
magnetic fields B � 1012ÿ1013 G [2, 3] and more, and surface
fields in so-called magnetars 27 seem to be even higher, up to
1014ÿ1015 G. Such fields cannot be achieved in terrestrial
experiments, which makes the neutron star a unique natural
laboratory for testing theoretical ideas about the properties of
matter under extreme conditions.

Some cosmological modelsÐe.g., those of gamma-ray
burstsÐpredict the existence of fields B � 1016ÿ1017 G. For
these values ofB, our asymptotic formulas for the spectrum of
hydrogen atoms are highly accurate.

Solid state physicsÐ in particular, the theory of excitons
and shallow levels in semiconductors (see, e.g., Refs [19,
20])Ð is yet another application area for the formulas
presented here. Here, the effective mass of an electron in a
lattice is meff 5me, and the dielectric constant e4 1, and
hence the characteristic magnetic fields are much lower than
Ba and are quite feasible experimentally. It is for such systems
that the Zeldovich effect was predicted [53].

(5) The critical (or characteristic) field in QED is [27±29]

Fcr � m 2
e c

3

e�h
� 1:32� 1016 V cmÿ1 � Ecr ;

4:41� 1013 G � Bcr

�
for the electric and the magnetic field. We note that
eFcrlC � mec

2 and Ea � aBa. It is useful to remember that
E [V cmÿ1] � 300B [G].

The QED characteristic field Ecr seems to have been
introduced by Sauter [27], who, in connection with the
`Klein paradox' [30], found a solution of the Dirac equation
in the presence of a constant and uniform electric field and
showed28 that the probability of the production of e�eÿ pairs
per unit volume per unit time is w / exp �ÿpEcr=E�.

(6) Finally, we estimate how much energyW is contained
in amagnetic field. Noting thatB 2

a a
3
B � mec

2 and changing to
the dimensionless variablesH � B=Ba and l � L=aB (L3 is the
volume occupied by the magnetic field), we find

W � B 2L3 � H 2l 3mec
2 ; H4 1 ; �B:7�

where mec
2 � 511 keV � 9:11� 10ÿ28 g. Hence, for B � Ba

and L � aB, we have W � mec
2 � 104 Ry (we recall that the

characteristic atomic level energies are less than 1Ry), and for
B � Bcr � aÿ2Ba, the magnetic energy is W � 137mec

2 for
L � 1=me � aaB and W � 3� 108 mec

2 for L � aB. Finally,
for a magnetized neutron star with B � Bcr, L � 10 km
�l � 1014�, we obtain the estimate W � 1050 mec

2 (which

27 A special class of neutron stars. Among the astrophysical objects

currently known, the magnetar SGR (Soft Gamma Repeater) 1806-20

seems to have the strongest magnetic field (2� 1015 G on the surface).
28 To exponential accuracy, in the semiclassical approximation.
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corresponds to a meteorite with a mass M � 1023 g; for
comparison, the mass of Earth is M � 6� 1027 g), and even
for a more moderate B � Ba but a radius of the same order
(10 km), we haveW � 1042 mec

2 � 1015 g.
(7) In conclusion, we note that in Ref. [99], the problem of

two interacting relativistic particles �q�q� in ultrastrong
magnetic fields was solved.

C. Coulomb corrections to the scattering length
The Coulomb interaction UC�r� � ÿze 2=r renormalizes the
parameters al and rl of low-energy scattering on the `strong'
(short-range) potential

Vsh�r� � ÿ g

2r 20
v

�
r

r0

�
; �h � m � 1 ; �C:1�

in the range r0 5 aB � �h 2=me 2. The Coulomb renormaliza-
tion problem, a

�l�
s ! a

�l�
cs , requires the (necessarily numerical)

solution of the SchroÈ dinger equation with the potential
U�r�� Vsh�r��UC and orbital momentum l. However, in
our particular case, the potential Vsh�r� produces a shallow
level (which can be real, virtual, or quasistationary with l5 1
and which perturbs the Coulomb spectrum)29 and the low-
energy scattering has a resonant nature [6], and therefore the
general renormalization formulas [29, 100, 101] considerably
simplify. For the s states, we have [102]

1

acs
ÿ 1

as
� ÿ 2z

aB

�
ln

rs
aB
� c0 �O

�
rs
aB

;
rs
as

��
;

�C:2�
c0 � 2g� ln

2rC
rs

; g � 0:5772 . . . :

(it is assumed that the effective radius rs 5 aB, rs 5 as).
Corrections to Eqn (C.2) that are linear in rs can be found in
Ref. [103]. In [102], Eqn (C.2) is extended to angularmomenta
l 6� 0:

1

a
�l�
cs

ÿ 1

a
�l�
s

� ÿ 2z
aB

� �2l�!
2ll !

�2 �1
0

w2l �r�
dr

r
� . . . : �C:3�

In the above formulas,30 z � ÿsgn �Z1Z2�, and rs and rC are
respectively the effective [6] andCoulomb [40, 103] radii of the
system at the moment a bound s state �l � 0, g � g0� is
created:

r0 � 2

�1
0

�
1ÿ w 2

0 �r�
�
dr ; w0�0� � 0 ; w0�1� � 1 ;

rC � exp

�
lnR�

�1
0

�
Y�rÿ R� ÿ w 2

0 �r�
� dr

r

� �C:4�

(it is readily seen that rC is independent of the choice of
R > 0). A point to note in connection with Eqns (C.3) and
(C.4) is that the scattering length has the dimension of length
�L� only in the case of an s wave and that in general the
parameters involved have the following dimensions:

�al� � L2l�1 ; �rl� � L1ÿ2l ; �wl� � Lÿl : �C:5�

At the moment when a bound l level �El � 0, g � gl�
arises, the functions wl�r�, l � 0; 1; 2; . . . ; in Eqns (C.3) and
(C.4) satisfy the SchroÈ dinger equation

d2wl
dx 2
�
�
glv�x� ÿ l�l� 1�

x 2

�
wl � 0 ; x � r

r0
; �C:6�

with the boundary conditions

wl�r� / r l�1 as r! 0 ; �C:7�
lim
ÿ
r lwl�r�

� � 1 as r!1 :

For the coupling constant g significantly different from gl,
renormalization has a more complicated form.

In the case of s states, according to Eqn (C.2), the main
parameters to determine the renormalization of as are rC and
rs and their ratio r � rC=rs in the formula for c0. Below are the
numerical values of these parameters for a number of widely
used model potentials.

For the Yukawa potential,

v�x� � exp �ÿx�
x

; g0 � 1:680 ; rs � 2:12 r0 ;

r � 0:364 ; c0 � 0:837 :

For the Hulthen potential,

v�x� � �exp xÿ 1�ÿ1 ; g0 � 1 ; rs � 3r0 ;

r � 0:374 ; c0 � 0:865 :

For the Gauss potential,

v�x� � exp �ÿx 2� ; g0 � 2:684 ;

rs � 1:44r0 ; r � 0:418 ; c0 � 0:976 :

Further examples can be found in Refs [103, 104].
For l � 0, the Coulomb renormalization of the scattering

length contains a `large' logarithm ln �rs=aB�, which is absent
for l 6� 0, and hence this renormalization is especially large for
the s states. One example is the nucleon±nucleon pn and
pp scattering in the singlet 1S0 state, where [105]

as�pn� � ÿ23:75 ; acs � ÿ7:84 ; �C:8�
rs � 2:75 ; rcs � 2:77 ; aB � 57:8 ;

with all values given in Fm units. The large difference in the
scattering length between pn and pp scattering does not imply
a strong violation of the isotopic invariance of the nuclear
interaction of nucleons and is naturally accounted for by
including the Coulomb interaction in the pp system. The
percent difference between the effective interaction radii of
the systems under consideration is due to the small violation
of the isotopic invariance by the Coulomb interaction of the
protons.

In conclusion, we note that for l 6� 0, a term singular as
r! 0 and proportional to ln �r0=aB� enters higher-order
terms in the expansion of the difference 1=a

�l�
cs ÿ 1=a

�l�
s . For

example, in the right-hand side of Eqn (C.3), the singular term
has the form [106]

1

�l !�2 z 2l�1 ln �zr0� � 1

�l !�2
�
r0
aB

�2l�1
ln

r0
rB
: �C:9�

29 Meaning that the Zeldovich effect arises.
30 For a hadron p�p atom, z � 1, for a pp system, z � ÿ1. For s states, the
index l � 0 on the scattering length is dropped throughout.

March 2014 Hydrogen atom in a strong magnetic éeld 277



The renormalization of the effective radius rs ! rcs, even in
the case of an s wave, contains the logarithm ln �r0=aB� only in
the correction term [see Eqn (C.8)].
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