
Abstract. The phenomenon of a critical charge in a superstrong
magnetic field is discussed taking into account the screening of
the Coulomb potential and the finite size of the nucleus.

1. Introduction

The problem of a critical nuclear charge was considered for
the first time by I Ya Pomeranchuk and Ya A Smorodinsky
[1]. They discovered that it is possible to remove the
singularity of the solution to the Dirac equation for an
electron moving in a Coulomb field. This singularity emerges
at the nucleus charge Z � 137, when the ground state energy
reaches e0 � 0. If the finite size of the nucleus is taken into
account, the solution of the Dirac equation also exists at
larger Z, and the ground energy level drops until it reaches a
negative lower continuum, e0 � ÿme, whereme is the electron
mass. In Ref. [1], the value of the nucleus charge at which this

happens was called critical. According to this paper,
Zcr � 175ÿ200, depending on the nucleus radius.

A physical picture of the phenomenon which takes place
at Z � Zcr � 172 was established about 20 years later in
Refs [2±7]. When the charge of a hydrogenlike ion reaches
the critical value, two e�eÿ pairs are produced from a
vacuum. The electrons occupy the ground atomic state,
while the positrons are emitted to infinity.

When the results reported in Ref. [1] were obtained,
Pomeranchuk exclaimed in delight: ``It would be great to
collide two uranium nuclei'' (see memoirs by Ya A Smoro-
dinsky [8]).

A natural question arises as to whether is it possible to
achieve criticality at smaller Z, which correspond to nuclei
existing in nature. The answer turned out yes: in external
magnetic fields 1 B > B0 � m 2

e =e, even ions with moderate Z
are critical [9].

When B grows further, the Coulomb potential of the
nucleus becomes screened [10, 11] due to the radiative
corrections. And we are going to study how this screening
modifies the dependence ofZcr on themagnetic field strength.

2. Screening of the Coulomb potential
in d � 1 and d � 3

There is a similarity between the radiative corrections to the
Coulomb potential in three space dimensions �d � 3� in a
strong external magnetic field, and in one space dimension
�d � 1�. That is why we are starting from a simpler problem:
the Coulomb potential in d � 1 [12].

Let us consider 1� 1 dimensional QED with massive
charged fermions. The electrical potential of the pointlike
charge with the account of polarization effects (Fig. 1) takes
the form

F�k� � ÿ 4pg
k 2 �P�k 2� ; �1�
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1 We use the Gaussian units: e 2 � a � 1=137:0359... .



where P�k 2� is the one-loop expression for the photon
polarization operator:

P�k 2� � 4g 2

�
1����������������

t�1� t�p ln
ÿ ����������

1� t
p � ��

t
p �ÿ 1

�
� ÿ4g 2P�t� ;

�2�
and t � ÿk 2=4m 2, with g having the dimension of mass.

In the coordinate representation for k � �0; kk�, we obtain

F�z� � 4pg
�1
ÿ1

exp �ikkz� dkk=�2p�
k 2
k � 4g 2P

�
k 2
k =�4m 2�� : �3�

With the help of the interpolation formula

P�t� � 2t

3� 2t
; �4�

the accuracy of which is better than 10% for 0 < t <1, one
obtains
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k 2
k � 4g 2

�
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In the case of heavy fermions �m4 g�, the potential is
given by the tree-level expression; the corrections are
suppressed as g 2=m 2.

In the case of light fermions �m5 g�, one finds

F�z���
m5 g
�

p exp
ÿÿ2gjzj� ; z5

1

g
ln

g

m
;

ÿ2pg 3m 2

2g 2
jzj ; z4

1

g
ln

g

m
:

8>>><>>>: �6�

The massless case �m � 0� corresponds to the Schwinger
model: a photon acquires a mass due to the photon
polarization operator with massless fermions. Light fer-
mions provide the continuous transition from m > g to
m � 0.

To get an expression for the Coulomb potential when
d � 3 in a strong external magnetic field, we need an
expression for the polarization operator. It is greatly
simplified for B4B0 � m 2

e =e. The following result was
obtained in Refs [10, 11]:

F�k� � 4pe
k 2
k � k 2

? � �2e 3B=p� exp
�ÿk 2

?=�2eB�
�
P
ÿ
k 2
k =�4m 2

e �
� ;
�7�

where P is the same as in d � 1. A natural question now arises
of whether are the two-loop terms enhanced as �e 3B�2.
According to Ref. [14], the two-loop corrections are very
small, and the physical reason for their smallness is the

nullification of the higher loops in d � 1 QED with massless
fermions (see, e.g., Ref. [15]).

In the coordinate representation when r � 0 (where r is
the coordinate in the direction transverse to a magnetic field),
we obtain

F�z� � 4pe
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For B5 3pm 2

e =e
3, the potential is of a Coulomb type up

to the small power suppressed terms:
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e
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in full accordance with the d � 1 case, where g 2 plays the role
of e 3B.

In the opposite case of superstrong magnetic fields
B4 3pm 2

e =e
3, we arrive at
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The potential energy of the electron in the modified potential
V�z� � ÿeF�z� is shown in Fig. 2.

3. Energy levels of the electron
in the modified potential

3.1 Nonrelativistic approach
The following equation governs the energies of the even states
of the hydrogen atom in a strong magnetic field, when taking

ÿ1

V
=�
m

e
e
2
�

ÿ2

ÿ3

ÿ4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
zme

Figure 2. Screened Coulomb potential along the magnetic field �r � 0� at
B � 5� 104B0. The dashed (green) line corresponds to the Coulomb

potential; solid (blue) line represents the screened potential, and dotted

(red) line illustrates the asymptotic behavior of the modified potential at

small distances.

� � . . .

Figure 1. Modification of the Coulomb potential due to `dressing' of the

photon propagator.
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into account the screening of the Coulomb potential [13]:

ln
B

m 2
e e

3 � e 6B=�3p� � l� 2 ln l� 2c
�
1ÿ 1

l

�
� ln 2� 4g� c

ÿ
1� jmj� ; �11�

where g is the Euler constant, c�x� is the logarithmic
derivative of the gamma-function, m � 0;ÿ1;ÿ2; . . . is the
projection of the electron angular momentum onto the
direction of the magnetic field, and the binding energy is
defined by l:

E � ÿmee
4

2
l2 : �12�

The analogous equation without screening was derived in
Refs [16, 17] (see also review [18]).

In the limit B4 3pm 2
e =e

3, for the ground state energy we
get

lgr ! 11:2 ; Egr ! ÿ1:7 keV : �13�
Freezing of the ground state in the limit B!1 was
discovered by Shabad and Usov [10, 11].

3.2 Relativistic approach
Without taking screening of the Coulomb potential into
account, the problem was solved in the framework of the
Dirac equation in Ref. [9]. Let us follow this paper.

The bispinor of the electron on the lowest Landau level
looks like the following:

ce �
je

we

� �
; je �

0

g�z� exp
�
ÿ r2

4a 2
H

�0B@
1CA ;

�14�

we �
0

i f �z� exp
�
ÿ r2

4a2H

�0B@
1CA ;

and the Dirac equation�
a�pÿ eA� � V� bme

�
ce � ece �15�

takes the following form:

gz ÿ �e�me ÿ �V � f � 0 ;

fz � �eÿme ÿ �V � g � 0 ;

�
�16�

where gz � dg=dz, and fz � df=dz. System of equations (16)
describes electron motion in the effective potential �V�z�
(averaged over fast transverse motion):

�V�z� � ÿZe 2

a 2
H

�1
0

exp
�ÿr2=�2a 2

H�
�����������������

r2 � z 2
p r dr : �17�

At the distances z4 aH, Eqn (17) is essentially simplified, so
that �V � ÿZe 2=jzj. The solution to system (16) for
�V � ÿZe 2=jzj is well known and it is the linear combination
of Whittaker functions (see Ref. [9] for details).

The solution at small distances was found in Ref. [9] in
the limit of �V�z�4 2me, i.e., for jzj5Ze 2=�2me�. Therefore,
there is a matching region in the nonscreened case:
aH5jzj5Ze 2=2me, as soon as the condition B4B0=�Ze 2�2
is satisfied.

Matching the long-distance and short-distance solutions
yields the equation for the energy levels of the electron in the
Coulomb field of the nucleus with the charge Z and in the
external magnetic field B, which was given in Ref. [9]. This
equation allows us to find the magnetic field Bcr at which the
ions with the charge Z become critical, i.e., the ground state
energy reaches a lower continuum, e0 � ÿme:

Bcr

B0
� 2�Ze 2�2 exp

�
ÿg� pÿ 2 argG�1� 2iZe 2�

Ze 2

�
; �18�

where G�. . .� is the gamma-function. According to the last
formula, uranium becomes critical at B � 102B0, and in
stronger magnetic fields even ions with smaller Z are critical.

To take screening into account, instead of expression (17)
one should use the following formula for �V:

�V�z� � ÿZe 2
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H
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e
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0
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r2 � z 2

p r dr:

�19�

We see that the screened Coulomb potential follows its
asymptotic behavior, �V � ÿZe 2=jzj, only at large distances,
jzj4 1=me. Thus, it is impossible to match two solutions, as
was done in Ref. [9], since the solution at small distances is
valid only for jzj < Ze 2=me. That is why the analytical
equation for the ground energy level in the screened potential
has not been derived yet.

For this reason, we have solved the problem numerically.
Following Popov [6], we reduced the Dirac equation to the
effective SchroÈ dinger equation

d2w
dz 2
� 2me�EÿU�w � 0 ; �20�

E � e 2 ÿm 2
e

2me
;

U � e
me

�Vÿ 1

2me

�V 2 �
�V 00

4me�e�meÿ �V � �
3=8� �V 0�2

me�e�meÿ �V �2 :

For B5B0, relativistic corrections are small, and the binding
energy E � eÿme is defined by the nonrelativistic equation.
However, for B4B0 relativistic corrections grow as powers
of B=B0 and correction terms have different signs, consider-
ably complicating the numerical calculations.

We have found that the relativistic corrections for a
hydrogen atom are small even in very strong magnetic fields,
and the value of the freezing energy barely changes. We have
also considered ions with larger Z and revealed the freezing
effect in the relativistic domain. For example, the ground
energy level for ions with Z � 40 freezes at e0 � ÿme=2.

The freezing of the ground energy level is crucial for the
phenomenon of the critical nucleus charge. We have found
that the ions withZ < 50 never become critical and calculated
the values of the critical magnetic field Bcr for the ions with
larger Z. These results are given in Fig. 3. The ions with
Z9 55 achieve criticality in such a strong magnetic field that
aH becomes smaller than the size of the nucleus. Thus, the
finiteness of the nucleus radius should be taken into
consideration.

Without screening of the Coulomb potential, the mag-
netic field B appears in formula (17) only through Landau
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radius aH � 1=
������
eB
p

. When aH becomes smaller than the
nucleus size R, one should substitute R for aH. This means
that the spectrum we are looking for coincides with the one in
the magnetic field B � 1=�eR 2�, which corresponds to
aH � R.

However, the magnetic field B appears directly in the
expression for the screened potential (19). As a result, special
consideration is needed in the case of screening.

4. Finite nucleus size and the ground energy level

The three-dimensional formula for the screened potential has
not been derived yet, and the distribution of the electric
charge inside a nucleus in such a strong magnetic fields is
not known. Thus, one cannot find the analytical formula for
the electrical potential of a nucleus having a finite size.
However, we have found the approximate expression for the
potential along the magnetic field (see Ref. [20] for details). In
the case of protons �Z � 1�, it looks like this:
F�z�

�
e

jzj
h
1ÿ exp

�
ÿjzj

���������
6m 2

e

q �
� h�R� exp ÿÿmjzj�i; jzj5R ;

e

R

h
1ÿ exp

�
ÿR

���������
6m 2

e

q �
� h
ÿjzj� exp �ÿmR�i; jzj<R ;

8>><>>:
�21�

where h�jzj� is determined by the charge distribution inside
the proton, m � ����������������������������������

6m 2
e � �2e 3B=p�

p
, and R � 0:877 fm is the

proton charge radius.
Formula (21) allows us to derive an approximate non-

relativistic formula for the hydrogen energy levels analogous
to Eqn (11):

ln
aB������������������

R 2 � a 2
H

q ÿ E1

� ������������������
R 2 � a 2

H

q ���������
6m 2

e

q �
� h�R�E1

�
m
�����������������
R 2� a 2

H

q �
� l

2
� ln l� c

�
1ÿ 1

l

�
� 2g� ln 2;

�22�

where aB � 1=�mea� is the Bohr radius; l defines the electron
binding energy, E � ÿ�mee

4=2�l2, and

E1�x� �
�1
x

exp �ÿt�
t

dt : �23�

According to formula (22), the value of l in the limit of
B!1 equals 6:9 instead of l � 11:2, which was obtained for
the pointlike proton. The dependence of lgr (corresponding to
the ground energy level) on the magnetic field at h�jzj� � 1 is
shown in Fig. 4.2 It is evident that the ground energy level
goes up (and the binding energy diminishes) until it reaches
the final freezing energy. This effect is even more pronounced
for heavier ions (Fig. 5). Due to the rise in the ground state
energy, the ions with Z � 60ÿ210 stop being critical in a
strong enough magnetic field. Even the ion with Z � 172
becomes noncritical for B=B0 0 2� 106, while it is critical in
the absence of the magnetic field. At Z � 210, the final
freezing energy reaches a lower continuum, and the nuclei
with Z > 210 are critical regardless of the magnetic field
strength. In Fig. 6, the dependence of the critical nucleus
charge on the magnetic field B is given.

108

107

106

105

104

103

102

20 30 40 50 60 70 80 90
Z

B=B0

Figure 3. Critical magnetic field expressed in units of B0. The dashed

(green) line is the fit by formula (18) originally obtained in Ref. [9]; the

solid (blue) line corresponds to numerical results with the account of

screening according toRef. [19]. The dotted (black) line corresponds to the

magnetic field in which Landau radius aH becomes smaller than the size of

the nucleus.
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Analytical (R 6� 0)
Numerical (R 6� 0)

Figure 4.Dependence of lgr on themagnetic field. The dashed-dotted (red)

line corresponds to the pointlike nucleus; the dashed (green) line is the fit

by the analytical formula (22) for h�jzj� � 1; the solid (blue) line

corresponds to the numerical solution at h�jzj� � 1.

2 The function h�jzj� � 1 was chosen for simplicity, and it was verified that

other distributions (like that for the homogeneously charged sphere) lead

to quite close results (see Ref. [20] for details).
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Figure 5.Dependence of the ground state energy on the magnetic field for

Z � 40, 59, 60, 90, 172. The correspondence between chargeZ and the line

style (color) is shown in the legend to the figure.
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5. Conclusion

The influence of the Coulomb potential screening and the
finite nucleus size on the energy levels of hydrogenlike ions
has been studied. Both screening and the finite nucleus size
push the ground energy level up. Screening starts at
B � m 2

e =e
3 � 6� 1015 G and leads to the freezing of the

ground state energy. The finite nucleus radius R comes into
play at B � 1=�eR 2� � 1017ÿ1018 G, and the ground energy
level rises until it reaches the final freezing energy in the
magnetic field of B � 1=�e 3R 2� � 1019ÿ1020 G.

The dependence of the ground state energy on the
magnetic field was calculated analytically using a nonrelati-
vistic approach, and numerically by solving the Dirac
equation. Our main result comprises the calculation of the
critical nucleus charge in themagnetic field, whose outcome is
shown in Fig. 6.

The effects discussed manifest themselves only in super-
strong magnetic fields which have not been found in Nature
yet. However, considering such an asymptotic behavior is in
the spirit of I Ya Pomeranchuk's approach. According to
Ya A Smorodinsky [8], looking for the asymptotic behavior
of different quantities was Pomeranchuk's approach to
various physical problems (extremely low temperatures or
extremely high energies).
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