
Abstract. If torsion exists, it generates gravitational four-fer-
mion interaction (GFFI), essential on the Planck scale. We
analyze the influence of this interaction on the Friedmann±
Lemaitre±Robertson±Walker cosmology. An explicit analytic
solution is derived for the problem where both the energy±
momentum tensor generated by GFFI and the common ultra-
relativistic energy±momentum tensor are included. We demon-
strate that gravitational four-fermion interaction does not
result in a Big Bounce.

1. Introduction

According to the common belief, the present-day expansion
of the Universe is the result of the Big Bang. The idea is
popular that this expansion had been preceded by compres-
sion with a subsequent Big Bounce. We here analyze the
assumption that the Big Bounce is due to the gravitational
four-fermion interaction.

The observation that in the presence of (nonpropagating)
torsion, the interaction of fermions with gravity results in the
four-fermion interaction of axial currents, goes back at least
to [1, 2].

The most general form of the gravitational four-fermion
interaction is as follows:

Sff � 3pGg 2

2�g 2 � 1�
�
d4x

�������ÿgp
ZIJ

��
1ÿ b 2 � 2b

g

�
AIAJ

ÿ 2a
�
bÿ 1

g

�
VIAJ ÿ a 2VIVJ

�
: �1�

Here and below, G is the Newton gravitational constant, g is
the determinant of the metric tensor, AI and VI are the total
axial and vector neutral currents,

AI �
X
a

AI
a �

X
a

�ca g
5 g I ca ;

VI �
X
a

VI
a �

X
a

�ca g
I ca ; �2�

where the sums over a in (2) extend over all species of
elementary fermions with spin 1/2, and a, b, and g are
numerical parameters of the problem. The values of a and b
are unknown. For to the so-called Barbero±Immirzi para-
meter g, we assume the value g � 0:274 [3]. In fact, the exact
numerical values of these parameters are insignificant in our
problem.

The AA contribution to expression (1) corresponds (up to
a factor) to the action derived long ago in [1, 2]. This
contribution was subsequently obtained in the limit b! 0,
g!1 in [4]. The present form of theAA interaction, given in
(1), was derived in [5, 6]. The VV and VA terms in (1) were
respectively derived in [7] and [6, 7].

Simple dimensional arguments demonstrate that interac-
tion (1), being proportional to the Newton constant G and to
the particle number density squared, n 2, could be significant
and comparable to the common interactions only at very high
densities, i.e., on the Planck scale.

A quite extensive list of references of papers where the
gravitational four-fermion interaction is discussed in connec-
tion with cosmology can be found in [6, 8, 9].

2. Energy±momentum tensor

The energy±momentum tensor (EMT) T ff
mn generated by

action (1) is

T ff
mn � ÿ

3p
2

G
g 2

g 2 � 1
gmnZIJ

��
1ÿ b 2 � 2b

g

�
AIAJ

ÿ 2a
�
bÿ 1

g

�
VIAJ ÿ a 2VIVJ

�
: �3�

The nonvanishing components of expression (3), written in a
locally inertial frame, are the energy density T ff

00 � rff and the
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pressure T ff
11 � T ff

22 � T ff
33 � pff (they are marked by ff here

and below to indicate their origin from the four-fermion
interaction; for the correspondence among r, p, and EMT
components, see [10], § 35).

We analyze the expressions for rff and pff in our case of the
interaction of two ultrarelativistic fermions (labeled a and b)
in their locally inertial center-of-mass system. We here follow
the argument in [11]. The axial and vector currents of fermion
a are

AI
a �

1

4E 2
f ya
�
Era�p 0 � p� ; �E 2 ÿ p 0p� ra � p 0�rap�

� p�rap 0� ÿ ip 0 � p
	
fa �

1

4
f ya
�
ra�n 0 � n� ; �1ÿ n 0n�

� ra � n 0�ra n� � n �ran 0� ÿ in 0 � n
	
fa ; �4�

VI
a �

1

4E 2
f ya
�
E 2 � p 0p� ira�p 0 � p� ; E ÿp 0 � pÿ ira

� �p 0 ÿ p��	fa �
1

4
f ya
�
1� n 0n� ira�n 0 � n� ; n 0 � n

ÿ ira � �n 0 ÿ n�	fa ; �5�
where E is the energy of fermion a, fa is a two-component
spinor, and n and n 0 are the unit vectors of its initial and final
momenta p and p 0; under the discussed extreme conditions,
all fermion masses can be neglected. In the center-of-mass
system, the axial and vector currents of fermion b are
obtained from these expressions by changing the signs:
n! ÿn, n 0 ! ÿn 0. Then, after averaging over the direc-
tions of n and n 0, we arrive at the following semiclassical
expressions for the nonvanishing components of the energy±
momentum tensor, i.e., for the energy density rff and
pressure pff:

rff � T00 � ÿ p
48

G
g 2
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nanb

��
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g

�
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ÿ
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48
G
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�
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pff � T11 � T22 � T33 � p
48

G
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�
: �7�

Here and below, na and nb are the number densities of the
corresponding species of fermions and antifermions,
n �Pa na is the total density of fermions and antifermions,
the summation

P
a; b extends over all species of fermions and

antifermions, and z � hrarbi is the average value of the
product of corresponding r matrices, presumably universal
for any a 6� b. Because the number of fermion and anti-
fermion species is large, we can neglect the exchange and
annihilation contributions for numerical reasons, and also

neglect the fact that if ra and rb refer to the same particle, then
hrarbi � 3. It is only natural that after the performed
averaging over all momenta orientations, theP-odd contribu-
tions of VA to rff and pff vanish.

Thus, the equation of state (EOS) becomes

rff � ÿpff � ÿ
p
48

G
g 2

g 2 � 1
n 2

�
��

1ÿ b 2 � 2b
g

�
�3ÿ 11z� ÿ a 2�60ÿ 28z�

�
: �8�

Four-fermion energy density (8) can then be conveniently
rewritten as

rff � eGn 2; e � ÿ p
48

g 2

g 2 � 1

�
��

1ÿ b 2 � 2b
g

�
�3ÿ 11z� ÿ a 2�60ÿ 28z�

�
: �9�

The parameter z � hrarbi for a 6� b, just by its physical
meaning, can in principle range the interval from 0 (which
corresponds to complete thermal incoherence or to antiferro-
magnetic ordering) to 1 (which corresponds to complete
ferromagnetic ordering). Correspondingly, e ranges from

e � ÿ p
16

g 2

g 2 � 1

�
1ÿ b 2 � 2b

g
ÿ 20a 2

�
at z � 0 �10�

to

e � p
6

g 2

g 2 � 1

�
1ÿ b 2 � 2b

g
� 4a 2

�
at z � 1 : �11�

The absolute numerical value of the parameter e is inessential
for the analysis below. Its sign, however, is crucial for the
physical implications, and depends on a, b, and z. As regards
z, at the discussed extreme conditions of high densities and
high temperatures, this correlation function is most probably
negligibly small.

We next discuss the contributions of common matter to
the energy density and pressure. For extreme densities, where
gravitational four-fermion interaction is significant, this
matter is certainly ultrarelativistic, and its contribution to
the energy density can be written, for simple dimensional
reasons, as

r � nn 4=3 ; �12�

where n is a numerical factor. One power of n 1=3 here is an
estimate of the energy per particle. Another factor n in this
expression is the total density of ultrarelativistic particles and
antiparticles, fermions and bosons, contributing to (12).
Because bosons also contribute to the total energy density,
this factor should exceed the fermion density n entering the
above four-fermion expressions. This difference, however, is
absorbed in (12) by the factor n. As was the case with rff, it is
natural to assume that r is also independent of the spin
correlations.

We now consider the energy±momentum tensor of the
common ultrarelativistic matter in our problem. Because the
problem is isotropic, the mixed components of the energy±
momentum tensor must vanish:

T0m � Tm0 � 0 ; m � 1; 2; 3 :

Then the spatial components of the energy±momentum
tensor can be diagonalized, and again due to the isotropy,
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we arrive at

T11 � T22 � T33 :

Finally, the trace of the energy±momentum tensor of this
ultrarelativistic matter should vanish, Tm

m � 0. Hence, the
discussed energy±momentum tensor can be written as

T m
n � rdiag

�
1; ÿ 1

3
;ÿ 1

3
;ÿ 1

3

�
;

or Tmn � r diag
�
1 ;

1

3
;
1

3
;
1

3

�
: �13�

Here and below, r is the energy density of the common
ultrarelativistic matter, and its pressure is p � r=3.

With rff � Gn 2, close to the Planck scale, gravitational
four-fermion interaction is quite comparable to r � n 4=3, and
therefore both contributions should be included on this scale.
Unfortunately, in our previous papers on the subject, the
contribution of the common ultrarelativistic matter was not
taken into account.

3. Friedmann±Lemaitre±Robertson±Walker
equations

We assume that even on a scale close to the Planck one, the
Universe is homogeneous and isotropic, and can therefore be
described by the Friedmann±Lemaitre±Robertson±Walker
(FLRW) metric

ds 2 � dt 2 ÿ a 2�t��dr 2 � f �r� �dy 2 � sin2 y df 2�� ; �14�

where f �r� depends on the topology of the Universe as a
whole:

f �r� � r 2; sin2 r ; sinh2r

respectively for the spatial flat, closed, and open Universe.
Now, the total energy density and total pressure are

rtot � rff � r ; ptot � ÿrff �
1

3
r :

The fact that rff and r enter the expression for the total
pressure with opposite signs can be traced back to the
difference between algebraic structures of the tensors T ff

and T. The first is proportional to dm
n � diag �1; 1; 1; 1� in the

mixed components, and the second is proportional to
diag �1 ;ÿ1=3;ÿ1=3 ;ÿ1=3�.

Thus, the Einstein equations for FLRWmetric (14) are�
_a

a

�2

� k

a 2
� 8pG

3
rtot �

8pG
3
�rff � r� ; �15�

�a

a
� ÿ 4pG

3
�rtot � 3ptot� � 8pG

3
�rff ÿ r� : �16�

The parameter k in Eqn (15) is respectively equal to 0, 1, and
ÿ1 for the spatial flat, closed, and open Universe. These
equations result in the covariant conservation law for the
total energy±momentum tensor:

_rtot � 3
_a

a
�rtot � ptot� � _rff � _r� 4

_a

a
r � 0 : �17�

We note that in the absence of the four-fermion interaction,
i.e., for rff � 0, this equation reduces to the well-known
equation for standard ultrarelativistic matter: _r�
4� _a=a� r � 0.

On the other hand, without standard matter, i.e., for
r � 0, Eqn (17) degenerates into _rff � 0. This is quite
natural, since energy±momentum tensor (3), generated by
the four-fermion interaction, can be conserved by itself only if
rff � const [12].

In fact, observational data strongly favor the idea that our
Universe is spatially flat, i.e., k � 0. Then Eqn (15) is
simplified to�

_a

a

�2

� 8pG
3
�rff � r� : �18�

Obviously, if the gravitational four-fermion interaction
exists, our equations (15)±(18) are as firmly established as the
common FLRW equations in the absence of gravitational
four-fermion interaction.

4. Solutions and conclusions

We now turn to the solution of the FLRW equations. With
the substitution

a�t� � a0 exp f �t� ; �19�

Eqns (16) and (18) become

8pG
3
�rff � r� � _f 2 ; �20�

8pG
3

r � ÿ 1

2
�f : �21�

Differentiating Eqn (20) with respect to t and combining the
result with (21), we arrive at the solution

f � ÿ 3

4n
eGn 2=3 ÿ 1

3
ln n ; �22�

with the numerical factor n introduced in (12). A comment on
the ratio eG=n in this expression is pertinent. It can be easily
demonstrated that in the absence of the four-fermion
interaction, the relation f � ÿ�1=3� ln n implies the law
a�t� � ��

t
p

. Therefore, it is only natural that the relative
weight of the four-fermion interaction enters formula (22)
via the ratio eG=n.

Thus, we obtain

a�t� � a0 exp f �t� � nÿ1=3 exp

�
ÿ 3

4n
eGn 2=3

�
: �23�

We introduce the dimensionless ratio x�t� of the four-
fermion energy density rff and the energy density r of
ultrarelativistic matter:

x�t� � rff
r
� eG

n
n 2=3 : �24�

Then

a�t� � 1��������
x�t�p exp

�
ÿ 3

4
x�t�

�
: �25�

Combining Eqns (20) and (22), we arrive at

_x � � 4

3

���������
8pG
3

r
n 3=2

eG
x 2

�����������
x� 1
p
x� 2=3

; �26�
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which yields relations between x and t:

ln

� ��������
x�t�p

1� ����������������
1� x�t�p �

ÿ 1

2

����������������
1� x�t�p
x�t�

� �
���������
8pG
3

r
n 3=2

eG
t� const for e > 0 ; �27�

ÿ ln

� �����������jx�t�jp
1� �������������������

1ÿ jx�t�jp �
ÿ 1

2

�������������������
1ÿ jx�t�jp
jx�t�j

� �
���������
8pG
3

r
n 3=2

jejG t� const for e < 0 : �28�

The constants in the right-hand sides of (27) and (28) are fixed
by initial conditions. As regards the signs in formulas (26)±
(28), ÿ and � therein respectively refer to expansion and
compression.

The physical implications of formula (23) for positive and
negative values of e are quite different.

For positive e, both factors in (23), nÿ1=3 and
exp �ÿ3=�4 n� eGn 2=3�, and of course their product a�t�,
shrink to zero as the density n increases. To analyze the
compression, we rewrite Eqns (16) and (18) as

_a � ÿ
���������
8pG
3

r
a
��������������
rff � r

p
; �29�

�a � 8pG
3

a�rff ÿ r� : �30�

At the initial moment, when rff 5 r, both _a and �a are
negative; therefore, the Universe shrinks with acceleration.
Then, at rff � r, the acceleration �a changes sign, while _a
remains negative; therefore, the compression of the Universe
decelerates. According to relations (23) and (27), it takes finite
time for a to shrink to zero. Due to the exponential factor in
(23), _a and �a also vanish at the same moment (the curve e > 0
in Fig. a). Therefore, repulsive gravitational four-fermion
interaction does not stop the collapse, but only reduces its
rate. The asymptotic behavior of a�t� is

a�t� � �t1 ÿ t� exp
�
ÿ 9e 2G
128pn 3

1

�t1 ÿ t�2
�
; �31�

where t1 is the moment of the collapse for e > 0.
For negative e, the situation is different. Here, the right-

hand side of (25),

a�t� � 1�����������jx�t�jp exp

�
3

4

��x�t���� ;

reaches its minimum value at j xmj � 2=3, i.e., a�t� cannot
decrease further. It follows from (18), however, that the
compression rate _a at this point does not vanish and remains
finite (the curve e < 0 in Fig. a). In a sense, the situation here
resembles that in the standard cosmology with ultrarelativis-
tic particles: there, a�t� � �����������

t0 ÿ t
p ! 0 as t! t0 (t0 is the

moment of the collapse in this case), although _a does not
vanish, but tends to infinity at this point (the curve e � 0 in
Fig. a). In the standard cosmology, we do not expect that this
compression to the origin is followed by expansion. There-
fore, in the present case, with e < 0, it looks natural to also
assume that the compression does not change to expansion.

Thus, contrary to possible na�ive expectations [11], the
gravitational four-fermion interaction does not result in the
Big Bounce.

We note in conclusion that it is difficult (if not impossible)
to imagine a realistic possibility of detecting any effect of the
gravitational four-fermion interaction.
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