
Abstract. Anisotropy mechanisms in compounds with S-state
ions are discussed, including the `single-ion' exchange mechan-
ism that was developed theoretically by Nikiforov and cowor-
kers based on the two-ion model and which has only recently
received detailed experimental study. Results demonstrating
the significant role of the `single-ion' source are presented. An
independent generalized method for quantitatively describing
and predicting the anisotropy of magnetically ordered crystals
is discussed, and its potential for the investigation of the BiFeO3

multiferroic in the region of the existence of a spin cycloid is
examined. The anisotropic interactions responsible for the for-
mation of nanostructures in the form of spin vortices (skyr-
mions) in MnSi and Cu2OSeO3 are analyzed.

1. Introduction

The possibility to practically apply magnetic materials
depends substantially on the magnitude and character of
anisotropic interactions, which can be reasonably predicted
based on experimental and theoretical investigations.

In this review, we mainly consider magnetically ordered
compounds for which the parameters of spin Hamiltonians

required for quantitatively assessing anisotropy have been
established. These parameters are usually extracted from
electron paramagnetic resonance (EPR) spectra on diamag-
netic analogs with impurity ions of a magnetically concen-
trated substance. Based on such data obtained for magneti-
cally ordered compounds, we generalize the results of the
anisotropy investigations available in the literature.

The use of isostructural diamagnetic analogs is the only
experimental method for verifying models that are used to
calculate anisotropy fields. The cations of diamagnetic
analogs have a completely filled outer electron shell (which
is, consequently, more inert with respect to impurities) and
the same charge as that in a magnetically ordered crystal.
These compounds are characterized by a high degree of
ionicity, which follows from monotonic dependences of the
constants of spin Hamiltonians on lattice parameters. There-
fore, in the case of the coincidence of lattice parameters [or of
their ratios (see Fig. 2 in Section 2.4.1)] of a diamagnetic
analog and a magnetically ordered substance, the magnitude
and the symmetry of the crystal electric fields can be
reproduced with good accuracy. However, it is frequently
difficult to find a diamagnetic analog with lattice parameters
close to those of a magnetically ordered crystal. Therefore, if
possible, a series of diamagnetic crystals with an impurity is
used, for which the dependence of constants of the spin
Hamiltonian on some parameter (e.g., on the lattice para-
meter) is constructed. Such an approach has sufficiently long
been used for estimating the contribution from the single-ion
mechanism.

In this review, in particular, we give the results of the
investigation of the behavior of single (isolated) ions and pairs
of ions. The theory of the single-ion model for cubic crystals
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was developedbyWolf [1]. The theory of `single-ion' exchange
anisotropy based on the two-ion model was developed by
Nikiforov et al. [2]. Upon calculating the contribution from
the two-ion mechanism to the anisotropy field of a magneti-
cally ordered crystal using EPR data, a pair of interacting
paramagnetic ions in diamagnetic compounds was first taken
into account; then, in accordance with the definition of a
magnetically concentrated substance, the sum over nearest
neighbors was taken (see Sections 2.4.2 and 2.4.3).

The `conventional' compounds chosen for the investiga-
tions differ in the crystal and magnetic structures. From the
standpoint of crystal structure, these are cubic, hexagonal
(trigonal), and tetragonal materials. For magnetic structures,
these are paramagnetic crystals representing diamagnetic
matrices with 3d5 or 4f 7 ions introduced into them to ensure
the possibility of observing the fine structure of the EPR
spectra of isolated ions or pairs of ions. Magnetically ordered
crystals are antiferromagnets (including one-dimensional),
ferrites, and ferromagnets. Notably, MnF2, EuO, Y3Fe5O12,
�CH3�4NMnCl3, MnCO3, FeBO3, and a-Fe2O3 belong
to these `conventional' compounds. In this review, we also
consider compounds (in particular, rhombohedral
YFe3�BO3�4) that have recently been studied experimentally
by the research groups of Mukhin [3] and Pankrats [4]. These
compounds have served as a basis for developing a general-
ized independent experimental method of quantitative
description and prediction of magnetic anisotropy of crystals
(see Section 2.6).

For a number of compounds that have been intensely
studied in recent years (in particular, multiferroic BiFeO3,
dielectric Cu2OSeO3, and metallic MnSi), we discuss aniso-
tropic interactions (Sections 3 and 4). In the last two
compounds, a lattice of nanostructured spin vortex forma-
tions called skyrmions is observed.We note the importance of
anisotropic interactions in BiFeO3 and crystals with nanos-
tructures, including in the formation of skyrmions.

As the theoretical tool in this review, we mainly use the
method of spin Hamiltonians, which, according to recent
data, can also be applied to MnSi (the description of the
properties of this compound can be based on S-like wave
functions of magnetic ions (see Section 4)) and to Cu2OSeO3.
Based on spin Hamiltonians, we considered three sources
responsible for the magnetic anisotropy of crystals with ions
in the S state: dipole, single-ion, and `single-ion' exchange
(symmetric anisotropic exchange), as well as the anti-
symmetric anisotropic exchange interactionÐ the Dzya-
loshinskii±Moriya interaction.

Ions in the S state have half-filled d and f electron shells,
which are formally spherical and have zero orbital moment.
However, an impurity of higher states leads to the
appearance of an orbital moment, distortion of the electron
cloud, and, as a consequence, the interaction of the ion spin
of the compound with the crystal field via the spin±orbit
coupling (which provides the nature of single-ion aniso-
tropy). The nature of the `single-ion' exchange mechanism
consists in a change in the overlap of the orbital wave
functions of a pair of ions upon rotating the spin. In [2], the
change in the spin due to the impurity of upper states and,
consequently, the change in the magnitude of the exchange
interaction in the pair of ions were taken into account; in
the usual single-ion mechanism, such a change is neglected.
The `single-ion' exchange anisotropy was obtained in the
third order of the perturbation theory. In this case, the
matrix elements depend linearly on the isotropic exchange

interaction and quadratically on the spin±orbit coupling.
The energy of this kind of anisotropy can be represented as
a function of individual spins [2]. For a strong exchange
interaction between the ions of the pair, the operators of the
Hamiltonian can also be written in terms of the total spin
S � s1 � s2 (see Section 2.4.2).

Owing to [2] and the method of the investigation of the
`single-ion' exchangemechanism (with the use of diamagnetic
analogs [see Sections 2.4.2±2.4.4)], it has become possible to
add two new parameters to the constants of the spin
Hamiltonian of the pair: the `single-ion' exchange parameter
and a constant that describes the contribution due to the
distortion of the diamagnetic `host' lattice by a `foreign'
impurity pair. This allowed solving the problem of the
`discrepancy' between the single-ion constants extracted
from the single-ion and pair EPR spectra of diamagnetic
crystals with an impurity of paramagnetic ions.

Antiferromagnetic resonance (AFMR) is typically used as
the experimental method. The sign of the Dzyaloshinskii±
Moriya interaction was recently determined (see Section 2.6)
by the method of diffraction of synchrotron radiation
interacting with the electric and magnetic systems of the
crystal. For the observation of skyrmions in the correspond-
ing compounds, methods such as small-angle neutron
scattering (SANS), the Hall effect, and Lorentz microscopy
are typically used.

In addition, we discuss the possibility of investigating
magnetic anisotropy in the region of the existence of a spin
cycloid [5] in rhombohedral multiferroic BiFeO3, which is a
promising material for use in various engineering devices [5±
8]. The number of studies devoted to the investigation of this
compound has grown intensely in recent years (see, e.g., [7, 8]
and the references therein).

2. Description of the magnetic anisotropy
of crystals

2.1. Phenomenological description of the magnetic
anisotropy of rhombohedral, hexagonal,
and tetragonal antiferromagnetic crystals
The magnetic properties of rhombohedral antiferromagnetic
crystals with the structure of calcite (FeBO3, MnCO3) and
corundum (a-Fe2O3) are described by the Dzyaloshinskii
theory [9]. The magnetic structure of these crystals can be
described in terms of two sublattices. According to [9], the free
energy can be expanded in a series in powers of the vectors of
reduced magnetization m��M1�M2�=M and antiferromag-
netism l��M1ÿM2�=M, where M � 2jM1j � 2jM2j. The
expansion of the free energy up to fourth-order terms in a
polar coordinate system related to the crystal axes (zjjc3; yjjc2)
is written as [9, 10]

F � 1

2
Bm 2 � 1

2
a cos2 y� 1

2
c cos4 y� 1

2
bm 2

z

� d sin y�my cosjÿmx sinj�
� q sin3 y cos y cos �3j� � tmz sin

3 y sin �3j�
� e sin6 y cos �6j� ; �1�

where B is the exchange constant, a and c are the respective
constants of uniaxial anisotropy of the second and fourth
order, b is the uniaxial anisotropy constant of the antiferro-
magnetism vector, d is the Dzyaloshinskii constant, q is the
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constant of hexagonal anisotropy, t is the constant of the
hexagonal anisotropy of the antiferromagnetism vector, and e
is the constant of hexagonal anisotropy of the sixth order. The
angle y (for the antiferromagnetism vector) of the polar
coordinate system is counted from the c3 axis, and the angle
j is counted from the symmetry plane of the crystal (the x
axis).

The first term in the right-hand side of (1) characterizes
the exchange energy of the crystal; the second, third, and
fourth terms describe the uniaxial anisotropy; the fifth term
corresponds to the Dzyaloshinskii interaction, which leads to
the appearance of weak (itinerant-electron) ferromagnetism;
and the last three terms describe the anisotropy energy in the
basal plane.

The second and third terms in the right-hand side of (1)
can be used to describe the uniaxial anisotropy in antiferro-
magnetic hexagonal and tetragonal crystals, in particular,
in �CH3�4NMnCl3 and MnF2, and in rhombohedral
YFe3�BO3�4.

2.2 Phenomenological description of the magnetic
anisotropy of cubic ferro- and ferrimagnetic crystals
We choose the yttrium iron garnet Y3Fe5O12 and the
ferromagnetic EuO as representatives of cubic crystals
considered in this review.

Themagnetic anisotropy of cubic ferro- and ferrimagnetic
crystals can be expressed in terms of the free energy F, which
is a function of direction cosines of the magnetization vector
relative to the crystallographic axes. The free energyF can be
written as the series [11]

F � K0 � K1�a 2
1 a

2
2 � a 2

2 a
2
3 � a 2

3 a
2
1 � � K2a 2

1 a
2
2 a

2
3 ; �2�

where K1 and K2 are the first and second anisotropy
constants, and an are the direction cosines.

The anisotropy constants for garnet are written as Ki �
Kia�Kid, where the indices a and d refer to the respective
octahedral and tetrahedral sublattices, and i � 1, 2 indicates
the order of the constant. The resulting anisotropy field can
be written as HiA � �MaHia �MdHid�=M, where M �Ma�
Md is the total magnetization, Hi j�Ki j=Mj, and j � a, d.

2.3 `Microscopic' sources of magnetic anisotropy.
Theoretical description
An important source of anisotropy in low-symmetry crystals
is given by long-range dipole interactions; a second source,
which is characteristic of all compounds with S-state ions, is
the single-ion interaction; and a third mechanism is the
anisotropic exchange.

Quantitative estimates based on the single-ion model [1]
for Y3Fe5O12 [12], EuO [13], a-Fe2O3, FeBO3, and MnCO3

[14±16] (with the use of constants of the spin Hamiltonian
extracted from a series of isostructural diamagnetic analogs
with impurities of isolated ions Fe3�, Eu2�, and Mn2�) with
the dipole interaction taken into account have shown
substantial discrepancy with experimental data obtained on
magnetically concentrated crystals. In view of these discre-
pancies and a number of analogous results obtained for other
compounds, doubts appeared about the correctness of
parameters extracted from the data on the investigation of
an isostructural diamagnetic crystal, presumably because of
significant lattice distortions introduced by isolated ions of
the magnetically concentrated substance. Analogously, the
validity of the single-ion model and thereby the possibility of

obtaining reliable quantitative estimates based on this model
were doubted, because this model, although based on
quantum mechanical calculations, contains some elements
of molecular field theory [17, 18]. The possible cause of the
discrepancy with the experimental data can be the neglect of
the `single-ion' exchange anisotropy in these compounds.

The quantitative discrepancies between the single-ion
model and the results of experiments have led, on the one
hand, to the appearance of new experimental studies; the first
was performed on yttrium iron garnets magnetically diluted
by gallium, in which case an effect of the exchange field on the
constants of the spin Hamiltonian of the Fe3� ion was
revealed [19]. On the other hand, theoretical study appeared
[2] in which the authors calculated the magnetic anisotropy
using a two-ion model within the perturbation theory, using
exchange and spin±orbit interactions as the perturbing terms.
In this model, the anisotropy appears in the third order of the
perturbation theory, where the matrix elements are linear in
the energy of the exchange interaction and are quadratic in
the energy of spin±orbit coupling. In [2], a spin Hamiltonian
describing anisotropic interactions was obtained in the form
of expressions that couple tensor operators, which can be
formally represented as equivalent spin operators [20, 21]. In
this case, the expansion in irreducible tensor operators gives
expressions containing the single-ion exchange anisotropy,
which can be represented as a function of an isolated spin and,
according to the authors of [2], this function can be quite
significant in crystals with S-like ions. However, paper [2] has
long remained unnoticed by experimentalists.

The physical reason for the magnetic anisotropy caused
by anisotropic exchange interactions is the changes (upon
rotation of the spins si and sj) in the overlap of orbital wave
functions and, consequently, in the strength of the electro-
static interaction of both ions; as a result, the energy becomes
dependent on the orientations of si and sj relative to the
crystal axes. It has long been assumed that such a mechanism
of symmetric anisotropic exchange cannot make a significant
contribution to magnetic anisotropy in compounds with
S-state ions.

Qualitatively new information on the nature of aniso-
tropic interactions can be obtained through the experimental
investigation of pairwise interactions of paramagnetic ions in
diamagnetic crystals. However, so far there have been only
four experimental studies [22±25] on pairs ofMn2� ionswith a
sufficiently full identification of the fine structure of the EPR
spectra. Studies of this type on Fe3� ions appeared only
recently.

2.3.1. Dipole contribution to the magnetic anisotropy of
rhombohedral, hexagonal, and tetragonal crystals. Rhombo-
hedral, hexagonal, and tetragonal crystals belong to the class
of crystals with relatively low symmetry, in which the
contribution from magnetic dipole interactions to aniso-
tropy is quite important.

The problem of the calculation of the energy of dipole
interactions in crystals is related not only to the condi-
tional convergence of lattice sums, which, using existing
methods [26], can be transformed into quite rapidly conver-
ging series, but also to the clumsiness of these expressions,
which can lead to errors in calculations. Therefore, for
obtaining reliable information on dipole fields in crystals of
FeBO3, FeF3, andMnCO3, the dependences of these sums on
the lattice parameters of the crystals have been constructed
[14, 27]. The values of the dipole fields of uniaxial anisotropy
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for the antiferromagnetism vector HAdip of the compounds
under consideration are given in Table 2 (see Section 2.6).

The deviations of the calculated values from the experi-
mental data can be related to the existence of contributions
from other mechanisms to the effective fields of the uniaxial
anisotropy of these crystals. The most probable additional
deviations can be due to the coupling of spin to the electric
fields of the crystal. It follows from [12, 13, 28, 29] that this
source makes a significant contribution to the anisotropy of
cubic crystals and of the majority of uniaxial crystals. The
single-ion source, in particular, can be dominating for the
basal anisotropy of rhombohedral crystals. This assumption
is supported by the dependence of the positions of lines in the
EPR spectra observed in crystals that are isostructural to
calcite with impurities of Mn2� [30] and Fe3� [31] on the
rotation of the constant magnetic field about the threefold
symmetry axis at an angle to the (111) plane. The contribution
of the single-ion mechanism to the hexagonal anisotropy of
rhombohedral weakly ferromagnetic crystals was calculated
in [32±34].

2.3.2 Single-ion energy of hexagonal magnetic anisotropy in
rhombohedral weakly ferromagnetic crystals. The crystal
structure of �CH3�4NMnCl3 was determined in [35]; that of
rhombohedral FeBO3 crystals is given, e.g., in [14]; that of
MnCO3 and a-Fe2O3 can be found in [36].

Calculations performed in [14, 32, 33] based on a pure
(impurity-free) FeBO3 crystal must also be valid for a
description of the uniaxial and hexagonal anisotropy of
manganese carbonate and hematite. The expressions for the
uniaxial anisotropy constants in �CH3�4NMnCl3 and MnF2

(its crystal structure is given in [37]) coincide with the
analogous expressions for rhombohedral crystals.

Figure 1 shows two nonequivalent positions in the lattice
of the FeBO3 crystal. The nonequivalence of positions 1 and 2
is due to different orientations of the BO3 groups in the plane
perpendicular to the threefold axis of the crystal. The BO3

groups are shown in Fig. 1 as circles (atoms) connected by
straight lines; atom B at the center is surrounded by three
symmetrically located O atoms. The BO3 groups shown in
black lie above the plane of the figure; the open groups lie
below the figure plane. One of the symmetry planes of the
crystal passing through the octahedral complexes 1 and 2
formed by the ligands is shown with a thin solid line.

The distribution of the axes of the axial and cubic fields
for the two nonequivalent positions of Fe3� ions can be found

from considering the symmetry of octahedral complexes. The
mutually perpendicular cubic axes xj, Zj, and zj of the crystal
field are denoted by arrows. The solid arrows correspond to a
positive projection onto the z axis; the dashed arrows
correspond to negative projection (the z axis is perpendicular
to the figure plane). The projections of the axes x1, Z1, and z1
and of the axes x2, Z2, and z2 onto the (111) plane are
misoriented and deviate from the symmetry planes of the
crystal in the xyz system (with the origin placed at ion 1) by
the respective angles acf1 � a and acf2 � ÿa. The angles acf j
are counted from the projections of the cubic field axes onto
the plane (111) toward the x axis; rotation from the x axis
toward the y axis is assumed to be positive; the subscripts
j � 1, 2 correspond to positions 1, 2. The axial components of
the crystal field of the complexes coincide with one another
and are oriented along the threefold axis of the crystal. Such
an arrangement of the axes in crystals with a calcite structure
is confirmed by the EPR data [14, 30, 31].

According to [14, 30, 32, 33], the spin Hamiltonian in a
coordinate system xyzwith the origin placed at the jth ion can
be written as

H �
X2
j�1

�
gmBH

eff
j sj � 1

3
DcfO

0
2j �

Fcf

180
O 0

4j

ÿ acf
180

�
O 0

4j ÿ 20
���
2
p ÿ

cos �3acf j�O 3
4j ÿ sin �3acf j� ~O 3

4j

���
; �3�

where Dcf and Fcf are the respective axial constants of the
second and fourth order, acf is the constant of the cubic crystal
field, g is the spectroscopic splitting factor, which is assumed
to be isotropic, mB is the Bohr magneton,H eff

j is the exchange
field at the jth ion or the external magnetic fieldH (depending
on which crystal is considered: magnetically concentrated or
diamagnetic with an impurity of a paramagnetic ion), s is the
spin of the ion, and Om

n are equivalent spin operators, which
have the form given, e.g., in [20]. The second and third terms
in the right-hand side describe axial-symmetry interactions,
and the subsequent terms describe cubic-symmetry interac-
tions.

The temperature dependence of the hexagonal single-ion
anisotropy calculated in [14, 32] is written as

Hq cf�Fe3�� sin6 y cos �6j�

� ÿ a 2
cf cos

2�3acf� r 2�Y �
18
ÿ
HA�0��H 2

D�0�=HE�0�
�
B 3
s �x� s 2

sin6 y cos �6j� ;

�4�

where the constant acf is expressed in oersteds, the angle acf is
expressed in degrees, r�Y � is the function of temperature
introduced by Wolf [1] (also see, e.g., [14, 32, 33]); HA�0� �
a�0�=M�0�, HD�0� � d�0�=M�0�, HE�0� � B�0�=M�0�, s is
the spin quantum number, equal to 5/2, and Bs�x� is
the Brillouin function. For HA�T �, the contribution of
only the dipole interaction was taken into account because
the single-ion and the `single-ion' exchange contributions
approximately compensate each other (see Table 2 in
Section 2.6).

2.3.3. Impurity single-ion anisotropy in FeBO3 crystals.
Phenomenological consideration. The existence of a point of
hexagonal anisotropy compensation in FeBO3, its different
magnitudes for different samples at low temperatures, and a

x1

Z1
z1

a

Position 1 Position 2

y

x

O
B
Fe

,
,

x2

Z2
z2

a

Figure 1. Arrangement of cubic axes of the crystal field for two non-

equivalent positions of the ionM in the lattice ofMBO3 (M � Fe, Ga, In,

Lu, Sc) [14, 31].
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significant increase in the width of the AFMR line at
T4 20 K indicate the presence of impurities [14, 32±34]. In
addition, the presence of an impurity manifests itself in the
occurrence of uniaxial anisotropy in the basal plane of FeBO3

crystals, which is observed by the AFMR method [14]. A
significant uniaxial anisotropy in the basal plane appeared at
temperatures below 30 K. Fe2� ions can serve as impurities
arising as a result of the appearance of vacancies at the sites of
some BO3ÿ

3 groups [38]. The boron ions are bound covalently
with the oxygen ions; such a group can exist as an integral
species in the molten solution at the temperatures of growth
of the FeBO3 crystal [38]. Because of a large spatial extension
of the BO3ÿ

3 groups, their incorporation into the crystal
presents difficulties, which leads to the appearance of
vacancies at the sites of these groups. The decrease in the
negative charge in the crystal leads to the appearance of Fe2�

ions.
In [33, 34], a model of the behavior of a system consisting

of an Fe2� ion and a vacancy at the BO3ÿ
3 site was suggested.

In this model, after the vector of the external field rotates in
the basal plane, an electron hops from the Fe2� ion to the
Fe3� ion around the vacancy (coordination number 6). To
explain the behavior of this system, the anisotropy tensor with
triclinic symmetry was introduced and kinetic equations for
the ferrite ions have been solved (the local point symmetry of
the positions of the iron ions is c1).

The solution of the kinetic equations has shown that after
the rotation of the antiferromagnetism vector in the basal
plane, the relaxation of the impurity subsystem starts at the
instant t � t0. At t � 1, the system comes to equilibrium, and
the contribution from Fe2� to the hexagonal anisotropy is
equal toÿD 0 sin3 y 0 cos y 0 cos �3j 0 ÿ c� [33, 34]. Here,D 0 and
c are respectively a constant and the phase angle, which
depend on the parameters of the anisotropy tensor for the
Fe2� ions; y 0 and j 0 are the polar and azimuthal angles of the
antiferromagnetism vector l 0 � �M 0

1 ÿM 0
2�=M 0 of the Fe2�

ions; M 0
1 and M 0

2 are the sublattice magnetizations; and
M 0 � 2jM 0

1j � 2jM 0
2j. The free energy for Fe2� in the FeBO3

crystal (the impuritymagnetic subsystem is in thermodynamic
equilibrium with the Fe3� subsystem) can be written as [33]

F 0 � A 0�sin y sin y 0 cosj cosj 0

� sin y sin y 0 sinj sinj 0 � cos y cos y 0�

� 1

2
a 0 cos2 y 0 ÿD 0 sin3 y 0 cos y 0 cos �3j 0 ÿ c� ; �5�

where A 0 is the constant of the isotropic exchange interaction
between the Fe2� and Fe3� ions. The last two terms in the
right-hand side of Eqn (5) describe the respective uniaxial and
hexagonal anisotropies. Theminimization ofF� F 0 gives the
following expression for the total effective energy of the
hexagonal anisotropy [33]:

oq sin
6 y cos �6j� � oq�Fe3�� sin6 y cos �6j�

� oq�Fe2�� sin6 y 0 cos �6j 0 ÿ 2c�

� oq�Fe3�� sin6 y cos �6j� ÿD 02

4a 0
sin6 y cos �6jÿ 2c� :

We note that the constant D 0 is inversely proportional to the
temperature.

Because the hexagonal anisotropy changes sign at the
point of compensation, it follows thatc � 90� (over the entire

temperature range). For the uniaxial anisotropy constants,
we have

oA � �a� a 0� cos2 y :

2.3.4 Impurity anisotropy. `Microscopic' consideration.
According to [17], the Fe2� ion can exist in a singlet or
doublet orbital ground state, depending on whether the
potential of the axial electric field along the trigonal axis is
minimum or maximum. This potential is given in [39]. The
calculations performed in [40] have shown that the potential
of the axial electric field along the trigonal axis should be
minimum; then, according to [17, 41], the lower energy levels
can be described by the effective spin s � 1.

The Hamiltonian for the impurity Fe2� ion in the single-
ion approximation in the case of the lowest symmetry is
written as [20]

H �
X2
j�1

ÿ
gmBH

eff
j sj � A 0

2O
0
2j � A 1

2O
1
2j

� A 2
2O

2
2j � ~A 1

2
~O 1
2j � ~A 2

2j
~O 2
2j

�
:

Expressions for the operators Om
n are given, for example, in

[20]. The solution of the eigenvalue problem for this
Hamiltonian gives an expression for the energy levels
obtained in the first-order perturbation theory [33]. The
uniaxial anisotropy constant for the Fe2� ion found from
the expansion of the free energy can be expressed as

a 0�Fe2�� cos2 y � 3Nc0A
0
2

z 01
z 00

cos2 y ;

whereN is Avogadro's number, c0 is the concentration of the
Fe2� impurity, and the expressions for the functions z 00 and z 01
are given in [33].

The energy of the hexagonal effective anisotropy is
written as

o 0q�Fe2�� sin6 y cos �6j� �
Nc0Bimp

�kBT �2
z 01
z 00

sin6 y cos �6j� ;

where Bimp is a constant that includes the constants of the
energy levels [33], and kB is the Boltzmann constant.

2.3.5. Anisotropic exchange in hematite crystals. The inter-
pretation of the temperature dependence of the effective
anisotropy fields in hematite, unlike that in FeBO3 and
MnCO3, is different in view of the difference in the crystal
structures and, consequently, in the exchange fields. In the
unit cell of hematite, two pairs of the most closely spaced iron
ions whose axis coincides with c3 provide the effective
exchange field of this crystal with a good accuracy. This
follows from the EPR measurements on pairs of Fe3� and
Cr3� ions in the isostructural crystal of corundum [42, 43].

According to [2, 44], the Hamiltonian that describes
uniaxial anisotropy for a pair of iron ions in hematite can be
represented as

H �
X2
j�1

gmBH
eff
j sj � AexO

0
11O

0
12

� BexO
0
21O

0
22 � CexO

0
31O

0
12 ; �6�
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where the first term in the right-hand side represents the
isotropic exchange energy in the molecular-field approxima-
tion; the other terms describe the energy of anisotropic
exchange expressed in terms of irreducible tensor spin
operators [20], which coincide in their form with equivalent
spin operators, and Aex, Bex, and Cex are the corresponding
exchange constants. To simplify expression (6), we omit the
parts corresponding to the `single-ion' exchange anisotropy
and single-ion anisotropy. The solution of the simplified
problem is given in Sections 2.4.2 and 2.4.3. The uniaxial
anisotropy fields of the first and second constants at an
arbitrary temperature are as follows [45]:

HA cos2 y �
�
�A 0dip � A 0ex�

z4
5z0
� B 0ex

z 21
5z0z4

� C 0ex
z3
5z0

�D 0c

�
ÿ z1
z4

�
� E 0c

�
ÿ 5z2

z4

��
cos2 y ;

Hc cos
4 y � ÿ

�
3

2
B 0ex

z 21
5z0z4

� 25

13
C 0ex

z3
5z0

� 7

6
E 0c

�
ÿ 5z2

z4

��
cos4 y : �7�

Here, A 0dip � 10:04 kOe [28] is the dipole field of the
magnetically concentrated crystal at T � 0 calculated
directly; A 0ex, B

0
ex, and C 0ex are the fields of the anisotropic

exchange corresponding to the constants Aex, Bex, and Cex of
Hamiltonian (6); D 0c is the single-ion plus `single-ion'
exchange anisotropy field (in total, the `single-ion' field),
which is determined by second-order invariants of Hamilto-
nian (3) as well as of Hamiltonian (8) given in Section 2.4.2;
and E 0c is the `single-ion' field corresponding to the fourth-
order invariants of Hamiltonians (3) and (8). The expressions
for z0ÿz4 are given in [45]. Equation (7) also includes the
expressions (which were omitted above) for the single-ion and
`single-ion' exchange [2, 14, 33] anisotropy (we note that they
have identical operator structures).

2.4 Experimental investigation of anisotropic interactions
in rhombohedral diamagnetic crystals with impurity
S-state ions
2.4.1 Electron paramagnetic resonance of isolated ions in
isostructural crystals MBO3+Fe3+ (M=Ga, In, Lu, Sc).
The most detailed investigations of anisotropic interactions
in diamagnetic crystals with impurity S-state ions are the
investigations of isolated ions using the EPR method.
However, dedicated investigations of the anisotropy of
magnetically concentrated substances based on EPR studies
of isolated ions are scarce. The EPR investigations of isolated
Fe3� ions in a series of isostructural diamagnetic garnets [12,
46] are the only dedicated work of this kind.

The electron paramagnetic resonance of isolated ions has
been well studied in some isostructuralMBO3 � Fe3� crystals
(M � Ga, In, Lu, Sc), and we here give only the main results
[14, 31]. Figures 2 and 3 display the dependences of the
constants of spin Hamiltonian (3) on the lattice parameters
obtained by the EPR method in MBO3 � Fe3� crystals
(M � Ga, In, Lu, Sc).

In the literature, identifications of pair spectra of Fe3�

ions have long been absent. In view of the insufficient study of
pairwise interactions by the EPR method, the constants
extracted from experimental data have not been interpreted
either. For the same reason, the relation between the

constants of spin Hamiltonians of isolated ions and pairs
has not been established. No experimental or methodological
applications of the data obtained on pairs for magnetically
concentrated crystals have been obtained.

2.4.2 Electron paramagnetic resonance of pairs of Fe3+ ions in
MBO3 crystals (M=Ga, In, Lu, Sc). The elements of the
crystal and magnetic structures of the MBO3 � Fe3� crystals
that play an important role in interpreting the EPR pair
spectra are as follows. The first pair of nearest exchange-
coupled Fe3� ions is antiferromagnetic. Two other Fe3� ions
more distant from the central Fe3� ion (next-to-nearest
neighbors) form two ferromagnetically coupled pairs with
the central ion.

The strong isotropic exchange in an antiferromagnetically
coupled pair results in the formation of six multiplets in the
case of the total spin S � 5. The energies of these states can be
written as [22]

ES � J

2
�S�S� 1� ÿ si�si � 1� ÿ sj�sj � 1�� ;

where J is the constant of the exchange interaction of the pair,
and S, for each multiplet of the pair, takes one of the values
si � sj, si � sj ÿ 1; . . ., si ÿ sj, where si and sj are the spin
quantum numbers of the ions of the pair equal to 5/2.
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The Hamiltonian for each multiplet of the antiferromag-
netically coupled pair in a diamagnetic crystal with the energy
ES, where the vector of the external field is oriented along the
threefold axis c3, can be represented, according to [22, 33, 47±
50], as follows:

H � gmBHSz �DS

3
O 0

2 �Sz� ÿ �aÿ F �cS
180

gSO
0
4 �Sz� ; �8�

where H is the external magnetic field �Hjjz�, Sz is the
projection of the total spin operator S (of the pairs of Fe3�

or Mn2� ions) onto the z axis, DS � 3aSDdip � bSDcS,
aS � �1=2��S�S� 1� � 4si�si � 1��=�2Sÿ 1��2S� 3�, bS �
�3S�S� 1� ÿ 3 ÿ 4si�si � 1��=�2Sÿ 1��2S� 3�, gS are non-
linear functions of S, which are given in [49, 50], Ddip �
�g 2m2B=2r

3
i j��1ÿ 3 cos2 yi j� is the dipole interaction constant

for the pair of ions in the point approximation, DcS and
�aÿ F �cS are the second-order and fourth-order `single-ion'
constants at the corresponding irreducible tensor operators
O 0

2 and O 0
4 , which include the contributions from the single-

ion and `single-ion' exchange mechanisms of anisotropy [2,
44], and yi j is the angle between the axis of the pair and the c3
axis. The expressions for the operators Om

n are given, for
instance, in [20].

Each multiplet with the total spin S is located in the
exchange field arising in the pairwise interaction. The
expression for the exchange field at the multiplets of the pair
is [33]

H ex � 1

gmB

qES

qjSj �
J

gmB

������������������
S�S� 1�

p
:

The constant DS can be represented as [33, 47]

DS � 3aSDdip � bS
�
Dc0 �Dcf � A

������������������
S�S� 1�

p �
; �9�

where the first term in the square brackets is due to the
distortions of the lattice of the diamagnetic crystal by the
`foreign' pair, the second term reflects the effect of the crystal
field, the third term describes the dependence on the exchange
field of the pair, and the constant A has the meaning of the
`single-ion' exchange parameter.

The experimental results for the constant DS of the spin
Hamiltonian inMBO3 � Fe3� crystals can be represented as a
function of S (Fig. 4) [48]. The results of the identification of
the EPR spectra are given in Section 2.4.4.

Figure 5 displays the dependences of the fourth-order
constant on the total spin number [48]. The curves correspond
to the results of calculations using the expression

�aÿ F �cS � �aÿ F �c0 � �aÿ F �cf � BS�S� 1� ; �10�

where B is the `single-ion' exchange constant entering the
fourth-order invariant in spin operators. The fourth-order
`single-ion' exchange invariant in spin operators does not
follow from the abovementioned calculations [2, 44]; it can
apparently be obtained in the perturbation theory approxima-
tions of a higher order compared to that assumed in [2, 44].

An analysis of the results indicates that in the zero
exchange field, the magnitude of distortions introduced by
pairs of Fe3� ions is mainly determined by the deviations of
the lattice parameters of the diamagnetic analog from the
lattice parameters of FeBO3 [48].

Figure 6 shows the linear dependence of the parameter A
on the ratio of the lattice parameters of the hexagonal unit cell
of MBO3 crystals. The quadratic dependence of the para-
meter B on the lattice parameters is shown in Fig. 7.

2.4.3 Theoretical substantiation of the method for investigating
the anisotropy of magnetically concentrated uniaxial crystals
with the use of EPR data on pairs of ions. The results given in
Section 2.4.2 and in this section for isolated pairs can be used
to include the contributions from the constants of the
pairwise interaction Hamiltonian to the magnetic anisotropy
of FeBO3, MnCO3, and a-Fe2O3 antiferromagnetic crystals
[33, 48]. To explain the relation between the parameters of the
exchange energy of a pair of ions in a `magnetically
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concentrated' crystal, written in the approximation of
molecular field theory, and of a pair of ions of a paramag-
netic impurity in a diamagnetic substance, the following
calculations were performed [33].

The exchange energy of the interaction of the ith ion in a
magnetically concentrated crystal at T � 0 is expressed as
E�T � 0� � ÿnJsisj, where n is the number of magnetically
active nearest neighbors of the ith ion. Assuming that n �
n0 � 1 and equating the energies of two spins in the lattice to
the energy of an isolated pair ES,

E�T � 0; n0� � ESmc ; �11�

we find the value of the effective spin numberSn0 of the pair of
ions of the paramagnetic impurity in a diamagnetic sub-
stance, which corresponds to the energy of the lower level
E�T � 0� of the ith ion of a `magnetically concentrated'
crystal interacting with the jth ion. In Eqn (11) and below,
the subscript mc in the notation for quantities that character-
ize the pairwise interactions and interactions of the spin of
isolated ions with the crystal field means the coincidence of
the lattice parameters (or their ratio) of the hypothetical
diamagnetic analog with the corresponding quantities of the
magnetically concentrated crystal.

The solution of quadratic equation (11) for S with
si � sj � 5=2 gives a value of the effective spin number that
has a physical meaning, Sn0 � 1:79. Then, summing over the
neighbors of the ith ion in the molecular field approximation
in the left-hand side of Eqn (11), we find the exchange energy
of interaction of the ith ion with the nearest surroundings for
the magnetically concentrated crystal at T � 0:

E�T � 0� � nESmc�Sn0� : �12�

The right-hand side of Eqn (12) can be presented as the energy
of n pairs of paramagnetic impurities in a diamagnetic crystal,
which corresponds to the exchange field

H ex � n
J

gmB

�������������������������
Sn0�Sn0 � 1�

p
: �13�

TakingEqn (13) into account and determining the parameters
Amc and Bmc (see Figs 6 and 7), we calculate the `single-ion'
constants of the spin Hamiltonian for the magnetically

concentrated crystal [33]:

Dmc � Dcfmc � nAmc

�������������������������
Sn0�Sn0 � 1�

p
� Dcfmc � 2:26nAmc ;

�aÿ F �mc � �aÿ F�cfmc � nBmcSn0�Sn0 � 1�
� �aÿ F �cfmc � 5:00nBmc : �14�

The `single-ion' constants Dmc and �aÿ F �mc, apart from
the known contributions Dcfmc and �aÿ F �cfmc from isolated
ions, also include the `single-ion' exchange contributions. To
write the effective anisotropy fields in rhombohedral anti-
ferromagnetic crystals with `single-ion' exchange contribu-
tions taken into account, their well-known single-ion expres-
sions at T � 0 can be used. According to [33], the `single-ion'
contribution to the uniaxial-anisotropy fields (for the second-
order and fourth-order constants) can be represented as

HAmc�0� � 2

�
sÿ 1

2

��
Dcfmc � 2:26nAmc

� 1

6
�sÿ 1�

�
sÿ 3

2

���aÿ F �cfmc � 5:00nBmc

��
;

Hcmc�0� � ÿ 7

18

�
sÿ 1

2

�
�sÿ 1�

�
sÿ 3

2

�
� ��aÿ F �cfmc � 5:00nBmc

�
: �15�

Thus, when calculating the anisotropy parameters for a
magnetic crystal in terms of the parameters of isolated and
paired impurities in nonmagnetic crystals, an approximation
for the Heisenberg exchange is used. However, for quasi-one-
dimensional chains, for which the mean-field approximation
is invalid, this approach is inapplicable. Indeed, in the limit of
an isotropic Heisenberg chain, according to the Mermin±
Wagner theorem, the magnetically ordered state is absent,
whereas the mean-field approximation leads to an antiferro-
magnetic order, in particular, in �CH3�4NMnCl3 (see
Section 2.6, Table 2). Usually, the magnetic state in a one-
dimensional chain can be stabilized by the existence of either
anisotropy orweak interaction between the chains. In the case
of the �CH3�4NMnCl3 crystal, the stabilization of the
antiferromagnetic order is assumed to be due to the aniso-
tropy.

2.4.4 Method for identifying the EPR spectra of pairs of Fe3+

ions in MBO3 crystals (M=Ga, In, Lu, Sc). The content of
this section is based on [48]. In the literature, data on the
experimental investigation of the fine structure of spectra of
pairs of Fe3� ions related to anisotropic interactions are
absent.

In order to process the spectra, A N Sudakov (Institute of
Computer Simulation, Siberian Branch, Russian Academy of
Sciences) has developed a special computer program. For a
given orientation of the crystal relative toH, the values of the
total spin S are determined by the g factor (g � 2) and two
axial constants of the Hamiltonian, DS and �aÿ F �cS. The
equations corresponding to the values of the resonance fields
for lines with the spinS � 3, 4, 5 are solved by the least-square
method. Using the computer program, all possible variants of
the sets of equations were enumerated and calculated. The
results of the solutions of the variants considered were
arranged in a certain sequence according to the magnitude
of the root-mean-square error for the constants of the spin
Hamiltonian. The program made it possible to identify the
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lines described by corresponding equations of a given variant
in the magnetic quantum number. With this method of
processing the pair spectra, the choice of the best variant of
the solution was determined by the following criteria: the
smallest rms error; a good correspondence between the
theoretical and experimental intensities of the lines (which,
however, was not a decisive criterion, in view of the different
values of the intensities in different samples of approximately
the same weight (Fig. 8)); and the degree of monotonicity of
the dependences of the spin Hamiltonian constants on S. In
addition, to identify the spectra, an independent estimation of
DS was also used. For this, two extreme compositions (in
terms of the lattice parameters) were selected among the
compounds: LuBO3 � Fe3� and GaBO3 � Fe3�. The first
compound should exhibit weak exchange interaction in view
of the symmetry of the lattice and magnitudes of its
parameters, which follows from the data given in Fig. 6 (at
�cH=aH� � 3:3, the exchange field is rather close to zero).
Therefore, the parameter A in Eqn (9) can be taken equal to
zero. The parameterDdip can be calculated. The values of the
single-ion constantDcf are known (they are given, e.g., in [14,
31]). The constant Dc0, which characterizes the distortion of
the diamagnetic matrix by a `foreign pair', can be approxi-
mately estimated [48] as

DDcf

D�cH=aH� 0:169 � ÿ2:6� 103 � 0:169 Oe �� ÿ440 Oe� ;

where DDcf=D�cH=aH� is the increase in the single-ion
constant of the spin Hamiltonian upon a corresponding
increase in the lattice parameters D�cH=aH�, which reflects
the effective lattice distortions of the MBO3 � Fe3� crystals
[48]. The value 0.169 is the difference in the axial ratios cH=aH

of LuBO3 and FeBO3. From the spectrum of resonance lines
with S � 5 in LuBO3 � Fe3�, the value Dc0 � ÿ660 Oe was
obtained.

The compound GaBO3 � Fe3� has lattice parameters
close to those of FeBO3 and should therefore have approxi-
mately the same magnitudes of the pairwise and single-ion
interactions. Hence, in Eqn (9), we can neglect the contribu-
tion from the distortions caused by a `foreign' pair. In this
case, the constant Dcf remains equal to 1078 Oe [14, 31, 48].
The `single-ion' exchange contribution 2:26nAmc and, conse-
quently, the parameterA can be estimated from experimental
data for the FeBO3 crystal and be applied to GaBO3 � Fe3�

(the magnitude of this contribution is ÿ86 Oe). Based on the
EPR spectra, we obtained the value ÿ100 Oe for the
parameter A in GaBO3 � Fe3�. With the abovementioned
factors and the obtained estimates taken into account, the
constants of the spin Hamiltonian were found from the EPR
spectrum at S � 5ÿ3. From the dependences DcS�S� �
Dcf �Dc0 � A

������������������
S�S� 1�p

, and �aÿ F �cS�S� � �aÿ F �cf�
�aÿ F �c0 � BS�S� 1�, the values of DcS and �aÿ F �cS at
S � 1, 2 were then calculated with the use of fitting
parameters, and the positions of the corresponding reso-
nance lines in the spectrum were determined. If these lines
were present (this was the fourth criterion), the final variant of
the identification of the spectrumwas assumed. The spectrum
of pairs in LuBO3 � Fe3� thus identified is shown in Fig. 8.

2.4.5. Investigation of the basal-plane anisotropy in FeBO3

crystals by the method of antiferromagnetic resonance. The
possibility of the existence of the hexagonal anisotropy
predicted by the Dzyaloshinskii theory [9] in rhombohedral
weakly ferromagnetic crystals has long been doubted (for
compounds with S-state ions). The investigations performed
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on FeBO3 crystals in [51] grown under different conditions
have shown rather good agreement with the results of
measurements of different samples in the temperature range
30±300 K and gave grounds to assume that the observed
anisotropy is by no means due to the impurity ions (later, this
assumption was confirmed by the results of calculations [14,
32, 34]). On the contrary, the measurements performed on
different crystals at low temperatures (1.5±10 K) have shown
a significant spread of the values of resonance fields.

In the temperature range 5±7 K, a compensation point of
hexagonal anisotropywas revealed, at which a spin-reorienta-
tion phase transition occurs. Figure 9 shows the temperature
dependence of the effective energy of hexagonal anisotropy in
the FeBO3 crystal [14, 51].

The above results indicate that in crystals of ferric borate
synthesizedby themethods used in [14, 51], there are impurities
that significantly affect the linewidth and the basal anisotropy
at low temperatures. At the point of compensation and in its
vicinity, an anomalous behavior of the linewidth and a
hysteresis of the resonance field are observed.

2.5 Anisotropic interactions in paramagnetic
and magnetically ordered dielectrics with S ions
In this section, we compare the results of calculations of the
temperature dependence of the anisotropy of magnetically
concentrated crystals with experimental data.

2.5.1 Anisotropy constants of spin Hamiltonians of isolated
ions. Table 1 contains the values of the spin Hamiltonian
constants that are determined by the EPR method from the

dependences of the lattice parameters of diamagnetic analogs
corresponding to iron borate, manganese carbonate, hema-
tite, �CH3�4NMnCl3, MnF2, Y3Fe5O12 (cubic unit cell is
given in [52]), and EuO (Nal-type structure [37]).

2.5.2 Anisotropy constants of spin Hamiltonians of paired ions.
In passing from the description of isolated ions to the
description of pairs of ions, the physical picture of the
interactions becomes significantly more complex.

In view of the increase in the number of particles in the
system, the Heisenberg invariant of the isotropic exchange
energy is now introduced. The Hamiltonian for a pair of ions
has been obtained in terms of the total spin in [49], and in
terms of spins of isolated ions (with additional anisotropic
exchange terms), in [2]. In [15], a qualitatively different
physical picture is considered, according to which the
`single-ion' anisotropy appears as a result of covalent effects.
Such a variant of interactions has been calculated in
theoretical study [44], where a conclusion was made on an
analogous contribution (in terms of the operator structure [2])
of these processes to the `single-ion' exchange anisotropy.

In the diamagnetic analogs with an impurity of paired
paramagnetic ions, the axial constant of spinHamiltonian (8),
DcS�S��Dcf �Dc0�A

������������������
S�S� 1�p

, is proportional to the
exchange field H ex � �J=gmB�

������������������
S�S� 1�p

at the multiplets of
the pair. The fourth-order constant �aÿ F �cS of the spin
Hamiltonian has not been obtained in the approximation
under consideration [2, 44]. It is assumed (in particular, based
on experimental data obtained on pairs of Fe3� ions inMBO3)
that �aÿ F �cS � �H ex�2 for different multiplets of this
compound. It can be seen from Fig. 5 and the expression for
DcS�S� that for MBO3 � Fe3� compounds, the axial `single-
ion' constants of the spin Hamiltonian of the second and
fourth orders (DcS and �aÿ F �cS) are described well by
the approximate dependences � ������������������

S�S� 1�p
and S�S� 1�.

The fitting parametersA andB, which describe the `single-ion'
contributions in the system of MBO3 � Fe3� crystals, are
respectively proportional to cH=aH and �cH=aH�2 (see Figs 6
and 7). In Figure 10 [47] (see also [53]), the exchange-
dependent contribution to the `single-ion' constant of the
pair can be seen well. Extrapolating the dependence shown in
Fig. 10 to the zero exchange field at the multiplets of the pair
shows that the parameterDcS should be equal to the constant
of the spin Hamiltonian of an isolated ion plus the Dc0

contribution due to the distortion of the lattice by the
`foreign' pair.

As can be seen from Figure 11 [15], the `single-ion'
exchange fields of the axial anisotropy constants that
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Table 1. Values of the constants of the spin Hamiltonians of isolated ions determined using diamagnetic analogs corresponding to magnetically

concentrated crystals (in the magnitudes of lattice parameters)*.

Compound Dcfmc, Oe �aÿ F �cfmc,
Oe

acfmc, Oe Fcfmc, Oe acfmc, deg aacfmc, Oe adcfmc, Oe Facfmc, Oe Fdcfmc, Oe

FeBO3

MnCO3

a-Fe2O3

EuO
Y3Fe5O12

�CH3�4NMnCl3
MnF2

1005� 12

25 [16]
1797

43:9 [23]
ÿ133

189:3� 9

ÿ13:0 [16]
209:7

132� 20

ÿ2:2

ÿ56:7� 20 24� 2

272:5 65:4 135:8 0:8

* Dcfmc, �aÿ F �cfmc, acfmc, Fcfmc, and acfmc are the constants of Hamiltonian (3) (see also Fig. 1); aacfmc, Facfmc and adcfmc, Fdcfmc are the cubic and axial
constants of the spin Hamiltonian in octahedral and tetrahedral positions of the garnet lattice.
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describe magnetically concentrated compounds with S-state
ions also depend on the isotropic exchange field linearly.

2.5.3 Uniaxial and hexagonal anisotropy of rhombohedral anti-
ferromagnetic crystals. Temperature dependence. Figure 12
shows the temperature dependence of the uniaxial aniso-
tropy field HA of MnCO3 crystals [45]. In calculating HA

from the products of the exchange field and anisotropy field,
the results of experimental studies [36, 54±56] have been
used. The least-square fitting of the data was performed with
the use of the dependences of two mechanisms, dipole and
`single-ion'. One fitting parameter (D 0c � ÿ0:75 kOe, see
Section 2.3.5) and one fixed parameter, the calculated
anisotropy field (A 0dip � HAdip�0� � 3:82 kOe), were used.
According to the EPR data, the magnitude of D 0c (which
includes the contributions from isolated ions and paired ions
of the `single-ion' mechanism) is ÿ0:98 kOe.

Figure 13 demonstrates the temperature dependence of the
uniaxial anisotropy constants of FeBO3 crystals with an Fe2�

impurity [33] in comparison with the experimental data [57,
58]. The fitting was done together with the fitting of the

temperature dependence of the hexagonal anisotropy (see
Fig. 9). Two fitting parameters and four fixed parameters
were used. As the fitting parameters, the uniaxial anisotropy
constant c0A

0
2 � 9:87� 10ÿ18 erg ion, which is controlled by

Fe2� ions, and the parameter c0Bimp�1:125�10ÿ52 erg3 ion,
which also is controlled by Fe2� ions, were taken. The fixed
parameters were the dipole interaction constants; two
`single-ion' constants in the terms of the second �D 0c� and
fourth �E 0c� order, which are obtained from the EPR data,
and the hexagonal anisotropy constant found by extrapolat-
ing the Fe3� contribution from T � 77 K to T � 0, which is
equal to ÿ0:011 Oe (ÿ3:1 � 102 erg molÿ1). The quantity
A 0dip � HAdip�0� is equal to 3.66 kOe (10:25� 107 erg molÿ1)
[14, 27, 59]. According to the EPR data, the quantitiesD 0c and
E 0c, whose sum is the (constant) anisotropy field caused by the
`single-ion' contribution from Fe3�, at T � 0 are respectively
equal to ÿ0:84 kOe (ÿ2:35� 107 erg molÿ1) and ÿ0:20 kOe
(ÿ0:56� 107 erg molÿ1).

To describe the temperature dependence of the first and
second anisotropy constants in hematite, it is necessary to use
five fitting parameters and one fixed parameter (the magni-
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tude of the dipole contribution). The second constant can be
measured only at temperatures that do not exceed the Morin
temperature, i.e., only in the antiferromagnetic phase [60, 61].
The experimental temperature dependences of the anisotropy
fields of the first and second constants for hematite are given
in [60] and [61].

The simultaneous least-square fitting of the effective
fields of the first and second anisotropy constants gives
A 0ex � 3:20, D 0c � ÿ12:57, C 0ex�2:64, E 0c � ÿ0:97, and B 0ex �
ÿ2:58 kOe (see Section 2.3.5). The fitting results are shown
in Fig. 14.

The insufficiently exact N�eel temperature for hematite,
the use of the Brillouin function instead of the magnetizations
of the sublattices, and the relatively large number of fitting
parameters exert a negative effect on the precision of the
quantitative estimates of the anisotropy for these crystals.

2.6 Sources of uniaxial and hexagonal anisotropy
in magnetically concentrated crystals with S-state ions.
Generalized independent method of proper quantitative
description of magnetic anisotropy
Table 2 contains the experimental values of the anisotropy
fields in S-state ions inmagnetically concentrated crystals and
the fields determined from the data for the diamagnetic
analogs by the EPR method.

It can be seen from Table 2 that taking the `single-ion'
exchange anisotropy into account along with other contribu-
tions leads to a satisfactory agreement with the experimental

results. For the YFe3�BO3�4 compound, no EPR data for
diamagnetic analogs exist; therefore, a corresponding estima-
tion is impossible. However, because the temperature
dependence of the uniaxial anisotropy constant is described
well by the Brillouin function [3, 4], it is the dipole
contribution that dominates. The single-ion and `single-ion'
exchange contributions compensate each other. For HA in
FeBO3, Table 2 gives the values only due to Fe3� ions.

Using the above results, we can formulate a generalized
method of a proper quantitative description and prediction of
the anisotropy of magnetically ordered crystals with S-state
ions. The basis for such a generalization is the fact that both
single-ion and `single-ion' exchange mechanisms are char-
acterized by the same temperature dependence of magnetic
anisotropy [13, 29, 33].

The method includes [33, 53], first, the investigation of
magnetic anisotropy of an impurity-free system of the crystal
(calculation of the contribution from dipole interactions,
estimation of the single-ion contribution by the EPR method
in isostructural diamagnetic analogs with an impurity of ions
of a magnetically concentrated substance, and estimation of
the `single-ion' exchange anisotropy using EPR spectra of
pairs of paramagnetic ions in a series of diamagnetic analogs)
and, second, the calculation of the effect of an impurity (if
present) on the magnetic anisotropy.

The complete direct estimation of the contributions to the
hexagonal anisotropy of FeBO3 and to the cubic anisotropy
of EuO andY3Fe5O12 cannot be performed to date because of
the absence of independent experimental and theoretical
results. However, it follows indirectly from the general
picture of the interactions and available experimental data
(in particular, concerning the temperature dependences) that
the `single-ion' exchange mechanism should also make a
contribution to this anisotropy and correctly describe the
experimental quantitative data.

The experimental value of the effective hexagonal aniso-
tropy energy (field) extrapolated from T � 7 K to T�0 K is
oq�Fe3���ÿ3:1�102 erg molÿ1 (Hq�ÿ0:011Oe) [14, 32].
The theoretical value of this energy caused by the interaction
of ion spins with the crystal field is oqcfmc�Fe3�� �
ÿ5:3� 102 erg molÿ1 (Hqcfmc � ÿ0:019 Oe).

One of the hexagonal anisotropy mechanisms is the
coupling between the spin (not less than 2) with the cubic
electric field of the crystal. This coupling is manifested in that
the magnetic moments of the ions deviate from the nearest
cubic axes (or become inclined toward them) (see Fig. 1) and
therefore periodically leave the basal plane of the crystal upon
their rotation about the c3 axis. Because of the misorientation
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Table 2. Effective anisotropy fields* in magnetically concentrated crystals at T � 0 K.

Compound HAcfmc, kOe HAdip, kOe H ex
Amc, kOe DHA, kOe HA, kOe HATmc, kOe

Y3Fe5O12

EuO
MnF2

�CH3�4NMnCl3
FeBO3�Fe3��
MnCO3

a-Fe2O3

ÿ0:25
0:01

ÿ0:53 [62]
0:18 [53]

4:21� 0:05 [31, 33]
0:090 [16]

7:94 [15, 48]

0
0

ÿ8:37 [62]
6:77 [63]

3:66� 1% [14, 27, 59]
3:82 [27]
10:04 [28]

ÿ2:02
ÿ5:25� 0:1 [33]

ÿ1:04 [15, 16, 33, 48]
ÿ16:28 [15, 48]

0:12
ÿ0:24
0:88

ÿ5:67� 0:1
ÿ0:90 [33]

ÿ18:20 [15, 48]

ÿ0:13 [29]
ÿ0:23 [13]
ÿ8:02 [62]

4.16; 4.89; 5.95 [63]
2:20 [31]
3:01 [54]

ÿ0:22 [58, 59]

4:93
2:62� 0:2 [33]

2:87 [16]
1:69 [15, 48]

*HAcfmc is the single-ion éeld of the crystal calculated based on EPR data;HAdip is the calculated dipole anisotropy éeld in a magnetically concentrated
crystal;H ex

Amc is the `single-ion' exchange éeld calculated using the EPR data for pairs of ions;HA is the experimental value of the anisotropy éeld in a
magnetically concentrated crystal;HATmc is the theoretical value of the anisotropy éeld (the sum of contributions from the mechanisms that are taken
into account in this paper) in a magnetically concentrated crystal; DHA � HA ÿHAcfmc ÿHAdip � Hex

Amc.
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of the cubic axes x1, Z1, z1 and x2, Z2, z2 (see Fig. 1) and due to
the antiferromagnetic ordering of the sublattice moments, the
maximum deviations of the vector l are possible at the angles
j � pn=3, n � 0, 1, 2, ... [32]. These conclusions are in
agreement with the phenomenological theory [9, 10].

Although the origin of the Dzyaloshinskii±Moriya inter-
action D12�s1 � s2� in rhombohedral crystals has long been
clarified (antisymmetric anisotropic exchange [64]), the
method for determining the sign of D12 was developed only
recently [65]. In [65], the FeBO3 crystal was taken as the
sample for the analysis (two nonequivalent positions are
shown in Fig. 1). The crystal could rotate in the (111) plane
(in the rhombohedral setting) through an anglec about the c3
axis. The rotation of the vector of the constant magnetic field
acting on the crystal (which also lay in the (111) plane) was
specified by the angle Z. The anglesc and Zwere counted from
the twofold axis of the crystal.

The standard method for determining the magnetic
structureÐneutron diffractionÐdoes not make it possible
to determine the sign of the deviation of spins, which is
specified by the phase of the wave that interacts with the
crystal because of the low intensity of the wave. The new
method presented in [65] is based on the interference between
the resonance synchrotron scattering and magnetic scatter-
ing. Resonance scattering processes are controlled by electric
phenomena. It turns out that the signals of both resonance
and magnetic scattering are observed at the same positions of
Bragg reflections. These signals have comparable amplitudes,
which increase due to the interference effects. The sign and
amplitude of the magnetic scattering signal depend on the
direction of spins, which can be changed by rotating the
magnetic field vector in the crystal, whereas the resonance
scattering depends on the energy of the wave and orientation
of the crystal. The magnetic scattering phase can be
determined by controlling both these processes.

Figure 15 shows the shift of the resonance scattering peak
when rotating through the angle Z � 180�. An opposite shift
was observed when the resonance scattering phase was
changed by rotation through the angle c. The processing of
experimental data allowed determining the sign of the
Dzyaloshinskii±Moriya vector, the phase and amplitude of
magnetic scattering, and the direction of the shift. The sign of

the Dzyaloshinskii±Moriya interaction in the FeBO3 crystal
proved to be negative.

The authors of [65] also performed ab initio calculations
using the local density approximation (LDA) method with
the electrostatic Coulomb and spin±orbit interactions. The
calculated vectorD12��ÿ0:25 meV, 0,ÿ0:24 meV) lies in the
XZ plane (in [65], Xjjc2 is parallel to the c2 axis of the crystal,
and the external magnetic field H is parallel to Y, which
differs from the directions of the crystal axes and the direction
of the field H shown in Fig. 1). The calculated angle of the
sublattice angularity is 0:7�, and the experimental angle is
0:9�. All six symmetrically equivalent vectors have identicalZ
components, whereas the XY components give zero upon
summation.

3. Multiferroic bismuth ferrite.
Possibilities of the uniaxial anisotropy
investigation (with the use of a diamagnetic
analog with an Fe3+ impurity) in the parameter
region of the spin cycloid existence in BiFeO3

The BiFeO3 Seignette magnet, which exhibits magnetic and
electric ordering simultaneously, has been investigated in
numerous studies (see, e.g., [7] and the references therein).
The intensive growth of the number of publications in recent
years is related to the possibility of creating various unique
devices based on BiFeO3 [8]. The possibilities of applications
of BiFeO3 are determined to a significant extent by the
existence of magnetic and electric moments in it.

Multiferroic bismuth ferrite has the electric ordering
temperature TC � 1083 K [6]. At the Curie temperature TC,
BiFeO3 goes from the cubic perovskite phase into a
rhombohedrally distorted phase (with the unit cell doubled
along the c3 axis because of the antiparallel rotation of oxygen
octahedra about the [111] direction), which belongs to the
space group R3c [8]. The magnetic ordering occurs at
temperatures below the N�eel temperature TN � 643 K [6].

Recent neutron diffraction studies [66] have revealed a
complex spatially modulated structure with a large period in
BiFeO3. The magnetic moments of Fe3� ions, retaining the
mutual local antiferromagnetic orientation, become arranged
along the propagation direction (one of the twofold axes) of
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the modulated wave in the plane perpendicular to [111] [6] (a
schematic of the cycloid is given, e.g., in [6, 8]). The average
magnetic moment is then equal to zero, which makes it
impossible to efficiently control the electric properties via
magnetic actions and vice versa [8]. The nonzero magnetic
moment in BiFeO3 (which is determined by the Dzyaloshins-
kii±Moriya interaction) appears upon the suppression of the
cycloid, e.g., in an external magnetic field of about
180 kOe [8].

The magnetic anisotropy plays a significant role in the
formation of the region of existence of a spin cycloid and of
the critical field for its disappearance [8]. The critical field
calculated in [6] in the approximation of a harmonic cycloid is
given by

Hc �
���������������������������
2�K� 2Aq 2�

w

s
;

where Hc is the external critical field oriented along the
threefold axis, K is the uniaxial magnetocrystalline aniso-
tropy constant, A is the inhomogeneous exchange constant,
q is the magnitude of the wave vector of spin modulation of
the cycloid corresponding to the free-energy minimum, and w
is the susceptibility in the direction perpendicular to the
antiferromagnetism vector. The free energy that was used to
derive this expression is given in [6].

The phase diagram that describes the regions of the existence
of a spatially modulated spin structure is shown in Fig. 16 [8].
The expression for the free energy whose minimization was
used to derive this phase diagram is given in [8].

The magnitude of the electric polarization in BiFeO3

depends on the applied magnetic field [6]. The varying
polarization leads to a change in the internal electric field,
which causes Stark splitting of the levels of magnetic ions.
This leads to a change in the spin±orbit interaction and, as a

result, to a change in the energy of single-ion anisotropy [67,
68] and in the `single-ion' exchange anisotropy. Conse-
quently, the magnetic anisotropy in these crystals should
depend on the magnitude of the applied magnetic field.

Because the magnetic anisotropy of BiFeO3 in the region
of the existence of the cycloid (in weak and middle fields)
cannot be studied by the AFMR method [8], it can be
estimated using a ferroelectric diamagnetic analog, e.g.,
BiAlO3 (axial ratio of the hexagonal unit cell cH=aH � 2:49
[69], TC � 520 �C [70]). For BiFeO3, cH=aH � 2:42 [71]. The
X-ray diffraction parameters of the deviations of the posi-
tions of iron and oxygen ions in the unit cell of these
compounds from those characteristic of the space group R3c
are also close to one another [69].

4. Anisotropic interactions
and nanostructures. Skyrmions

The fundamental character of anisotropic interaction man-
ifests itself not only in `conventional' crystals but also in
crystals with nanostructures, for example, as skyrmions in
thin magnetic films (several atomic layers thick).

It has been shown in [72] that the electric field applied to a
film with the structureMgO (001) substrate/MgO (10 nm)/Cr
(10 nm)/Au (50 nm)/Fe (2±4 atomic layers)/MgO (10 nm)/
polyamide (1500 nm) can lead to large changes (about 40% of
the magnetic anisotropy magnitude) in Fe/MgO contacts,
which significantly exceeds the changes in the magnetic
anisotropy obtained previously under different experimental
conditions (different materials and different fabrication
technology).

The total anisotropy of the film is composed of the change
in the anisotropy caused by the energy of the demagnetizing
field, magnetocrystalline anisotropy, the surface anisotropy
of the Fe/MgO and Fe/Au interfaces, and the anisotropy
change due to the applied electric field. The electric field was
applied to the layers of polyamide (positive) and Au
(negative); as a result, the energy of the total magnetic
anisotropy changed, which led to a reorientation of the
magnetization. The change in the anisotropy apparently
occurs because of the change in the electron population of
3d orbitals of iron adjacent to the MgO barrier in the
magnetizing field perpendicular to the film surface [72].

Switching over the magnetization in tunnel contacts can
be used, for example, in developing low-power logical devices
and energy-independent memory cells.

One more interesting phenomenon caused by the Dzya-
loshinskii±Moriya interaction is skyrmions, which are spin
vortices about 20±100 nm in size. Skyrmions form an ordered
two-dimensional lattice in substances such as single-crystal
metallic compounds (MnSi) [73], strongly correlated metals
(Fe0:5Co0:5Si) [74], and some dielectrics (Cu2SeO3) [75].

The possibility of the existence of skyrmions was
predicted theoretically by Bogdanov and Yablonskii [76].
They drew an analogy, in particular, with superconductors,
in which inhomogeneous stable states can exist in the region
of a first-order phase transition induced by an external
magnetic field. It was shown theoretically that in magnets
of some symmetry in a certain range of external magnetic
fields, stable vortex formations analogous to states in
superconductors can appear. The skyrmions arise under
conditions of a helicoidal magnetic order upon the applica-
tion of a constant external magnetic field in a certain range
of temperatures.
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An important parameter in the description of vortices is
the topological index [77]

S � 1

4p

�
n

�
qn
qx
� qn
qy

�
dx dy ;

where n is the unit vector of the local magnetization and the
integral is taken over the two-dimensional unit cell. For
compounds such as ferromagnets and antiferromagnets,
S � 0. If S � �1, then a topologically stable knot exists in
the spatial distribution of the magnetization.

In this review, we mainly consider studies concerning the
investigation of skyrmions for two limit compounds (in terms
of conductivity): a metallic compound MnSi and a dielectric
compound Cu2OSeO3 (which is a multiferroic). These
compounds crystallize into a B20 cubic structure with a
shifted symmetry center. The unit cell of MnSi [78] is shown
in Figs 17a, 17b; the crystal structure of Cu2OSeO3 is depicted
in Fig. 17c; the magnetic structure of Cu2OSeO3 is given in
Fig. 17d.

Skyrmions could not be revealed experimentally for a long
time. It is only in 2009 that a newmagnetic phase was revealed
that was interpreted as a lattice of skyrmions. Notably, the
neutron diffraction data have shown the existence of
magnetic Bragg peaks of hexagonal symmetry compatible
with the superposition of three helicoids oriented at angles of
120�. These helicoids lie in the plane perpendicular to the
applied magnetic field. A theoretical analysis in [73] in terms
of the Ginzburg±Landau model confirmed the existence of a
lattice of skyrmions that form the so-called A phase.
However, according to the experimental data [73], this spin
structure in reality can represent either a lattice of skyrmions
or a superposition of helices. Neutron diffraction experiments
cannot resolve this question [79].

The existence of skyrmions in the form of separate spin
structures can be confirmed using topological Hall effect
measurements [79]. The source of the topological Hall effect
is the Berry phase caused by concentrated conduction
electrons on the background of a strongly inhomogeneous
magnetic state of the skyrmion lattice [79]. The topological
Hall effect arises along with the normal Hall effect, which is

proportional to the applied magnetic field. The topological
Hall effect is related to the ferromagnetic components of the
magnetization [79]. Figure 18 shows the dependence of the
resistance caused by the contribution from the topological
Hall effect on the applied induction B in the MnSi crystal at
different temperatures (the vector of current is parallel to
[001]; the induction vector is parallel to [110]). This depen-
dence demonstrates the existence of skyrmions in the region
of the A phase.

The above-described methods are not visual. The direct
observation of skyrmions was first performed using Lorentz
electron microscopy on Fe0:5Co0:5Si in [74]. A photo of
skyrmions [75] obtained using a Lorentz microscope for a
thin film of Cu2OSeO3 is shown in Fig. 19a; Fig. 19b
illustrates a model of skyrmions. Previously, the Lorentz
microscopy was used to observe domain walls in ferromag-
netic films. The domain walls are not seen in the focusedmode
in the electron microscope; they become visible as black or
white regions only if the microscope is defocused. Upon
passing through neighboring domains, two electron beams
are reflected in different directions in such a way that the two
beams overlap or become separated and, thus, the intensity
increases or decreases along the domain wall [80].

Because the MnSi compound is metallic, the first
investigations of its properties were performed based on the
energy band theory. In [81], a phase diagram (Fig. 20)
constructed based on the experimental data for MnSi
available in the literature is shown. This diagram was
interpreted and the properties of manganese silicide were
explained in terms of the energy band theory. In the magnetic
fieldH � 0 atT � 29 K, the spins, according to this diagram,
begin ordering helically with a period of 18 nm. At
temperatures below TC, an increase in H to � 1 kOe leads to
a transition from the helical order to a conical state, and at
H � 6 kOe, to a ferromagnetic state. The skyrmion phase is
observed in a narrow region of temperatures and fields.

However, in recent years MnSi is again attracting the
attention of researchers in view of the problem of helicoidal
states, skyrmions [81], and contradictions with the energy
band model that was used initially for the description of
experimental data. In particular, it was noted in [81] that,
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first, the skyrmions are localized spin `particles' [76]; second,
according to LDA calculations [81, 82], the spin density,
whose magnitude is independent of the external field up to
� 1000 kOe, is concentrated mainly in the Mn ion; in the Si
atom, it composes only 2±3%of themagnetic moment ofMn;
and, third, experimental data on the high-frequency dynamic
conductivity of MnSi contradict the model of the weak
itinerant-electron magnet.

We note that according to the recent data in [83], the
crossover between the paramagnetic (PM) and spin-polarized
(SP) phases is absent (see Fig. 20). The regions of the PM
phase and SP phase are separated by a vertical straight line
T � TC.

From the microscopic standpoint, the nature of the
magnetic moments that form the skyrmion states in MnSi is
unclear. On the one hand, the theory in [76] suggests the
existence of localized magnetic moments (LMMs), and

almost all experiments are interpreted in terms of this
concept. On the other hand, MnSi is a conducting material,
and it is precisely MnSi that was considered an example of a
weak band (itinerant-electron) ferromagnet with strong spin
fluctuations [84]. The band theory [85] gives a spin moment in
the Mn ion equal to about mB. The experimentally observed
dependence of theCurie±Weiss paramagnetic susceptibility at
temperatures above TC agrees with the spin-fluctuation
theory [84], and the calculated effective magnetic moment is
close to that observed at temperatures aboveTC. However, in
the range of temperatures below TC, the measured magnetic
moment (0:30mB per Mn ion) does not agree with the results
of band theory calculations, which do not take quantum spin
fluctuations into account. At the same time, spin relaxation in
the system of LMMs inMnSi, which determines the EPR line
width, is described in terms of the Moriya spin-fluctuation
theory [81]. Thus, using the example of MnSi, we see the
manifestation of the classical dualism of the magnetism of 3d
electron systems: some properties can be described in the
model of LMMs, but the description of others requires
itinerant electrons.

The authors of [81] have studied the EPRonMnSi crystals
(at a frequency of 60GHz) in the temperature range 4.2±300K
in external magnetic fields up to 70 kOe. The results of the
EPRmeasurements were explained based on the spin-polaron
model, which previously proved to be efficient for describing
the magnetic properties of FeSi [81, 86]. According to this
model, it is assumed that antiferromagnetically ordered band
carriers are formed around ferromagnetically localized
magnetic moments. It follows from the EPR measurements
that the resonance field Hres is constant in the entire
temperature range (see Fig. 20); the g factor in this case is
equal to approximately 2, which suggests that the wave
function of the localized spin moments of the positively
polarized charge carriers has an S-like shape.

The sources of helicoidal and conical states in MnSi
(which are responsible for the formation of skyrmions) were
considered in [87] based on the Heisenberg Hamiltonian

Ĥ0 � 1

2

X
i; j

ÿÿ Jsi sj �Di j�si � sj�
�ÿ gmB

X
i

Hsi ; �16�

800 Oe
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a

b

Figure 19. (a) Photo of skyrmions in a thin magnetic film of Cu2OSeO3 at

T � 5 K in the (111) plane (obtained by Lorentz microscopy). (b) Model

of a skyrmion [75].
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where the first term in the parentheses describes the isotropic
exchange interaction, the second term corresponds to the
Dzyaloshinskii±Moriya interaction, and the last term
describes the interaction of spins with the external magnetic
field. The summation over the index i ranges all ions of the
crystal; the summation over j ranges the nearest neighbors of
the ions i.

The energy under the condition gmBH � D 2=J can be
written as

E � NJ

�
ÿ 12ÿ 2

�Dx �Dz�2
J 2

ÿ 1

3

�Dx ÿ 2Dy ÿDz�2
J 2

ÿ 12
�gmBH �2

�Dx ÿ 2Dy ÿDz�2
�
; �17�

where N is the number of unit cells in the crystal. The first
term in the brackets describes the isotropic exchange energy,
the second term is the energy responsible for the deviation
from the ferromagnetic order, the third term is the `twisting'
of the ferromagnetism vector (within the interaction of the
unit-cell ions with the nearest neighbors if N � 1) character-
istic of the helicoidal structure, and the last term describes the
effect of the external magnetic field. When the external
magnetic field Hext exceeds the critical value Hc �
�Dx ÿ 2Dy ÿDz�=�6JgmB�, the helicoid passes into the con-
ical phase. Here, the magnetic field is oriented along the c3
axis and coincides with the orientation of the wave vector.

In bulk samples, skyrmions exist only in narrow ranges of
fields and temperatures. It was shown in [88] that the easy-
plane uniaxial anisotropy substantially extends the region of
existence of skyrmions. In particular, the effect of this
anisotropy is observed in films. Figure 21 displays the phase
diagram in the ``applied magnetic field±temperature'' coordi-
nates for the bulk and film samples of ferrimagnetic magneto-
electric Cu2OSeO3 [75]. The magnetic structure of Cu2OSeO3

is given in [75]; TC � 60 K. The magnetic period of the
helicoid modulation is 63 nm [88], which is much greater
than the lattice parameter (0.89 nm). Skyrmions inCu2OSeO3

have recently been observed by Lorentz TEM [75] and small-
angle neutron spectroscopy [90, 91]. In dielectrics, skyrmions
can be manipulated by external electric fields, rather than by
currents, as in metals and semiconductors, thereby avoiding
ohmic losses. Such a possibility, in particular, has been
demonstrated in [91, 92]. Figure 22a [90] demonstrates how
the angle of rotation of the skyrmion lattice changes under the
action of static electric and magnetic fields of different
polarities. We note that each skyrmion has an electric dipole
moment [89].

In recent years, the dynamic properties of Cu2OSeO3

crystals have also been studied both theoretically [93±95] and
experimentally [95, 96]. The magnetoelectric resonance in the
multiferroic Cu2OSeO3 includes oscillations of not only the
magnetic field vector but also the electric moment vector,
which should interact with corresponding fields. To trace the
effect of variable fields on the response of skyrmions in
Cu2OSeO3, the problem was solved, first, based on the
Heisenberg Hamiltonian analogous to (16) [93]. A lattice of
skyrmions with a local distribution of spins was constructed.
Then, to take the effects of dynamic variables into account,
the Landau±Lifshitz±Gilbert equation [92, 93] was solved:

dmi

dt
� ÿmi �H eff

i �
aG
m

mi � dmi

dt
;

where mi is the classical spin moment per the unit cell
tetrahedron of the crystal, m � jmij, and i runs over all
tetrahedra. The effective field was calculated based on the
Hamiltonian Ĥ�Ĥ0�Ĥ 0�t�,H eff

i �ÿqĤ=qmi, where Ĥ
0�t� is

the specified disturbance; and aG is the damping constant.
The variable field Ĥ 0�t� was applied and the magnetic and
electric momenta were calculated for the N�N � 288� 288
positions of Cu2� ions.

The possible types of skyrmions in Cu2OSeO3 under the
resonance microwave action are shown schematically in
Figs 22 (b±d) [95]. The modes with counterclockwise
(Fig. 22b) and clockwise (Fig. 22c) rotation are observed at
a frequency of about 1 GHz in the fields of 250±400 Oe [95];
and the `breathing' mode (Fig. 22d), in which the skyrmions
alternately shrink and grow in size, is observed at 1.5GHz. As
can be seen from (17) (see also Section 2.6), the direction of
`twisting' in skyrmions is determined by the sign of the
Dzyaloshinskii±Moriya interaction.

It has been shown in [94, 95] that the resonance interaction
between the electric and magnetic systems in Cu2OSeO3 leads
to a large `diode' effectÐdifferent absorption of the electro-
magnetic wave depending on the direction of the vector ko

that characterizes the wave. This effect (� 20 %), which arises
as a result of the excitation of the `motion' of skyrmions, can
be used in applications as a rectifier of microwave radiation.
The conditions under which such a resonance phenomenon
can be observed in Cu2OSeO3 are given in [95]: kojjP�M, in
particular, Pjj�001�, Hjj�110�jjM, and kojj�1�10�. Here, P and
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M are the constant parts of the respective electric and
magnetic vectors.

As can be seen from the survey of phase diagrams (see,
e.g., [75, 81]) and of the results of calculations (in particular,
[87, 93, 94]), the condition for the appearance of skyrmions in
magnetic crystalline structures such as MnSi and Cu2OSeO3

is the existence of a helicoidal structure at certain magnetic
fields and temperatures. The source of the helicoidal structure
is the competition between the Dzyaloshinskii±Moriya
interaction and isotropic exchange. The presence of easy-
plane uniaxial anisotropy in thin films substantially extends
the region of existence of skyrmions [75, 88].

5. Conclusions

In the case of `conventional' objects, the results presented in
this review indicate the possibility of solving the problem of
an independent quantitative description and prediction of the
magnetic anisotropy of magnetically concentrated crystals
with ions in the S state. The solution of this problem opens
new possibilities for designing promising materials based on
known materials in the case of the existence of isostructural
crystals with lattice parameters close to those of the initial
magnetically concentrated substances. The investigation
methods involving diamagnetic analogs were chosen so as to
avoid using extremely high (150±250 kOe) external magnetic
fields in experiments on magnetically concentrated crystals
(such fields are by no means always available [8, 57]).

Measurements of magnetic anisotropy in the region of the
existence of a spin cycloid (in small and medium fields [8]) in
BiFeO3 prove to be impossible. But the anisotropy can be
estimated using compositions such as BiAl1ÿxFexO3 with a
small content of iron (sufficient to ensure the observation of
EPR spectra of single ions and pairs of ions).

It is obvious that skyrmions have been studied much less
than `conventional' structures. Nevertheless, there are quite
numerous data suggesting the fundamental importance of
anisotropic interactions, which in the case under considera-
tion determine the magnetic nanostructures and the struc-
tures of `traditional' compounds.

Certain hopes are pinned on the application of skyrmions
in practice. Notably, the potential of the application of

skyrmions as carriers of information and tools for its
processing in magnetic memory devices has been considered
in [97]. However, wide applications of skyrmions require
additional theoretical and experimental investigations,
including the development of means to efficiently control
their behavior and the search for new materials with high
Curie temperatures.
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