
Abstract. We analyze multiple internal reflections of particles
and photons undergoing one-, two-, and three-dimensional tun-
neling. Results obtained by using the time-dependent
SchroÈ dinger equation for nonrelativistic particles and those
obtained with the time-dependent Helmholtz equation for elec-
tromagnetic waves are presented. The paper closes with conclu-
sions and considerations for future research.

1. Similarity between particles and photons
in propagation and tunneling behavior

There is a well-recognized formal mathematical analogy
between the time-dependent SchroÈ dinger equation for non-
relativistic particles and the time-dependent Helmholtz
equation for electromagnetic waves. The fact that the
particle wave function and the classical electromagnetic
wave packet are both interpreted in probabilistic termsÐ
the wave packet is the ``wave function of a single photon''
according to Refs [1, 2]Ð is, importantly, a sufficient reason
for giving similar definitions of the mean moments and
durations of propagation, collision, and tunneling processes
involving particles and photons. The only weakness in this
analogy lies in the different energy±momentum relations,
linear for photons and quadratic for nonrelativistic zero-
rest-mass particles, a fact that gives rise to a physical
difference between the broadening of a particle wave packet
and the absence of broadening of the wave function of a single
photon.

Having in mind the waveguide experiments in Refs [3±7],
we consider a hollow rectangular waveguide with narrowing

(Fig. 1), which has a cross-sectional area ab �a < b�. In
the secondary quantized form, the probabilistic one-photon
wave function is usually described by a plane wave
packet [1, 2]

A�r; t� �
�
k0>0

d3k

k0
j�k� exp �ikrÿ ik0t� ; �1�

where r � fx; y; zg, j�k� �P2
i�1 ki�k�ei�k�, eiej � di j,

ei�k�k� 0, i; j � 1; 2 (or y; z if kr � kxx), k0 � o=c � e=��hc�,
k � jkj � k0, and ki�k� is the probability amplitude that the
photon has the momentum k and the polarization corre-
sponding to ei. Then the quantity jki�k�j2 dk is proportional
to the probability of the photon being in the momentum
interval between k and k� dk with the polarization ei. Here,
A is the vector potential in the gauge where divA � 0,
E � ÿ�1=c� qA=qt is the electric field strength, and
H � rotA is the magnetic field strength. Although a photon
cannot be polarized along its direction of motion, if the
motion is in one dimension, a space±time probabilistic
interpretation can be applied to Eqn (1) along the x axis
(which is the direction of motion) [2].
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Figure 1. Narrow part of the waveguide with cross section dimensions a

and b, both smaller than the wavelength, acting as a barrier to photons as a

microwave is guided through.



In the special case of quasimonochromatic photon wave
packets, we can use the stationary phase method for particles
[8] [with jki�k�j2 dk! d�kÿ �k�] to obtain a similar expression
for the phase tunneling time,

t phtun; em �
2

cwem
; wemL4 1 ; �2�

where wem is the imaginary momentum of the tunneling
photon wave packet. From Eqn (2), it readily follows that
for wemL > 2, the effective tunneling rate

v eff
tun �

L

tphtun; em
�3�

exceeds the speed of light c.
The Hartmann effect for the one-dimensional motion of

quasimonochromatic particles tunneling through potential
barriers was analyzed in [9, 10]. The Hartmann effect, first
discovered in 1962 [11], consists in the fact that the phase
tunneling time is independent of the barrier width for a
sufficiently wide barrier. This result is also consistent with
experimental data [3±7] for photons.

Electromagnetic waves and photons tunnel through
`photon barriers' similarly to particles tunneling through
potential barriers. The first experimental work [12] on the
tunneling of classical damped electromagnetic waves used a
two-prism setup similar to that shown in Fig. 2b. Such
barriers were created to study the propagation of microwave
electromagnetic waves through waveguides, of optical elec-
tromagnetic waves through devices with imperfect total
internal reflection (Fig. 2), etc. Later work [13±19] pro-
duced results on the tunneling of optical photons (we also
note a theoretical analysis of photon tunneling in Ref. [17]).
Figure 2a is a schematic of the experiment in Ref. [18].
Figure 2b shows a two-prism setup with which the spatial
shift of the reflected and transmitted beams can be seen in
the framework of geometric optics [19].

We also note that experimental work on the Hartmann
effect for two barriers is already available [20, 21], studying
off-resonance scattering of electromagnetic waves through
waveguides [22] and optical photons in fiber optics [23]. In
both cases, tunneling occurs in the region very far from
resonance, and hence the total phase tunneling time turns
out to be independent of both the barrier width and the
barrier separation.

The phenomenon of faster-than-light motion observed in
microwave and optical experiments with electromagnetic

waves (Refs [3±7, 15, 16, 18, 19] and some later ones)
generated an extensive discussion of the idea of relativistic
causality (see, e.g., Refs [3±7, 9, 10, 18, 19, 22±36]), with no
consensus reached yet. The debates continue, as do the
experiments, and we do not discuss this in more detail here.

2. One-dimensional tunneling

The analysis of multiple internal reflections for one-dimen-
sional potentials has a long history (see, e.g., Refs [24±33]).
While this problem is trivial for attractive potentials and for
above-barrier energies in the presence of barriers, this is not
so for below-barrier energies in the presence of tunneling.
This is where damped and antidamped waves come into play,
each of which carries zero flux. Corresponding to nonzero
fluxes are linear combinations of damped and antidamped
waves.

Multiple successive reflections from the inner walls of the
barrier being tunneled through can be effectively studied by
applying the tunneling time analysis formalism developed in
Ref. [10] using the results in Refs [37±44]. To make the
analysis transparent, we limit ourselves to the simplest case
of a rectangular barrier of height V0 in the interval �0; a� and
describe tunneling evolution in terms of a picture of actually
traveling wave packets, assuming that the packets are
composed of stationary plane waves and that the above-
barrier energy cutoff is given by g�k� ! g�k�Y�Eÿ V0�,
where Y�Eÿ V0� is the Heaviside step function. Instead of
matching stationary wave functions at the points x � 0 and
x � a, as is usually done to find analytic expressions for the
reflection �Ar� and transmission �At� amplitudes and the
amplitudes of the damped and antidamped waves (a and b,
respectively), we turn to the analysis of how the initial wave
packet penetrates through the first wall of the potential
barrier. In this analysis,

(1) the effect of the second (back) wall of the potential
barrier is neglected because the final wave packet has not yet
reached the wall due to the finite propagation velocity;

(2) the finite wave packet requirement is not violated for
infinitely wide barriers (because the increasing antidamped
waves have not yet reached the back wall); and

(3) wave packets are constructed based on the subsequent
stages of multiple internal reflections, which are analytic
continuations of those expressions corresponding to the
traveling waves for above-barrier energies.

If we assume that the barrier is rectangular, that the
tunneling packet has not yet felt the second wall, and that
the packet already inside the barrier initially contains only
convergent waves, then the matching condition for the wave
packet and its derivative with respect to x, in the stationary
approximation, yields two linear inhomogeneous equations
for the unknowns A

�0�
r and a0. As the wave packet penetrates

into the barrier region and then through the second wall, it
splits into two parts, one that has tunneled across the barrier
and propagates outward and the second that has reflected
from the second wall and propagates back into the barrier.
The matching condition for the stationary wave function at
x � a at the second stage, as at the first stage, gives two linear
inhomogeneous equations for the unknowns A

�0�
t (the

amplitude of the stationary wave that has passed outward
through the second wall) and b0 (the amplitude of the
antidamped wave that has been reflected from the second
wall and moves inward). The wave packet reflected from the
second wall moves inside the barrier toward the first wall and
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Figure 2. (a) Imperfect total internal reflection and the tunneling of

damped waves. (b) Experimental schematic [18] including the Goos±

HaÈ nchen effect.
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then splits into two packets: a) one that has passed this wall
(in addition to the packet reflected inward at the first stage),
and b) one reflected from the first wall forward inside the
barrier. Matching the wave function at x � 0 again, as at the
first two stages, yields two linear inhomogeneous equations
for the unknowns A

�1�
r (the amplitude of the stationary plane

wave that has passed through the first wall backward into
region I) and a1 (the amplitude of the stationary dampedwave
reflected from the first wall backward to the barrier region II).
This third stage, naturally, corresponds to the first internal
reflection.

The processes involved in the second and third stages can
be iterated by considering successive internal reflections with
an ever decreasing wave vector (with particles undergoing
more internal collisions with the walls as the wave packet
partially escapes outward through the wall). Describing the
tunneling process in this way necessarily involves themultiple
internal reflection approach [40±44]. It is readily seen that any
of the subsequent stages can be reduced to one of the first
three.

Thus, requiring that the wave packet and its first
derivative with respect to x be continuous, we obtain
recursive relations for an, bn, A

�0�
r , and A

�n�
t for all stages of

the wave packet tunneling process. Here, n � 0; 1; 2; . . . labels
the stage of the wave packet evolution inside the barrier, with
n � 0 corresponding to the stage at which the packet enters
the barrier.

The total evolution of a wave packet tunneling through a
barrier is described by summing over all possible stages,
giving

At �
X1
n�0

A
�n�
t ; Ar �

X1
n�0

A�n�r ; a �
X1
n�0

an ; b �
X1
n�0

bn :

The results for a, b,At, andAr were found to agree with those
obtained by imposing the standard matching conditions on
the wave function corresponding to the solution of the
SchroÈ dinger equation [44]. Moreover, the replacement
iw! k1, where k1 � �2m�Eÿ V0��1=2=�h is the wave number
in the case of above-barrier energies �E > V0�, transforms all
the above expressions for a, b, At, and Ar into ones for the
same quantities obtained in terms of multiple internal
reflections for the usual motion of particles with above-
barrier energies [44].

Detailed calculations yield the following for the tunneling
and reflection phase times and for total tunneling and
reflection times [44]:

ttun � a

v
� �h

X1
n�0

q�argA�n�t �
qE

ÿ!
wa!1 t �1�tun �

2

vw
;

�4�

trefl �
X1
n�0

q�argA�n�r �
qE

� ttun ÿ!
wa!1t

�1�
refl �

2

vw
:

It is clear that the Hartmann effect manifests itself not only in
ttun but also in all t �n�tun, n � 1; 2; . . . . This agrees with the
theoretical finding [45] that the motion of damped and
antidamped waves is always superluminal with a near-zero
tunneling time. Thus, calculations with Eqns (4) clearly show
that in the approximation as wa!1, t �1�tun at the first
tunneling evolution step, t �n�tun at the nth tunneling evolution
step, and ttun of the total resulting tunneling (i.e., the sumover
all steps) are equal to one another and tend to zero.

In view of the analogy between the tunneling of particles
and photons that was studied in Refs [9, 10], the obtained
results can be extended to tunneling processes involving
transmission of particles and tunneling of photons simulta-
neously.

3. Two-dimensional tunneling

We first follow Ref. [46] to briefly describe the motion of a
nonrelativistic particle using the quasimonochromatic
approximation with the stationary SchroÈ dinger equation in
the form�

q2

qx 2
� q2

qy 2
� 2m

�h 2

ÿ
E� V�x; y���C�x; y� � 0 ;

whereC�x; y� is the stationary wave function,m is themass of
the particle,V�x; y� is the potential (barrier), andE is the total
energy.

We define regions I and II as regions of zero potential,
V�x� � V�y� � 0: I, for ÿ1 < x4 0, ÿ1 < y <1, II for
a4 x <1, ÿ1 < y <1. Region III contains the barrier
V�x� � V0 > 0 and V�y� � 0 (04 x <1, ÿ1 < y <1).
All three regions extend to infinity along the y axis (parallel
to the I/II as well as II/III interfaces). The problem has y-
translational symmetry in all three regions because V�y� � 0.

In the stationary scheme (see Fig. 3), the initial plane wave
exp �ikr� with k � fkx; kyg, r � fx; yg, jkj � k � k 2

x � k 2
y ,

�h 2k 2
x=�2m� � E 2

x , �h 2k 2
y =�2m� � E 2

y and with the total energy
E � E 2

x � E 2
y (which is kinetic energy in regions I and II)

describes a free particle traveling to point �x � y � 0� in
region I.

We consider the above-barrier transmission Ex > V0. At
the point �x � y � 0�, the first externally reflected plane

y

Ain;2
r

y0y

A1
penAex;1

r

Ain;1
r

y0

A2
pen

Aex;2
r

y0y

A3
pen

Aex;3
r

yy0
A1

t

y0

yy0
A3

t

y

y

A2
t

0 a x

Dy

Dy

Dy

y

I II III

I II III

Figure 3. Schematic illustrating multiple two-dimensional collisions,

above-barrier transmission, and propagation of nonrelativistic particles.
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wave Aex; 1
r exp �ikrr� appears, where Aex; 1

r is the amplitude of
the first reflection from the left boundary of region I,
k ex
r � fÿk ex

x ; kyg, and the first wave that enters region II is
c 1
II � A1

pen exp �ikpenr�, where A1
pen is the wave amplitude,

kpen � fk pen
x ; kyg, k pen

x � �2m�Ex ÿ V0��1=2=�h, and Ex > V0.
Further, at the first exit point (x � a, y � Dy), where Dy is the
first upward shift in region II (due to motion with the wave
vector ky along the y axis), two plane waves appear: c 1

III �
A1

t exp �ikr� (A1
t is the amplitude), the first wave that

transverses region III, and Ain; 1
r exp �ik in; 1

r r� (with the
amplitude Ain; 1

r and k in
r � fÿk pen

x ; kyg), the first wave that is
reflected (into region II). It is clear that the shiftDy is given by

Dy � a tan y 0; tan y 0 � ky

k pen
x

; �5a�

or

Dy � �hky
m

tph; penx � a tan y 0 ; �5b�

where t ph;penx � am=��hkpen
x � is the phase time for a particle

traveling the distance a at the velocity �hkx=m, i.e., the time
(calculated by the stationary phase approximation) needed
for a quasimonochromatic particle to travel along the x axis
in region II from x � 0 to x � a.

By matching the waves and their first derivatives q=qx at
the points �x � y � 0�, �x � a, y � Dy�, �x � 0, y � 2Dy�,
�x � a, y � 3Dy�; . . . ; we obtain [neglecting the plane wave
exp �ikyy�] the following amplitudes: for the nth wave that
has entered region II, An

pen; for the nth wave reflected into
region II, Ain; n

r ; for the nth wave externally reflected into
region I, Aex; n

r ; and for the nth wave that has tunneled into
region III, An

t .
In the case k � kx, with the angle y � 0 (see Fig. 3), i.e.,

when the incident plane wave is perpendicular to the first
boundary and Dy � 0, it is easy to see that

k pen
x

kx
jA1

penj2 � jAex; 1
r j2 � 1 ;

k pen
x jA1

penj2 � k pen
x jAin; 1

r j2 � kxjA1
t j2

due to the flux conservation in the first passage through the
points �x � y � 0� and �x � 0, y � a�.

In the case of one-dimensional transmission (for y � 0,
when the incident plane wave is perpendicular to the first
boundary and Dy � 0), all expressions, including those with
n � 1; 2; . . . ; are identical with the corresponding expressions
in Ref. [44] obtained by time analysis (for a stationary phase)
for one-dimensional tunneling.

We next proceed to analyze sub-barrier tunneling at
Ex < V0. If the angle y is sufficiently large, such that
p=2 > y > ycrit � tan �ky=k crit

x �, where k crit
x is determined

from the equation �h 2�k crit
x �2=�2m� � V0, then Ex < V0, and

the values of k pen
x are imaginary, i.e., k pen

x � iw with w > 0,
giving rise to sub-barrier tunneling, k 2

y � k 2 � w 2. In this
case, we pass from describing sub-barrier tunneling to
describing above-barrier tunneling by introducing w via the
substitution k pen

x � iw. Then, instead of traveling waves
exp ��ik pen

x x� (in region II), damped an exp �ÿwx� and
antidamped bn exp �wx� waves appear, as illustrated in Fig. 4.
We here used analytic continuations from the region of real
(above-barrier) wave numbers to the region of imaginary
(sub-barrier) wave numbers in a way similar to that used in

Ref. [44]. The results in Ref. [46] are identical to their one-
dimensional counterparts obtained in Ref. [44].

The shift along the y axis, denoted by Dy in Fig. 4, is given
by equations similar to Eqn (5b):

Dny � �hky
m

t ph�ex�; nt�r�; x�a�0� ; �6�

where

t ph; nt; x�a �
a

vx
� �h

q
qE

argAn
t ; n � 1; 2; . . . ; �7�

t ph; ex; nr; x�0 � �h
q
qE

argAex; n
r ; n � 1; 2; . . . : �8�

The quantities t ph; nt; x�a and t ph; ex; nr; x�0 are respectively the phase
times of travel (the travel times of quasimonochromatic
particles calculated in the stationary phase approximation)
for the nth stage of sub-barrier tunneling through the point
x � a and for the nth stage of external reflection from the first
boundary at the point x � 0 [9, 10]. Clearly, the shifts Dny are
different for different n � 1; 2; 3; . . . [�h q�argAn

t �=qE and
�h q�argAex; n

r �=qE slightly increase with n], but are always
proportional to 2=�vw� in the limit wa!1. As the order n
in An

t and Aex; n
r increases, the waves that have tunneled and

been externally reflected are rapidly suppressed by the factor
exp �ÿwa�.

There is also an alternative approach to two-dimensional
tunneling. Rather than using analytic continuations as in
Refs [40±44], it is possible [47] to neglect the multiple internal
reflections of damped and antidamped waves and to use a
single linear combination of waves a exp �ÿwx� � b exp �wx�
for the kx component in region II and a singlewave exp �ikyy�
for the ky component in region II, which yields the following
expression for a single shift along the y axis at the second (I/II)
interface as shown in Fig. 5:

Dy � �hky
m

tpht;x�a ; �9�

y
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Figure 4. Schematic illustrating multiple two-dimensional reflections, sub-

barrier transmission, and propagation of a nonrelativistic particle.
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where

t pht; x�a � ttun � a

v
� �h

q argAt

qE

� 1

vw

k 2
0;x sinh �2wa� � 2wak 2

x �w 2 ÿ k 2�
4k 2

xw 2 � k 2
0; x sinh

2 �wa� ; �10�

At �
X1
n�1

An
t � 4ikxw

exp �ÿwaÿ ikxa�
Fx

;

Fx � �k 2
x ÿ w 2�Dÿ � 2ikxwD� ;

with D� � 1� 4 exp �ÿ2wa�, k 2
0;x � k 2

x� w 2� 2mV0=�h
2.

This leaves us with a single transmitted two-dimensional
wave At exp �ikxy� exp �ikyy� (in region III) traveling parallel
to the incident wave. From Eqn (10), it is clear that, exactly as
in the one-dimensional case, the tunneling time tph; nt;x�a at the
first stage and the total tunneling time t pht; x�a (corresponding
to the sum over all stages) are essentially vanishing for
superluminal velocities and are equal to each other in the
approximation wa!1.

Thus, we have two different approaches to describing a
two-dimensional tunneling collision of a particle. The first
(see Fig. 4) uses Eqns (5a), (5b), (6)±(8) and the substitutions
k pen
x ! iw, An

pen ! an, Ain; n
r ! bn to describe an infinite series

of internal reflections and transmitted waves. The second
approach (see Fig. 5) fully neglects multiple internal reflec-
tions and corresponding transmitted waves and considers a
single tunneling shift and a single transmitted wave parallel to
the incident wave

Being different, both approaches highlight the fact that
sub-barrier tunneling is nonlocal in nature, leading to the
Hartmann effect for the tunneling phase time in the limit
wa!1. It only remains to find which of the two actually
describes tunneling. Our approach (see Fig. 4) is supported
not only by the methods described in Ref. [44] but also by the
experimental data in Refs [48, 49] (which have not most likely
been properly processed).

Using the analogy between the motion of a photon and
that of a wave, the results obtained above can be extended to
the two-dimensional transmission and tunneling of photons. In
considering photons propagating through homogeneous
glassy media I and III and penetrating and tunneling through
a homogeneous air layer, we can again refer to Figs 3±5. In
this case,

n � sin y 0

sin y
�11�

is the light refractive index for glass (assuming that the same
for air is unity). Then Fig. 4 corresponds to photon
transmission to layer II for incidence angles less than the
critical value ycrit � tan �ky=k crit

x �, which is the angle of total
internal reflection for incident photons polarized perpendi-
cular to the light incidence plane xy.

Figures 4 and 5 correspond to the total internal reflection,
slightly distorted due to the passage through layer II into the
glassy medium III, of polarized light tunneling through slit II
at an angle of incidence y > ycrit; this is true for both
approaches, the two-dimensional particle tunneling with
multiple internal reflectionsÐthe approach presented above
and, in a somewhat different form for light, in Refs [48, 49]
(see Fig. 4)Ðand for the two-dimensional tunneling of a
nonrelativistic particle and a photon, an approach presented
in Ref. [47] (see Fig. 5). It is hoped that future optical
experiments, if properly designed, will provide fascinating
insights into multiple internal reflections and multiple
transmitted waves, as the preliminary experiments in [48, 49]
did.

4. Spherically symmetric
three-dimensional tunneling

The three-dimensional tunneling problem can naturally be
addressed by extending the results for two-dimensional
tunneling (for axes x and y) to the three-dimensional case
(for x, y, and z axes), assuming that the interfaces are two-
dimensional (parallel to the yz plane) and that the tunneling is
originally along the x axis.

Leaving it to the reader to decide on the usefulness of this
approach, we can consider a three-dimensional spherically
symmetric tunneling problem, in which the radial coordinate
is the most important. Some of the monographs on quantum
mechanics and almost all current papers on nuclear physics
treat this model within the Wentzel±Kramers±Brillouin
(WKB) approximation. Thus far, only a few sufficiently
accurate non-WKB results are available [50±52] (see also [53]).
Below, we follow Ref. [51] in formally considering three-
dimensional tunneling for a spherically symmetric problem,
for example, for a or proton scattering by spherical nuclei as a
result of a decay or the proton decay of spherical nuclei [51].

4.1 Three-dimensional tunneling
and particle scattering by a hard-core potential barrier
with an external Coulomb repulsion barrier
For simplicity, we restrict our attention to the case of a zero
orbital quantum number �l � 0� and formal stationary
functions (in the quasimonochromatic wave packet approx-
imation). We actually return, in a sense, to the one-
dimensional problemÐwhich, however, becomes distinctly
three-dimensional already for l > 0 or if a nonspherical host
nuclei is explicitly considered.

We start by describing the collision of particles as a two-
stage event. At the first stage, the wave packet of converging
waves tunnels through a barrier outside the well, generating
outward reflected waves. At the second stage, those waves
diverging from the well that appear after the entrance of the
original tunneling wave packet tunnel through the barrier
outward, generating reflected waves from the potential well
through the Coulomb barrier into the well interior. We next
proceed to describe low-energy scattering as a whole using
the concept of the S-matrix and that of probability
amplitudes (both for tunneling events and for reflections).

y x

y

y

I II III

0 a

Dy

Figure 5. Schematic of two-dimensional tunneling with one reflected and

one transmitted wave.
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Finally, we demonstrate the presence of multiple internal
reflections from the inner wall of the Coulomb barrier and
from the hard core.

4.1.1 Outside scattering. In the schematic of outside scattering
shown in Fig. 6, region I with r > R2 is the external region
with a slowly decreasing Coulomb potential; region II
between R1 and R2 is the sub-barrier region; region III,
R0 < r < R1, is a potential well; region IV, with r < R0,
contains a hard core, where the wave function vanishes. The
vertical line r � R2 separates the outer above-barrier region
where the particle kinetic energy E exceeds the Coulomb
barrier from the inner sub-barrier region II in which E is
below the Coulomb repulsion curve. The vertical line r � R1

separates well III from the Coulomb barrier.
The stationary radial wave function that satisfies the

radial SchroÈ dinger equation is, for the situation shown in
Fig. 6, given by

F ex
I � G0�k1; Z; r� ÿ iF0�k1; Z; r�
� Aex

r

ÿ
G0�k1; Z; r� � iF0�k1; Z; r�

�
; R2 4 r <1 ;

F ex
II is the same formally as F ex

I ; R1 4 r < R2 ; �12�
F ex

III � Ain
t exp �ÿik2r� ; r � rÿ R0 ; R0 < r < R1 :

Here, k1 and E � �h 2k 2
1 =�2m� are the wave number and the

particle kinetic energy,

Z � z1z2e
2m

�h 2k1

is the Sommerfeld parameter, and k2 �
�
2m�V0 � E ��1=2=�h;

for a repulsive Coulomb barrier,

VC � z1z2e
2

r
; R1 4 r <1 ; �13�

where z1e and z2e are the electric charges of the interacting
particles (nuclei); the Coulomb functions G0�k1; Z; r� and
F0�k1; Z; r� have the asymptotic forms

G0�k1; Z; r� ÿ!
r!1 cos

ÿ
k1rÿ Z ln �2k1r� � s

�
; �14�

F0�k1; Z; r� ÿ!
r!1 sin

ÿ
k1rÿ Z ln �2k1r� � s

�
;

s � argG�1� iZ�; Aex
r and Ain

t are the amplitudes of external
reflection and of penetration inside the potential for the first

tunneling, the analytic expressions for which can be found
from the continuity conditions for the amplitudes and their
first derivatives at r � R2 and r � R1:

Aex
r � ÿ

hÿ
G0�k1; Z;R1� ÿ iF0�k1; Z;R1�

�
ik2

� ÿG 00�k1; Z;R1� ÿ iF 00 �k1; Z;R1�
�
k1

i
�
hÿ
G0�k1; Z;R1� � iF0�k1; Z;R1�

�
ik2

� ÿG 00�k1; Z;R1� � iF 00 �k1; Z;R1�
�
k1

iÿ1
; �15�

Ain
t � 2ik1 exp

�
ik2�R1 ÿ R0�

�
�
hÿ
G0�k1; Z;R1� � iF0�k1; Z;R1�

�
ik2

� ÿG 00�k1; Z;R1� � iF 00 �k1; Z;R1�
�
k1

iÿ1
: �16�

It is easily seen that

jAex
r j2 �

k2
k1
jAin

t j2 � 1 ; �17�

where we have used the well-known Wronskian relation
F0G

0
0 ÿ G0F

0
0 � 1, where G 00 and F 00 are the derivatives of G0

and F0 with respect to k1R1. Equality (17) is a consequence of
the conservation of probability flow density.

For vanishingly small values of k1 (or more precisely, for
2Z4 k1R1),

G0 ! 2

�
k1R1

p

�1=2

I0
ÿ
2�2pk1R1�1=2

�
exp �pZ�

as I0
ÿ
2�2pk1R1�1=2

�! 1 ;

G 00 ! ÿ2
�
2Z
p

�1=2

K0

ÿ
2�2pk1R1�1=2

�
exp �pZ�

as K0

ÿ
2�2pk1R1�1=2

�! ln

�
1

g
�2pk1R1�1=2

�
;

where g � 1:781 . . . is the Euler constant, and

F0 ! �pk1R1�1=2I1
ÿ
2�2pk1R1�1=2

�
exp �ÿpZ�

as I1
ÿ
2�2pk1R1�1=2

�! �2pk1R1�1=2 ;
F 00 ! �2pk1R1�1=2I0

ÿ
2�2pk1R1�1=2

�
exp �ÿpZ�

as I0
ÿ
2�2pk1R1�1=2

�! 1 :

If ��2k 2
1 =k

2
2 �Z=�k1R1����ln g�ÿ1�2pk1R1�ÿ1=2�5 1, then the

probability jAin
t j2 of transmission from the outside through

the Coulomb barrier into the rectangular potential well takes
the form

jAin
t j2 !

pk1
k 2
2R1

exp �ÿ2pZ� : �18�

In three dimensions, we note that for very small k1, it is
necessary to take into account not only the exponential
exp �ÿ2pZ� but also its prefactor pk1=�k 2

2R1�, both of which
are neglected in the one-dimensional WKB approximation
often used in the study of high-energy nuclear collisions in
nuclear astrophysics.

4.1.2 Emission from the inside of the barrier. Figure 7 is a
schematic of emission outward from the barrier. The

 �G0�k; Z; r� ÿ iF0�k; Z; r��
! Aex

r �G0�k; Z; r� � iF0�k; Z; r��

r

V0

E

V

R2R1R00

 Ain
t exp�ÿikr�

IV III II
I

Figure 6. Schematic of a collision between a converging wave outside with

a Coulomb repulsion barrier.

November 2014 On the multiple internal reêections of particles and photons tunneling in one, two, or three dimensions 1141



stationary radial wave function takes the form

F in
III � exp �ik2r��Ain

r exp �ÿik2r� ; r � rÿ R0 ; R0 < r < R1 ;

F ex
II is formally the same as F in

I ; R1 4 r < R2 ; �19�
F ex

I � Aex
t

ÿ
G0�k1; Z; r� � iF0�k1; Z; r�

�
; R1 4 r <1 :

Using the continuity of the stationary wave function and its
derivatives at r � R2 and r � R1, it is straightforward to
obtain analytic expressions for the amplitudes Ain

r and Aex
t :

Ain
r � exp

�
2ik2�R1 ÿ R0�

�
�
hÿ
G0�k1; Z;R1� � iF0�k1; Z;R1�

�
ik2

ÿ ÿG 00�k1; Z;R1� � iF 00 �k1; Z;R1�
�
k1

i
�
hÿ
G0�k1; Z;R1� � iF0�k1; Z;R1�

�
ik2

� ÿG 00�k1; Z;R1� � iF 00 �k1; Z;R1�
�
k1

iÿ1
; �20�

Aex
t � 2ik2 exp

�
ik2�R1 ÿ R0�

�
�
hÿ
G0�k1; Z;R1� � iF0�k1; Z;R1�

�
ik2

� ÿG 00�k1; Z;R1� � iF 00 �k1; Z;R1�
�
k1

iÿ1
: �21�

By the flux density conservation,

jAin
r j2 �

k1
k2
jAex

t j2 � 1 : �22�

By repeating the reasoning used for small k1 �k1 ! 0� in
deriving Eqn (18) from Eqn (17), we find that

jAex
t j2 !

p
k2R1

exp �ÿ2pZ� : �23�

As in the derivation of Eqn (18), in the three-dimensional
case of small k1, it is necessary to include not only the
exponential exp �ÿ2pZ� but also its prefactor p=�k2R1�,
which is not done in the one-dimensional WKB approxima-
tion typically applied to low-energy nuclear collisions.

In the simplest case of a rectangular barrier with a zero
potential (instead of the Coulomb potential) forR1 4 r < R2,
the calculation of the phase times for reflection into the well
from the inner wall of the barrier and for tunneling through
the barrier confirms the presence of the Hartmann effect. In
other words, we have an elementary confirmation of this
effect for three-dimensional tunneling [50].

4.2 S-matrix
We can now unify these two collision stages into a single
scattering event by introducing the S-matrix and taking
multiple reflections inside the potential well into account.
For this, we represent scattering schematically as shown in
Fig. 8 and write the stationary radial wave function as

CI �
ÿ
G0�k1; Z; r� ÿ iF0�k1; Z; r�

�
ÿ S

ÿ
G0�k1; Z; r� � iF0�k1; Z; r�

�
; r5R2 ;

CII has the same form as CI; R1 4 r < R2 ; �24�
CIII � A

�
exp �ÿik2r� ÿ exp �ik2r�

�
; R0 < r < R1 ;

CIV � 0 ; r4R0 :

Imposing the continuity of the stationary wave function and
its derivative at r � R2 and r � R1, we obtain analytic
expressions for the S-matrix and the amplitude A:

S � H1

�
k2 cos k2�R1 ÿ R0�

�ÿH2

�
k1 sin k2�R1 ÿ R0�

�
H3

�
k2 cos k2�R1 ÿ R0�

�ÿH4

�
k1 sin k2�R1 ÿ R0�

� ;
�25a�

A � 2i exp
�
ik2�R2 ÿ R0�

�
k1

�
�
H4k1

�
1ÿ exp

�
2ik2�R1 ÿ R0�

�	
�H3ik2

�
1� exp

�
2ik2�R1 ÿ R0�

�	�ÿ1
; �25b�

where

H1 � G0�k1; Z; r� ÿ iF0�k1; Z; r� ;
H2 � G 00�k1; Z; r� ÿ iF 00 �k1; Z; r� ;
H3 � G0�k1; Z; r� � iF0�k1; Z; r� ;
H4 � G 00�k1; Z; r� � iF 00 �k1; Z; r� :

It is clear that jS j � 1, and just by comparing A and S with
Aex

r , A
ex
t , A

in
r , and Ain

t , we find that

A � Ain
t

1� Ain
r

; �26�

S � ÿAex
r � AAex

t � ÿAex
r �

Aex
t Ain

t

1� Ain
r

: �27�

Physically, the term 1=�1� Ain
r � implies the existence of an

infinite series of coherent multiple internal reflections

! Aex
t �G0�k; Z; r� � iF0�k; Z; r��

rR2R1R0

V0

E

V

0

exp�ikr� !
 Ain

r exp�ÿikr�

Figure 7. Emission of an internal divergent wave through the repulsion

barrier (schematic).

G0�k1; Z; r� ÿ iF0�k1; Z; r�ÿ
ÿS�G0�k1; Z; r� � iF0�k1; Z; r��

r

V0

E

V

R2R1R00

A�exp�ÿik2r�ÿ
ÿexp�ik2r��

Figure 8. Schematic of scattering as a whole.
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described by the stationary wave functions:

Ain
t

ÿ
1ÿ Ain

r � �Ain
r �2 ÿ �Ain

r �3 � . . .
�
exp �ÿikr�

� Ain
t

1� Ain
r

exp �ÿikr� ; �28�

Ain
t

ÿ
1ÿ Ain

r � �Ain
r �2 ÿ �Ain

r �3 � . . .
�
exp �ikr�

� Ain
t

1� Ain
r

exp �ikr� : �29�

For the incoming and outgoing waves, there are multiple
internal reflections between the points of the hard core and
their diametrically opposite counterparts on the inner wall of
the spherically symmetric Coulomb barrier. Clearly, the
natural way to physically explore their time sequence is to
apply a direct time-dependent approach by simply extending
the approach described above for one-dimensional tunneling.
In the case of spherically symmetric nuclei, it is assumed that a
packet of waves diverging (uniformly contracting) within a
nucleus that moves radially toward the inner surface of the
Coulomb barrier is reflected inward and then moves radially
further inward already as a packet of converging waves,
toward the spherical wall of the hard core, and after that is
reflected inward into the potential well, where it again travels
as a packet of diverging waves, toward the inner wall of the
Coulomb barrier, all this repeating itself until, step by step, the
wave packet escapes completely.

Such coherent internal reflections usually occur for
charged elementary particles (protons, positrons, p� mesons,
etc.), for both nonresonant and resonant scattering.

However, if the projectile nuclear particle is a cluster (for
example, an a particle) and if the scattering is resonant and
produces an a-radioactive composite nucleus, a more com-
plicated noncoherent process may take place: the a particle
disappears (`is dissolved') within the composite (host) nucleus
and then, within a certain virtual and real time interval (stay
time) tresid (which includes the travel time under the surface
until disappearance and subsequent reemergence), the a parti-
cle reappears near the nucleus surface and passes through the
Coulomb barrier outward (see, e.g., Refs [54, 55]).

Assuming that as the infinite series of multiple reflections
proceeds, any outgoing `portion' of the a particle probabil-
istic wave packet decreases in each collision with the inner
wall of the barrier by the factor jAin

r j2 compared with its
counterpart at the previous collision, the total (equal to unity)
probability of the a decay can be presented as an infinite sum
of a decreasing geometric series,

k1
k2
jAex

t j2
ÿ
1� jAin

r j2 � jAin
r j2jAin

r j2 � . . .
� � �k1=k2�jAex

t j2
1ÿ jAin

r j2
� 1 :

�30�
Furthermore, it is also assumed that the multiple successive
internal reflections inside the host nucleus that occur between
the formation of the a particle near the nucleus surface and its
further disappearance within the nucleus are not all coherent
between themselves due to the independence of the successive
disappearance processes, implying that it is not the prob-
ability amplitudes but the probabilities themselves that
should be summed in the chain of multiple internal reflec-
tions. A further natural assumption is that at each stage of the
noncoherent multiple internal reflections of the a particle, the
total average duration tresid of the virtual and real stay of the
particle inside the host nucleus between two successive

internal reflections is the sum of the average disappearance
time within the nucleus, the average time of the subsequent
formation of the particle, its average time of reflection into
the nucleus, and the average time of its kinematic travel after
the reflection inward and then toward the surface after
formation. It is also assumed that tresid is the same for each
pair of the successive impacts of the a particle against the
nuclear surface.

The effective, or average, time of virtual or real stay of an
a particle within a host a-radioactive nucleus between two
successive, noncoherent, multiple internal reflections during a
long a decay can be estimated phenomenologically by simply
using the exponential decay law of the a particle with the
lifetime t:

L�t� � exp

�
ÿ t

t

�
: �31�

The exponential law (31) for the decay of a resonant state
with a Lorentzian energy distribution (Breit±Wigner curve)
has been verified theoretically to a high degree of accuracy
except for very small times t < t0�G=Eres� and very large
times t > t0 ln �Eres=G� [56] (see also Ref. [57]), where G and
Eres are the width and energy of the resonance.

If tresid 5 t, then in the time tresid, the decay probability
decreases by

DL � 1ÿ jAin
r j2 �

tresid
t

: �32�

Using Eqn (30), we then obtain

tresid
t
� k1

k2
jAex

t j2 and tresid � k1
k2
jAex

t j2t � Pt ; �33�

where P � �k1=k2�jAtj2.
Equation (33) with the substitutions n � 1=tresid and

t � 1=l yields the well-known formula (see, e.g., Refs [58,
59] and also [60])

l � nP ; �34�

and essentially describes a new phenomenological approach
to the physical meaning of the exponential prefactor.

As an example, we calculate tresid for the 210Po nucleus,
with E � 5:407 MeV, V0 � 16:7 MeV, R1 � 8:76 fm and
R1 � 8:975 fm [51] and t � 138:376 days � 11; 955; 686:4 s.
We then obtain the values tresid � 2:434� 10ÿ20 s and tresid �
5:740�10ÿ20 s and hence n � 1=tresid � 4:108� 1019 sÿ1 and
1:742� 1019 sÿ1. Our calculated values of n � 1=tresid differ
from the Gamow exponential prefactor v0=2R1 �
�2�E� V0�=m�1=2=2R1 obtained simply as a classical number
of the a particle's purely kinematic impacts against the
nuclear surface per unit time, and also from Landau's [61]
prefactor estimate D=�2p�h�, where D is the average energy
level separation in the host nucleus in the energy range of
interest.

There is a large numerical difference between our results
and Gamow's estimate: for the parameters assumed in
Ref. [51], E � 5:407 MeV, V0 � 16:7 MeV, and R1 � 8:76 fm
and R1 � 8:975 fm, we respectively obtain v0=�2R1� �
1:881� 1021 sÿ1 and 1:836� 1021 sÿ1. This difference can be
explained physically by the fact that the time travel within the
well is very small compared with the disappearance and
formation times of the a particle within the nucleus. More-
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over, it can be seen that the value of R0 has no effect on the
values of Ar, At, and tresid.

For D � 100 keV, D=�2p�h� � 2:418� 1019 sÿ1, and our
result does not differ appreciably from that of Landau in
Ref. [61], possibly because both values are related to the
fundamental properties of the host nucleus (indeed, the value
of D=�2p�h� is quantitatively close to the inverse value of the
PoincareÂ cycle for the time operator in a quasidiscrete energy
spectrum).

5. Conclusion

We summarize the above analysis of theoretical results on
two- and three-dimensional tunneling of particles and
photons and on multiple internal reflections.

(1) Multiple internal reflections of tunneling particles and
photons are the subject of some difference of opinion in the
literature, in particular between the authors of Refs [31±44,
46, 51] and the authors of Ref. [47]. The preliminary
experimental data [48, 49] seem to support the standpoint
advanced in the former set of references. A proposal with the
potential to settle the question is to follow Refs [48, 49] by
carrying out correct optical experiments (with real processing
of experimental data) on total internal reflections.

(2) The three-dimensional results obtained here can be
used as the initial step in the time-dependent approach to the
description of nuclear reactions and decays for any value of l
and for distinctly nonspherical shapes, as well as to the study
of sub-barrier fusion reactions in astrophysics. In the second
case, it is important to include not only penetration factor (18)
but also the factor 1=�1� Ain

r �, which arises due to the
multiple internal collisions between the hard core and the
diametrically opposite points of the inner wall of the three-
dimensional Coulomb barrier. Both these factors are absent
in the one-dimensional approximation, which is still com-
monly used in nuclear astrophysics (see, e.g., Refs [62±66] and
the references therein).

(3) In further work, it would be expedient to recalculate
the formula l � nP for all a-radioactive nuclei for
n � 1=tresid.
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