
Abstract. Various configurations of the X-ray crystal interfer-
ometer are reviewed. The interferometer applications consid-
ered include metrology, the measurement of fundamental
physical constants, the study of weakly absorbing phase ob-
jects, time-resolved diagnostics, the determination of hard
X-ray beam parameters, and the characterization of structural
defects in the context of developing an X-ray Michelson inter-
ferometer. The three-crystal Laue interferometer (LLL-inter-
ferometer), its design, and the experimental opportunities it
offers are given particular attention.

1. Introduction

X-ray interferometry represents a relatively new field of
modern experimental physics. Since its appearance 50 years
ago in 1965, the technique has demonstrated unique capabil-
ities in different fields of condensed matter studies, including
measurements of fundamental physical constants, optical
constants in hard X-rays (10±100 keV), precision measure-
ments of the crystal lattice parameter, studies of structural
defects in almost perfect single crystals, and X-ray phase-
contrast microscopy.

Over a period of seven months in 1965, four papers were
published inApplied Physics Letters that opened up the X-ray
interferometry era. Two of them, which were published two
weeks apart in October 1965, first demonstrated the possibi-
lity of obtaining X-ray moir�e fringes from X-ray diffraction
by a bicrystal in the cases when the interplanar spacings or

orientations of its components differ insignificantly in a
semiconducting heterostructure [1] or in a quartz crystal
separated by an artificial crack [2].

In papers by Bonse and Hart [3, 4] published in April and
August 1965, a three-crystal X-ray interferometer was
designed and tested, which is capable of changing the phase
difference of interfering beams. The introduction of a sample
under study in one of two coherent X-ray beams produced by
the interferometer leads to its phase change, which alters the
result of interference with another (reference) beam.

Later on, Hart showed in paper [5] that such an
interferometer can serve as an `angstr�om ruler', thus initiat-
ing its successful usage in metrology.

Features and the potential of the X-ray interferometry are
discussed in several reviews [6±14]. They analyze the theory of
X-ray interferometers [6±8, 10±12], their design [7±10, 12], the
application in dispersion spectroscopy [7±10], the crystal
lattice parameter determination [6±8, 13], structural defect
studies [6±8, 10, 11], and phase-contrastmicroscopy [8±10, 13,
14]. Only in review [8], published byMHart long ago in 1975,
were all these applications discussed. In addition, such fields
as bicrystal interferometers, X-ray Michelson interferom-
eters, and nuclear resonance scattering have not been
reviewed in detail.

The present review attempts to describe all possible lines
of inquiry paved by the X-ray crystal interferometry, which
are discussed in the scientific literature.

2. Moir�e pattern phenomenon

X-ray interferometry is based on the moir�e pattern. As is well
known, moir�e fringes arise when two linearly periodic
structures are overlaid. The phenomenon happens when
repeating elements of the two structures follow with slightly
different frequencies and either are periodically superimposed
or form pale gaps [15±17].

The moir�e pattern appears as a linearly periodic picture
with a period much larger than that of two overlaid
structures. If the structures consist of a system of evenly
spaced parallel planes with slightly different interplanar
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spacings d1 and d2, the moir�e pattern arises with a period

Lx � d1d2
jd1 ÿ d2j ; �1�

called the dilatation moir�e pattern (Fig. 1b). If systems of
planes with the same period d are turned around with respect
to each other through a small angle e, the rotational moir�e
pattern arises with a period

Ly � d

e
�2�

(see Fig. 1a) [16, 17]. In a mixed moir�e pattern (Fig. 1c), the
pattern period Lxy and the angle b between the moir�e fringes
and the x-axis normal to planes are given by the formulas [15,
16]

Lxy �
�
Lÿ2x � Lÿ2y

�ÿ1=2 � d1

� �d1 ÿ d2�2
d 2
2

� e 2
�ÿ1=2

; �3�

tanb � Ly

Lx
; �4�

respectively.
Formula (2) implies that the dilatation moir�e fringes are

parallel to the direction of the planes, while those of the
rotational moir�e pattern are perpendicular to it (see
Fig. 1a, b).

In addition, there is translational moir�e pattern: when
structures with d1 � d2 � d and e � 0 are displaced with
respect to each other in the direction normal to their planes,
it is possible to detect a periodic (sine-like with a period d)
change in the transmitted radiation intensity [17].

The moir�e pattern phenomenon in visible light has been
known for a long time and has been widely exploited in
science and technology. A small wavelength comparable to
the crystal lattice period and high penetration ability make
X-rays very promising for obtaining moir�e patterns. The
X-ray moir�e pattern method became very popular in different
studies (in particular, in the physics of crystals) due to its high
sensitivity to small lattice deformations. Assuming a max-
imum permissible moir�e fringe interval equal to one canti-
meter, for d � 1 A

�
from formulas (1) and (2) we find that the

minimum detectable dilatation and rotation angles are 10ÿ8

and 10ÿ2 arcsec, respectively.

3. Bicrystal interferometer

Let us consider a crystal separated into two plane-parallel
blocks 1 and 2 (Fig. 2a) by a boundary (stacking fault, crack)
or by a nondiffracting gap (aerial or filled with some foreign
material).When the angle of incidence of the primary narrow-
front spherical X-ray wave on the reflecting plane is exactly
equal to the Bragg angle, whose track segment is marked by
DB, twowaves originate at the block 1 exit: a transmitted one,
and a diffracted one. The superposition of these two coherent
waves forms the field of a standing wave with period d not
only inside block 1 (triangle ACD), but also outside it
(triangle ABC) [16]. In block 2, the standing wave `grid'
consisting of antinodes and nodes is overlaid with its crystal
lattice. As a result, two moir�e patterns can be observed at the
output: the bright field (in the transmitted beam O), and the
dark field (in the diffracted beam H) images [17].

A theory of diffraction of a spherical wave by a bicrystal
with a plane narrow aerial gap was elaborated in papers [18,
19], and the authors of Ref. [20] analyzed the moir�e pattern
due to the Laue and Bragg diffractions. Simon and Authier
[21] developed a theory of X-ray moir�e using Takagi
equations. Paper [22] reported results of theoretical studies
of X-ray diffraction in an interferometer in which blocks had
equal interplanar spacings and there was a nondiffracting
region between blocks, as well as diffraction in an inter-
ferometer in which blocks had different interplanar spacings
but there was no nondiffracting region between the crystals.
As was shown in the plane-wave approximation, the output
intensity oscillation in interferometers of the first type should
not be observed, but it necessarily arises in interferometers of
the second type as a moir�e pattern.

b

y

x

cba

Figure 1. Schematics of rotational (a), dilatation (b), and mixed moir�es
[15].
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Figure 2. Schematics of X-ray moir�e formation by bicrystals (a); moir�e pattern from a silicon crystal implanted with oxygen (SIMOX) in the Bragg

geometry (for convenience, the topogram contrast was artificially enhanced), reflection (224), l � 1:5 A
�
[31] (b); interference fringes from a silicon crystal

implanted with N� ions in the Laue geometry, reflection (111), MoKa radiation [25] (c); arrows indicate the directions of diffraction vectors (see text).
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In the case of a spherical wave, at the output of type I
interferometers, so-called translational fringes emerge [18]
with a periodLg depending on the size tg of the nondiffracting
gap, the block thicknesses t1 and t2, and the extinction depth
D0 [23]:

Lg � D0

tg
�t1 � t2� tan yB ; �5�

where yB is the Bragg angle, and D0 � l
ÿ
gejgij

�1=2
=Cjwhrj [18]

(l is the radiation wavelength,C is the polarization factor, whr
is the structure factor of the reflection, and gi and ge are the
direction cosines of the incident and diffracted X-rays,
respectively).

The authors of Ref. [24] theoretically predicted that when
the angular divergence of the incident beam decreases, the
value of Lg increases.

Experimentally, translational fringes were observed, for
example, in X-ray diffraction by silicon implanted with high-
energy ions [25], as well as by the Si=GexSi1ÿx=Si hetero-
structure [26].

At the output of type II interferometers, the moir�e fringes
arise with spacing for the most part in good agreement with
formulas (1)±(4). For example, papers [2] and [27] reported
that the mutual misorientation of two parts of the crystals
studied, caused by a crack, is 2 and 0.6 arcsec, respectively.
Papers [1, 28] studied the mismatch of crystal lattices
separated by a heteroboundary using the Bragg [1] and Laue
[28] diffractions.

The implantation of a crystal with high-energy particles
frequently leads not only to the formation of an amorphous
layer at some depth but also to the formation of defects in a
near-surface layer. In this case, it is possible to talk about a
type III (symbiotic) bicrystal interferometer. Such an inter-
ferometer was theoretically considered in paper [20]. Paper
[29] demonstrated both the theoretical and experimental
dependences of the moir�e pattern period on the sign of
inconsistency of interplanar spacings of the bicrystal blocks,
thus showing that formula (1) is not valid all the time. Paper
[21] studied the bombardment of silicon by alpha-particles.
The authors of papers [30, 31] tried to determine the strain
tensor of the near-surface layer of a silicon sample implanted
with oxygen ions with a subsequent annealing. To this end, a
series of projective topograms of the studied sample was
obtained using symmetric and asymmetric linearly indepen-
dent Laue [30] and Bragg [31] reflections (one of the
topograms is displayed in Fig. 2b).

In general, the interference pattern due to X-ray diffrac-
tion by a bicrystal can have a complex structure, which does
not always allow a straightforward interpretation [25, 32, 33].
Figure 2c shows the projection topogram of a silicon crystal
that demonstrates the `transition' of translational fringes (the
right panel of the topogram), which formed in the lenslike
amorphous region made up due to nitrogen ion implantation,
into moir�e fringes (the left panel of the topogram), which
arose due to strain fields of the second phase inclusion [25].
On the topogram, the diffraction vector (marked with the
arrow) is perpendicular to the moir�e fringes, which suggests
the dilatation character of the deformation.

The fringes in the X-ray image can be interpreted as
(1) fringes of equal thickness (pendell�osung fringes) [34],
(2) interference translational fringes which appear due to
X-ray diffraction by a perfect bicrystal containing a diffrac-
tion-free zone between its two parts, or (3) a moir�e pattern
produced by two overlaid crystal lattices which have slightly

different parameters and/or orientations. Considering the
first possibility, we note that the spacing between fringes of
equal thickness depends on the extinction length (hence, on
the wavelength of the incident X-ray beam). For the second
variant, there is the following rule: taking the opposite sign of
the diffraction vector always leads to contrast inversion [35].
For the moir�e pattern, as follows from formula (1), there are
two criteria: the interfringe spacing does not depend on the
X-raywavelength, and it is inversely proportional to the order
of reflection (Fig. 3).

In order to study the dislocation structure of natural
quartz, Lang [36] utilized a `reference' perfect quartz crystal
superimposed on the sample under study in such a way that
both crystals were simultaneously in the reflecting position
(the authors of paper [37] described a simplified way of
precision mutual adjustment of a crystal pair). The Burgers
vector b of the dislocation can be determined by the formula
N � �g� b�, where g is the diffraction vector, and N is the
number of additional moir�e fringes observed at points A, B,
C,D andE, whichmark dislocation exits at the crystal surface
(Fig. 4). Inspection of Fig. 4a suggests that N � 2 and N � 4
for the pair ofA andB dislocations, and for dislocations C,D,
and E, the cross product �g� b� is equal to 6, 3, and 4,
respectively.

4. Two-beam and three-beam interferometers

The construction of the bicrystal interferometer considered
above does not allow the experimentalist to change the phase
relations of interfering coherent beams due to the small size
(or the total absence) of the gap between the blocks. The
presence of such a gap enables the phase change of one of the
coherent beams by inserting into it the sample studied, a
weakly absorbing plate (the phase modulator) or a wedge to
produce the phase gradient.

In a two-beam interferometer, the primary X-ray beam
breaks down spatially by the splitter S (Fig. 5a) into two

0.1mm

a b

Figure 3.Moir�e patterns on sectional topograms of a quartz crystal with a

crack (upper part of the figure); MoKa radiation, reflection (10�10) (a) and
(20�20) (b) [2].
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coherent beams that pass different optical paths and then,
after diffraction by the mirror M, bring them together at the
analyzer A.

Coherence is one of the main parameters of the X-ray
beam that determines its capability to participate in inter-
ference interactions. The transverse and longitudinal (tem-
poral) coherences are distinguished. Transverse coherence
means a strong correlation (fixed phase relation) between
electromagnetic oscillations that are completed at the same
instant of time in different points of the plane perpendicular
to the wave propagation vector. Its value lx can be estimated
by the formula lx � l=o (l is the wavelength, and o is the
solid angle subtended by the source). Longitudinal coherence
means a strong correlation between electromagnetic fields in
one point but at different instants of times. Its value can be
estimated as l 2=Dl, whereDl is the interferometer pass band.

Geometric conditions for the interference occurrence
require the difference between the optical paths of two
beams to be smaller than the longitudinal coherence length
of interfering beams, i.e., the path difference of the beams to
be smaller than a few dozenmicrons, and that the precision of
the interferometer manufacturing be controlled by the same
parameter.

X-ray interferometers, as a rule, are made of single-crystal
silicon. The very high adjustment demands on the inter-
ferometer resulted in its monolithic construction. Silicon is
chosen because it is an ideally fragile material at room
temperature, it has a sufficiently low thermal expansion
coefficient and high thermal conductivity, it has no mechan-
ical hysteresis or fatigue, and elastic parts made of this
material work perfectly. This makes silicon an extremely

useful material in electrotechnology, electronics, and
mechanical and optical engineering related to the design of
machines, tools, and other devices with extremely demanding
limits, good reproducibility, and long-term stability. Due to
very good scattering power and low absorption of X-rays,
silicon is a very suitable material for X-ray diffractometry. It
is easily shaped mechanically and is virtually free of impu-
rities, and defect-free crystal rods with sufficiently high
diameters and specific crystallographic orientations are
easily available. From a crystal boule a diamond drill cuts a
configuration consisting of three or more vertical wafers
(lamellae) on the common crystal base. For many semicon-
ductors, such an operation leads to the formation of a layer of
the damagedmaterial several dozenmicrometers in thickness.
This damaged layer can be easily removed by chemical
polishing (for example, by a mixture of HF and HNO for
silicon and germanium) [7].

Such interferometers are characterized by the presence of
a so-called interference loop consisting of two `branches'
(trajectories).

In principle, each diffraction optical element can operate
for both reflection (in the case of Bragg diffraction) and
transmission (in the case of Laue diffraction). In the
interferometer, each of the two separate trajectories usually
includes a certain sequence of reflections, which are usually
specially abbreviated. For example, in the interferometer
marked with the sequence of Roman characters LBL, Laue
diffraction occurs in the first and third optical elements, and
Bragg diffraction occurs in the second optical element.

Figure 5 shows four perspective layouts of a two-beam
interferometer [38]. The three-beam Laue interferometer
(LLL) (Fig. 5a) is the most frequently used; its features and
experimental capabilities are considered in detail below. The
LLL-interferometer [39] provides the crossing of coherent
beams (the central circle in Fig. 5b) in free space, which allows
originating of a standing wave suitable for studies of a broad
range of objects. In addition, the presence of several
interference loops broadens the functional capabilities of
such an interferometer [40].

However, the Laue transmission geometry has several
shortcomings: (1) loss of intensity due to absorption in each
lamella; (2) 50% loss of intensity due to the presence of
unused beams during diffraction by the mirror (Fig. 5a), and
(3) decrease in the spatial resolution due to the X-ray filling of
the entire Borman triangle in the analyzer. These defects (all
or some of them) can be overcome applying Bragg reflection.

The BBB-interferometer (Fig. 5c) [41±43] uses Bragg
splitting of the beam by a very thin crystal. Its design is

a b

1 mm

B B
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H H

G G
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Figure 4. Moir�e pattern produced from a bicrystal formed by dislocation

and perfect natural quartz crystals (a); X-ray projection topograph of

dislocation quartz (b). Reflection (10�11), MoKa radiation [36] (see text).

M

S

A

a b c d

Figure 5. Optical layouts of two-beam (a) LLL-, (b) LLLL-, (c) BBB-, and (d) LBBL-interferometers (see text).
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based on the fact that when the Bragg condition is not
precisely fulfilled for a primary beam, both a diffracted
beam and a secondary transmitted beam of almost equal
intensity exist, which can be further used for interference. The
choice of the right angle of incidence can be `done' by the
interferometer itself when illuminating it by a divergent
primary beam. Taking into account that the energy of
weakly absorbable wave fields propagates almost along the
reflecting planes, BBB-interferometers are cut for `oblique'
(asymmetric) reflections that shorten the path of X-rays in the
crystal. In paper [44], a BBB-interferometer was applied to
obtain phase-contrast images, while in papers [45, 46] such an
interferometer was utilized as an analog of the Michelson
optical interferometer.

MixedLBL- andBLB-interferometers (not shown inFig. 5)
were discussed in paper [42]. At least some arguments in favor
of mixed optical components are reduced to the statement
that in most practical situations Bragg-mirrors provide a
higher intensity than their Laue `competitors', whereas
Laue-splitters, as a rule, are more effective than Bragg-
splitters due to a shorter X-ray path inside the crystal [7].

For a number of reasons, the LBL-geometry is more
advantageous than the BLB-geometry: a BLB-interferom-
eter has a small field of view and low intensity of an
interference pattern due to higher X-ray absorption losses.
As manufacturing the ideal interferometer is impossible, even
a small deviation from a strictly symmetric geometry will
decrease the moir�e pattern contrast. While the necessary
geometrical requirements for the orientation of the working
surfaces of units of LBL- and BLB-interferometers are rather
high, they are significantly decreased in an LBBL-interferom-
eter (Fig. 5d) due to double X-ray reflection from each of the
mirrors [42].

The exploitation of mixed type interferometers is signifi-
cantly complicated because, due to the refraction effect, the
Bragg angle in the Laue geometry differs from the angle in the
case of Bragg diffraction: the refraction correction is propor-
tional to 1� b, where b is the asymmetry coefficient [34],
which is positive or negative for Bragg and Laue diffractions,
respectively.

This can lead to unacceptable intensity losses. In paper
[47], the necessary corrections were proposed to introduce
using small elastic strains of the mirror walls of the
interferometer in the directions indicated in Fig. 5d by
arrows.

Returning to the two-beam BBB-interferometer, we note
that its construction allows the intensity losses due to beam
diffraction by the mirrors to be avoided, but the Bragg-

splitter is rather ineffective since it absorbs X-rays and
enhances the beam fronts.

Graeff and Bonse [48] proposed the construction of a
three-beam BBBB-interferometer. The main idea of such a
device consists in the simultaneous excitation of two [Si (440)
and Si (404)] reflections in the Bragg geometry to split the
primary beam into two coherent ones and their subsequent
interference after four Bragg reflections using the same pair of
reflections (Fig. 6a). Here, one half of the beam intensity is
lost during the second Bragg reflection, and the other half is
lost during the third Bragg reflection.

It should be noted that in this interferometer the splitting
of the primary wave amplitude (and not of its front) occurs,
unlike in other types of interferometers; therefore, here the
functionality of the interferometer is not limited by the
longitudinal coherence of the radiation.

Paper [49] describes the construction of a three-beam
BBB-interferometer (Fig. 6b), including reflecting planes
(10�1), (1�10) of the beam splitter S and the analyzer A, as well
as planes (01�1) of the mirrors M1, M2. Reducing the number
of mirrors to two (instead of four in the BBBB-interferom-
eter) pursues the object of decreasing the X-ray absorption.

The described constructions of three-beam interferom-
eters are based on coplanar multiwave diffraction, when the
normals to the reflecting planes and the primary beam lie in
one plane. If this condition is not met, the multiwave
diffraction is called noncoplanar.

When using the multiwave coplanar diffraction, an
interferometer can work only at a certain wavelength, and
its spectral transmission band is very narrow compared to a
dispersion-free two-beam interferometer. This makes the
exploitation of the interferometer relatively difficult and
demands high quality of crystals and interferometer manu-
facturing.

In the constructions of three-beam interferometers
described above, the choice of the reflecting planes and the
corresponding reflections was dictated by the possibility of
experimentally realizing the multiwave coplanar diffraction
in laboratory conditions using the spectral line NiKa2. For
phase-contrast experiments with a BBBB-interferometer, the
authors of paper [51] utilized synchrotron radiation (SR): for
the pair of reflections Si�440�=Si�404�), the primary beam
energywasE � 7:46 keV; for Si�880�=Si�808�, the energy was
E � 14:91 keV.

There are no strict selection rules limiting the radiation
wavelength to realize multiwave noncoplanar diffraction,
which is advantageous. Paper [50] reported obtaining of
phase-contrast images of a plastic sphere with good resolu-

M3

A S

M1

M2M4

a

A

S

M1

M2

Top view c

Side view

b
A

S

M1

M2

Figure 6.Optical layouts of three-beam interferometers: coplanar (s) BBBB- and (b) BBB-interferometers [48, 49]; (c) noncoplanar BBBB-interferometer

[50]: SÐbeam splitter, M1, ..., M4Ðmirrors, and AÐanalyzer.
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tion using a three-beam two-block BBBB-interferometer with
parallel working planes and noncoplanar multiwave diffrac-
tion (Fig. 6c) with reflections (311) and (3�1�1) and the
radiation energy E � 10:3 keV.

5. Three-crystal Laue interferometer
(LLL-interferometer)

The most widely used interferometer is the so-called three-
crystal Laue dispersionless interferometer (LLL-interferom-
eter), in which the coherent splitting of the primary beam and
the convergence and superposition of the resulting beams are
made by consecutive Laue-diffractions (Fig. 7).

5.1 Theory of LLL-interferometer
By applying the plane-wave theory, Bonse and Hart [52]
were the first to propose in 1965 the principles of a strongly
absorbing LLL-interferometer. Later on, the authors of
paper [53] developed a theory of a symmetric LLL-inter-
ferometer in the presence of arbitrary absorption for plane
and spherical waves and estimated manufacturing errors on
the output beam profile intensity. The spherical wave
diffraction was considered in papers [54, 55], and the case
of a polychromatic divergent primary beam was studied in
Ref. [56]. The effects caused by deviations from the ideal
interferometer geometry were first investigated by Bonse
and te Kaat [57]. Output beam front narrowing due to
dynamical focusing of X-rays under the certain choice of the
crystal plate thicknesses was analyzed by Trouni and
Arutyunyan [58].

When no sample is inserted into one of the interfering
beams, the topogram is homogeneous and does not contain
the moir�e fringes if the interferometer is ideally manufac-
tured, i.e., when the crystal wafers S, M, and A are exactly
parallel to each other, and have the same thickness and
spacing. In this case, the interferometer is thought to be
ideally focused. The insertion of a phase object (Fig. 7a)
distorts the beam wave front, which may cause a moir�e
pattern to appear in the topogram.

To study bulky objects or samples put in special chambers
to investigate external effects, a skew-symmetric variant of
the LLL-interferometer is frequently used (Fig. 7b).

The optimal contrast of the moir�e pattern is achieved
under certain geometrical conditions [54, 57, 59]. The key
property is so-called zero defocusing, Dz (Fig. 7b):

Dz � zAM1 � zAM2 ÿ zSM1 ÿ zSM2

2
; �6�

where zAM1, zAM2, zSM1, zSM2 are distances between the
analyzer and mirror M1, the analyzer and mirror M2, the
beam splitter and mirror M1, and the beam splitter and
mirror M2, respectively.

In addition, the phase homogeneity will be preserved
provided that the thicknesses of all three crystal lamellae are
the same:

tM1 � tM2 � tM � tS � tA : �7�

Theoretical calculations of spherical wave diffraction in a
nonabsorbing LLL-interferometer showed [54] that, despite
the thickness control of crystal wafers and their spacings, it is
virtually impossible to construct an instrument with a
sufficient contrast of the moir�e fringes. The LLL-interferom-
eter with a crystal-mirror thickness equal to the double
thickness of the beam-splitter and analyzer (tM � 2tS � 2tA)
is the most promising instrument. In the last case, X-ray
focusing on the output analyzer lamella can be observed.

A detailed analysis of the defocusing effect on the visibility
(contrast) of the fringe pattern can be found in paper [57].

When two coherent beams with amplitudesA1 andA2 and
phase differenceF interfere, the observed intensity is given by
the formula

I0 � A 2
1 � A 2

2 � 2A1A2jgj cosF ; �8�

where g is the coherence function. For a pointlike radiation
source, the interference pattern visibility V, which is deter-
mined as the ratio of the intensity oscillation amplitude to its
mean value, is given by the expression

V � Imax ÿ Imin

Imax � Imin
� 2p

1� p 2
jgj : �9�

Here, p � A1=A2, g � sinw=w, w � 2pjDzjj tan emj=D0 tan yB,
where 2em is the angle interval inside which the X-ray wave
propagates in the crystal. For a finite-size source, in the
diffraction plane one has

V � 2p

1� p 2

���� 1w sin

�
w

�
1ÿ jDzj tan yB

T j tan emj
������ ; �10�

where T is the total thickness of lamellae S, M, and A
(T � tS � tM � tA).

An analysis of formula (10) suggests that in weakly
absorbing interferometers the defocusing effect reduces the
visibility more strongly than in highly absorbing crystals,
since p � 1 for the latter [17].

As jDzj tan yB 5T j tan emj, the coherence is completely
lost. For the interferometer used in one of the experiments
[57], T � 831 mm, and j tan emj � 0:136 for CuKa radiation
and reflection Si(220). With these values in mind, V � 0 at
jDzj � 258 mm, whereas the contrast disappeared already at
jDzj � 25 mm, which implies that in this case the interference
pattern visibility is determined by the ratio sinw=w. This
example suggests that, in order to provide a good contrast of
the moir�e fringes, the parts of the interferometer should be
manufactured with a micron accuracy [7].

A

M

S

d

b
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tS

zAM1

zSM1

zSM2

zAM2

Dz

tM2

tM1

1

2

z

x

H O
a

Figure 7. Optical layouts of LLL-interferometer: (a) symmetric [6], and

(b) skew-symmetric [59] (see text).
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During spherical wave diffraction in a perfect interferom-
eter with a fixed defocusing Dz, the phase picture represents a
collection of equally spaced lines perpendicular to the
scattering plane [53, 57]. The distance between the defocus-
ing fringes LDz is given by the formula

LDz � TD0 tan yB
Dz

: �11�
A comparison of formulas (11) and (5) shows that the

defocusing changes the phase in a way similar to the
diffractionless zone of a bicrystal. Here, if the lattice
parameter of the analyzer crystal differs from that of the
beam splitter and mirror crystals, the expression for the
determination of the periodicity of the dilatation moir�e
pattern Lx takes the form [60]

L 0x �
LxLDz

Lx � LDz
: �12�

If only lattice rotations are used in the analyzer crystal of
an interferometer, then purely rotational moir�e fringes are
formed in the topogram, which are inclined to the x-axis by
angle b [see Fig. 1 and Eqn (4)]:

� tan b � Ly

LDz
: �13�

Thus, using the defocusing fringes, it is possible to
determine the form and amplitude of the crystal lattice
deformation. In addition, from the sign of the inclination
angle of the fine structure of fringes, it is possible to infer the
direction of rotation of the reflecting planes in the inter-
ferometer analyzer crystal.

Paper [61] reported that when two coherent beams are
superimposed in an X-ray symmetric interferometer with a
steplike mirror block, fringes due to defocusing and different
thicknesses arise. When the prerequisites exist to appearing
such fringes simultaneously with the moir�e fringes, the moir�e
pattern method does not allow the unique determination of
the amplitude and form of the crystal lattice deformation
without taking into account the effects of defocusing and
different thicknesses. However, using the radiation with
different wavelengths and/or different reflection orders, it is
possible to single out the `structural' moir�e pattern.

Presently, the following reasons for the appearance of the
moir�e pattern are recognized: the difference in the interplanar
spacings and nonparallelism of reflecting planes of individual
crystal-optic units of an interferometer, the nonparallelism of
their enter and exit surfaces [62], the difference in their
thicknesses, violation of conditions restricting distances
between neighboring units, and, finally, the phase front
inhomogeneity caused by the insertion of a sample into one
of the interferometer loops [63]. The situation may arise,
however, when the moir�e fringes will not be observed in the
presence of one or several above-mentioned causes. For
example, assume that the beam splitter and analyzer are ideal
crystals with the interplanar distance d0, the crystal lattice of
the mirror block M1 (Fig. 7b) has the interplanar distance d1
and rotation angle e1, while the M2 lattice has the interplanar
distance d2 and rotation angle e2. Then, one obtains [64]

L � d0

��
Dd2
d2
� Dd1

d1

�2

� d 2
0

�
e1
d1
� e2
d2

�2�ÿ1=2
; �14�

where L is the distance between the moir�e fringes, Dd1 �
d1 ÿ d0, and Dd2 � d2 ÿ d0.

Formula (14) implies that, for example, at Dd2=d2 �
ÿDd1=d1 and e1 � e2 � 0, no moir�e pattern should arise. On
the other hand, the deformation effect of some units of an
interferometer (arising, for example, during the crystal boule
growing) in some cases can be compensated for by using the
corresponding phase plates [65].

Various factors affecting the interference topogram,
acting both separately and in different combinations, show
howdifficult a unique explanation of themoir�e patterns could
be. Apparently, it is quite easy to estimate the effect of a given
factor on the interference pattern intensity in the absence of
all the rest, but in real experiments several factors act
`consistently', which significantly complicates a unique
interpretation of X-ray moir�e patterns [63].

5.2 Applications of LLL-interferometer
5.1.1 Phase-contrast imaging. It is well known that when an
X-ray wave passes through matter, both its absorption and a
phase change occur. The phase shift due to the X-ray
propagating through a sample of thickness T depends on the
decrement d of the X-ray refraction coefficient and is equal to
�2p=l� dT, while the absorption B is due to the intensity
decrease: ln�I0=I� � �4p=l�BT. Parameters d and B deter-
mining the X-ray refraction coefficient n far from the
absorption edges (n � 1ÿ d� iB ) are described by the
formulas [66]

d � l 2r0NAZ

2p
; �15�

B � ml
4p

; �16�

where NA is the number of atoms per unit volume, r0 is the
classical radius of an electron, Z is the atomic number of the
sample material, and m is the linear X-ray absorption
coefficient.

It is interesting to note that the parameter d for soft
tissues is much larger than B. The estimate of d and B for
biological tissues showed [67] that d � 10ÿ6ÿ10ÿ8 and is
about 1000 times as high as B (B � 10ÿ9ÿ10ÿ11) for X-rays
in the energy range 10 keV±50 keV. Therefore, the
difference in the X-ray phase shift for tissues of various
densities is much larger than in the linear absorption
coefficients. Consequently, the phase-contrast image can
significantly enhance the X-ray sensitivity to small changes
in the structure of samples examined. The method is very
effective for studies of weakly absorbing objects with small
internal absorption coefficient variations, since variations of
the absorption coefficient decrement d in the objects are
important. Therefore, it has found wide utility in biomedi-
cine, for example, in angiography [68±70], oncology [71±73],
and neurology [74, 75].

Information about the wave phase can be obtained
applying the algorithm [76] developed for the phase step
method [14, 77, 78]. The method consists in recording a
series of interference patterns with a step-by-step changing
of phase shifts. To change the relative phase between the
upper and bottom beams, a phase modulator (Fig. 8a)Ða
plate turning around the axis normal to the beam propaga-
tionÐ is inserted into the bottom beam. The relative phase
change depends on the effective plate thickness and its
refraction coefficient.
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During each scan, the phase is shifted by 2p=J (J is an
integer). At each step, the interference pattern is recorded
repeatedly with no sample in the upper beam, yielding in total
2J images, from which the phase map can be restored using
simple algebraic expressions. The number of images can be 8
(J � 4) or even more. Thus, the phase might be restored
accurate to 2p. This uncertainty may be removed using the
phase sweeping methods [79] if there are no phase jumps on
the scales smaller than the resolution of the method.

The phase can be determined without necessary analysis
of several data sets applying the Fourier transform method
[14, 80]. Experimentally, in this method the phase modulator
is replaced by a wedgelike plate. By choosing the material of
the wedge, its angle a, and the X-ray wavelength, it is possible
to produce the basic dilatation moir�e pattern consisting of
equally spaced interference fringes with a given interval dM:
dM � l=d tan a [34]. From distortion of these fringes caused
by the presence of a sample under investigation, it is possible
to restore the phase map of the sample [81].

Another way of producing the basic moir�e pattern
consists in using a deformable interferometer, in which the
analyzer crystal is connected to the interferometer base by
only a thin elastic bar [65, 82]. Turning around the inter-
ferometer longitudinal axis (the z-axis) leads to the formation
of the rotational moir�e pattern (Fig. 9).

The phase-contrast image of the entire sample under
investigation can be obtained when the sample is `bathed' in
the beam. If the beam lateral size in the diffraction plane is
smaller than the sample size, there are two possible ways to
solve the problem: (1) to increase the beam size by using an
asymmetrically cut pre-monochromator (Fig. 10a) or an
asymmetric reflection of the interferometer [7]; (2) to scan
the interferometer and the detector as a whole in the interval
corresponding to the sample size [7] (Fig. 10b).

The resolution of the method may be restricted by the
detector resolution. It is also restricted by the X-ray trajectory

divergence within the double Bragg angle when passing
through the analyzer crystal [34] and can be as high as
2T tan yB (T is the crystal thickness). One way to improve the
resolution is to decrease the analyzer lamella thickness [83],
although this should be done with care due to the possible
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Figure 8. (a) Optical scheme of an LLL-interferometer: 1Ðprimary

X-ray beam, 2Ðbeam splitter, 3Ðmirror, 4Ðanalyzer, 5Ðsample, and

6Ðphase modulator [88]. (b) Phase-contrast image of blood vessels of a

rat liver obtained by the phase step method [78].
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Figure 9. (a)Deformable interferometer in which the analyzer crystal (A) is

joined with the beam splitter (S) and the mirror (M) by a thin elastic bar.

(b) Phase-contrast image of an epoxy resin drop on the cover slip obtained

using the X-ray rotational moir�e (the round glass edge is seen on the top

right) [82].
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Figure 10. Optical schemes of the sample imaging: (a) 1Ðprimary X-ray

beam, 2Ðpreliminary asymmetric monochromator, 3Ðinterferometer,

4Ðsample, and (b) 1ÐX-ray source, 2 and 3Ðfixed slits, 4Ðdetector

being scanned synchronously with interferometer (S, M, AÐbeam

splitter, mirror, and analyzer, respectively) [7].
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appearance of thickness oscillations. Another way consists in
using a crystal interferometer with a Bragg analyzer [44].

The finite sizes of interferometers hamper studies of bulky
samples. An attempt to increase the gap between the lamellae
by enlarging the dimension of a single-crystal boule showed
apparently that this is not a solution [84]. Paper [85] discussed
the possibility of using a skew-symmetric interferometer
consisting of two monoblocks to obtain phase-sensitive
images (Fig. 11a). However, since the advantage of exploit-
ing a monolithic configuration should be abandoned, so a
high-precision adjustment of the interferometer units is
required [86].

Several phase-contrast projections obtained for different
angular positions of the sample can be joined mathematically
for performing its tomography [87±89], which probes the
internal and external structure of the sample without its
destruction.

5.2.2 Measurement of anomalous dispersion. X-ray interfero-
metry is one of the most precise methods for determining the
anomalous dispersion of the atomic scattering factor
f � Z� f 0 � if 00. Moreover, interferometry allows simulta-
neous measuring of both f 0 and f 00. Knowledge of the precise
values of f 0 and f 00 is necessary to determine the phase, and in
some cases to decipher the crystal structure, as well as to study
the structural properties of ions and molecules in condensed
media.

For an ideally focused (jgj � 1) X-ray interferometer with
the insertion of a sample with thickness T into one of the
interfering beams (for example, with the wave field amplitude
A2), formula (8) takes the form [90]

Is � A 2
1 � A 2

2 exp �ÿmT �
� 2A1A2 exp

�
ÿ mT

2

�
cos

2pT
l

d� F : �17�

Taking into consideration the anomalous dispersion, we
arrive at

d � l 2r0NA�Z� f 0�
2p

; �18�

B � ml
4p
� l 2r0NA f 00

2p
: �19�

Clearly, d and, hence, f 0 might be determined from the
phase shift produced by the sample, and f 00 might be inferred
from the change of the moir�e fringe amplitude.

Different methods can be used to measure the phase shift
[91]. In papers [92±95], a plastic wedge was inserted into one
of the interfering beams (Fig. 12a) and thus produced a phase
shift that varied linearly along the wedge height (i.e., the
beam). Here, equally spaced moir�e fringes appeared. The
wedge remained intact during the experiment. The insertion
of a plane-parallel sample into another beam led to a phase
shift, which resulted in themoir�e pattern shifting by a fraction
e of its period (Fig. 12b). Here, the phase shift caused by the
sample is 2p�m� e�, where m is an integer [92, 93].

For changing the phase, the immobile wedge might be
replaced by a plane-parallel plate (phase modulator) turning
around the axis normal to the reflecting planes during the
experiment. In papers [96, 97], for any chosen energy, the
phase modulator rotation yielded two conjugate interference
patterns of the translational moir�e: one with the sample in the
beam, the other without it. The conjugate curves were
registered during alternating insertion of the sample into the
beam and its removal at short time intervals.

5.2.3 Scanning interferometer. In the scanning interferometer
[5, 90, 98±100], the translational moir�e pattern is formed not
due to the standing wave front shift relative to the immobile
analyzer, as in the case of a phase modulator, but due to the
analyzer displacement relative to the standing wave. The
elasticity of silicon is utilized in such an interferometer,
which is needed to provide a parallel and rectilinear displace-
ment of one crystal unit of the interferometer relative to its
immobile part. The interferometer is manufactured in such a
way that its analyzer is attached to the silicon block that
carries the beam splitter and mirror by a pair of thin silicon
strips, as shown in Fig. 13a. The scanning interferometer
provides excellent stability and no backlash when displaying
the analyzer. However, the range of linear scanning is
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Figure 11. (a) Optical scheme of a separated type LLL-interferometer:

1 and 2 Ð silicon crystal blocks with beam splitter S/mirror M1 and

mirrorM2/analyzer A, and 3Ðsample. (b) Phase-contrast image of blood

vessels of a rat liver. The field of view is significantly larger than that

shown in Fig. 8b due to the use of the separated type LLL-interferometer.

a b

1

3

2G

G

F

F

E

E

Ee

e

y

yE

Figure 12. (a) Experimental setup for measuring anomalous dispersion:

1ÐX-ray interferometer, 2Ðsample, and 3Ðwedge. (b) Densitometry

of moir�e fringes obtained from an LiF sample 1765 mm in thickness,

MoKa radiation, reflection (220). Fringes obtained when the sample is

inserted (scan G) are shifted by e relative to the fringes obtained without

the sample (scan F); region EE corresponds to the time during which the

sample was in the beam [92].
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restricted by parasitic bendings and the elastic properties of
the interferometer material [98].

Measurement of anomalous dispersion. The characteristic
drawbacks in the methods considered in Section 5.2.2 are the
distortion of the interference pattern, and a reduction of its
contrast due to unwanted X-ray absorption by the phase
plates. The scanning interferometer is free from this short-
coming.

The application of the scanning interferometer also allows
avoidance of another defect, the difficulty of precise measure-
ment of the thickness of the sample under study, which
increases the error in the determination of the anomalous
dispersion of the X-ray atomic scattering factor. The authors
of papers [90, 96±100] managed to exclude the sample
thickness from the determination of f 0 by using harmonics
of the fundamental wavelength l. If the harmonic with
wavelength l=2 dominates, then

� f 0�l �
P

2

�
Z� � f 0�l=2

�ÿ Z ; �20�

where P � pl=pl=2, p is the phase shift. As � f 0�l=2 � 0:005Z,
the experimental results weakly depend on theoretical model
calculations of quantity � f 0�l=2 [98]. To generate the harmo-
nics, bremsstrahlung radiation from an X-ray tube [98] or SR
[90, 95±97, 99, 100] was used. The X-ray energy was varied by
changing the angular position of the pre-monochromator
relative to the primary beam.

Figure 13b depicts the dependence of the interference
pattern intensity as a function of the analyzer location for the
fundamental wavelength [reflection (220)] and the l=2
harmonic [reflection (440)] [99].

Measurement of lengths (linear scanning). The develop-
ment of highly sensitive measurement tools, their calibra-
tion, and reference to absolute length standards are essential
for length and (or) shift measurements and control. There
are many sensors operating in the nanometer and subnan-
ometer ranges: differential transformers, optical interferom-

eters, capacitive sensors, and sounding microscopes. How-
ever, it is evident that none of them is capable for making
its own precise calibration. For tiny displacements, it is
impossible to predict the behavior of these devices due to
their `fine' features, such as hysteresis, nonlinearity, or
instability. The X-ray interferometry, in which the silicon
lattice parameter is used as the length standard, increased
the sensitivity of the calibration method by at least two
orders of magnitude [101].

If the lattice of the analyzer is displayed relative to the
crystal lattice of the beam splitter, the intensity of radiation at
the interferometer output should oscillate with a sine period
corresponding to a displacement by one interplanar lattice
spacing, which is 0.192 nm, when using silicon reflection
(220). Counting the number of sine periods yields the analyzer
shift with a subnanometer accuracy. Therefore, the X-ray
interferometer can be considered as an `angstr�om ruler' or a
precision object table, the steps or displacements of which are
related to the silicon lattice parameter. In the first case, the
interferometer can be used for calibrating the linear displace-
ment sensors [101±104] and measuring the nonlinearity of an
optical interferometer or encoder [105, 106]. In the second
case, it can be utilized jointly with scanning tunneling [107±
109] or atomic-force [110] microscopes. For above-mentioned
applications, however, the construction of the Hart scanning
interferometer (Fig. 13a) is inadequate due to a small
scanning range of � 0:1 mm [5]. It has been possible to
increase the analyzer displacement range to 10 mm by raising
the sophistication of the construction of the scanning
interferometer [109].

Measurement of angles (angular scanning). If in a skew-
symmetric X-ray interferometer four lamellae are separated
between two blocks (two lamellae in each) capable of rotating
relative to each other in the diffraction plane (Fig. 14b), then
theoretical and experimental studies [111±114] demonstrate
that the output interferometer intensity will periodically vary
depending on the relative angle formed by the blocks. The
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Figure 13. (a) Schematic of the Hart scanning interferometer [5, 7]: AÐanalyzer on the mobile part of the interferometer C2; S, MÐbeam splitter and

mirror on its immobile part C1; the thick arrow marks the loading application area. (b) Change in the interference pattern intensity when scanning the

analyzer along the diffraction vector (along the x-axis) for reflection (220) (the upper pair of curves) and reflection (440) (the bottom pair of curves) for

the sample in the beam (curves 1) and outside the beam (curves 2) [99].
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period dy is of order 10 nrad (the authors of Ref. [113]
reported intensity variations with a period of 0.002 arcsec)
and only depends on the interplanar spacing d, the distance
zAM2 between the two lamellae of the rotating block (Fig. 7b),
and the thickness tM2 of the lamella served as a mirror:

dy � d

zAM2 � tM2
: �21�

The dependence of the period dy on tM2 is due to
dynamical X-ray diffraction effects [113], unlike the result
that follows from a purely geometrical consideration [111].
To achieve a good visibility of the angular moir�e fringes in the
entire range, the mirror lamella should be two times as thick
as the beam-splitter and analyzer crystals [113]. The theore-
tical visibility of the fringes is 100% near the maximum of the
rocking curve (RC), and not less than 50% at its falling
branches [114].

The X-ray interferometer with angular scanning can be
applied as a calibration tool for optical autocollimators, as
well as in optical interferometry for precise measurements of
angles [113].

5.2.4 Silicon lattice parameter determination. Fundamental
physical constants, such as theAvogadro constant, the Planck
constant to the neutron mass ratio, and the wavelengths of

the characteristic X-ray spectra of atoms and gamma-quanta
can be determined using silicon crystals. However, precise
knowledge of its lattice parameter is needed for these
purposes. The relations between fundamental constants and
other clearly defined physical constants require that the Si
lattice parameter be known to better than 10ÿ8.

The actual lattice parameter of very clean, almost perfect
silicon samples, grown by the zone melting method, depends
on the residual concentrations of carbon and oxygen
impurities (� 1015 cmÿ3). This indicates the absence of
significant systematic effects caused by other impurities,
vacancies, or isotopes. Thus, the lattice parameters of
different silicon crystals are equal between themselves within
a few units of 10ÿ8 after making corrections for the presence
of contaminant carbon and oxygen atoms. The lattice
parameter of almost perfect silicon, which is characterized
by the specific concentrations of these impurities, is thus an
excellent standard to measure subnanometer lengths. Redu-
cing the carbon and oxygen impurities by one order of
magnitude makes it unnecessary to introduce the contami-
nant-driven corrections [115±117].

The LLL-interferometer constitutes an achromatic
device. This property underlies the assumption that the
lattice parameter can be measured by counting the transla-
tional moir�e fringes per unit lengthÐ in this case, the X-ray
wavelength need not be known whatsoever.

A combination of X-ray and optical interferometers [118,
119] (Fig. 15) allowed simultaneous measurement of the
X-ray and optical beam intensity during analyzer crystal
displacement. Their variations have the same period as the
interplanar spacing of the silicon lattice and the half-
wavelength of the laser beam, respectively. Thus, the crystal
analyzer displacement is measured in both X-ray and optical
scales, so that the ratio l=2d is expressed through the ratio of
the number q of X-ray periods to the number m of optical
periods in a given scan [120]:

d � m

q

l
2
� l

2�Q� r� ; �22�

whereQ and r are the integer and fractional parts of the ratio
m=q, and l is the optical laser wavelength.

To avoid counting all moir�e fringes, it is sufficient to
determine the fractional part r at the final stage of the
analyzer displacement: by increasing the displacement length
(paper [121] used the progression 1, 10, 100, 1000, 5000
optical periods), it is possible to gradually improve the
experimental accuracy. The fractional part can be calculated
based on the phase stepmethod [122] or the quadrature signal
method [123].

Equation (22) implies that the larger the crystal analyzer
displacement, the higher the method accuracy. The displace-
ment range is limited by the smoothness and linearity of the
displacement within a few nanometers. In addition, it is
important to maintain the `pitch' (the turn in the analyzer
plane) and `yaw' (the turn in the diffraction plane) within a
few nanoradians along the entire scanning length. It is also
necessary to provide a good visibility of the moir�e pattern,
which requires a compromise between the opposite demands
of the maximal displacement and rigidity of the interferom-
eter construction. The construction rigidity is necessary for
keeping vibrations, which degrade visibility, within a few
fractions of one angstr�om.

Progress in X-ray and optical interferometry assumes
ongoing development of more powerful methods to control
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Figure 14. Layout of the X-ray interferometer with a linear scanning: the

thick arrow indicates the displacement direction of the mobile interferom-

eter unit with analyzer A; S, MÐbeam splitter and mirror, respectively,

PÐpiezo driver [109]. (b) Schematic of the X-ray interferometer with

angular scanning: 1Ðspring connecting the immobile (2) and mobile

(3) parts of the interferometer, 4Ðpiezo driver, 5Ðslits, and 6Ð

detectors [113].
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experimental conditions more precisely, which increases the
shift range and decreases parasitic rotations and transversal
motions.

The broadening of the scanning range both increases the
measurement accuracy and provides the opportunity of
studying a wider region of the analyzer crystal, thereby
controling its perfection degree, as well as measuring the real
mean value of the lattice parameter. Therefore, a separated
(two-block) interferometer (Fig. 15b) seems to be the most
promising. Its successful performance is a difficult task: its
immobile and mobile units must be adjusted in such a way
that vibrations and displacements do not affect the measure-
ment accuracy.

Let us try to follow the consecutive ameliorations of the
method made by several scientific groups that participated in

a sort of a scientific relay (Fig. 16), which enabled coming
close to solving an important metrology problemÐthe
creation of a new length standard. Thus

1981. 40-mm scanning range was attained [128].
1994. Scanning range was increased to 85 mm [134].
1995. A feedback system was put into operation that

decreased both the pitch and yaw of the objective table to
provide its rectilinear displacement inside a few nanoradians
within 100 mm [132].

1997. The control system of the experiment was imple-
mented that provides a smooth displacement of the crystal up
to 2 mm with the pitch, and yaw within 1 nrad [138].

2004. Anew two-axial platformwith electronic control for
compensation of parasitic rotations and the rectilinear crystal
displacement errors was constructed. The platform can
provide crystal positioning on the atomic scale [124].

2009. The scanning range was increased to 5 cm by using a
guide for an L-like carriage with the mobile analyzer sliding
over a quasioptical rail and an active rack with three
piezoelectric `legs' resting upon the carriage. The displace-
ments, rotations, and parasitic transverse movements of the
crystal are controlled by laser interferometry and capacitive
sensors. The feedback provides picometer positioning and the
adjustment of the interferometer rectilinear motion with a
nanometer accuracy [136].

5.2.5 Study of structural defects in crystals. The X-ray
LLL-interferometer is widely used to study both structural
defects arising during the growth (dislocations [11, 139±141],
growth striations [11]) and specially introduced strain fields
into the analyzer lamella by ion implantation [142±145],
diffusion [146] (Fig. 17), concentrated loading [147], laser
irradiation [148], ultrasound [11], temperature gradient [149,
150], and electromagnetic fields [151, 152].

Hart [7] showed that the orientations and Burgers vectors
of dislocations can be completely determined provided that a
sufficiently large number of moir�e patterns can be obtained
(Fig. 18). However, even simple dislocation configurations
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Figure 16. Decrease in calculation uncertainty of the interplanar spacing

dd=d over the last 40 years according to publications by different research
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Figure 15. Layouts of X-ray optical interferometers. (a) Single-block

X-ray interferometer: 1 and 2Ðimmobile and mobile units, respectively,

3ÐX-ray detector, 4Ðlaser beam, 5Ðmirrors forming optical Fabri±

Perot interferometer, and 6ÐPEM [119]. (b) Two-block X-ray interfe-

rometer: C1Ðmobile block (analyzer) with mirror end surface to reflect

laser beam, C2Ð immobile block (beam splitter and mirror), 1ÐX-ray

beam, 2Ðcapacitive sensor (transducer), 3Ðtwo-axial slanted platform,

4Ðlaser beam, 5Ðoptical interferometer, and 6Ðposition-sensitive

detector [124].
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can produce clearly contradictory, complicated moir�e pat-
terns.

When determining the silicon lattice parameter, it is
important to know how perfect the crystal lamellae of the
scanning interferometer are. Paper [153] attempted to
determine the strain fields in the analyzer crystal. A phase
modulator (the plastic plate with a thickness of about
500 mm) was inserted between the beam splitter and mirror
in such a way that both X-ray beams were overlaid in the
interferometer (Fig. 19a). By turning around the phase
modulator through the angle x, the optical paths of the
beams change in counterphase: one decreases, while the
other increases. A simple geometrical analysis shows that
such a phase modulator of thickness Tm causes the optical
path difference 2Tm�1ÿ n��sin yB= cos2 yB� x, where n is the
refraction index. A phase modulator overlaying both optical
paths is more advantageous. First, it doubles the method
sensitivity. Second, and more importantly, the optical path
difference can be approximated by a linear function of x in the
limit of small turning angles.

The interference pattern was registered by eight rows of
scintillation counters with 1:5� 1 mm2 pixels. To obtain the
topogram displayed in Fig. 19b, the interferometer was

displaced along the x-axis with a 1-mm step. To determine
the phase distribution, the intensity of the transmitted beam
(O-beam) was measured at each interferometer position for
60 different angular positions of the phase modulator.

Four crystal regions of the interferometer participate in
the formation of the moir�e pattern; therefore, strictly speak-
ing, themethod does not provide information about the strain
fields in an individual lamella out of three ones. Theoretical
[154] and experimental [155] studies of the strain fields were
carried out for a double-T analyzer (Fig. 15b).

5.2.6 Time-resolved interferometry. Study of nuclear resonance
scattering. Pulse properties of the synchrotron radiation (SR)
are employed in time-resolved interferometry. For example, a
collimated beam from an SR source can be used in a crystal
interferometer with unresonance component discrimination,
which is not feasible with an ordinary radioisotope source.
The high longitudinal coherence of nuclear resonance
scattering guarantees the observation of interference
between X-rays emitted by different nuclei, interference
between freely induced signals separated by a time interval,
and collective photon absorption and reemission.

In experiments studying nuclear resonance scattering in
the forward direction, the nuclear target is usually inserted
between the first and second wafers of the interferometer, and
the phase shifter between the second and third wafers
(Fig. 20a). The authors of paper [156] used a plane-parallel
silicon wafer of thickness 290 mm as the phase shifter, and the
relative phase change was due to rotation of this silicon wafer.
The energy of monochromatic SR can be tuned to resonance.
Figure 20b demonstrates the time spectrum of nuclear
resonance scattering in the forward direction, which was
obtained from a stainless foil 4 mm in thickness enriched in
57Fe isotope. Experiments revealed that the phase informa-
tion is passed via reemission through the intermediate nuclear
resonance state. This phase information can be utilized as
phase memory, which is analog, not digital, memory. It
should be stressed that in these experiments the M�ossbauer
nuclei played the part of the resonating cavity for SR.

Paper [157] reported experimental results that successfully
demonstrated interference during nuclear resonance scatter-
ing in the forward direction in two 57Fe-enriched stainless
foils of different thicknesses, where intensity variations in
phase and counterphase were observed with an aid of
different time windows of the discriminator. The use of the
time delay (Fig. 20b) is justified for observing the interference
between different decay-induced beams. This interference
arises between X-ray beams emitted by different nuclei.
Contrast interference oscillations were obtained with a
visibility corresponding to that of the interferometer itself.
Consequently, two beams emitted by different nuclei at
different times during resonance nuclear scattering are
coherent and their wave packets fully coincide in time.

When two targets with insignificantly different nuclear
excitation energy levels are inserted into different optical
paths of the interferometer, then, by measuring the intensity
variations of one of the output beams, it is possible to
determine the phase incursion caused by such differences.
The time distribution of scattered photons was also measured
when identical targets were inserted into both beams, with
one of the targets being displaced to produce the Doppler
effect [158].

Quite often, the results of nuclear resonance scattering
experiments are difficult to interpret, in particular, when the

a b

c d

300 mm

Figure 18. X-ray moir�e patterns of dislocations for different reflections:

(202) (a), (220) (b), (422) (c), and (440) (d); MoKa emission [7].

a b

Figure 17. X-ray moir�e patterns from an aluminum disc 5 mm in diameter

vaporized onto the analyzer before (a) and after (b) short annealing at a

temperature of 500 �C [7].
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approximate positions of nuclear energy sublevels are
unknown. Paper [159] made use of an X-ray interferometer
with an etalon sample having sharp nuclear resonance levels
to prepare anX-ray beamwith a controllable phase. A sample
with similar resonances was inserted into the beam outside of
the interferometer. The change in the X-ray emission phase
on the sample can be uniquely determined based on the time-
dependent intensity at the sample output. The possibility of
setting the sample outside the interferometer allows the total

external X-ray reflection to be exploited, which is highly
advantageous in studies of thin films or nanostructures.

5.2.7 Determination of the coherence of X-ray beams.When in
an X-ray LLL-interferometer the distance (LSM) between the
beam splitter and the mirror differs from the distance (LMA)
between the mirror and the analyzer, a simple geometrical
consideration shows that two beams that converge at the
analyzer at one point should cross the beam-splitter plate at
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Figure 20. (a) Schematics of experiment on nuclear resonance scattering X-ray interferometry in the forward direction: 1ÐLLL-interferometer, 2Ð

sample, and 3Ðphase modulator. (b) Time spectrum of scattering; the resonance scattering corresponds to the time interval from 35 to 89 ns [156].
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[153].
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points separated away by the distance DS � D sec yB
(Fig. 21a). The spatial separation of these beams is a function
of LSM and LMA and vanishes when LSM � LMA [160]:

DS � 2�LMA ÿ LSM� tan yB : �23�

To observe the effect of the spatial separation DS on the
interference pattern visibility, the distance LMA should be
continuously changed. This can be realized, for example,
using an inclined analyzer plate (Fig. 21b).

In an interferometer with the analyzer inclined by angle c
to the y-axis, the interference fringes have period Dy [161]:

Dy � d

jDy tancj ; �24�

where Dy is the deviation from the exact Bragg angle.
When the image of a homogeneous and partially coherent

source of size s is observed at distance z from the source, the
coherence function g�D� is given by the formula [161]

g�D� � sin�polÿ1D�
polÿ1D

; �25�

where o � s=z.
An interferometer with an inclined analyzer can be used to

determine the transverse coherence of the primary beam from

the interference fringe visibility given by expressions (9) and
(25).

The longitudinal coherence might be determined with the
aid of a Michelson interferometer.

6. Michelson X-ray interferometers

By a Michelson interferometer is usually meant one capable
of producing a broad range of observing interference maxima
in a wide spectral range. This feature makes the instrument
particularly useful for precision measurements and for Four-
ier spectroscopy, which is even more important [162].

Michelson interferometers for visible light have existed
for more than a century. In these instruments, the primary
beam is split into two: one beam with a fixed optical path
length, and the other beam with a variable length. These two
beams are then converged again to observe interference. The
change in the interference intensity as a function of the path
difference will be observed as long as the path difference is no
more than the longitudinal (time) coherence length.

Generally, it is rather difficult to construct the optical
setup for an X-ray interferometer which would be capable of
providing a significant difference in the geometrical paths of
two beams without strongly violating the focusing condition,
which requires that any pair of interfering X-rays coming out
from one point of the source meet at one point on the
analyzer.

TheX-ray interferometer is ideally suited for observations
of large longitudinally consistent wave packets. However, it is
rather difficult to construct such an interferometer with a
large X-ray path difference.

Despite the existing opinion [163] that LLL-interferom-
eters, while being capable of providing a large number of
interference orders, are not suited to produce a desired path
difference between the beams, the authors of Ref. [164]
proposed a setup of an X-ray interferometer with wedgelike
lamellae (Fig. 22a) providing the path difference D between
the interfering beams:

D � L tan a1�sec yB ÿ 1� ; �26�

where a1 is the angle of themirror wedge, andL is the distance
from the X-ray beam point of incidence at the second lamella
(mirror) to the wedge base.

Having determined the value of the parameter L, at which
the interference pattern disappears during the interferometer
displacement relative to the primary beam parallel to the
diffraction vector, one can calculate the longitudinal coher-
ence length of the primary beam using formula (26).

To provide beam focusing, the analyzer lamella wedge
angle a2 should be determined by the mirror wedge angle and
the Bragg angle:

tan a2 � tan a1
2ÿ tan yB tan a1

: �27�

This condition implies that the interferometer should be
designed for a particular energy of the beam. In addition,
geometrical condition (7) is violated here, which can disprove
the interference pattern quality.

In paper [165], a setup of a chromatic X-ray BBBB-
interferometer (Fig. 6a) with a large and variable path
difference was proposed, which was successfully realized
later in Ref. [166]. It can be exploited for precise measure-
ments of the X-ray beam coherence, as well as in X-ray
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Figure 21. (a) The X-ray interferometer with different distances between

the beam splitter and the mirror (LSM), and between the mirror and the

analyzer (LMA). D is the distance between two beams converging at one

point A on the analyzer [161]. (b) Exterior view of the interferometer with

an inclined analyzer [160].
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Fourier spectroscopy. To provide the path difference between
the two beams, the mirror surfaces (M2 and M4 in Fig. 22b)
are inclined by small angle Z to the surfaces of another pair of
mirrors (M1 andM3). Thus, the change in the path difference
D depends on the displacement D of the primary beam along
the beam-splitter surface [167]:

D � 2D tan Z
�
1� sin �yB ÿ j��

sin �yB ÿ j� ; �28�

where j is the angle between the crystal surface and the
reflecting planes.

A small skew at 1� changes the asymmetry factor by 4%
and insignificantly affects the location and intensity of the
diffraction peak. Indeed, this causes very little angular
changes in the beam location (� 1 mrad), which lead to a
small horizontal shift (defocusing) on the analyzer surface:
70 nm for reflections Si�440�=Si�404� (for Si�880�=Si�808�
reflections, the horizontal shift is about one fourth the size).
This small change can be neglected, and this will not affect the
interference pattern visibility.

In this setup, a path difference as large as 1 mm is
attainable. It is limited only by the size of the silicon crystal
available. A larger `slant' of mirrors M2, M4 also increases

the path difference. Here, the interferometer adjustment is
relatively simple, but such an interferometer is suitable for
studies of a small number of interference orders. In addition,
the usage of multiwave diffraction restricts applications of
this type of a Michelson interferometer by discrete values of
the primary beam energy, at which the interferometer's pass
band is only a few millielectron-volts.

To study nuclear resonance scattering, papers [156, 168]
took advantage of a BBB-interferometer (Fig. 5c) in which
the optical path difference was 2.4 mm, which is a record for
instruments described in the literature. This is much larger
than the SR longitudinal coherence length, but much smaller
than the nuclear resonance scattering length on 57Fe. The
layout of a BBB-interferometer with a large optical path
difference is presented in Fig. 22c. The crystal plate AS serves
as the beam splitter and analyzer. The plates M1 and M2 are
utilized as mirrors. The symmetric Bragg reflection Si(880)
with the asymmetry parameter b � 0:69 for the 57Fe reso-
nance energy (l � 0:86 A

�
) was used. The distances L1 and L2

between M1, M2 and AS were 21.65 mm and 23.35 mm,
respectively, and the width t measured 1.1 mm. The optical
path difference D is given as follows:

D � �L2 ÿ L1�
�

1

sin �yB ÿ j� �
1

sin �yB � j�
�
: �29�

Clearly, the distance D between the input beams, which
converge at one point in the output, should be smaller than
the transverse coherence length lx of the primary beam:

D � �L2 ÿ L1�
�
cot �yB ÿ j� � cot �yB � j��

� sin �yB � j� < lx : �30�
The authors of Refs [156, 169, 170] improved the setup of
the Michelson BBB-interferometer: one of its mirrors was
joined to the crystal base by a series of elastic connections in
such a way that a piezo driver could displace this mirror
perpendicular to other units of the interferometer, thus
providing a variable X-ray path difference. In addition, the
main BBB-interferometer could be used as an auxiliary
LLL-interferometer for preliminary testing of the structural
perfection of the Michelson interferometer.

From the scientific point of view, it would be very
desirable to make Fourier spectroscopy operable in the hard
X-ray range. Then, SR spectra could be measured, including
those transformed by ondulators and wigglers, as could the
spectra of free electron lasers. The setups of the Michelson
interferometers considered here can provide a path difference
in the mm range. This can be sufficient, for example, to
analyze the longitudinal coherence of radiation, but insuffi-
cient for measuring the full radiation spectrum by means of
Fourier spectroscopy.

The Michelson interferometer setup proposed by Appel
and Bonse [171] provides the spectral resolution needed for
Fourier spectroscopy. It utilizes an LLL-interferometer,
together with two Bragg grooved crystals B1, B2 (one
monoblock per branch of the interference loop) connected
by a thin elastic bridge E (Fig. 23). These blocks are inserted
into the gaps of the LLL-interferometer and can rotate
relative to each other to produce the optical path difference
between the two interfering beams. This is a distinctive
feature of this optical setup from those considered above, in
which the linear displacements of the entire interferometer or
its separate units are used to produce the path difference.
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Figure 22. Optical layouts of X-ray (a) LLL- [164]; (b) BBBB- [165, 166],

and (c) Michelson BBB-interferometers [156, 168] (see text).
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It is essential that the rotation of Bragg crystals B1, B2
through their RC range change each beam propagation
direction inside the crystals, not outside, so that the reflec-
tion condition in the LLL-interferometer remains to be
fulfilled. Such a rotation causes the path difference D of two
beams yielding the phase shift F � 2pD=l. The path differ-
ence D depends on the Bragg angle, the width of slots
(grooves) D1 and D2, the angle j, and angular deviations b1,
b2 of the beams from the RC center for the Bragg nanoblocks
[38]. For a simplified case of the symmetrical diffraction
(j � 0) and when D1 � D2 � D, one obtains

D � 2DDb cos yB ; �31�

where Db � b1 ÿ b2. The path difference arises if Db 6� 0. By
setting D � 2 mm and l � 1:54 A

�
(CuKa), the path differ-

ence for Dbmin � 8:7� 10ÿ3 arcsec (4:2� 10ÿ8 rad) is equal
to l, which allows one to obtain about 800 interference orders
before the grooved crystals move out of the reflecting
position. Here, the spectral resolution Dl=l should be

determined by the formulas

Dl
l
� Dbmin cot yB �

l
2D sin yB

� d

D
� 1

Nd
; �32�

whereNd is the number of reflecting planes accommodated in
the Bragg crystal gap.

At d � 1:92 A
�

[reflection (220)] and D � 2 mm, the
spectral resolution Dl=l should be on the order of 10ÿ7.
Therefore, with such an interferometer, interference maxima
can be analyzed in detail, but the exploitation of the two
separate crystal monoblocks makes the preliminary adjust-
ment more difficult; moreover, this instrument is more
susceptible to temperature and vibrational stability than a
single monoblock interferometer.

A feature of the optical layout under discussion is that by
`mixing' the Laue and Bragg diffractions a significant optical
path difference can be obtained without noticeable defocus-
ing. The defocusing Dz reduces the interference pattern
contrast and, hence, narrows the maximum scanning range
Dbmax and the spectral resolution Dl=l of the interferometer.
Clearly, the defocusing increases proportionally to the
interference orderM [163]:

Dz � DDb � lM
2 cos yB

: �33�

For Mmax � 40;000, the defocusing amounts to Dz �
3:2 mm, which is sufficiently small to significantly affect
the contrast. On the other hand, taking into account the
limits on the manufacturing of interferometer units, certain
strict conditions must be fulfilled: to sustain a high contrast,
changes in the slot width D and in the position and
planeness of wafers in the LLL-interferometer should be
within 3 mm [163].

7. Conclusions

As we have explained above, X-ray interferometers can be
employed tomeasure the extremely small lattice deformations
of almost perfect crystals, the X-ray refraction coefficient to
within 0.1%, and the coherence length of X-ray beams, and
can be used for the X-ray phase-contrast microscopy of, for
example, biological objects.

Combined interferometers or interferometers allowing
large translational displacements of the crystal open up a new
avenue in subnanometer metrology and in absolute measure-
ments of fundamental physical constants. This new possibility
enables high-precision absolute measurements of lengths in
the region where up to now such measurements have been
made using a light standard with a finite spectral width, which
introduced additional measurement uncertainties.

The X-ray interferometer, which is sometimes referred to
as the `angstr�om ruler', is an ideal instrument for high-
precision measurements. Such measurements are increas-
ingly required in different fields of science and technology,
including microelectronics, visible light optics, optical infor-
mation carriers, calibration of high-resolution shift transdu-
cers, and scanning acoustic and atomic-force microscopes.
The X-ray interferometer provides a very precise scale for
such a calibration in the subnanometer range. The instrument
uses the silicon lattice parameter as the well-determined scale
that is directly related to the length standard.

The future of X-ray interferometry, apparently, is related
to the capability of precisely manufacturing the crystal X-ray
optics elements, as well as to the mutual adjustment and
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positioning of separate interferometer units. The extension of
the scanning range of the analyzer crystal to several
centimeters is one of the problems. Such an extension should
rely on integration of control over six degrees of freedom for
its displacement and the laser metrology.

Obtaining a large variable path difference of interfering
coherent beams is another problem. Its solution would
provide the possibility of constructing X-ray equivalents of
the Michelson interferometer with taking aim at the experi-
mental realization of Fourier spectroscopy.

The moir�e pattern is very sensitive to tiny phase gradients.
Therefore, of all known X-ray phase-contrast image methods
[172], crystal interferometry is themost sensitive to small local
density variations in the sample under study. This method
directly reveals the phase change, whereas other methods are
sensitive to first and second phase derivatives. The possibility
of industrial production of bulky silicon crystal boules with a
perfect structure can return crystal interferometry to the
leading position in phase-contrast imaging. The growth of
silicon crystals with the reduced amount of impurities
(< 1014 cmÿ3) can make this material a new length etalon.
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