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Abstract. This is a review of a very interesting (in the authors’
view) phenomenon — the operation of a nonlinear light beam
splitter. The beam splitter is a flat interface between two trans-
parent dielectrics, at least one of which exhibits Kerr nonlinear-
ity, i.e., its refractive index depends on the transmitted radiation
intensity. Interestingly, quantum and classical theories make
directly opposite predictions about the phase fluctuations of the
output radiation of this device. In classical theory, the phases
remain unchanged; in quantum theory, the phases fluctuate in
accordance with the amplitude—phase uncertainty relation. The
origin of this difference is established at the fundamental level.
A further remarkable point about this quantum paradox is that
not only is the source beam split in two but one can also create
conditions where the two split parts are respectively dominated
by amplitude noise and phase noise, thus allowing the selection
of photon fluctuations. Results of original studies are summar-
ized and further developed.

1. Introduction

Quantum paradoxes are a source of intellectual curiosity for
two reasons. First, everything that is paradoxical is interest-
ing and usually beautiful. Second, they give a more pragmatic
opportunity to mark the boundaries for the model description
of physical processes. No matter how long you talk about, for
example, wave—particle duality, this will not add anything to
the understanding of this phenomenon, except for new terms
and words, because there is no illustrative model that would
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properly describe all the experimental results. Our pursuit of
knowledge, however, would never end with a quantitatively
ideal theory like quantum physics. Human consciousness
irrepressibly strives for comprehending the meaning of
phenomena. We do not hope to be able to predict every-
thing, but we nevertheless assume that an adequate inter-
pretation of quantum theory can be found in new concepts of
space—time. Pure quantum effects cannot be described in the
framework of standard four-dimensional space—time, which
is a reason for many fundamental quantum paradoxes.
Among these paradoxes, the most important are the ones
connected with quantum nonlocality: the Einstein—Podolsky—
Rosen paradox [1-3]; Bell inequalities [4] (see also, for
example, Refs [5-12]); interference of single quantum parti-
cles (see, for example, Refs [12—14]); three-photon interfer-
ence [15-17] (see also Ref. [12]), and the quantum Zeno
paradox (see, for example, Refs [13, 18-20]) which can be
regarded as violations of the causality principle, revealing
themselves in the fact that the subsequent event determines
the preceding event. It seems that we need to globally revise
the base for our models in order to resolve these fundamental
paradoxes.

But there is another category of paradoxes that are not
directly connected with the space—time concept. Among them
are multiphoton interference, where classical interference
minima are replaced with maxima in a quantum description
[21]; the recently discovered quantum Bernstein paradox [22]
which will not, of course, change our representation of
Nature, but is simply very beautiful, and the nonlinear
beam-splitter quantum paradox [23-26], where phase fluctua-
tions of light seem to appear out of nothing. We hope that the
last paradox will also be interesting to the readers.

To easily explain the problem, we will touch upon the
simplest case. The flat surface of a transparent dielectric
reflects light. Now let us assume that the dielectric possesses
cubic (Kerr) nonlinearity, so that its refractive index decreases
as the light intensity increases. This is the so-called self-
defocusing nonlinearity, because in such a medium a light
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Figure 1. Beam splitter outline: ¢; and ¥, are the angles of incidence and
refraction; m photons are incident on the interface, / photons are reflected
from it, and kK = m — [ photons are transmitted.

beam with a flat phase front and Gaussian intensity profile
becomes divergent. It is clear that as the light intensity
increases, the difference between the refractive indexes of air
and the medium decreases and, consequently, the Fresnel
reflectivity decreases as well, which stabilizes the intensity
fluctuations in the reflected beam with respect to the
analogous fluctuations in the incident beam. At the same
time, the phase of the wave does not change. If such
stabilization occurs not only for classical but also for photon
fluctuations, what happens to the uncertainty principle? The
amplitude and phase uncertainties are connected, and a
decrease in one of them should be followed by an increase in
the other.

However, a more interesting object in the sense of the
effective fluctuation stabilization is the nonlinear beam
splitter, comprising an interface between two transparent
dielectrics (Fig. 1). Let us assume that one of them possesses
cubic (Kerr) self-focusing nonlinearity, causing an increase
in the refractive index as the light intensity increases. The
reflectivity and transmittivity of this interface depend on the
light intensity in accordance with the Fresnel formulas.

Let us consider the case when the incident beam
propagates in a linear medium, and the refractive index of
the second dielectric (with the nonlinear correction taken into
account) is greater than the refractive index of the first one. In
this event, the increase in the beam intensity will cause an
increase in the refractive index and, hence, the reflectivity will
increase and the transmittivity will decrease. This means that
the spontaneous increase in the intensity of the incident beam
would be partially compensated by a decrease in the
transmittivity. This process, thus, leads to the saturation or
a measure of closing of the system, resulting in the stabiliza-
tion of the transmitted light intensity. Such a tangible
stabilization can also take place for a beam reflected from
the interface, either if the refractive index decreases as the
intensity increases, or if the relation between two refractive
indexes is opposite: the first one is greater than the second
one.

We will analyze a single mode case of plane monochro-
matic waves. The phase of both reflected and transmitted
plane waves is invariant near the interface between two
transparent dielectrics, up to a possible jump by 7 in the
reflected beam. This brings us to a paradoxical situation:
amplitude fluctuations of either a transmitted or reflected
beam can decrease, while the phase fluctuations should

remain unchanged, which will, of course, lead to a violation
of the Heisenberg uncertainty principle. In this article, we will
mainly discuss the contradictions caused by this paradox.

In order not to take into account the phase incursion in
transparent media, we consider the area in the vicinity (at
distances less than the wavelength) of the interface. More-
over, considering such a thin layer (for instance, by placing it
between two plane-parallel plates of linear media) cancels the
effect of the plane-wave instability in the medium with self-
focusing nonlinearity. This is a classical effect that follows
from nonlinear optics, and it can be neglected due to the small
propagation length at which the instability does not reveal
itself.

Let us also note that the study of the preparation of sub-
Poisson states by using, in particular, a nonlinear beam
splitter not only is of fundamental interest, but also gives
new opportunities for the practical application on the way to
the production of devices for extremely precise measure-
ments. Assume that photon fluctuations are suppressed in
the light source with respect to those in the coherent state,
which is a sum of a vacuum state and a constant component of
the ideal nonfluctuating signal. In this event, one can increase
the accuracy of the measuring system or the resolution of the
image beyond the quantum limit which is determined by
quantum noise.

2. Classical description of a beam splitter

It is common to start the consideration of light refraction on
the interface between two media with Snell’s law

nysind; = np sind,

(2.1)

and the Fresnel formula for the amplitude reflectivity [27]

B sin (191 — 192)
P= sin (191 + 192) ’ (2:2)

which holds true for plane-polarized light with the electric
vector perpendicular to the plane of the drawing (so-called
s-polarization). For another, mutually orthogonal, polariza-
tion (p-polarization), the sines are replaced by tangents.

If there are no losses, the transmittivity and reflectivity are
linked by the simple relation

?4p?=1, (2.3)
which follows from the energy conservation law.

Let us note in advance that we only analyze the regimes
with light transmittance, without considering the total
internal reflection regime, because in the latter case the
photonic fluctuations are not suppressed.

The nonlinearity of one of the adjacent media means that
its properties depend on the intensity of the penetrating light.
For example, Kerr nonlinearity does not change the
frequency spectrum of light, but influences the refractive
index. If the first medium possesses nonlinearity, then

ny =ny+ x(vVm=+ \/1)27

ny = const, (2.4a)
because both incident and reflected waves are propagating in
the first medium. These waves add up coherently and the
response of the medium contains nonlinear terms for
interference. In general, the waves become cnoidal, but this
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happens in the bulk, and we consider a thin layer near the
interface, where the phase incursion of the reflected wave is
either absent or equal to 7 if it reflects from a denser medium.
In the latter case, formula (2.4a) should be written down with
the amplitude difference \/m — v/1, while for reflection from a
less dense medium with the sum /m + /1.

If the second medium is nonlinear, the corresponding
relations are simpler:

ny =nyy + yk, n; =const, (2.4b)
where nj is the refractive index in the dark, and y is a
coefficient which is proportional to the third-order suscept-
ibility 5 ® of the medium. To easily compare the results with
the quantum approach, we conventionally measure the light
intensity by means of the number of photons in some
quantizing volume. These dimensionless values are, of
course, proportional to the intensities of the plane mono-
chromatic waves under consideration.

If we solve the set of equations (2.1)-(2.4) by using
obvious relations for the complex amplitudes of the trans-
mitted and reflected waves, namely

a =1a;, a = pa;, (2.5)
we will obtain the relation required between the input and
output waves. Subscripts t, r, i correspond to transmitted,
reflected, and incident beams, respectively.

Unfortunately, an analytical solution does not seem to
exist. Therefore, to study the statistical properties of such a
passive nonlinear converter, one should perform a numerical
experiment. The most informative representation of the
results would be the dependence of the three-dimensional
probability distribution of the complex amplitudes for the
transmitted and reflected beams on the form of such
distribution for the incident beam. Now, let us illuminate
our beam splitter with an ideal laser emission. The Wigner
distribution W(X,Y) describes the two-dimensional prob-

_10 05

Figure 2. Wigner distribution for a coherent state: vector Z = {X, ¥ } is the
mean complex amplitude, X and Y are its mean quadrature components. It
is more convenient to use in our consideration precisely quadrature
components X and Y, instead of the generalized coordinate and momen-
tum, ¢ and p, that were used in Ref. [28] and are v/2 times bigger.

ability density for the real and imaginary parts of the
complex amplitude to be equal to the X and Y quadrature
components, respectively. In coherent light of an ideal laser,
the Wigner distribution has the form of a rotated two-
dimensional Gaussoid (Fig. 2), displaced by the mean
amplitude value [28]:

Wen(X, ¥) = 2 exp (2[(X ~ 0P+ (Y= ). (26)

The normalization of the quadrature components is chosen in
such a way that the mean light intensity X2 4+ Y2 would be
equal to the mean number of photons in the mode.

But what will be in the outputs? If we know the output
complex amplitudes as functions of the input one (and vice
versa), then we can find the probability distribution for these
amplitudes. Since an analytical description is too cumber-
some, we will apply the numerical Monte Carlo method. The
results of computer modeling are given in Fig. 3. One can see
that the probability distribution for the transmitted beam
appears to be squeezed along the real component, which
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Figure 3. Three-dimensional probability distributions for the complex amplitudes of the output beams (a) and their cross sections (b). Three cross sections
are accurately inscribed in one and the same angle that characterizes the phase fluctuations. The first medium is linear, n; = 1.5. The second medium is
nonlinear, n, = 1.51 + 0.001k. Transmitted beam stabilization is observed. Angle of incidence equals 88°.
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Figure 4. Intensity probability distributions for the reflected, transmitted
and incident light beams for the same parameters of the system as in Fig. 3.
For comparison, dashed curves show the Poisson distributions, which are
common for the coherent state.

determines the light-intensity fluctuations if the mean
amplitude is real. This means that the fluctuations are indeed
stabilized. In the reflected beam we are faced with the
opposite picture, which obviously follows from the energy
conservation law, because our system is passive and non-
dissipative. For clarity, Fig. 4 shows the intensity distribu-
tions for the transmitted [P(|a|*)] and reflected [P(|a;|*)]
beams.

For a more detailed analysis, one cannot just single out
particular cross sections of the three-dimensional probability
distributions, but also analyze the so-called uncertainty
regions. These regions are determined in the following way.
The real and the imaginary axes of our distributions represent
the quadrature components of the complex amplitudes:

a+a* a—a*

X = Y =
2 2

(2.7)

When analyzing the noise, we are first of all interested in
the fluctuation components of these quadratures:

AX=X-X, AY=Y-7. (2.8)

The mean amplitude is still assumed to be real and equal
to the mean quadrature X. Then, AX determines the
amplitude fluctuations, and AY determines the phase fluctua-
tions. The latter ones can be approximately written out as

AY
AP ~ —
¢ X

(2.9)
for X > 1.

The variances of quadratures (AX?), (AY?) and their
standard deviations /(AX2), \/(AY?) characterize only
fluctuations along the real and imaginary axes of the
probability distributions. Fluctuations of a more general
type are determined by the generalized quadrature

AQ(0) = Aaexp (—i0) ;— Aa* exp (i6) 7

(2.10)

which will describe all possible values of the fluctuation
quadratures when rotating through the angle 0. For exam-
ple,if 0 = 0, it is simply AX, and if 0 = =t/2, itis AY. Figure 5
demonstrates uncertainty regions R(0) = +/(AQ2(0)) for the
reflected and transmitted light beams. One can see that in the
transmitted beam the amplitude fluctuations are suppressed,
while in the reflected one they are not. However, phase
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Figure 5. Uncertainty regions of output light beams. These regions would
be circles for coherent states.
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Figure 6. Harmonically modulated signal (upper curve) conversion with a
nonlinear beam splitter. The transmitted light beam (lower curve) is
stabilized: the ratio between the modulation amplitude and the mean
value is 0.068, unlike 0.1 for the incident signal, and the fluctuations were
transferred to the reflected beam (middle curve), where this ratio is 1.1.
This means that the relative amplification of the signal took place in the
passive device. The first medium is linear, n; = 1.3. The second medium is
nonlinear, n, = 1.41 + 0.0028k. The transmitted beam is stabilized and
the angle of incidence equals 88°.

fluctuations due to phase invariance are the same for all
three light beams: incident, reflected, and transmitted. This is
illustrated in Fig. 3b as well, where all three cross sections are
accurately inscribed in one and the same angle which
characterizes phase fluctuations of the beams. Before com-
paring these results with those of the rigorous quantum
treatment, we will illustrate the first ones with another
demonstrative example.

Isolating the amplitude modulation of a classic signal with a
constant offset. Let us assume that a signal incident on the
beam splitter does not have a constant amplitude, but is
harmonically modulated in such a way that the modulation
amplitude would be much smaller than the mean one (Fig. 6).
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What will we see in the outputs? The transmitted light beam is
stabilized and, of course, will be more intensity-stable (lower
curve in Fig. 6). But where did the fluctuation energy go?
Obviously, it will be transferred to the second, reflected beam,
making the fluctuations stronger with respect to the mean
value (middle curve). And although there are many methods
of separating the signal against the background of the
constant pedestal, this one clearly illustrates the amplitude-
modulated light conversion with the nonlinear beam splitter.

3. Exact quantum solution
in the Schrodinger representation

Problems in the field of nonlinear quantum optics in most
cases, with several exceptions (for example, quantum
Schrodinger solitons), do not have an analytical solution.
Initially, this was the case for the problem considered as well.
However, a detailed analysis of the discovered paradox was
needed, and after much effort in this area, the solution has
been found [25, 26].

Let us assume that the beam splitter (Fig. 7) is illuminated
from the left side with a mode in the Fock state |m) with a
given number of photons m. But there is also another possible
input channel in the beam splitter from the top. Even if the
illumination from the top is absent, there will still be the
vacuum state |0). For a linear beam splitter, the output state
would be described by the vector [28]

W) =>_ Ve k) (3.1
k=0

Here, k is the number of transmitted photons, / = m — k is the
number of reflected photons, t and p are the Fresnel
amplitude transmittivity and reflectivity, respectively, and
C}' is the binomial coefficient.

Relation (3.1) describes the exact quantum solution, but it
has a simple physical meaning: in this case, photons behave
like usual classical and unbound particles. For example, the
probability of one photon passing equals 72, and the
probability of k photons passing is 72¢. The probability of k
photons being transmitted and /= m — k photons being
reflected equals the product of (z2)* (p2)"*. The binomial
cocefficient C}" = m!/(k!(m — k)!) appears due to the indis-
tinguishability of all possible combinations for transmitted

Vacuum
ny = myy + yk

R

Incident beam, m Transmitted beam, k

Reflected beam,
m l=m—k

Figure 7. Nonlinear light beam splitter with the second nonlinear medium,;
¥ and 1, are the angles of incidence and refraction. At the first input is the
coherent mode with the plane wave front, while at the second one vacuum.

and reflected photons. And the square root has to be applied,
because the vector of state determines not the probability
itself, but its amplitude.

The nonlinearity can be taken into account by introducing
the functional dependences of T and p on m £ [ in the case of
the first and second media being nonlinear and linear,
respectively, and on k in the opposite case. If both adjacent
media are nonlinear, two dependences would be introduced
simultaneously. In this case, one can use standard expressions
(2.2) and (2.3) for 7 and p, given that the nonlinear additive to
the refractive index is proportional to the number of photons
in the medium, and y is proportional in due course to the
third-order susceptibility y ).

Let us consider an arbitrary state | ) at the input, for
example, a coherent one |z), which can be expanded in terms
of the Fock basis:

)= Dalm).

m=0

(3.2)

Then, one arrives at

N . +1 +1
w3 w3 v (M) (M m
m=0 k=0

=33 Aulkll).

m=0 k=0

(3.3)

The two-row arguments in parentheses after t and p denote
two functional dependences on top or bottom rows for two
cases specifying the relative position of the nonlinear medium,
as mentioned before. Due to the nonlinearity of the problem,
one has to perform the renormalization to fulfill the condition
Wly) =1.

There is one subtlety in the last step. If the Fock state is at
the input, then, of course, the output states are not Fock-like:
the numbers of photons k and / can be different. More
precisely, the output states are the superpositions of the
Fock states. But which of them should the nonlinearity refer
to? Let our reasoning be more operationalistic. If we detect
photons at the outputs, for every realization we will obtain
quite definite numbers k& and /. Exactly these numbers will
determine the nonlinearity, as illustrated by Eqn (3.3). This
means that a definite number of photons m = k + [ were at
the input, too.

The physical meaning of the coefficients squared A,\?, =
|(l\(k|\|,b>|2 is very simple: it is the probability of k£ photons
passing and / photons reflecting at the same time — that is, we
have to do with a two-dimensional conditional probability.
Now we can easily evaluate the probability distributions for
observing some certain number of photons in the reflected
and transmitted light beams:

o0 o0
2 2
PI:ZAM; Pk:ZAk[»
k=0 =0

which are shown in Fig. 8. One can see that the transmitted
beam resides in the Poisson state, and the reflected one in the
super-Poisson state, which qualitatively corresponds to the
classical results (see Fig. 4).

Details about the approximate calculation of the Ay
coefficients are discussed in Appendix 1.

More detailed information about the quantum states of
light fields can be obtained from the Wigner distributions,

(3.4)
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Figure 8. Probability distributions for the number of photons in the output
beams. For comparison, dashed curves show Poisson distributions. Initial
parameters of the system are the same as in Fig. 3. The most probable
number of reflected photons is 169, and the most probable number of
transmitted photons is 81 (mean number of input photons is 250).

which are quantum analogs to the classical distributions
plotted in Fig. 3. They are determined in the following way.

In order not to lose the information about the phase, one
can calculate the projection of our state [y) vector onto the
coherent state |z)—in other words, calculate the scalar
product (|z). Its absolute value, if squared, gives the so-
called Q-distribution:

0(X,Y) = [(¥l2)

& (3.5)
By varying the mean complex amplitude of the coherent state
z={X, Y} over the complex plane, we, as odd as it might

seem, probe our state |i/) with a device that has a transfer
function

Weon(X, Y) = % exp {72[()(7 X+ (Y- Y)z}}

of a coherent state (see Fig. 2). In other words, Q(X,Y)isa
convolution of the Wigner distribution W(X,Y) with the
coherent state distribution [28]

—+00

o(X,Y) = J J WX, Y') Ween(X — X', Y — Y')dX'dY’.

(3.6)

—00

Distribution (3.6) is plotted in Fig. 9 for the same initial data
asin Figs 3 and 8.

Now, after invoking distribution (3.5) and calculating
Q(X,Y), we perform direct and inverse Fourier transforms
and obtain W(X, Y):

)= LJWJ I 0k, vy exp [—i(Ex + ny)] dxdy
2 ) oo ) 13 [ Weon(x,y) exp [—i(éx + ny)] dxdy

x exp [iI(EX +nY)]dedn. (3.7)

W(X,Y

But how can one calculate Q(X, Y) separately for the
transmitted and reflected light beams if the vector of state |/)
describes them simultaneously? Strictly speaking, the double
scalar product (|z;)|z;) needs to be found, which is a
conditional probability for the transmitted and reflected
beam amplitudes to take the values z; and z., respectively.
Therefore, we can proceed with the description of only one
beam, by summing up the probabilities for all possible values

% 1073 ot g s P a
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Figure 9. Q-distribution for the transmitted beam (a) and its cross sections
(b) on the relative levels of 0.2 and 0.5. For comparison, the circles, which
are common for a coherent state, are shown on the cross sections.

of the other beam amplitude:

X, Y) =S|z (3.8)
1

The Wigner distribution is qualitatively similar to the
Q-distribution shown in Fig. 9, except for more pronounced
outlines. This is a typical sub-Poisson distribution with
suppressed amplitude fluctuations (crescent form) and
enhanced phase fluctuations (extension along a circular arc).
Actually, one would hardly expect a different result: nobody
has cancelled yet the Heisenberg uncertainty principle. But
what is the mechanism of the phase swing? Which force rocks
the phase in our experiment? The uncertainty principle gives a
formal mathematical explanation. But we would like to have
at least some physical model. The answers to these questions
will be discussed in Sections 4 and 5. Meanwhile, let us give a
more detailed description of our results.

As in the classical approximation, phase fluctuations can
be estimated by using quadrature components X and Y. Let us
assume that the mean complex amplitude z of the input state
|z) is real: Z = X. We express quadrature components through
photon creation (@*) and annihilation (@) operators:

&L A+ A At
a—+a ~ a—a
Y:

X= 3.9
2 7 i2 (39)
Then, the fluctuation variance of the first component will

determine the amplitude fluctuations, and the fluctuation
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Figure 10. Uncertainty regions for the transmitted (extended along the
vertical direction) and reflected (extended along the horizontal direction)
beams in the complex plane. A circle, common for a coherent state, is
shown for comparison. The first medium is nonlinear, the angle of
incidence is 28.7°, n; = 2.30 +0.000285 (v/m + V1), and nyy = 1.30.
Mean number of reflected photons is 155, mean number of transmitted
photons is 95, and mean number of incident photons reaches 250.

variance of the second one determines the phase fluctuations.
And according to the Heisenberg uncertainty principle, one
has

(AX)V(AY?) > (3.10)

1
16
By analogy with expression (2.10), we also introduce the
generalized quadrature:

AO(0) = Adexp (—i0) ;—A&* exp (i0) 7

(3.11)

which can easily be utilized for specifying the uncertainty
regions, plotted in Fig. 10. We shall start Section 3.1 with a
discussion of this figure. Notice that the derivation of the
expressions, needed to calculate this data, can be found in
Appendix 2.

3.1 Selecting quantum fluctuations and increasing

the accuracy of simultaneous measurements of quantities
entering the Heisenberg uncertainty relation

The type of a beam splitter which the uncertainty regions in
Fig. 10 refer to is of interest to us, because the X quadrature
(amplitude) fluctuations are suppressed in one (transmitted)
of the beams, and the Y quadrature fluctuations are
suppressed in the other (reflected) beam. This means that
amplitude fluctuations are mostly transferred to one of the
beams, and phase fluctuations to the other. In this way, one
can select either amplitude or phase fluctuations of the input
beam: the first ones prevail in the reflected beam, and the
second ones in the transmitted beam.

On the other hand, light beams with suppressed fluctua-
tions can be favored to increase the measurement accuracy.
Thus, let us assume that we need to simultaneously and as
accurately as possible measure the field quadrature compo-

nents X and Y of the optical monochromatic plane mode. We
will send it towards our beam splitter and measure the
amplitude component X in the transmitted beam, and the
phase component Y in the reflected beam. The measurement
accuracy will be higher than in a classical linear beam splitter.
But does this mean that we have managed to avoid the
Heisenberg uncertainty principle (3.10)? It certainly does
not, because after measuring the output quadratures of the
beam splitter we need to recalculate them into the input ones,
namely, to divide them by the transmittivity and reflectivity,
accordingly. But these coefficients are less than unity, and the
measurement errors correspondingly increase. Nevertheless,
the accuracy of the simultaneous measurements of X and Y
will enhance.

3.2 Choosing the optimal arrangement

and the beam splitter cascade

The fundamental possibility of preparing sub-Poisson light
was shown earlier. The photon fluctuations determining the
level of the photodetection shot noise are suppressed in this
state of light; therefore, it can be used in high-precision
quantum measurements. In order to optimize setups with
the beam splitter and its parameters with respect to the
maximum effectivity of noise reduction, we will consider all
possible arrangements of the nonlinear media. Three cases are
possible here: the first medium is nonlinear and the second
one is linear; the first medium is linear and the second one is
nonlinear, and both media are nonlinear. The optimization
criterion is referred to the minimization of the Fano factor,
which is introduced as the ratio between the produced beam
intensity variance and the variance of the coherent light with
the Poisson distribution, or its mean value:

(AA?)
(1)

F= , (3.12)

where 7 = a*a is the photon number operator. For the sub-
Poisson distribution, 0 < F < 1, and the amplitude fluctua-
tion suppression is more efficient if the Fano factor decreases.

The best of our results for one nonlinear medium was
obtained with the following values of the initial parameters:
angle of incidence 9, = 88°, y, = 0.0028, n; = nyy = 1.3. For
an average number of input photons in the coherent state
equal to 250, the amplitude fluctuations in the transmitted
light were less than half the fluctuations in the input light:
F =~ 0.47. The calculated results are given in Fig. 11.

After looking at the parameter values of such a beam
splitter, it is reasonable to assume that if, instead of the first
linear dielectric, one made use of a nonlinear self-defocusing
medium with y < 0, the efficiency of the photon fluctuation
suppression would be even higher. Indeed, for y;, = —0.004
and the other parameters just the same as in Fig. 11, the Fano
factor reduces to F =~ 0.44. An even stronger effect can be
achieved with y, = 1075, y, = 0.03, ¥; = 80.2°, and n; =
nyy = 1.3: specifically, F ~ 0.38.

Further stabilization of the transmitted beam can be
achieved when it sequentially propagates through the
cascade of nonlinear beam splitters, as shown, for example,
in Fig. 12.

Let k' denote the number of output photons, which were
transmitted by the second beam splitter. Then, for m input
photons, the probability amplitude for k transmitted and /
reflected photons to be at the output of the first beam splitter
and k" and /' photons to be at the output of the second beam
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Figure 11. Uncertainty regions for a nonlinear beam splitter with one
(second) nonlinear medium, with parameters optimized in the sense of
photon fluctuation suppression.

m \ k \ k'

Figure 12. Two-beam splitter cascade.

splitter will be

Agerrr = D(m) A Agerrr (3.13)
where Ay = /Ck t¥p’, and Ay = /CF ¥ p!".
The vector of state in this case is expressed as
o m k
W) o DN A |1 K1) (3.14)

m=0 k=0 k'=0

Due to the nonlinearity of the problem, one has to
perform the renormalization to fulfill the condition

(Yl) = 1.
Obviously, the probability of exactly k' photons being at
the output of the second beam splitter will be now

m

0 k'
P'(k") = ZZZAlglk’l’ :

m=0 [=0 I'=0

(3.15)

Numerical calculations gave the following result (Fig. 13).
After traversing the second beam splitter, the beam became
more stable. The Fano factor after passing the first beam
splitter turned out to be F = 0.47, and after passing the
second one was F=0.40. At the same time, the mean
number of photons in the beam transmitted twice decreased
by ~ 2.7 times.

It should be noted that in the uncertainty diagram for two
beam splitters both reflected and transmitted beam amplitude
fluctuations are suppressed. This is explained by the sub-

210 e eagy L et I 330

270

Figure 13. Uncertainty regions for the beam splitter cascade.

Poisson state of light supplied to the input of the second beam
splitter.

4. Quasiclassical description

Let us return to our paradox. The first explanation that one
can think of after comparing the contradicting classical and
quantum results is that the vacuum was not taken into
account in the first case. Indeed, the second input from the
top (see Fig. 7) contains not emptiness, but fluctuations with
zero mean value. Otherwise, the Wigner distribution for the
vacuum is the same as for the coherent state: Wy,o(X,Y) =
(2/m) exp [-2(X? + Y?)]. Now we add a plane noise wave to
our numerical experiment. The results are presented in Fig. 14.
One can see that such refinement of the model gets us closer to
the truth: phase fluctuations are no longer invariant. But this
is not something extraordinary and common only to our
nonlinear beam splitter. Even in the case of a linear beam
splitter, due to a vacuum at the second input, the coherent
light from the source remains coherent at both outputs with a
constant uncertainty region, being a circle with a unit
diameter. In the opposite case, the circle diameter would
decrease together with the mean amplitude of the output
beams. However, if the mean amplitude decreases and the
uncertainty region stays the same, the phase fluctuations
should increase. We have managed to explain their noninvar-
iance. Moreover, the intensity probability distributions for
the quantum and quasiclassical descriptions nearly coincide
(Fig. 14c¢).

But what can we do with the imaginary quadrature
variance? From both Fig. 14 and purely qualitative classical
considerations, it is absolutely clear that it has to be constant,
because in our beam splitter only signal amplitude transfor-
mation occurs together with the related real quadrature. The
imaginary quadrature variance is only added to the vacuum
one and has to remain constant. We will once again prove this
by using the linearized approximation. Summing up, the
problem of informal explanation of the nonlinear beam
splitter paradox remains unsolved, because the Heisenberg
uncertainty principle (3.10) is still violated.
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Figure 14. Cross sections of the complex amplitude distributions (a) and uncertainty regions (b) for the input and output beams with vacuum fluctuations
taken into account (two inputs). One can see that the imaginary quadrature fluctuations are invariant: they are not inscribed in one angle, as in Fig. 3, but
fit between two parallel dashed straight lines. Intensity probability distributions for the reflected and transmitted beams (c) in quasiclassical (solid curve)

and quantum (dashed curve) cases nearly coincide.

5. Approximation linearized over fluctuations.
Heisenberg picture

The mean amplitude of light should be relatively large for the
nonlinear phase self-modulation to be efficient. The fluctua-
tion contributions are small in comparison with the mean
amplitude, and they can be properly described by linearizing
the problem around the mean values. Now, if |z]° > 1, which
means that the input mode intensity is large enough and the
mean number of photons in the mode is large, then one
obtains

21° = (z|im|z) = (z|la*alz) > \/{z|Am?]z),

where Am?=ataa*ta— (z|m|z)?, and the increment of
transmittivity and reflectivity for the interface can be
linearized over fluctuations:

(5.1)

d
p (p) + Ak 2

dz
~ Ak — .
1= (1) + Ak K

= (5.2)
Here, we will consider, for simplicity, the case of the second
nonlinear medium, and Ak will be treated as a classical analog
of the photon number increment operator Ak, which is an
intensity increment normalized in a specific way. Let us note
that the similarity of the quantum problem descriptions in the
Heisenberg picture and in the classical approximation follows
exactly from the fluctuation linearization, when the operators
are not multiplied by each other, and their noncommutativity
does not count.

Let us express the complex amplitude of the light mode
that passed the interface in the following way:

a = ({a) + Aa) exp (—iAD).. (5.3)

Here, Aa and A® are fluctuation components of the
amplitude and phase. The phase of the amplitude constant
component is taken to be zero. In this case, Aa = AX.

On the other hand, the complex amplitude a of the
transmitted light can be expressed as

a=rta + pay, (5.4)

where a; is the amplitude of the input beam mode, and a, is
the amplitude of the second input mode coming from the top
and imitating the vacuum fluctuations.

We now equate right-hand parts of formulas (5.3) and
(5.4):

((a) + Aa) exp (—iIA®) = ta; + pay . (5.5)

Let us express 7 in the form (5.2): © = (1) + Ak(dz/dk),
express a; in the form a; = (a;) + Aaj, and substitute these
expansions into expression (5.5):

((a) + Aa) exp (—iA®) = ((‘L') + Ak %) ((a1) + Aay) + pay .
(5.6)

Here, Aa, and a, are complex, all other values being real.
Taking into account the smallness of fluctuations,
exp (—1A®P) =~ 1 — iAP, we obtain

((a) + Aa)(1 — iAD) = (<T> + Ak E) ((a1) + Aay) + pay,

dk
(53.7)
((a) + Aa)(1 +iAD) = <<‘L'> + Ak %) ((a1) + Aay) + pa; .
(5.8)

Relation (5.8) is the complex conjugate to relation (5.8).
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Due to the linearity of the problem over fluctuations, we
can replace complex amplitudes of fluctuation components in
relations (5.7), (5.8) with the corresponding photon creation
and annihilation operators. Now we add Eqns (5.7) and (5.8),
thus obtaining

2((a) + Aa) = (<r> + Ak %’i) (2(ar) + Ady + Aay")

+(p)(ay +a)) . (5.9)
Given that
(@) = (r)(ar) , (5.10)
we have
2((e) (@) + Ad) = (<r> LAk %) (2(@) + Adr + Ad?)
+{p(ay+a). (5.11)
Now, we can easily find 2Aa:
. - dt . . .
2AG = ((r) + Ak @) (2(a) + Aay + Aat)
+{p)(ay +a)f) —2(c) (@) = (1) (Adr + Aaj) + Ak %
x (2(a) + Aay + Aa;") + (p) (av +a;") . (5.12)

Since the phase of the constant component () is zero, we
have

Ak ~2(a)Aa, (5.13)
then
. . R A dr
2Aa = (t)(Ad) + Aa;") + 2(a)Aa i
x (2(ar) + Aay + Aa)) + (p) (ay + a;) . (5.14)

Now we neglect the fluctuation terms of the second order:

d
28a = (1) (Ad) + Ady") +4(@ha 3 () + (p) (@ + 7).
(5.15)
and subsequently arrive at
Ady + Aat Gy + a;t
A&:<T>( ay + Aaj) + (p) (ay + a;") (5.16)

2(1 —2(a)(dr/dk)(ar))

Let us now represent the derivatives in expressions (5.2) and
(5.16) in the following way:

dt  drdm  dr

dt _dedm_de dp_dpdmy _ dp
dk dm dk Fdm

&k dm dkLam O

where the coefficient y, as earlier, is proportional to the third-
order susceptibility y® of the second dielectric. Now, given
relationship (5.10), we obtain

(r)(Ady + Aajt) + (p)(ay + a)") <1 Y (k ;_T>—1
np

Ad = 5 o
(5.18)

Assuming the amplitude transmittivity to be real, according
to the energy conservation law, one finds

» sin® () + ;) —sin’ (9) — )

2
tTt=1-— P
Si]l2 (’191 + 192)

_sin (2¢91) sin (2192)

== 5.19
sir12 (191 + 192) ( )

Since

tdt = —pdp, (5.20)
we may write down that

dr p sin® (91 4 ;)

— =P dp=——"T" """ "7 5dp. 5.21

t 27T Tsin2oy)sin(205) PP (521)

According to the refraction law (2.1), the following
relation is valid:

dﬂz sin 192

— = . 5.22

dny 15 cos ¥ ( )
And now we obtain

dp dp dv,

Y= = 5.23

dl’l2 d’ﬁz dl’l2 ( )

Because, in accordance with Fresnel formula (2.2), one finds
d_p _sin (91 + 192) cos (¥ — ) + sin () — 1) cos (9 + )

do, sin? (91 + 9,)
__sin(@0) (5.24)
sin” (¢ + )
we have
dp dp dd¥r  sin(29) sin ¥,
dn, dv, dmy sin? (9] + ;) 12 cos s
_ sin ¢ sin (2¢) ) (5.25)

1> cos ¥, sin’ (91 + 92) ’

subsequently, given relation (5.19), we arrive at

2.dp  2sin’ (V) + 1) sin 0, sin (209;)

72 dny sin (20) sin (292) n, cos ¥, sin® (9, + 0)
o (5.26)
T mcos?, '

Now, using the known relation for p (2.2), we can write down
2de _2dedp 2 dp
tdny, tdpdm pﬂdnz
- sin (191 — 192) _ 1 _ sin (191 — 192)
~ sin (’(91 + ’192) 1, cos? ¥, a 1, cos? ¥, sin (’(91 + ’192) '
(5.27)

Let us substitute the result (5.27) into expression (5.18):

Aa = 3 Gl(e) (A + Ad) +(p)an +al)], (528)
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where
2k )sin (9, — ) |7

G=1 5.29
{ + ny cos? ¥ sin (9 + 95) ( )

Since Ad = AX, the variance of the real quadrature is

X 2(k)sin(9, —¥,) 172 G2

AX?) =41 : =— . (530
< ) [ + ny cos? ¥y sin (9 + ;) 4 ( )

Let us perform similar transformations by subtracting
equation (5.7) from complex conjugate equation (5.8):

2AAP((a) + Ad) = ((r) + Ak %) (Aa)” — Aay)

+(p)(ay —a}). (5.31)
We neglect the second-order fluctuation terms:
20A®(a) = (7)(Ad” — Ady) + (p) (ay — a") . (5.32)
Since Ad(a) = AY, we finally obtain
. 1
(AY)? =7 (5.33)

Now we see that the variance of the imaginary quadrature
fluctuations indeed remains constant after passing the non-
linear beam splitter, as we have already derived from general
considerations, and the uncertainty principle for quadrature
components (3.10) is violated. But what is the matter?

While deriving relations for AX and AY, we did not check
the commutation relation

[Aa,Aa"] =1, (5.34)
where I is the unit operator. But relation (5.34) is not fulfilled
due to the nonlinearity of the system. Let us perform the
renormalization, using a constant coefficient C, and expand
the expression for the commutation:

C[Ad,Aa*] = C(AaAat — Aa™Aa)
= C(AX? + AY? +iAYAX —iAXAY — AX? — AY?
+IAYAX —iAXAY) = 2iC(AYAX — AXAY) =1. (5.35)

Since without the renormalization the following relation
is valid:

ATAX — ARAY = g [(0)Ad; Ad, — () + (p) 2 a,— (p)?
R GI
+ (D)) (Ada, - a,Aaf + af Ay — aAa!)] = -5,
(5.36)
we obtain
1 2X<]€>Sil’l (191 *192)
N . 5.37
¢ G ny cos? ¥ sin (9 + 1) (537)

And now everything appears to be correct (Fig. 15), at
least from a qualitative point of view. Small quantitative
discrepancies with the exact quantum solution are explained,
apparently, by the fact that we have used the linearized
approximation. It is easy to show that the current radius of

270

Figure 15. Fluctuation uncertainty region for transmitted light after
renormalization. A circle, common for a coherent state, is shown for
comparison.

the fluctuation uncertainty region in the polar coordinate
system has the form

G 1
— 2 in2
R(0) \/ cos? 0 + ac Sin 0. (5.38)

4

At last we have eliminated the contradiction with the
Heisenberg uncertainty principle. Indeed, the phase fluctua-
tions in the transmitted beam have increased, and the
amplitude ones have decreased. The key point here was the
renormalization of the quadratures in order to satisfy the
commutation relation [Ad, Aa*] = I, which cannot be any
different, due to the indivisibility of the photon. Precisely this
factor causes the swing of the phase and fluctuations of the
imaginary quadrature AY without any visible reason, and it is
this factor that underlies the paradox occurred.

Let us also note that we have presented expressions (5.2)
and (5.17) for both transmittivity and reflectivity not
accidentally. The fact is that by using similar transforma-
tions one can also describe the field of the reflected beam. The
result will differ only quantitatively, and the main funda-
mental conclusions will be the same.

6. Conclusions

This article presents quantum theory for boson field trans-
formations with a nonlinear beam splitter. The nonlinear
beam splitter is a flat interface between two transparent
media, and either one or both of them have cubic (Kerr)
nonlinearity: the refractive index depends on the intensity of
light passing through the medium. By choosing the proper set
of parameters of the adjacent media, one can achieve intensity
stabilization for the reflected or transmitted beams, and not
only for classical, but also for quantum fields, which gives an
opportunity of increasing the informativity of optical devices
where light is used as the information carrier. After compar-
ing with the classical approach, it turned out that the latter
makes predictions about phase fluctuation behavior, which



October 2014

Quantum nature of a nonlinear beam splitter

1033

contradicts the quantum theory. This finding, which is
interesting from the fundamental point of view, formed the
basis for the nonlinear beam-splitter quantum paradox.

Let us return to the formulation of this paradox and
analyze ways to resolve it. Amplitude fluctuation stabiliza-
tion takes place in a nonlinear beam splitter for both classical
and quantum descriptions. It is expressed, particularly, in
fluctuation suppression for the quadrature component X
directed along the vector of the mean real amplitude in the
complex plane. At the same time, the variance of the other
quadrature Y, directed along the imaginary axis, remains
invariant in the classical description, even with vacuum
fluctuations taken into account. Indeed, there are no reasons
for it to change in term of the physical model. But this violates
the Heisenberg uncertainty relation. Only quantum theory
predicts an increase in the fluctuation variance for the
quadrature component Y. Which factor is responsible for
that? The answer is given by the linearized quantum theory in
the Heisenberg picture, which is the closest to the classical
description. The direct solution does not satisfy the commu-
tation relation [A@, Aa*] # I due to the nonlinearity of the
system. But can the commutation relation [Ad, Ad*] = I be
violated? If the photons are indivisible, this relation cannot be
violated. The commutation relation can be satisfied by
performing the renormalization of the creation and annihila-
tion operators. Then, the variance over Y increases and the
uncertainty principle, naturally, holds true.

The fundamental reason for the paradox lies in the
indivisibility of the photon.

In addition, we also come to a practically convenient
conclusion that photon fluctuations can be selected: ampli-
tude fluctuations are transferred either to the transmitted
beam or to the reflected beam, depending on the arrangement
of the adjacent media, and the phase fluctuations are
transferred to the reflected or transmitted beams, respec-
tively. This means that we can separate amplitude and phase
fluctuations of the signal by sending the first ones to one of
the channels, and the second ones to the other one. This is
very attractive for systems of optical transfer or information
processing, and also for reducing noise in communication
systems, for instance. For the classical description, this sort of
nonlinear filtration turns out to be defective, because it works
only for amplitude fluctuations, while the phase ones remain
unchanged. Nevertheless, even for the latter case, the layout
solutions are possible, which result in the separation of the
useful amplitude-modulated signal from the constant noise
component.

There is another important practical conclusion, which
just refers to the theoretical description of nonlinear quantum
systems. It is absolutely clear that the linear quantum model
can be described classically by using, for instance, complex
amplitudes, only in the final expression replacing them with
the corresponding operators in the Heisenberg picture, then
performing averaging, etc. This significant simplification is
fair, because in the linear problem operators are neither
multiplied by each other nor by themselves, and subse-
quently their noncommutation does not influence the result.
As an example, one can consider here an ordinary linear beam
splitter without losses. And what about the approximation
linearized over fluctuations? It seems that it should be the
same. The variables are introduced in the description linearly
and are not multiplied by each other. Indeed, quantum and
classical descriptions of the multibeam interferometer with
Kerr nonlinearity [13, 29-32] are identical as long as the

linearization is an adequate approximation. But in that case,
the commutation relation [Ad,Aat] =1 is not violated!
However, through the example of the nonlinear beam splitter
we have learned that this is not always the case. Therefore,
one should be extremely careful, even when describing
quantum systems linearized over small fluctuations, and
should not hurry when using the results obtained from
classical model descriptive treatments.

The practical aspect of the phenomenon considered was
also discussed: all possible combinations of linear and
nonlinear media are analyzed with respect to the maximum
possible photon fluctuation suppression and corresponding
overcoming of the quantum limit for the data capacity of
optical devices. The exact quantum theory provided estimates
which show that photon noise variance reduction by a factor
of more than two with respect to the coherent state can be
achieved.

Finally, we will note that Ya A Fofanov managed to
experimentally observe the sub-Poisson photon-count dis-
tribution by using a nonlinear beam splitter. The detected
amplitude fluctuation variance was approximately 1% less
than amplitude fluctuation variance for the Poisson distribu-
tion [33, 34].
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7. Appendix 1

Two types of factors are present in expression (3.3). The first
one (D,,) is the Poisson expansion coefficient of the input
coherent state in terms of Fock states |m):

where /7 is the mean number of photons. For 7z > 20, one can
use with good accuracy the Gaussian approximation for D2:

exp [— (m m)2] .

2m

The second type of factors is the binomial term of the form
A = /CE1¥p’. Tt determines the probability of k photons
passing and / = m — k reflecting for the fixed number m of
incident photons. This probability equals A47,. If the condi-
tions /m > 100 and mt2p? > 20 are fulfilled, then, given the
Moivre—Laplace theorem, one can apply with good accuracy
an approximation for 47

1 (k —2m)*
2t2m(1 — t2m)

2
Akl ~ 3 5
2nt?m(1 — t2m)

The sum in expression (3.3), up to infinity over m in the
case of the input coherent state, can be practically performed
only until the upper limit 7 + 5v/m, because the terms
deviating from the mean value by more than 5S¢ are negligibly
small.

8. Appendix 2

Let us derive the relationships which determine the fluctua-
tion variance of the quadrature components for transmitted
and reflected light beams.
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First, we will express the mean generalized quadrature of

the reflected beam:

200|0(0)[) = (Wlalw) exp (=i6) + (wla* |v) exp (i0)
— exp (—i0) S UkI 1Ak S AT 1 = 1K)
k,l

k'l

+exp (i0) Y (k{1 Ax D> Aer VI H T + 1)k
k!

k'

= exp (—19) Z A1 vVI+ 1+ c.c.,
kl

where c.c. are complex conjugate terms. Subsequently, one

finds
(W00 ) =cos0> " AgArVI+1.
ki
Similarly:

4vlo

(0)|) = (Wlaaly) exp (—i20)
+ <l,0|fl+ﬁ+|lﬁ> exp (i20) + 2(yla*aly) + 1
= exp (—i20) Z<k|<l | At

k,l

XZAk’l’\/ I'—1 |[l

k'

=20c0s (20) Y AwAway/(T+ 1) (1 +2) +2Zm,,+1

ki

D|k"y +c.c. +2ZIAM+1

This means that the quadrature variance

W[AQO)|w) = (W|02(0)|w) — (¥|0(0)|)’

can be calculated by using the corresponding substitution.

For the transmitted light beam, k& and / should be

interchanged with positions.
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