
Abstract. The virial theorem is related to the dilatation proper-
ties of bound states. This is realized, in particular, in the Land-
au±Lifshitz formulation of the relativistic virial theorem, in
terms of the trace of the energy±momentum tensor. We con-
struct a Hamiltonian formulation of dilatations in which the
relativistic virial theorem naturally arises as the condition of
stability under dilatations. A bound state becomes scale invar-
iant in the ultrarelativistic limit, in which its energy vanishes.
However, for very relativistic bound states, scale invariance is
broken by quantum effects, and the virial theorem must include
the energy±momentum tensor trace anomaly. This quantum
field theory virial theorem is directly related to the Callan±
Symanzik equations. The virial theorem is applied to QED
and then to QCD, focusing on the bag model of hadrons. In
massless QCD, according to the virial theorem, 3/4 of a hadron
mass corresponds to quarks and gluons and 1/4 to the trace
anomaly.

1. Introduction

The classic virial theorem has been very useful in physics, in
particular, in astrophysics, to determine the equilibrium and
stability of dynamical systems [1]. The theorem is especially
useful for systems interacting via potentials that are homo-
geneous functions of interparticle distances (e.g., power-law
potentials): the theorem then states a simple relation between
the long-time averages of the kinetic and potential energies of
a system, 2K � nU, where n is the homogeneity degree (e.g.,
the exponent of the power law). Of course, the most relevant
potentials to consider are the quadratic potential of harmonic

oscillations (n � 2) and the inverse distance law of the
Newton or Coulomb potentials (n � ÿ1). The virial theorem
for homogeneous potentials can be regarded as a consequence
ofmechanical similarity, in other words, of scale invariance in
mechanics [2]. Indeed, several authors have studied the
relation of the virial theorem to scale invariance [3±5] and its
connection with Noether's theorem [6±8].

The classic virial theorem has been generalized in several
ways [1]. The obvious generalizations pertain to relativistic
mechanics and quantum mechanics. Whereas the general-
ization of the virial theorem to nonrelativistic quantum
mechanics presents no special problems, the generalization
to relativity is nontrivial because the concepts of force and
potential are unsuitable for describing relativistic interac-
tions. Nevertheless, there are relativistic formulations of the
virial theorem. A virial theorem in electrodynamics that
expresses the energy in terms of the energy±momentum
tensor trace already appears in the classic textbook by
Landau and Lifshitz [9]. This relativistic virial theorem is
generalizable, in principle, to other interactions [1].

The relativistic virial theorem has featured in several
studies and some papers have been specifically devoted to it,
both in classical field theory [10, 11] and in quantum field
theory [12]. However, while the relation of the classic virial
theorem to scale invariance is well established, the relation to
scale invariance of the relativistic virial theorem, especially in
the Landau±Lifshitz formulation, is hardly studied. In this
paper, we focus on this relation and adopt a fundamental
standpoint. Therefore, our approach to the relativistic virial
theorem is closer to the one in Ref. [11], and especially to the
one inRef. [12], than to the one inRef. [10]. Ourmain purpose
is to establish the fundamental role of scale transformations
and scale invariance in the relativistic virial theorem. For this,
we find it useful to proceed from the classic theorem to the
relativistic theorem and finally to the virial theorem in
quantum field theory (QFT). In this process, the classic
theorem 2K � nU, which allows any homogeneity degree n,
must be restricted to relativistic interactions mediated by a
field that becomes just an inverse-law potential in the
nonrelativistic limit, and hence the only allowed value is
n � ÿ1. In other words, the virial theorem is restricted to
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interactions mediated by massless gauge fields, namely, the
electromagnetic interaction and the strong interaction
described by quantum chromodynamics (QCD). The latter
has special features, as is explained in what follows.

The classic virial theorem includes the gravitational
interaction, but the relativistic formulation of gravity
necessarily leads to General Relativity, which is a sort of
interaction mediated by a massless gauge field, although not
of the ordinary type. In fact, there have been attempts to
formulate the virial theorem in General Relativity [1, p. 27],
but they neglect its relation to other gauge theories. Some of
the results in this paper can be applied to General Relativity,
but this theory has distinct features and, in particular, its
concepts of gravitational energy and scale invariance become
very subtle and difficult to handle. These problems are
beyond the scope of this paper and are left for future work.

We begin in Section 2 with a Hamiltonian formulation
of the virial theorem that directly arises from the notion
of time-averaged scale invariance. This formulation is
applied to the electromagnetic interaction in special relativ-
ity, considering, first, the action-at-a-distance interaction of
particles and, second, the full field theory, following Landau
and Lifshitz [9]. Next, in Section 2.2, we construct a fully
general derivation of the field theory virial theorem that is
based on scale invariance, by generalizing the Hamiltonian
formulation of the virial theorem for a system of particles.
Some consequences of the virial theorem for bound states of
ultrarelativistic particles appear in Section 2.3. Because these
bound states sustain considerable quantum effects, they call
for relativistic quantummechanics. TheQFTvirial theorem is
studied in Section 3, where it is applied, first, to quantum
electrodynamics (QED) and, second, to QCD, where the
energy±momentum tensor trace anomaly plays a crucial role.

2. Relativistic virial theorem

The virial theorem is regarded by Landau and Lifshitz [2] as a
consequence of scaling in Lagrangian mechanics. This line of
thought has been followed by several authors [3±5, 8], some of
whom relate the virial theorem to the Noether theorem. In
contrast to Lagrangian scaling, we now introduce the general
theory of dilatations in the Hamiltonian formalism, which
provides a concise and powerful formulation of the virial
theorem.

In Hamiltonian mechanics, canonical transformations
are the most general ones that preserve the phase space
structure [2]. A canonical transformation of the phase space
�q; p� is defined by its infinitesimal generator, which is just any
function F�q; p�. For simplicity, we use single variables q and
p, but each denotes the full set of coordinates or momenta.
The transformed phase space variables are

Q � q� edFq ; dFq � fq;F g � qF
qp

;

P � p� edFp ; dFp � fp;F g � ÿ qF
qq

;

where e is a small parameter, and we introduce Poisson
brackets f f; gg � qq f qp gÿ qp f qqg. Naturally, the phase-
space volume element dq dp is unchanged. Among the
canonical transformations, an important role is played by
point transformations, namely, canonical transformations
induced by transformations of the coordinates q only. They
are generated by F � f �q� p, where f �q� is any function. If

F � qp, then we have

dFq � q ; dFp � ÿp ; �1�

i.e., a homogeneous dilatation of q and the corresponding
homogeneous contraction of p, which together preserve the
phase space volume. But, normally, the dilatation of q is not a
symmetry, i.e.,

dFH � fH;F g � q
qH
qq
ÿ p

qH
qp
6� 0 ;

and F is not a constant of motion, that is, _F � fF;Hg 6� 0;
unless the Hamiltonian H is very special (e.g., H � F ).
Nevertheless, if both q and p are bounded, the temporal
average of _F eventually vanishes, and hence, on the average,

fF;Hg � p _qÿ q
qH
qq
� H� Lÿ q

qH
qq
� 0 : �2�

We note that the coordinates q of a system of particles can
only be bounded in their rest frame, the frame in which their
total momentum is zero.

In many mechanical problems, L�q; _q��K� _q�ÿU�q�, i.e.,
there is a separation between kinetic and potential energies,
and K, in addition, is quadratic in the velocities. Then
H � K�U, whence

H� Lÿ q
qH
qq
� 2Kÿ q

qU
qq
� 0 :

The term q qqU is called virial. Furthermore, when U�q� is a
homogeneous function of q of degree n, Euler's theorem on
homogeneous functions implies that q qqU � nU, whence
follows the standard virial theorem 2K � nU or, in terms of
the total energy E, K � nE=�n� 2� [1, 2]. This theorem is a
consequence of the homogeneity of K in _q and the homo-
geneity of U in q, which also imply mechanical similarity: the
equations of motion permit a set of geometrically similar
motions, such that the paths are geometrically similar and the
times of motion between corresponding points are in a
constant ratio [2]. For example, when n � ÿ1, as in the
Newton or Coulomb potentials, t! l 3=2t corresponds to
q! lq (Kepler's third law) and E! E=l.

Unfortunately, the Lagrangian in relativistic mechanics is
not of the form L�q; _q� � K� _q� ÿU�q� with K homogeneous
in _q. Nevertheless, the classical virial theorem is easily
extended to the case of a relativistic particle under external
forces [13]. Moreover, the Hamiltonian virial theorem,
Eqn (2), is very general and covers the many-body problem
in relativistic electrodynamics as a prototype of relativistic
interactions. Before considering this problem, we discuss two
pertinent extensions of the Hamiltonian virial theorem. The
first is the extension to quantum mechanics. It is straightfor-
ward because the Hamiltonian formulation of canonical
transformations is easily transferred to quantum mechanics,
just by transforming Poisson brackets to commutators. But
we have to take care of operator ordering problems, for
example, by symmetrizing phase space functions with respect
to q and p. Any phase space function that can be expanded in
powers of q and p can be symmetrized by symmetrizing each
term of the expansion (each monomial). In particular, the
dilatation generator becomes F � �qp� pq�=2 (naturally,
p � ÿi�h q=qq in the coordinate representation).
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As a second extension, the virial theorem can also be
extended to canonical transformations other than dilatations.
Indeed, the long-time average of _F vanishes for any bounded
function F, and so does the average of fF;Hg. Therefore, we
have an infinite number of (average) relations. However,
general canonical transformations, with generators F that
depend on p arbitrarily, have little physical significance. By
contrast, F � f �q� p, i.e., the set of point transformations,
includes rotations and, furthermore, arbitrary deformations
of the geometrical ``shape'' of the mechanical system. These
transformations give rise to an extension of the standard virial
theorem, namely, the tensor virial theorem [1], to be discussed
in the next section.

2.1 Virial theorem for the electromagnetic interaction
The N-particle electromagnetic Lagrangian is [9, 14]

L �
XN
a�1

�
ÿmac

2

�������������
1ÿ v 2a

c 2

r
� ea

c
va A�x1 ; . . . ; xN�

ÿ eaF�x1 ; . . . ; xN�
�
;

where va � _xa. The corresponding Hamiltonian is

H �
XN
a�1

� �������������������������������������������
�cpa ÿ eaA�2 �m 2

a c
4

q
� eaF

�
: �3�

To allow for interaction between the particles, the electro-
magnetic potentials must satisfy the D'Alembert wave
equation with a source given by the electromagnetic current
produced by the particles themselves, and hence the
potentials are functions of particle trajectories. If the
symmetric Green's function (half-sum of the advanced and
retarded functions) is used to solve the wave equation, then
the Lagrangian or Hamiltonian correspond to the action-at-
a-distance electrodynamics [15, 16], in which there is no
radiation and therefore no need for the electromagnetic field
Lagrangian.

Neither the N-particle Lagrangian nor the Hamiltonian
can be separated into kinetic and potential terms, but we can
apply Eqn (2) nonetheless. With�

qH
qxa

�
p

� ÿ _pa � ÿ
�

qL
qxa

�
v

;

Eqn (2) is written as

H� L�
X
a

xa
q
qxa

�X
b

eb
c
vb Aÿ ebF

�

� H�
X
a

�
ÿmac

2

�������������
1ÿ v 2a

c 2

r
�
�
1� xa

q
qxa

�

�
�X

b

eb
c
vb Aÿ ebF

��
� 0 ; �4�

where the derivatives are to be taken at constant vb. We
note that the action of the operator

P
a�1� xa q=qxa� on a

homogeneous function of x1; . . . ; xN of degree n � ÿ1 gives
a null result, according to Euler's theorem. In other words,
if we assume that the vector and scalar potentials can be
written as homogeneous functions of coordinates with the
degree n � ÿ1, then each electromagnetic potential and its
corresponding virial cancel one another. We thus obtain the

energy

E �
X
a

mac
2

�������������
1ÿ v 2a

c 2

r
: �5�

This is the relativistic virial theorem for a system of particles
in classical electrodynamics. If external forces were necessary
to confine the particles and, in particular, the forces consisted
in a constant pressure P exerted on the system surface, then E
should be replaced with Eÿ 3PV, where V is the volume of
the system [9, § 35].

Although the electromagnetic parameters are absent from
Eqn (5), their effect is implicitly included: we note that
E <

P
a mac

2, which corresponds to a bound state. The
bound state becomes nonrelativistic for low velocities, when
jEÿPa mac

2j5 P
a mac

2, and Eqn (5) then reduces to the
classical virial theorem EÿPa mac

2 � ÿPa mav
2
a =2 � ÿK.

But the relativistic dynamics loses the similarity of the
classical dynamics under space dilatations and the corre-
sponding time dilatations. This similarity is lost even if F
and A are assumed to be homogeneous functions of degree
n � ÿ1. Moreover, in relativistic mechanics, there is no
similarity even for free particles (ea � 0) because of the form
of theHamiltonian. (Of course, similarity is recovered for low
velocities, but the energy only scales after subtracting the rest
energy

P
a mac

2 of the particles.) However, there is a
relativistic notion of mechanical similarity [4] in which space
and time are equally dilatated, and therefore velocities are
unchanged. Under this similarity, masses cannot be held
constant and must be contracted such that they transform
like energies. Therefore, the nature of the particles changes,
and the similarity does not relate different motions of the
same system. Nevertheless, this similarity leads to Eqn (5); in
addition, it also leads to the classic virial theorem in the
nonrelativistic limit [4].

The equations of motion of the action-at-a-distance
electrodynamics are not ordinary differential equations but
differential±difference equations, and it is difficult to find
their solution. A simple solution of the relativistic two-body
problem is provided by two opposite charges in circular
motion, with calculable radii and angular velocity [15,
p. 223]. This solution satisfies Eqn (5) (no temporal average
is needed). At any rate, it is natural to consider the
electromagnetic field dynamics and the radiation effects.
However, because these effects appearÐ in an expansion in
powers of v=cÐonly in the third order, it is possible to
describe the electromagnetic interaction of particles with
standard ordinary differential equations based on potentials
of the order �v=c�2 [9, 14, 15]. These potentials, added to the
relativistic kinetic term expanded to the same order, give rise
to the well-known Darwin Hamiltonian and Lagrangian. In
this approximation, both vector and scalar potentials are
homogeneous functions of degree n � ÿ1, and hence virial
theorem (5), expanded to terms of the second order, holds.

Regarding quantum mechanics, the relativistic virial
theorem holds, by canonical quantization of Hamiltonian
systems, as stated before. Indeed, quantum relativistic
versions of the virial theorem have appeared in the literature
[17, 18]. However, they are meant to be applied in nuclear
physics, and they are only considered a simple two-quark
problemwith a phenomenological scalar potentialU (we note
that the fundamental theory of strong interactions, QCD,
includes a vector potential, like QED). The scalar potential is
the ``Cornell potential,'' which is the sum of a Coulomb term
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and a confining linear term. Lucha and Sch�oberl [17], in
particular, obtain



xHU�x�� � c

*
p 2�������������������������

p 2 � �m1c�2
q � p 2�������������������������

p 2 � �m2c�2
q +

; �6�

whence

E � 
xHU�x��� 
U�x��
� c 3

*
m 2

1�������������������������
p 2 � �m1c�2

q � m 2
2�������������������������

p 2 � �m2c�2
q +

; �7�

where the expectation values are understood to be taken with
respect to normalized eigenstates. Equation (6) states the
equality of the expectation values of the centripetal and
centrifugal virials. On the other hand, on account of the
relativistic identity

1ÿ v 2

c 2
� �mc�2

p 2 � �mc�2 ;

Eqn (7) is a quantum version of Eqn (4), such that the
temporal expectation values implicit in Eqn (4) are replaced
by expectation values in stationary states and such that the
system is restricted to two particles withA � 0. In Eqn (7), the
Coulomb part of the potential and its virial indeed cancel one
another, as in Eqn (4). At any rate, the strong-interaction
Hamiltonian used in Refs [17, 18] is not fully relativistic and
only has relativistic kinematics (the potential U can be
interpreted as the lowest-order slow-motion approximation
of a relativistic interaction). The formulation of a fully
relativistic virial theorem for quark bound states requires a
QFT framework and is presented in Section 3.

Returning to classical electrodynamics, we consider the
full particle-plus-field dynamics and its local conservation
laws, namely, the local conservation of energy and momen-
tum. Landau and Lifshitz's virial theorem [9] relies on this
conservation law, expressed in terms of the energy±momen-
tum tensor. This conservation law implies that the long-time
average of the stress tensor (the spatial part of the energy±
momentum tensor) is divergence-free:

qjT
j
i � 0 ; �8�

where Latin indices denote spatial coordinates and the bar
denotes the long-time average. Multiplying Eqn (8) by x i and
integrating over all space, we obtain (under suitable asymp-
totic conditions) a space integral of the stress-tensor trace
average that vanishes:�

T i
i dV � 0 : �9�

Actually, the vanishing of the integral of the full stress tensor
for a closed (self-contained) and static system was proved by
Laue [19] in the early days of relativity theory. 1 The vanishing
of the integral of the time average of the stress tensor
constitutes the tensor virial theorem, which holds in classical

mechanics as well as in relativistic mechanics (Ref. [1], § II.1
and § II.3). It can be proved bymultiplying Eqn (8) by xk, that
is, by using a generic index k instead of the index i used above,
and integrating over all space. Regarding the connection of
the tensor virial theorem with arbitrary transformations of
spatial coordinates, already mentioned above, this theorem
can be understood as just a condition of dynamical equili-
brium, namely, of the stability of the averaged system shape
under deformations, as explained in Section 2.2. Of course,
the tensor virial theorem implies the scalar theorem (the
vanishing of the trace), which can be understood as a
condition of stability of the system against dilatations.

For a system of N bodies with electromagnetic interac-
tion,

T i
i �

XN
a�1

mav
2
a��������������������

1ÿ v 2a =c
2

p d�xÿ xa� � 1

2
�E 2 � c 2B 2� : �10�

Therefore, the space integral ofT i
i seems to be strictly positive

and the virial theorem, Eqn (9), cannot hold. To interpret
Eqn (10) and the corresponding virial theorem, we make the
orthogonal decomposition E � EL � ET, where EL � ÿHF
and HET � 0. Then the electromagnetic energy is

1

2

�
dV�E 2 � c 2B 2� � 1

2

�
dV�E 2

L � E 2
T � c 2B 2� ; �11�

where

1

2

�
dVE 2

L �
1

8p

�
dV dV 0

r�x� r�x 0�
jxÿ x 0j �12�

is the Coulomb electrostatic energy. While this electrostatic
energy is obviously positive for regular distributions, the
electrostatic energy of a system of N positive and negative
point-like charges can become negative after the subtraction
of the (infinite) self-energy of the charges, which amounts to a
renormalization of their masses [9, 14]. On the other hand,
regarding the contribution ofET andB to the energy, wemust
require the absence of incoming or outgoing radiation fields,
which would produce contributions to E 2

T � c 2B 2 of an
arbitrary magnitude. Indeed, the proof of Eqn (9) requires
the vanishing of a certain surface integral related to radiation
fields [9]. As already stated, the absence of radiation is implicit
in the action-at-a-distance electrodynamics. These problems
have already been noticed by Dudas and Pirjol [12], who
emphasize the role of the Wheeler±Feynman time-symmetric
formulation of electrodynamics in their solution.

The four-dimensional trace is Tm
m � ÿT 00�T i

i [our
metric signature convention is �ÿ;�;�;��]. Therefore, a
condition equivalent to (9) that introduces the total energy
E � � T 00 dV is [9]

E � ÿ
�
Tm
m dV �13�

(as before, the long-time average is implicit when not shown
explicitly). For a system of electromagnetically interacting
particles, the electromagnetic energy±momentum tensor is
traceless and disappears from Eqn (13). This absence of
electromagnetic parameters at virial equilibrium is analo-
gous to the cancelation of the electromagnetic potentials with
their corresponding virials in Eqn (4). Indeed, Eqn (13) leads
again to Eqn (5) [9].

1 Laue's paper studies the energy and momentum of a closed static system

and, according to [20], contains the first real proof of the mass±energy

equivalence E � mc 2.
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We note that Eqn (13) makes no reference to particles,
unlike Eqn (5). Therefore, it can be applied to fields forming a
single particle, and then it plays a role in the famous problem
of modeling the electron or any charged particle in classical
electrodynamics [14, Ch. 16]. Indeed, Eqn (13) connects the
particle energy with the trace of the energy±momentum
tensor of Poincar�e stresses, because the electromagnetic
energy±momentum tensor is traceless. If we assume, for
simplicity, that the energy±momentum tensor of Poincar�e
stresses has no traceless part, namely, that it is proportional to
gmn, then the total energy±momentum tensor is T mn �
T mn
em � T a

a g
mn=4, where T mn

em is the energy±momentum tensor
of the electromagnetic field. Therefore, in the rest frame,

E �
� �

T 00
em �

g 00

4
T a
a

�
dV �

�
T 00
em dV� E

4
; �14�

and therefore three fourths of the particle rest energy come
from its electromagnetic energy and the remaining one fourth
from the Poincar�e stresses (3/4 is actually the ratio of the
electromagnetic mass to electromagnetic inertia, which
constitutes the infamous 4/3 problem, solved by the introduc-
tion of Poincar�e stresses [14, Ch. 16]). If the energy±
momentum tensor corresponding to the Poincar�e stresses,
T mn
P , has a nonvanishing traceless part, then this part is on the

same footing as the traceless energy±momentum tensor of the
electromagnetic field, and hence both together make up the
three fourths of the particle total rest energy. The contribu-
tion to the energy of the traceless part of the energy±
momentum tensor for the Poincar�e stresses is the space
integral of

T 00
P ÿ TP

a
a
g 00

4
� 3

4
T 00
P �

1

4
TP

i
i : �15�

This integral is nonnegative, although
�
TP

i
i dV < 0, as is

necessary in order to have cohesive Poincar�e stresses, that is,
as is necessary for the total stress tensor to satisfy Eqn (9). The
non-negativity of the right-hand side of Eqn (15) can be
proved by invoking the null energy condition (deduced by
continuity from the non-negativity of the energy density [21,
p. 89]). In conclusion, the fraction of energy due to the
Poincar�e stresses is at least one fourth, and the fraction of
electromagnetic energy can be equal to or less than three
fourths.

In a single-particle model, the charge distribution is
continuous and can be attributed to a charged field of a
fluid. An interesting classical electron model is the Bialynicki-
Birula model [22], in which the electron consists of a perfect,
charged fluid, with the energy density r and pressure P, and
an electromagnetic field. The traceless part of the fluid
energy±momentum tensor is proportional to r� P and
contributes to the energy with �3=4� � �r� P� dV, which is
non-negative, although P < 0 everywhere.

We note that a particle model with a continuous charge
distribution makes as much sense for a composite particle as
for an elementary particle, because there is no quantization of
charge in classical electrodynamics. For consistency with the
electronmodeling inQED,we assume thatmatter is described
by a Dirac field c with the standard Lagrangian. Then

Tmn � i

2
c
ÿ
�cg�mDn� cÿD��m�cgn� c

�
;

where Dm � �hqm � i�e=c�Am and D� is its complex conjugate.
Therefore,

T m
m �

i

2
c
ÿ
�cgmDmcÿD�m �cgmc

� � ÿmc 2�cc ; �16�

and, according to Eqn (13), the energy of a composite or
elementary particle is

E � mc 2
�

�cc dV : �17�

This equation is related to Fock's old result for the Dirac
equation in an external, central Coulomb field [23] and also to
the more general virial theorem of Rose andWelton [24] (also
see Ref. [11]).

Because we regard the Dirac field c as a classical field
constituting a sort of matter fluid, n�x� � �cc is the total
particle number density, with equal weight for particles and
antiparticles, and computed in the local reference frame.
Equation (17) might seem to imply that the bound-state
energy is just the number of particles times the rest energy
per particle, as if they were free and at rest, but it does not,
because n�x� must be computed in the local reference frame.
When n�x� is computed in the laboratory frame, namely, the
bound-state rest frame, then

mn�x� ! r�x�
�����������������������
1ÿ v

2�x�
c 2

;

r
where r�x� is the ordinary nonrelativistic mass density and
v�x� is the velocity of the matter±fluid element dm � r�x� dV.
Thus, we obtain

E � c 2
� �������������������

1ÿ v
2�x�
c 2

r
r�x� dV ; �18�

which is a continuous form of Eqn (5). Naturally, this virial
theorem applies only to bound-state solutions of the non-
linear equations of the classical electrodynamics of the Dirac
field, which have hardly been explored (see, i.e., Ref. [25]).
Because these equations have stable bound-state solutions,
the corresponding single-particle models do not need extra-
neous Poincar�e stresses.

2.2 Hamiltonian field theory formulation
We can obtain a general field-theory virial theoremwithin the
Hamiltonian formalism by generalizing the derivation of the
virial theorem for a finite number of the degrees of freedom in
Section 2.We consider a generic field, which we let be denoted
by j, but which can comprise a set of independent fields (it
can be a vector field, etc.), and consider its Lagrangian and
Hamiltonian densities L andH. The associated field momen-
tum density is

p � qL
q _j

:

In particle mechanics, dilatations simply act on the coordi-
nates as q! lq and on the momenta as p! p=l, which in the
infinitesimal form are given by Eqn (1). In field theory,
dilatations primarily act on space coordinates and, through
them, on field coordinates j and momenta p. Therefore, the
infinitesimal generator of a finite dilatation j�x� ! l Dj�lx�,
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whereD is the dimensionmatrix, is given by the Lie derivative

dj � Djÿ x i qij :

The dimensionmatrixD can be assumed to be diagonal, i.e.,j
can be assumed to be formed by eigenstates of D. The Lie
derivative dj differs from dq in Eqn (2) in the presence of the
transport term, with x iqi, and also in the presence ofD, which
generalizes the trivial dimension of q. The canonical generator
of dilatations F, such that dj � dF=dp, is

F �
�
p�Djÿ x iqij� dV : �19�

Therefore,

dp � ÿ dF
dj
� �ÿ3ÿD� pÿ x i qi p ;

up to the vanishing of a surface integral. We deduce that
both dj and dp constitute infinitesimal generators of
Hamiltonian dilatations. We note that under a finite dilata-
tion, p�x�j�x� ! lÿ3p�l x�j�l x�, and hence F is invariant.

The generating function F given by Eqn (19) is the integral
of the sum of two parts, one corresponding to the intrinsic
change in the field and the other corresponding to the spatial
transport. The latter can be written as x iTC

0
i , where TC

m
n

comprises the four conserved currents associated with space-
time translations by Noether's theorem [27]; i.e., it is the
canonical energy±momentum tensor. For example, for a
scalar field j with L � ÿqmj qmj=2ÿ V�j�,

TC
m
n � q mj qnj� dm

n L ;

TC
0
i � ÿ _j qij � ÿp qi j :

For an electromagnetic field,

TC
m
n � F mr qnAr � dm

n L ;

and hence, in the Hamiltonian gauge A0 � 0,

TC
0
i � ÿ _Aj qiA j � ÿpj qiA j :

Therefore, in general,

F �
�
�pDj� x iTC

0
i � dV : �20�

However, TC
0
i can be redefined by adding qjt

j
i to it, where t

j
i is

an arbitrary function of j and p. With the appropriate choice
of t ji , we can cancel the first summand in the right-hand side of
Eqn (20) (up to a surface integral). In other words, there is
always an ``improvement'' of the energy±momentum tensor
such that the dilatation generator becomes

F �
�
x iT 0

i dV :

This connects the Hamiltonian formulation of the virial
theorem with Landau and Lifshitz's proof [9]. Indeed, using
the conservation law qmT mn � 0, we have

_F �
�
T i
i dV :

The vanishing of the temporal average of _F and therefore of
the spatial integral of the temporal average of T i

i give rise to
the virial theorem, Eqn (9).

We note that instead of dilatations, we can also consider
general (anisotropic) coordinate transformations, and thus
derive the tensor virial theorem.

The general condition of exact scale invariance is dFH �
ÿ _F � 0, or

_F �
�
T i
i dV � 0 �21�

without averaging. This condition is not satisfied by general
field configurations of normal field theories. Naturally, _F
must vanish for any static field configuration, and hence so
does the integral of the stress tensor trace. This is in
accordance with Laue's theorem (Section 2.1), applicable to
any static relativistic system and, in particular, to any model
of an elementary particle, such as the electron. For example,
for the Bialynicki-Birula electron model, condition (21) is
indeed fundamental for relativistic invariance [22].

We remark on one interesting consequence of Eqn (21) for
static field configurations. In the case of a scalar field with
L � ÿqmj qmj=2ÿ V�j�, the static field has

TC
i
i �

2ÿ d

2
�Hj�2 ÿ dV�j� ; �22�

where d is the space dimension (we simply use the canonical,
unimproved energy±momentum tensor, because the space
integral of the stress tensor is not altered by the improve-
ment). With full generality, we can take the potential
V�j�5 0 and vanishing at its absolute minima; namely, we
assume that there are several absolute minima with V � 0.
Then Eqns (21) and (22) imply, for d5 2, that j�x� is
constant and equal to its value at one of the minima. The
absence of localized static solutions of scalar field theories in
d5 2 is known as the Hobart±Derrick theorem [28, 29] and is
usually proved by direct scaling ofj�x�. The generalization of
this theorem to other field theories more complicated than the
scalar field theory is also given by Eqn (21), although it can be
proved by direct scaling of the appropriate field(s), case by
case [30, Ch. 6].

In our treatment of scale transformations, we have chosen
examples of relativistic fields, but we note that there is no need
to impose Lorentz invariance to obtain the virial theorem.
When there is Lorentz invariance, the Lagrangian formula-
tion of scale transformations, in terms of L, is typically used
instead of the Hamiltonian formulation, because it is
covariant and hence explicitly relativistic. The Lagrangian
formulation of scale transformations is based on space±time
dilatations, such that

dj � Djÿ x a qaj :

They coincide with space-only dilatations for static fields. The
local current associated with space±time dilatations by
Noether's theorem can always be expressed as j mD � xnT

mn,
and scale invariance can be expressed in the local form
qm j

m
D � 0 [30, 31]. Therefore, in field theory, scale invariance

is generally connected with the tracelessness of the energy±
momentum tensor. Although the conserved symmetric
energy±momentum tensor of a scale-invariant field theory is
not necessarily traceless, it is always possible to ``improve'' it
and convert it into one that is traceless, in addition to being
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symmetric and conserved [30, 31]. Then the tracelessness of
the energy±momentum tensor implies, beyond the Poincar�e
and scale invariance, the full invariance under the conformal
group, which is obtained by joining the discrete inversion to
the Poincar�e and scale transformations. The sourceless
Maxwell equations are of course conformal invariant and, in
this case, the energy±momentum tensor that results from
symmetrizing its canonical form is already traceless [9], and
therefore requires no improvement. But such improvement is
necessary in other field theories, e.g., in massless scalar field
theory.

2.3 Scale invariance in the ultrarelativistic domain
Regarding the virial theorem for an N-particle bound state
in electrodynamics, Eqn (5), the possibility arises of bound
states of vanishing energy, namely, states such that
E5

P
a mac

2, as the bound particles become ultrarelativis-
tic and approach the speed of light. In one such bound
state, the kinetic energy tends to infinity, but this is
compensated by a potential energy that tends to minus
infinity, as the particles approach one another and the
system collapses.

The vanishing of the energy of an ultrarelativistic bound
state is a consequence of scale invariance. As remarked in
Section 2.1, the relativistic form of mechanical similarity
involves the scaling of mass, because mass is inextricably
linked to energy in relativistic mechanics. Hence, the full
similarity demands the absence of masses. In the ultrarelati-
vistic limit pa 4mac, electrodynamic Hamiltonian (3)
becomes

H �
X
a

jcpa ÿ eAj � eF ;

which is also obtained just by setting ma � 0. The absence
of masses suggests scale invariance. Indeed, if A and F are
homogeneous functions of degree n � ÿ1, H transforms
into H=l under the phase-space coordinate scalings x! l x
and p! p=l. As a consequence, a system of ultrarelativistic
particles is such that the energy is proportional to p, and
therefore, in the limit p!1, a bound state must have
E � 0 exactly and be scale invariant. Otherwise, E is a
nonvanishing function of ma, and the bound state is not
scale invariant.

A scale-invariant relativistic state of vanishing energy is a
vacuum, which is neutral and has no measurable properties.
In fact, we can imagine that a neutral N-particle system loses
energy by radiation and traverses a sequence of ultrarelati-
vistic bound states of decreasing energy that ends in the
vacuum. However, the study of the final stages of this process
requires a QFT treatment. As an example of decay into the
vacuum, we can consider the annihilation of positronium
(a bound state of an electron and a positron), but positronium
is a weakly coupled system, such that its annihilation occurs
before it enters the ultrarelativistic domain. In addition, we
can consider ultrarelativistic states with a nonzero charge. A
simple example of ultrarelativistic dynamics in atomic physics
is briefly studied below. This example is useful, in particular,
in introducing the phenomenon of vacuum decay, important
in QCD (Section 3.2).

Although, apparently, there are no electromagnetically
bound particles in ordinary matter that are fully relativistic,
the fastest electrons of certain atoms actually are ultrarelati-
vistic. We focus on one of the innermost and fastest electrons
of a heavy atom, and for simplicity regard it as if it were not

influenced by the other electrons; namely, we consider the
one-electron Hamiltonian

H � c

�����������������������
p 2 � �mc�2

q
ÿ Ze 2

4pr
; �23�

(the nucleus can be taken at rest and can therefore be
neglected). For a circular orbit, the radial equation of motion
just states the equality of the centrifugal and Coulomb forces,
which can be written in terms of the respective virials as

cp 2�����������������������
p 2 � �mc�2

q � Ze 2

4pr
: �24�

For a general orbit, the equality of virials holds only on a
temporal average. Because

cp 2�����������������������
p 2 � �mc�2

q � p v � mv 2��������������������
1ÿ v 2=c 2

p ;

the temporal average of Eqn (24) is a particularly simple case
of the virial theorem expressed by Eqns (9)±(12), with
ET � B � 0. We also note the connection with Eqn (6). As
regards the energy, the virial theorem states that the ratio
E=�mc 2� is equal to the temporal average of�������������

1ÿ v 2

c 2

r
� mc�����������������������

p 2 � �mc�2
q :

As usual, virial relations can be used to draw conclusions
on the dynamics without solving the equations of motion. In
particular, from Eqn (24) and the inequality

1�����������������������
p 2 � �mc�2

q 4
1

p
;

we deduce that cp5Ze 2=�4pr�, on the average. The equality
cp � Ze 2=�4pr� occurs in the ultrarelativistic limit, as r! 0,
p!1, andE! 0, and scale invariance is approached. For a
circular orbit, the angular momentum is M � pr, and we
hence have the condition M5Ze 2=�4pc�. Actually, when
M < Ze 2=�4pc�, no orbit is stable and the electron must fall
toward the nucleus, in a spiral trajectory [9, § 39]. In
particular, as the electron approaches the nucleus and
becomes ultrarelativistic, its trajectory tends to a logarithmic
spiral, which is self-similar. Nevertheless, there are stable
orbits for every E > 0, although as E! 0, the only stable
orbits are circular ones, and they become just marginally
stable. For E < 0, there are no stable orbits.

We now consider the one-electron heavy atom in quantum
mechanics, where the uncertainty principle sets a lower limit
on the atom size; namely, both r andE are bounded below and
their lowest values correspond to the ground state of the
Hamiltonian. This also happens when the electron is not
relativistic, but in the relativistic case, namely, for H in
Eqn (23), a new feature arises: low-M states and hence states
with the lowest positive energies can be unstable; that is, states
with M � �h are stable only if Za < 1, where a �
e 2=�4p�hc� � 1=137. This is confirmed by solving the problem
with a relativistic wave equation, for example, the Klein±
Gordon, Dirac, or Salpeter equations: the ground state is
unstable for large Za, and the stability bound for Za, which
depends on the wave equation considered, is always of the

September 2013 The relativistic virial theorem and scale invariance 925



order of unity.2 This instability can be interpreted as a
quantum mechanical collapse in which the standard vacuum
decays and gives rise to a new, negatively charged vacuum [33,
§ 7]. The charged vacuum can be pictured as an electron cloud
attached to the nucleus. This cloud corresponds to the
classical spiral trajectories that fall on the nucleus and are
also asymptotically self-similar. We remark that this vacuum
instability occurs due to the presence of a nonelectromagnetic
interaction, namely, the strong interaction, which keeps the
positive charge Ze within a nucleus sufficiently small so as to
produce a very strong electromagnetic field.

By contrast, the electron±positron system does not have
negative energy states, owing to the smallness of a. A proper
study of this problem requires QFTmethods, but the problem
can be reduced, in a certain approximation, to an equation
similar to the Schr�odinger equation with Hamiltonian (23)
[34]. If there were electron±positron negative-energy states,
the standard QED vacuum would not be stable against
condensation of electron±positron pairs. This vacuum decay
does not occur in QED, but the quark±antiquark condensa-
tion and vacuum decay do occur in QCD [34]. This property
of the QCD vacuum is crucial for hadron physics, as seen in
Section 3.2.

Regarding scale invariance, the fundamental effect of
quantum mechanics is to introduce the new constant �h,
which, together with c, leaves only one physical dimension,
say, length. Therefore, particle masses can be associated with
length scales, namely, their associated Compton wavelengths.
We note that this association is consistent with the Andersen±
Baeyer [4] relativistic similarity. The Compton wavelength
�h=�mc� marks the scale where the momentum or energy
uncertainties are large enough to allow the creation of a
particle±antiparticle pair, and therefore the very concept of a
particle loses meaning. The relevant wavelength for an atom,
�h=�mv� � �h=�mcZa�, is definitely larger than the electron
Compton wavelength if Za5 1. In the opposite case Za01,
the electron becomes ultrarelativistic and the potential of a
(point-like) nucleus is strong enough to induce the creation of
electron±positron pairs. Because scale invariance can only
occur in the ultrarelativistic domain, it takes place for length
scales much smaller than �h=�mcZa�, where the one-electron
description is inadequate. In general, any mass scale breaks
scale invariance in relativistic quantum mechanics, and scale
invariance can only be recovered in the ultrarelativistic
domain, but in this domain the quantum effects associated
with particle creation take over. It turns out that in addition
to the explicit breaking of scale invariance by any mass, scale
invariance is always broken by quantum effects on small
scales, even in massless systems [30, 31]. The failure of a
classical symmetry due to quantum effects is called a quantum
anomaly. The scale invariance anomaly is important for
bound states, especially in QCD, and features in the
formulation of a QFT virial theorem (see next section).

3. The quantum field theory virial theorem

In relativistic quantum mechanics, scale invariance is broken
on scales of the order of the Compton wavelengths of
particles, as noted above. On the other hand, on these scales,

a bound system cannot be described in terms of a definite set
of particles that interact via a field, because the Schr�odinger
equation for that set of particles neglects the possible creation
of more particles. As is well known, relativistic quantum
mechanics leads to QFT, in which particles and fields are on
the same footing, and the Schr�odinger equation is best
expressed in terms of all the fields present. Therefore, the
virial theorem for a definite set of elementary particles given
by Eqn (5) is naturally replaced by the field theory formula-
tions in Eqn (9) or Eqn (13). The quantum versions of these
forms of the virial theorem can be derived by analogy with
Landau±Lifshitz's proof [12] or directly from Eqn (21),
yielding�

hT i
i i dV � 0 ; E � ÿ

�
hT m

m i dV ; �25�

where the expectation values are taken with respect to a
normalized stationary state representing a bound state in its
rest frame.

If a semiclassical (perturbative) expansion is meaningful,
then Eqns (25) amount to the classical field theory virial
theorem, namely, Eqn (9) or Eqn (13), plus quantum
corrections. The simplest quantum correction consists in
using the limited Fock-space approximation [34], which is a
variational approximation equivalent to the Schr�odinger
equation in a limited Fock space that does not include
renormalization effects. For an electron±positron bound
state [12], the result is that its energy E can be expressed
either by Eqn (7), without U terms and with m1 � m2, of
course, or by Eqn (18). In both equations, the classical motion
is replaced by a probability distribution, given by a quantum
wave function for the former and by a classical ``mass
density'' for the latter. The limited Fock space approxima-
tion for bound states is connectedwith the standard treatment
of bound states in QFT, which involves several approxima-
tions that lead to the Bethe±Salpeter equation [33, § 6].

In the limited Fock space approximation for spinor QED,
no infinities arise [34, 12], but the infinities that inevitably
arise in QFT must be considered in general. Those infinities
require regularization with an ultraviolet (UV) cutoff, which
necessarily breaks scale invariance. However, we remark that
some infinities already arise in classical field theory with
point-like particles and, because of this problem, the classical
electrodynamics of particles of mass m and charge e are not
consistent on scales smaller than the classical radius e 2=�mc 2�
[9, 14]. In fact, as explained in Section 2.1, the classical
relativistic virial theorem holds only after subtracting the
infinite self-energy of point-like charges. Because the classical
radius is smaller than the Comptonwavelength �h=�mc�, where
the quantum effects take over, the regularization of infinities
is essentially a quantum problem.3 For the virial theorem in
the form of Eqn (25), the relevant quantum effects of
renormalization manifest themselves in the energy±momen-
tum tensor trace anomaly, as pointed out in [12].

3.1 QED virial theorem and the trace anomaly
Before considering the renormalization process for bound
states in QFT, we recall why renormalization is necessary for
the classical virial theorem to hold (Section 2.1). For a set of

2 The spectrum ofH in Eqn (23) has been studied byHerbst [32]. He proves

that Eqn (24) holds as an equation for the expectation values in eigenstates

of H and that the spectrum is non-negative for Za4 2=p, whereas it is
unbounded below for Za > 2=p.

3 This statementmust be qualified: in the exceptional case where the strong

interaction holds a chargeZe in a point-like nucleus, e 2 has to be replaced

byZe 2, and the conditionZa > 1 precisely means thatZe 2=�mc 2� is larger
than �h=�mc�.
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electromagnetically bound particles satisfying Eqn (10), the
virial theorem in Eqn (9) implies that their positive kinetic
``pressure'' must be balanced by negative electromagnetic
stresses. Therefore, their electrostatic energy, given by
Eqn (12), must be negative, although it appears to be
positive. In fact, this energy is actually infinite, but it can
become negative after suitable subtractions, absorbed by
mass renormalizations. Mass renormalization is also neces-
sary in QFT because of the appearance of infinite self-
energies, but the divergence structure is substantially mod-
ified. Moreover, in QFT, the charge must also be renorma-
lized.

In a semiclassical expansion, the calculation of the first
quantum correction to some bound-state energy only
requires the calculation of small oscillations of the corre-
sponding classical solution. For example, for a heavy atom,
this semiclassical approach is equivalent to the old Bloch
hydrodynamic treatment of the Thomas±Fermi atom model
[35]. However, this model is nonrelativistic. Proper relativistic
examples are provided by classical relativistic field theory
localized solutions (``classical lumps'') [30, Ch. 6]. In general,
the calculation of quantum corrections begins with the
calculation of the stability matrix determining small oscilla-
tions. The total energy is the classical energy plus the
contribution of these small oscillations. Once these oscilla-
tions are quantized, the first quantum correction to the
classical energy is

dE � �h

2

X
i

oi ;

where the sum is taken over the oscillationmodes andoi is the
angular frequency of the ith mode. This sum diverges at high
frequencies (in the UV range). The modes can be labeled by
three independent numbers that can be assembled, for large
values, into a wave-number vector k. Therefore, the UV
divergence can be segregated by expressing the sum as an
integral over k, for large k, and taking oi � ck, which
corresponds to free modes:

dE � �hcV

� L �
k�O�1�� d3k

�2p�3 �
�hc

8p 2
V
�
L 4 �O�L 3�� ;

where V is the system volume, a UV cutoff L is introduced,
and the sum over two polarizations is taken, assuming that
the free modes correspond to photons. We could make dE
finite and attribute a physical meaning to it by choosing a
physical cutoffL such asL � mc=�h, the inverse of the electron
Compton wavelength. At any rate, the leading term, which is
positive and proportional to L4, is present in the absence of
matter and must be subtracted. The subleading divergent
terms depend on the detailed spectrum of theoi and hence on
the matter state, and can have either sign. After renormaliza-
tion (or definition of a finite L), these terms give rise to
measurable electromagnetic energies.

The divergent parts of the vacuum energy indeed have to
be subtracted in calculations of electromagnetic energies, for
example, in the calculation of Casimir or Van der Waals
forces [36]. For illustration, we briefly consider the case where
the frequencies oi are easy to calculate, namely, the case of a
dilute gas of N atoms per unit volume in a box of volume V
[36, § 3.7]. The allowed frequencies are the free-field
frequencies modified by the refractive index of the gas n�o�,
i.e., oi � ck=n. If we assume, for simplicity, that there is only

one resonant frequency o0, then we can take

n�o� � 1� Ne 2

2m�o 2
0 ÿ o 2� :

Therefore,

dE � �hcV

�2p�3
�
kd3k

n�k�

� �hcV

2p 2

�
L4

4
�Ne 2L2

4mc 2
� Ne 2

4mc2

�
k 2
0 �

Ne 2

2mc 2

�

� ln

���� L2

k 2
0 �Ne 2=�2mc 2� ÿ 1

����� ;
where k0 � o0=c. The quadratic divergence is proportional to
the number of atoms NV, but is independent of o0, and the
proportionality constant only depends on fundamental
constants. Indeed, this term corresponds to the energy of
NV free electrons, and, if we again takeL � mc=�h, the energy
per electron is of the order of e 2=��h=mc�, i.e., of the electron
quantum self-energy. Therefore, this divergence can be
absorbed by mass renormalization. The logarithmic term is
smaller in magnitude and depends ono0. IfNe 2=m5o 2

0 (the
dilution condition), the logarithmic term can be identified
with the Lamb shift [36, § 3.7]. We note that after
renormalization, the quantum corrections are not only finite
but also small (of the order a). If, instead of L � mc=�h, we
take the much smaller cutoff L � k0, such that n�k� > 1 over
the full range of integration, then dE is negative, correspond-
ing to attractive Van der Waals forces.

The result of the preceding calculation of dE and, in
particular, its cutoff dependence are typical of one-loop
effective potential calculations. Indeed, the energy E can be
generally calculated in terms of the minimum of the effective
action corresponding to the bound state. The L4 term is
already present in the vacuum, when a generic regularization
method is used, and leads to the well-known cosmological
constant problem. In this regard, Ossola and Sirlin [37] study
the contribution of fundamental particles to the vacuum
energy density, comparing various regularization methods,
and conclude that for noninteracting particles, the divergence
can be made quadratic rather than quartic (no L4 term) and
that massless particles do not contribute. This result follows
from properly considering relativistic covariance and scale
invariance of free-field theories in the massless limit and
therefore calculating hT 00i or any other component of hT mni
in terms of the trace hT l

l i using the relation hT mni �
hT l

l ig mn=4. The divergences of the trace hT l
l i are easily

obtained for free fields, but whenever interactions are
involved, new divergences appear (new quartic, quadratic,
and logarithmic divergences). After renormalization, the
energy±momentum tensor trace has quantum corrections,
i.e., a trace anomaly appears. Notably, the trace is not zero
even in the massless case. Because the virial theorem can be
expressed in terms of the energy±momentum tensor trace, we
conclude that the virial theorem must include a quantum
trace anomaly term [12], since this anomaly appears even in
the vacuum.

The general form of the fermionic QED trace anomaly
was computed in [38]:

T m
m � ÿK1m0c

2�cc� K2N �Fls F
ls � ; �26�
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where N indicates the type of normal product (see [38])
and

K1 � 1� d�a� � 1� 3a
2p
� . . . ;

K2 � 1

4
b�a� � 1

4

�
2a
3p
� a 2

2p 2
� . . .

�
:

The functions d and b are respectively associated with the
anomalous dimension of the fermion field c and with the
coupling constant renormalization. We note that the first
term of the trace anomaly consists of the classical part in
Eqn (16) and quantum corrections due to mass renormaliza-
tion, whereas the second term is purely of the quantum origin
and is due to charge renormalization.

The QED trace anomaly is indeed small, due to the
smallness of a, which makes the perturbation theory work.
This implies that the renormalized value of the quantum
correction dE to a classical bound-state energy is also small.
Fundamentally, this implies that the vacuum is not altered,
that is, there is no vacuum decay. Naturally, the vacuum
decay in the strong field of a nucleus is an exception, due to
the actual coupling constantZa not being small (Section 2.3).
At any rate, it is interesting to consider general strongly
bound states. A state can be considered strongly bound if
the larger part of its energy is due to the interaction of its
constituents rather than to their rest masses. This condition
is naturally satisfied by hadronic states, namely, the states
of quarks bound by the strong interaction described by
QCD.

3.2 Scale symmetry breaking,
Callan±Symanzik equations, and QCD
QCD is the theory of strong interactions, although effective
low-energy theories, such as the meson±nucleon interaction
theory, are still useful. The meson±nucleon theory, which
only includes the lightest mesons, is somewhat similar to the
photon±electron theory in QED, except for the finite range
of the mesons. However, the magnitude of the meson±
nucleon coupling is g 2=�4p�hc� ' 1, which should imply
that the bound states are ultrarelativistic, and their energies
nearly vanish! This does not happen, of course, because
scale invariance is badly broken by quantum effects.
Coleman [30, Ch. 3] used the meson±nucleon model to
illustrate the breaking of scale invariance, by analyzing the
perturbative behavior of correlation functions in the deep
Euclidean region: in addition to simple powers of the scale
(given by the field dimensions), logarithms also appear.
Coleman then shows that some series of logarithms can be
absorbed into anomalous field dimensions, while others
remain, but the series of the latter can be absorbed by a
renormalization of the couplings. In general, the scale
dependence introduced by the renormalization process can
be expressed in terms of a set of simple differential
equations for the correlation functions, namely, the renor-
malization group equations, while the effect of scale-
symmetry breaking is expressed by the Callan±Symanzik
equations. Naturally, both sets of equations are related [30,
Ch. 3]. There is an infinite set of Callan±Symanzik
equations, one equation for every correlation function. To
apply them to bound states, it is useful to realize that they
can all be derived from a master Callan±Symanzik equation,
which is in addition connected with the energy±momentum
tensor trace anomaly.

To obtain the master Callan±Symanzik equation, we
introduce the generating functional

Z �l j; gmn� �
�
Dj exp

ÿ
iS �j; l j �� ;

namely, the vacuum transition amplitude, where the action S
depends on a set of fields j and coupling constants l j and is
defined on a curved space±time; we also introduce the
functional W � ÿi logZ. The effect of a scale transforma-
tion can be alternatively realized in terms of the metric, such
that

l
dW

dl
� 2

�
d4x g mn�x� dW

dg mn�x� �
�
d4x

�������������������ÿ det gmn
p hT m

m i ;

where l is the scale, or in terms of the coupling constants, with

l
dW

dl
�
X
i

b i�l�
�
d4x

�������������������ÿ det gmn
p hOii � A ;

where b i�l� � l dl i=dl (``beta functions''), fOig is the set of
interaction terms (a subset of ``composite fields''), such that

dW

dl i
�
�
d4x

�������������������ÿ det gmn
p hOii ;

and A is an extra anomalous term that arises in curved
geometry. Therefore, in a flat space±time,�

d4x hT m
m i �

X
i

b i�l�
�
d4x hOii : �27�

This equation4 generates an infinite hierarchy of equations
for the correlations of the Oi by taking derivatives with
respect to the couplings li. Equations for the correlations of
fields other thanOi and, in particular, of the elementary fields
j can also be obtained by introducing the corresponding
sources in W. These equations are, in essence, the standard
Callan±Symanzik equations. The master Callan±Symanzik
equation (27) shows the general form of the trace anomaly
[41]. For example, in QED, Eqn (27) is equivalent to operator
equation (26). To see this, we note that the set li of coupling
constants includes dimensional constants. However, the
dimensionless coupling constants play a special role, because
they can contribute to each b i�l�, whereas the dimensional
coupling constants (corresponding to super-renormalizable
interactions, e.g., mass terms) can only contribute to some of
them, as a simple power-counting argument shows. Indeed, in
Eqn (6), a contributes to both terms, butm0 is only allowed in
the first term andwith the exponent one.We also note that the
``beta functions'' of dimensional coupling constants are
classically nonvanishing and give rise to the classical value
of T m

m , whereas those of dimensionless coupling constants are
purely ``anomalous.''

Equation (27) can be generalized by replacing the vacuum
expectation values with the expectation values in the
stationary state corresponding to a bound state, namely, by
introducing the appropriate boundary conditions in the
generating functional Z. For stationary states, the four-
dimensional integrals in Eqn (27) become spatial integrals,
and the equation directly yields quantum corrections to the

4 Equation (27) is well known. It plays an important role in 2d field theory

[39, 40] and is discussed, in general, in [41].
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relativistic virial theorem (13), in terms of the beta functions
and the expectation values hOii. The beta functions can be
calculated in the perturbation theory, but the hOii are more
difficult to calculate because they are essentially nonpertur-
bative.

To appreciate the importance of quantum corrections to
the relativistic virial theorem, we consider the theory of
hadrons in QCD. As is well known, the crucial difference
between QED and QCD is that their beta functions have
opposite signs, such that QCD is asymptotically free, namely,
the interaction vanishes at high momenta. By contrast,
quarks interact strongly at low momenta, and, in fact,
hadrons made of light quarks have a size such that the
contributions of the interactions to their energy are much
larger than the contribution of the quark masses. At the same
time, the contribution of the trace anomaly is crucial. To
clarify all this, we consider a concrete hadron model.

In the MIT bag model [42], a constant positive potential
energy B, per unit volume, is added to a free-field Lagrangian
density inside a finite part of space. A semiclassical description
of this simple field theory constitutes a sort of statistical model
of hadrons. In the MIT bag model, the particles, named
``partons'' but now identified with quarks and gluons, are
free and massless inside the bag, and move with the speed of
light. Therefore, hadrons are truly ultrarelativistic bound
states, as studied in Section 2.3. The vacuum inside the bag
takes place for small distances and high momenta, and
therefore corresponds to the perturbative QCD vacuum. As
the particles inside the bag separate from one another, they
enter the strong-coupling phase, in which the perturbative
vacuum is not stable and decays into the standard QCD
vacuum (a condensate of quark±antiquark pairs). Vice versa,
the QCD vacuum becomes unstable at high momenta and
decays into the perturbative vacuum. The transition is
assumed to occur over a very small distance on the bag
surface. In the statistical model, the confining interaction is
just modeled as a vacuum pressure, namely, the difference
between the null vacuum pressure outside the bag and the
negative ``vacuum pressure'' inside the bag. The effect of this
pressure difference is just to keep theparticles inside thebag, as
if the difference of pressureswere produced by the bag surface.

The application of the virial theorem to the gas of free
massless particles of the statistical bag model is straightfor-
ward: the theorem just states that the energy density is three
times the pressure difference [9, § 35]. On the other hand,
the energy±momentum tensor of the perturbative vacuum is
constant and proportional to the metric g mn, which
corresponds to a constant term in the Lagrangian. There-
fore, we have the following relations: the virial relation
Equarks�gluons=V � 3Pquarks�gluons (where V denotes the bag
volume), the pressure balance in the bag, Pquarks�gluons �
ÿPvac, and the vacuum relation Evac � ÿPvacV. We remark
that the pressure balance is also a virial relation, namely, a
particular case of

�
T i
i dV � 0. All the preceding equations

together imply that

Equarks�gluons � 3Evac ; �28�
E � Equarks�gluons � Evac � 4Evac � 4BV :

We note that the confining interaction accounts for one
fourth of the total energy, as in the classical model of a
particle with an electric charge in Section 2.1 that has the
confining Poincar�e energy±momentum tensor proportional
to g mn.

The bag surface has been taken fixed, but this is not
necessary: the only change when the bag surface is allowed to
move is that V must be replaced with the averageV, whence
E � 4BV. This equation is also obtained in [42] as a
relativistic virial theorem specially tailored to the bag model
Lagrangian and provedwithout using the energy±momentum
tensor.

Since the (improved) classical energy±momentum tensor
is traceless in the MIT bag model, confinement is due to the
quantum energy±momentum tensor trace part (the part
proportional to g mn), i.e., to the trace anomaly. In the MIT
bag model, this quantity is spatially constant, but the trace
anomaly in QCD is given by an equation similar to Eqn (26)
that includes suitable color indices; namely, it contains the
term �cmc, wherem is the quarkmass matrix, and an F 2 term,
with the color indices contracted. According to virial theorem
(25) and assuming that the quarks are massless, the energy is
given by the spatial integral of ÿhT l

l i � ÿb�g�hF 2i=�2g� (in
what follows, we set �h � c � 1). Therefore, in the first order in
as � g 2=�4p�,

E � ÿ
�
dV hT l

l i �
9as
8p
hF 2i

(for three quark flavors). This equation is a particular case of
Eqn (27), for a stationary state and only one coupling. The
required spatial integral�

hF 2i dV � ÿ2
�
�E 2 ÿ B 2� dV

must be calculated with the bag boundary conditions. For the
lowest-energy states, the integral can be calculated in terms of
the respective integrals ofE 2 andB 2, which also appear in the
calculation of gluonic corrections to the ground states of the
MIT bag model [43, § 3.12]. These integrals contain divergent
terms that correspond to self-interactions that are absorbed
by mass renormalizations. The final result is that the electric
integral vanishes and the magnetic integral is proportional to
1=R, that is, to the inverse of the spherical bag radius, with the
proportionality coefficient of the order of unity, as expected.
Indeed, the partons in the lowest excitation states of the bag
must have an energy of the order of NVÿ1=3, where N is a
small integer, as follows from dimensional analysis [42]. The
trace anomaly calculation cannot specify N, since as is
undetermined.

Taking any one of the lowest-energy hadronic states, the
bag relation E � 4BV � N=R, with V � R 3, implies that
B � Rÿ4, where R is the hadron radius. Therefore, the
fundamental dimensional parameter B can be traded for R.
But we instead introduce the fundamental QCD dimensional
parameter as the RG-invariant LQCD, which naturally arises
in massless QCD via the renormalization process constituting
what is called dimensional transmutation; LQCD can be
defined, for example, as the scale at which the QCD running
coupling equals unity, as�LQCD� � 1. The scale LQCD deter-
mines the size of the lowest excitation states of hadrons,
R � 1=LQCD. Therefore, we have B � L 4

QCD and Evac �
BV � LQCD. Also, E � LQCD. Naturally, R and E can be
expressed in terms of LQCD for general hadron models with
massless quarks, not only for theMIT bag model, as deduced
from dimensional transmutation. Dimensional transmuta-
tion is a consequence of the breaking of scale invariance,
which also gives rise to the trace anomaly. However, we
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remark that the virial theorem only allows establishing one
relation, which is exact and states, in essence, that the
confining term (the trace anomaly) accounts for one fourth
of the total energy, for massless quarks, as in Eqn (28). This
exact relation is derived from the obvious equation
T mn � T mn

quarks�gluons � T a
a g

mn=4, where, classically, T a
a � 0,

and

T mn
quarks�gluons �

i

2

ÿ
�cg �mD n�cÿD��m�cgn� c

�
ÿ g mn

4
F 2 � F ms F n

s :

Therefore, on account of the QFT virial theorem in Eqn (25),

E �
�
hT 00

quarks�gluonsi dV�
E

4
; �29�

in analogy with Eqn (14). Naturally, T a
a � 0 implies E � 0,

but the trace anomaly makes E nonvanishing. Equation (29)
is exact for massless QCD and is approximately valid for
hadrons made of light quarks. On the other hand, there is
another relation, always approximate, that determines the
size of the lowest excitation states of hadrons in terms of a
fundamental parameter, say, LQCD (or B, in the bag model).
Obviously, the latter relation cannot hold for high excitation
states, whereas the virial theorem does.

In more elaborate hadronmodels, one can consider quark
masses mQ, making the classical energy±momentum tensor
not traceless. Nevertheless, for light quarks, namely, u and d
quarks (and surely the s quark as well), mQ 5LQCD, and
therefore the trace anomaly is still dominated by the F 2 term.
If Nature were such that LQCD 5mQ for all quarks, then
QCD, in spite of still having the property of quark confine-
ment and still being asymptotically free, would share some
features of QED: all hadrons would actually be nonrelativis-
tic quark bound states.

4. Conclusions

The virial theorem expresses the condition of average
equilibrium of a bound state, namely, the condition that its
average shape stays constant and, in particular, that its
average size stays constant. The former condition is
expressed as the tensor virial theorem, whereas the latter is
expressed as the ordinary scalar virial theorem, Eqn (9),
which is actually the trace of the tensor virial theorem. This
theorem implies that the positive pressure of particles or fields
corresponding to a traceless energy±momentum tensor must
be compensated by the negative stresses corresponding to the
trace part of the energy±momentum tensor. Equation (9) is
valid in both classical and relativistic physics, but in the latter
the equivalent form in terms of the energy±momentum tensor
trace, Eqn (13), is more convenient. This equation implies
that the fraction of the bound-state energy corresponding to a
traceless energy±momentum tensor is three fourths. This
fraction is connected, in particular, with the classic 4/3
problem of electromagnetic inertia.

The trace of the stress tensor and the trace of the energy±
momentum tensor are respectively related to the generators of
space and space-time dilatations. Naturally, the connection
with dilatations arises because these are the transformations
that change the size of the system. The virial theorem shows
that the average size of the system is determined by its energy

E. The full space±time scale invariance only takes place when
the (average of the) trace of the energy±momentum tensor
vanishes, which corresponds to E � 0 and, in principle, to the
vacuum.

While nonrelativistic mechanics allows the similarity of
motion for kinetic and potential energies that are homo-
geneous functions of their respective variables, this symmetry
is lost in relativistic mechanics, in which the kinetic energy is
never a homogeneous function. However, there is a relativis-
tic notion of similarity, which is such that velocities are left
invariant, but masses scale as energies do. Therefore, the only
situation in which full scale invariance can appear is in the
ultrarelativistic domain, when the masses can be set to zero
and the virial theorem implies that the energy vanishes. This
ultrarelativistic scale invariance appears, for example, in the
strong electric field of a heavy nucleus. On the other hand,
only in the context of quantum field theory does scale
invariance acquire its deepest meaning, since there is
naturally only one scale, either length or mass. In a theory
with massless fundamental particles, bound systems should
have E � 0 and be massless as well, such that there should be
no scales and the theory would naturally be scale invariant.
However, in quantum field theory the vacuum is nontrivial,
and virtual particle±antiparticle pairs arise that make
quantum contributions to energies that are actually infinite
and, after renormalization, bring about a scale dependence,
expressed by the Callan±Symanzik (or renormalization
group) equations. This dilatation symmetry breaking can
also be expressed in terms of the energy±momentum trace
anomaly, which must be included in the quantum field theory
virial theorem. Therefore, this theorem is just a generalization
of the Callan±Symanzik or trace anomaly equations, which
makes them applicable to bound states. Full scale invariance
occurs only at renormalization-group fixed points, where the
virial theorem becomes trivial.

The QED energy±momentum tensor trace anomaly is
proportional to (powers of) the coupling constant a�1=137,
and is therefore small. In general, quantum corrections to
relativistic bound states are small in QED. Because those
bound states are weakly coupled, they are weakly relativistic
as well. Exceptionally, the strong nuclear interaction within a
heavy nucleus creates a concentration of positive charges,
such that their electromagnetic field is sufficiently strong to
produce important relativistic effects, in particular, a qualita-
tive change in the quantum vacuum around the nucleus: an
electron bound to the nucleus can have a negative energy, and
the bound state actually decays to a new vacuum state with
zero energy.

If the QED coupling a were sufficiently large, vacuum
instability would not be exceptional, because positronium
could then have a negative-energy state, and the standard
QED vacuum would be unstable against production of
electron±positron pairs. A phenomenon of this kind occurs
in QCD, and hence the QCD vacuum is not a perturbative
vacuum but a condensate of quark±antiquark pairs. This
phenomenon is associated with the magnitudes of dilatation
symmetry breaking and of the trace anomaly in QCD. In fact,
the existence of hadrons in massless QCD is conditioned by
the trace anomaly, which is an essential ingredient of the virial
theorem in this case. The dilatation symmetry breaking can be
expressed as a dimensional transmutation, which gives rise to
a scale, the renormalization group invariant LQCD. This scale
is definitely larger than the masses of light quarks, which
implies that the essential properties of the hadrons formed by
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them are described by massless QCD. Assuming that the
quarks aremassless, the virial theorem implies that one fourth
of the energy (or mass) of a hadron comes from the trace
anomaly term, whereas three fourths come from quarks and
gluons. The bag model of hadrons is useful for a straightfor-
ward application of the virial theorem and the computation of
the trace anomaly, as has been shown.

A different type of strong interaction occurs in astro-
physics, namely, in compact bodies, where the additive nature
of gravity leads to strong gravitational fields, besides strong
quantum effects. However, the generalization of the virial
theorem to General Relativity presents problems that are
beyond the scope of this paper, as cautioned in the introduc-
tion. Nevertheless, we can affirm that the master Callan±
Symanzik equation (27) that includes the curvature-depen-
dent trace anomaly A must play an important role in such a
generalization.
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