
Abstract. We consider theoretical and experimental evidence
for nonclassical states of a crystal lattice. Our primary goal is
the critical analysis of recent experiments in which squeezed and
entangled phonons are created and investigated. The quantum
aspects of elastic deformation fields similar to nonclassical light
fields are of interest for potential use in applied and fundamen-
tal research, including quantum computing and testing various
hypotheses in quantum physics.

1. Introduction

From the very beginning, physics has tended toward describ-
ing the motion of increasingly smaller objects over increas-
ingly shorter periods of time. Atoms in solids move at rifle
bullet speeds of about 1 km sÿ1, and it takes tens of
femtoseconds for an atom to slightly displace in a crystal. It
therefore has been and is a challenge for solid state physics to
understand the nature of how atoms move on their natural
angstrom±femtosecond scale. Even as recently as a few
decades ago, few believed that objects this small and this fast
could be observed with the naked eye. But with the
technological advances made and the laser pulse duration
reduced to femtoseconds [1±3], the real-time study of solid-
state excitations has become possible and indeed is currently
one of the fastest developing areas in solid-state physics,
where new, specially developed, technologically promising
materials are being investigated along with model systems [4].

Studies of the response of a condensed medium to an
ultrashort laser pulse (see Refs [2, 4±8] for reviews) reveal
subpicosecond oscillations in the relaxation of a pump pulse-
produced state. The fact that the period of these oscillations is
equal to the inverse frequency of Raman-active phonons
identifies them as crystal lattice excitations (which, parenthe-
tically, are called coherent phonons (CPs) because their phase
is well-defined for excitation pulses that are short compared
to the inverse frequency of the crystal lattice mode). Because
optical studies tend to deal with (long-wavelength) phonons
from the G point of the Brillouin zone, oscillations due to
ultrashort laser pulses allow visualizing the motion of atoms
in an individual unit cell.

It is important (but often ignored) that ultrashort pulse
pump±probe techniques are the realm of active spectroscopy,
where a crystal state to be investigated is specifically created
by light, whereas most spectroscopic studies deal with
equilibrium states that are determined by thermal excitations
of the crystal. The pump±probe method using femtosecond
laser pulses deals with a superposition of crystal states, as
opposed to a mixture of lattice excitations, usually dealt with
by standard spectroscopy. It is the active nature of dynamic
spectroscopy that allows creating and studying highly none-
quilibrium crystal states often inaccessible under thermody-
namic equilibrium conditions (the states are nonequilibrium
because the excitation pulse is much shorter than the phonon
lifetime).

Explaining experiments on the influence of lattice
excitations on solid-state properties does not necessarily
require a quantum description; lattice dynamics can be
nicely treated classically within the Newton±Boltzmann
framework. Clearly, quantum theory is more general than
classical theory, but is it worth invoking the former where the
latter does well? To answer this question, we note that in our
simple customary way of thinking, quantum fluctuations
start to determine the properties of a macroscopic system
only at low temperatures, whereas the Schr�odinger equation
and quantum statistics become necessary when objects such
as quantum crystals [9], superfluid liquids [10], superconduc-
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tors [11], and Bose±Einstein condensates [12] are investigated.
Indeed, classical behavior dominates at temperatures
kBT5 �ho=2, where quantum fluctuations are small com-
pared to thermal ones. Less obvious is the fact that on a
time scale less than that for the interaction of phonons among
themselves and with other elementary excitations, quantum
fluctuations may dominate regardless of the system tempera-
ture.

The following argument illustrates that quantum fluctua-
tions may indeed be dominant on short timescales, implying
that coherent phonons may be regarded as a quantum, rather
than a classical object. The inequality kBT5 �ho=2 holds only
for measurements averaged over times t4 t �, where t � is the
characteristic relaxation time. However, for the femtosecond
pulse methods of dynamic spectroscopy, usually t5 t �.
During this short time interval, the energy exchange between
the lattice mode under study and the heat bath is much less
than kBT, and the condition for quantum behavior to
manifest itself is modified to kBT4 �ho�t �=t� [13], an inequal-
ity that holds in most femtosecond laser pulse experiments.
The sensitivity to quantum fluctuations dominant over short
times has enabled essentially nonclassical phonon states to be
generated and studied in some femtosecond laser pulse
experiments.

2. Thermal and coherent phonons

A phonon (from the Greek jon�Z, sound) is a quantum of
vibration that propagates in a discrete medium in the form of
waves owing to the interaction between the atoms [14, 15].We
can associate a quasiparticle, a phonon, having the energy
E � �ho and quasimomentum p � �hk with each such wave.
Phonons in a solid arise from the quantization of the elastic
deformation field, when a spatially ordered system of atoms
considered as a set of coupled oscillators is reduced to a set of
independent oscillators, each of which includes the displace-
ments of all the atoms involved. Although phonons and
photons obey the same commutation relations, there are
numerous differences between them. Photons, sometimes
called simple bosons, are elementary excitations of a con-
tinuous field. Phonons, on the contrary, are collective
excitations of a discrete medium, classified as composite
bosons [16]. There are two categories of the latter: bosons
comprising an even number of fermions (helium atoms or
Cooper pairs), and most of the collective excitations
(magnons, excitons, phonons).

Differences in dispersion relations, in the ability to
interact among themselves and with other excitations, the
possible existence of a high-frequency limit of the spectrum,
the boundedness or unboundedness of the amplitude of
vacuum fluctuationsÐall these are factors that determine
the specific behavior of phonons and photons and, in some
cases, are the reason why the physics of phonons does not
reduce to the physics of photons described in terms of
quantum electrodynamics [17].

In the harmonic approximation, independently moving
phonons behave like an ideal gas, except that the number
of phonons is not conserved. The average energy of each
of the independent (collective) oscillators at a temperature
T is the sum of the zero-point vibration energy and the
energy of the quantum times the Bose±Einstein factor
�exp ��ho=kBTÿ 1��ÿ1 (the average number of phonons in
the mode). Thermal phonons, which always exist in discrete
media, are noncoherent (i.e., not correlated in anyway), differ

in energy, wavelength, and propagation direction, and,
when superposing themselves, cause only a slight chaotic
displacement of individual atoms. But if we create a large
number of phonons of the same wavelength, the same
frequency, and the same phase, a monochromatic deforma-
tion wave would result. Such waves, created in solids by
coherent phonons, can be monitored in real time using
femtosecond laser pulses [4].

The term `phonon' is most often used simply to refer to a
certain portion of the crystal lattice energy and is therefore
equivalent to `lattice excitation' or `sound', similarly to how
`photon' is synonymous with `light'. The field of elastic crystal
deformations is in this case treated purely classically, without
any hint of the discrete nature of the mode spectrum (the `first
quantization' is not of use for processes that change the
number of particles), i.e., a quantum oscillator is replaced by
a classical one.

However, what undoubtedly distinguishes a quantum
from a classical oscillator is that the former can move in
regions forbidden to classical motion (tunneling, over-barrier
reflection) and that, importantly, its spectrum exhibits zero-
point (vacuum) vibrations of the energy �ho=2, which
correspond to the quantum number n � 0 and whose wave
function has no zeros for finite displacements. A nonzero
minimum energy is a consequence of the uncertainty relation
[18], which prevents a quantum system from being at rest.

Zero-point vibrations play a major role in physics; in
particular, they prevent liquid helium from crystallizing at
normal pressure, even at the absolute zero of temperature [10],
and determine the `superproperties' of quantum crystals [9].
This energy is usually neglected when passing from a
quantum description to a classical one, and the zero
(vacuum) level is taken as the reference point This approx-
imation is not always innocuous, however: a quantum
potential can be reduced to a classical one if and only if all
energy levels are taken into account. It is easily shown that the
removal of the zero level does not violate the equidistant
nature of the spectrum, meaning that the potential remains a
quantum harmonic one. Still, the period of quantum
oscillations in this potential turns out to be energy-depen-
dent [19], i.e., the classical analog of this potential does not
have the property of being isochronous or, in other words, is
not a classical harmonic potential [20].

Attempts to find a combination of quantum (discrete)
states that obeys Newton's mechanics has led to the concept
of a `coherent state' (CS) [21, 22]. Clearly, applying a classical
force cannot bring an oscillator from a vacuum state to a
Fock state with a definite number of quanta [23]. In that state,
the average coordinate and the average momentum are both
identically zero, whereas for a quantum oscillator subject to
an external force, these average quantities vary in a harmonic
fashion, as is the case of a classical oscillator.

Coherent states, which approximate the classical descrip-
tion best, can be obtained 1) as minimum-uncertainty states,
2) as eigenstates of the annihilation operator, or 3) by using
the displacement operator. In particular, a CS jai can be
obtained from the vacuum state j0i by applying the displace-
ment operator, giving jai � D̂�a�j0i. The unitary operator
D̂�a� � exp �aâ y ÿ a �â�, linear in the ladder operators â y

and â, displaces the vacuum uncertainty contour from the
coordinate origin of the phase plane to the point �Re a; Im a�,
i.e., displaces the mean value of the coordinate by an amount
proportional to the real part of a and the mean value of the
momentum, by an amount proportional to the imaginary
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part of a. We note that this does not change the shape or area
of the uncertainty contour, because the classical force acting
on the oscillator changes only the first moments, i.e., the
means, and leaves the second moments, the dispersions,
unchanged. This indicates that a CS can be represented as a
classical state with added vacuum noise, as shown schemati-
cally in Fig. 1b, and this also explains why this state is
sometimes called displaced.

Because the canonical variables of the oscillator have
different dimensions, the dimensionless quadrature opera-
tors X̂ � �mo=2�h�1=2 q̂ and Ŷ � �2�hmo�ÿ1=2 p̂ are introduced
to simplify the description, allowing a lattice mode to be
written as

A � s0���
2
p �X̂ cosot� Ŷ sinot� ;

where

s0���
2
p �

����������
�h

2mo

r
is the vibration amplitude. Passing from the phase space (q, p)
to the space (X,Y ) deforms the oscillator orbit from an ellipse
to a circle. The dispersions of quadrature operators for the CS
are hDX̂ 2i � hDŶ 2i � 1=4, which saturates the Heisenberg
uncertainty relation hDX̂ 2i hDŶ 2i5 1=16, whereas the circu-
lar shape of the uncertainty contour indicates that both
quadratures have the same noise. Moreover, hDX̂ 2i�
hDŶ 2i � 1=2, i.e., the quadratures of a CS are independent
and uncorrelated. A CS is the most classical of all possible
quantum states, but it still remains quantum. More precisely,
a coherent state is a boundary between the sets of classical and
essentially quantum states of a field.

3. Nonclassical excitations of a crystal lattice

A classical force acting on the vacuum state can produce a
coherent state because such a force changes only the mean
values of the coordinates and momenta while leaving their
dispersion relations unchanged. If the force changes the

uncertainties (which is possible if the interaction is non-
linear), we obtain states that have little in common with
classical physics (for example, with mean square deviations
larger than the mean values, something quite unusual for
nonnegative quantities such as the kinetic or potential
energies).

Whether nonclassical excitations exist and what their
properties are has been and still is the subject of many studies
concerned with the light field [25, 26]. It is photons for which,
for the first time, the uncertainty contour was squeezed [27±
29] and entangled [30], and other nonclassical electromag-
netic field states were obtained. Subsequent theoretical
studies used analogies with the light field to examine the
prospects for creating squeezed phonons (SPs) and their
specific properties. There are two groups into which these
studies can be classified. The first treats the phonon as an
element of a complex object (a phonon polariton [31, 32] or a
polaron [33]); in the second group, the phonon is regarded as
an independent excitation, with fluctuation squeezing repre-
sented as resulting from the interaction of phonons between
themselves or with photons [17, 34±46]. Some of these studies
laid the necessary foundation for the experimental implemen-
tation of squeezed vibrational states (in molecules [47]) and
phonon (in crystals states [42, 48±54]).

If the phonon is considered a quantum object rather than
a classical wave, the repeated measurements of any of the
dynamical variables needed for its description yield the mean
value whose accuracy is limited by noise. We know, indeed,
that each normal lattice mode quantized into phonons can be
described mathematically by a wave equation whose solution
is a function of coordinates and time. The uncertainty (or
noise) of this function corresponds to the `thickness' of the
phase space line, and this thickness reflects the quantum
uncertainty in the positions of the atoms whose motion gives
rise to the phonons. This uncertainty, while usually small, can
be modulated in a periodic fashion by squeezing fluctuations.
Franco Nori's site [55] offers vivid animations of various
`squeezed' phonon states and their evolution.

Squeezed states (SSs), which are a certain generalization
of coherent states, were introduced under a variety of names,
including pulsed [56], generalized coherent [57], two-mode
vacuum [40], new quantum [58], twisted [59], and correlated
coherent [60] states. The well-established term squeezed states
comes from Hollenhorst [61]. Squeezed states were first
introduced by Kennard [62] in his analysis of the evolution
of wave packets with a time-dependent width and were
reinvented nearly thirty years later by Takahashi [63] in a
parametric amplification analysis using the theory of wave
functions. A detailed history of the subject and a nearly
complete bibliography can be found in [64]. In Russian,
papers [28, 29] and monograph [65] are representative
reviews of the physics of SSs.

The physics of SSs is best illustrated using the Schr�odin-
ger picture. We recall that when introducing the CS, in
order to obtain the minimum-uncertainty state, we require
the width of the Gaussian function to be equal to that of the
vacuum level. To see what happens if we lift this require-
ment, we represent the width of the Gaussian function in the
form s � ss0, where s is a real number called the squeezing
factor,

css�q� �
1�����������
2ps 2
p exp

�
ÿ �qÿ q0�2

2s 2
� i

�h
p0q

�
:

a

b

c

d

Y Y

Y Y

X X

X X

Figure 1. Schematic representation of (a) the vacuum, (b) a coherent state,

(c) a squeezed vacuum, and (d) a generalized coherent state. States in (a)

and (b) have their quadratures uncorrelated, leading to an uncertainty

contour circular in shape. The presence of correlations in the states in (c)

and (d) results in elliptically shaped uncertainty contours.
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Introducing the factor s either squeezes (for s < 1) or stretches
(for s > 1) the Gaussian wave packet (in the momentum
representation, squeezing and stretching are interchanged).
The fundamental difference between a CS and an SS is that
for t 6� 0, an SS is no longer aminimum-uncertainty state. To
see what happens as this state evolves, we calculate the mean
values and the squared mean values of the SS coordinate and
momentum, which gives their dispersionsÿ

Dq�t��2 � s 2
0

�
s 2 cos 2 ot� 1

s 2
sin 2 ot

�
;

ÿ
Dp�t��2 � �h 2

4s 2
0

�
1

s 2
cos2 ot� s 2 sin 2 ot

�
:

Because shifting the argument by p=2 changes sine to cosine,
the coordinate and momentum dispersions oscillate in
counterphase. Their product

ÿ
Dq�t��2ÿDp�t��2 � �h 2

4

�
1� 1

4

�
s 2 ÿ 1

s 2

�2

sin 2 2ot
�

demonstrates that for s � 1, we obtain a CS for which the
product of uncertainties is independent of time. But for an SS
with s 6� 1, this product oscillates with time at the doubled
frequency, meaning that the time variation of the shape of the
uncertainty contour is of a quadrupole nature. Thus, the
dimensionless dispersion relations for noncommuting
dynamic variables are different for an SS and identical for a
CSÐwith the result that as the Gaussian wave packet
corresponding to a CS evolves, its width is not constant but
oscillates. Because of their specific properties, squeezed states
have proved very useful in solving a range of problems in the
physics of quantum optics, gravitational wave experiments,
and quantum nondemolition measurements [13].

It is generally possible to create a phonon field for which
the quadrature dispersions are different. Physically, this
means that a correlation between the quadratures begins to
emerge; in mathematical terms, this is achieved through the
introduction, for a field with an annihilation operator â, of a
new operator b̂ � mâ� nâ y, with complex numbers m and n
satisfying the relation jmj2 ÿ jnj2 � 1.

We note that the introduction of a new operator is in fact
analogous to the Bogoliubov transformation [66] necessary in
describing superfluidity and superconductivity. In perform-
ing this transformation, we no longer require the width of the
wave packet composed of discrete states to be equal to that of
the vacuum state, but instead allow it to be arbitrary.

Experimentally, an SS is implemented by parametric
excitation, a process that changes not only the mean values
but also the second central moments of the quadratures. It is
the presence of correlations induced by parametric excitation
described by the squeezing operator that results in the unitary
squeezing operator

Ŝ�z� � exp

�
z�â y�2 ÿ z ��â�2

2

�
(which is quadratic in the ladder operators) results in the
elliptical shape of the SS uncertainty contour. The complex
parameter z � s exp �iy� specifies both the amount s and the
phase y of squeezing, its phase being equal to that of the
parametric pumping. We note that one of the quadratures
exponentially decreases (with the means and dispersions
decreasing proportionally), whereas the other increases.

From the standpoint of an observer at rest relative to the
coherent amplitude, noise becomes time dependent, with its
variation frequency 2o being twice that of the coherent
amplitude.

Unlike CSs, SSs are sometimes very far from being
classical, because the quadrature uncertainties may become
arbitrarily large for squeezing factors tending to zero or
infinity. Lattice states with a definite coordinate or a definite
quasimomentum correspond to these limit states. For lattice
excitations, various SPs can be implemented depending on the
type of correlation that occurs. Thus, quadrature squeezed
states correspond to a quadrature anticorrelation inwhich the
major axis of the uncertainty ellipse is parallel to one of the
quadratures. If the major axis of the uncertainty contour is
parallel (perpendicular) to the coherent amplitude, we are
dealing with phase-squeezed (amplitude-squeezed) phonons.
These phonons correspond to lattice excitations squeezed
with respect to fluctuations in the number of phonons, i.e., the
uncertainty in the number of phonons becomes less than that
in a CS (Poisson distributed fluctuations)Ð something
possible only for sub-Poisson statistics. For an uncertainty
ellipse oriented arbitrarily with respect to the quadrature unit
vectors, we are dealing with `rotated' SPs [65] (Fig. 1d).

In the foregoing discussion, squeezing and the correla-
tions responsible for it are not related in any quantitative way.
But if we consider a phonon for which quadrature fluctua-
tions are different due to correlations between the quad-
ratures, then we easily see that the degree of correlation and
the degree of squeezing are no longer independent variables
[60]. To show this, we consider the Schr�odinger±Robertson
uncertainty relation

sXsY 5
1

2

�
h���X;Y ����� 
��fX;Y g���� ;

where the square (curly) brackets denote the commutator
(anticommutator) and the angular brackets denote the mean
[67, 68]. In the case where the mean of the anticommutator is
expressed in terms of the correlator r � sXY=

�����������
sXsY
p

, this
becomes

sXsY 5


�X;Y ��
2�1ÿ r 2� :

Because the mean of the quadrature commutator is unity,
determining the mean square deviation for one of the
quadratures, sX, yields the second one as [60]

sY � 1

2sX
�1ÿ r 2�ÿ1 :

With the lattice function squeezing parameter introduced as
s � sX=sY, the mean square deviation of the quadrature s can
be written as

sX �
�������������������

s

2
�������������
1ÿ r 2
p

r
;

clearly indicating that the fluctuations depend on both
squeezing and correlations. Introduced in this way, the
parameters s and r characterize the eccentricity and orienta-
tion of the uncertainty contour defined in the intervals
04 s41 and ÿ14 r4 1 [60].

Quantum correlations are stronger than classical ones and
can lead to entanglement, a phenomenon with no classical
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analogs, in which the motions of lattice atoms are related not
via usual interactions limited by finite propagation speed but
due to nonlocal quantum correlations. The concept of
entanglement, closely related to the Einstein±Podolsky±
Rosen paradox [69], is, in the words of Schr�odinger, the
essence of quantum mechanics [70]. For any quantum system
composed of a number of parts, entanglement is defined as
the nonfactorizability of the total wave function and reduces
to the presence of quantum correlations between the
parts [71].

4. Experimental details

Coherent photons, i.e., coordinated vibrations in which the
atoms of each crystal unit cell move in unison, are studied
(similarly to SPs) by the femtosecond pump±probe technique.
In one of its simplest forms, the excitation method measures
transmission or reflection [4±8], for which a beamsplitter
transforms a train of laser pulses into two beams, with the
probe beam one to three orders of magnitude lower in power
than the pump beam.

By introducing a controllable probe±pump time delay, the
evolution of a lattice state prepared by a pump pulse can be
traced. The way to realize this is by detecting the normalized
differential reflection/transmission, i.e., the change in the
corresponding characteristic of the probe pulse produced by
the pump beam normalized to the same probe characteristic
in the absence of pumping. This change is proportional to
either atomic displacements or their dispersions, depending
on whether one-phonon or two-phonon excitations are
generated [4, 6].

As an example, Fig. 2 shows a typical reflection relaxation
response observed in a bismuth single crystal by the pump±
probe method using femtosecond laser pulses [8]. It is clearly
seen that the excited state evolves toward equilibrium and
that superposed on this relaxation are oscillations produced
by the CP generation process. At liquid helium temperatures,
CPs are sufficiently long-lived: for example, bismuth atoms
perform hundreds of oscillations before the lattice subsystem
loses its coherence [72].

5. Evidence for squeezed phonon states

There is currently abundant evidence that the excitation of a
crystal by ultrashort laser pulses causes its phonon subsystem
to behave nonclassically, supposedly due to the squeezing and
to the noncorrelated nature of lattice modes. Indeed, such
pulses allow not only preparing lattice excitations in a
coherent or a squeezed state but also `entangling' macro-
scopic objects by exciting the crystal to entangled states. We
discuss these experiments in what follows.

Squeezed phonons, i.e., lattice excitations fluctuating
differently in different quadratures, were first created and
registered by Roberto Merlin's group at Michigan State
University [42] in what was seemingly an ordinary dynamic
spectroscopy experiment on a potassium tantalate (KTaO3)
crystal at a sufficiently low temperature of 10 K. The
researchers came to recognize, however, that in order to
detect a squeezed phonon state, it is desirable to eliminate
the coherent amplitude, whose large value makes vacuum
fluctuations difficult to observe. Because the coherent
amplitude behaves classically, destructive interference can
be used to suppress it to zero. The way the group achieved this
was by coherently exciting wave-vector-anticorrelated pairs
of transverse acoustic (TA) phonons from the X point of the
Brillouin zone. Because of the wide frequency range of
acoustic phonons in crystals, their produced periodic squeez-
ing of atomic fluctuations occurs in various time intervals,
thus preventing the experimental separation of a squeezed
state from multiple signals due to various lattice excitations.
But in KTaO3 crystals, because of the presence of a van Hove
singularity at the boundary of the Brillouin zone, the density
of acoustic phonon states is large for a certain frequency.
Because of the in-tune nature of all these phonons, their
squeezed states produce a very distinct signature, a regular
change in the refractive index of the material detected by the
probe pulse. The cubic Oh symmetry of KTaO3 and the
selection rules prevent the excitation of one-phonon states,
further facilitating the identification of squeezing of the
phonon subsystem. The Michigan group used pulse dura-
tions of 70 fs (the repetition frequency 85 MHz, the
wavelength 810 nm) to obtain a sufficient time resolution for
creating and tracing the evolution of a squeezed lattice state.
Each pump pulse was followed by a (time delayed) probe
pulse, whose transmission depends on the crystal refractive
index, which is in turn sensitive to the mean square of atomic
displacements.

The change of the KTaO3 transmission T under the
influence of an ultrashort laser pulse is caused by second-
order Raman scattering,

DT � Tÿ T0 �
X
q

q 2T

qQq qQq 0
hQqQq 0 i ;

where Q is the normal vector of the acoustic wave and the
averaging is over the phonon states for which the total wave
vector is zero [42]. The averaging yields hQqQÿqi �
hDu 2��q; t�i, where u is the atomic displacement in the
acoustic mode. We note that what was measured in the
experiment exciting a pair of acoustic 2.7 THz phonons was
precisely the dispersion of atomic displacement, because the
coherent amplitudes of those modes responsible for the
modulation of interatomic distances are anticorrelated, and
therefore their sum vanishes. A schematic of this situation is
shown in Fig. 3, which presents a unit cell of a noncentrosym-
metric crystal.

1.0

0.5

0

ÿ0.5

ÿ1.0
10 20 30 40 50 60 70

t, ps

A� 106

0

Figure 2. Coherent part of the time-resolved reflection DR=R0 � A in a

bismuth single crystal at liquid helium temperature for weak excitation by

30 fs laser pulses.
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As shown in Fig. 4, the squeezed phonons observed in
Ref. [42] modulate just the dispersions and leave hri
unchangedÐ in contrast to CPs, which modulate the aver-
age atomic separation hri and leave dispersions hu 2i
unchanged. Using this fact, Merlin's group measured the
time dependence of the dispersion of atomic displacement and
experimentally demonstrated its oscillatory nature. The
2.7 THz oscillations that were associated with SPs showed
the symmetry G1�Ag�, the same as that of the crystal. Despite
the clear and definite signal obtained, the researchers'
estimate of the squeezing was moderate. By estimating the
amplitude of vacuum displacements from the measurements
of the absolute Raman scattering cross section, the uncer-
tainty in the amplitude distribution was found to decrease by
one millionth. Following this experiment, similar implemen-
tations of squeezed acoustic phonons in SrTiO3 [48] and ZnTe
[54] were reported.

For strontium titanate, which, unlike potassium tantalate,
undergoes a cubic-to-tetragonal Oh ! D4h phase transition
at 110 K, together with a squeezing of the pairs of acoustic
phonons from the X and M points of the Brillouin zone, the
coherent excitation of fully symmetric optical A1g phonons of
the `soft' 1.3 THz mode was demonstrated [48]. That is,
following ultrafast excitation at 7 K, the soft-mode phonons
turn out be in a coherent (Glauber) state and the acoustic
phonons are in a two-mode squeezed state with an energy of
6.9 THz. The soft-mode phonons, following the excitation by
an ultrashort (70 fs) pulse (the repetition frequency 80 MHz
and the wavelength 810 nm), experience a sharp change in the
average quasimomentum hpi, whereas a sharp change in hp 2i
occurs for acoustic phonons. For the coherent case, the
average quasimomentum hpi oscillates, as it should accord-
ing to the classical equation of motion, whereas hp 2i remains
unchanged. For acoustic phonons, on the contrary, hpi � 0,
whereas hp 2i oscillates at twice the frequency of the acoustic
mode, remaining less than the mean square vacuum state
throughout half the cycle. A point to note is that both the
KTaO3 and SrTiO3 crystals exhibit the phenomenon of
paraelectricity [73±75]. The squeezing of lattice excitations
detected in these crystals possibly reflects the onset of the
transition to the ferroelectric phase, frustrated by large
quantum mechanical fluctuations.

Unlike the perovskite paraelectrics KTaO3 and SrTiO3, a
typical II±VI compound of zinc telluride (ZnTe) is a direct-
band 2.34 eV gap semiconductor crystallizing in the zinc
blende type structure (Td��4�3m� space group). Due to its high
photosensitivity, ZnTe has applications in efficiently convert-
ing solar energy and in visualizing images in the teraherz
range. Its first-order Raman scattering spectrum consists of
two modes, the 6.3 THz longitudinal optical (LO) and the
5.3 THZ transverse optical (TO) ones. Two-phonon scatter-
ing from the Brillouin zone X point is described by the direct
product of three irreducible representations, X2 �
G1 
 G12 
 G15, in which the fully symmetric component
dominates with a frequency of 3.24 THz (108 cmÿ1) [76].

The generation of CPs in ZnTe (001) excited by 30 fs
800 nm laser pulses was reported in [77]. This experiment, in
which, because of its geometry, the time-resolved transmission
response was dominated by the 6.3 THz LO phonon along
with the acoustic overtone, is in many respects analogous to
the experiment on SrTiO3 inRef. [58]. The authors ofRef. [77]
only mention the possibility of squeezing acoustic modes and
focus their attention on polarization measurements aimed at
establishing the symmetry of the phonon modes observed.
Changing the geometry of the experiment in [54] allowed
eliminating the one-phonon contribution and separating the
second-order scattering, thus leading to a situation similar to
that in the experiment with KTaO3 [42]. In Ref. [54], this was
implemented by using a ZnTe crystal with a different, (110),
orientation, for which scattering on an LO phonon is
forbidden by selection rules (TO scattering is in both cases
weak due to resonance conditions). A number of features
identified in the samepaper by a detailed study of two-phonon
scattering suggest the presence of squeezing and entanglement
in the acoustic subsystem.

The evolution of squeezed ZnTe phonons created by an fs
pump pulse is shown in Fig. 5. From the signal Fourier
spectrum shown in the figure, it can be seen that vibrations at
the fundamental acoustic phonon frequency (1.62 THz) are
absent; there are only changes in the dispersions of the
coherent amplitudes of two acoustic modes occurring at

hu2i

hri

r

u

Center of gravity

Figure 3. (Color online) Unit cell of a nonsymmetric crystal. Blue and red

arrows represent the normal vectors of acoustic phonons with anti-

correlated wave vectors. Atoms are shown as black dots with diameters

proportional to their masses. hri is the average atomic separation, r is the

instantaneous atomic separation, and u is the instantaneous displacement

from the equilibrium position. The green dots and the ellipse indicate the

dispersions hu 2i � hr 2i ÿ hri2. Excitation of a pair of phonons leaves the

average atomic separations hri unchanged, with only their dispersion hu 2i
changing as shown at the bottom.

Time

Coherent background

Squeezed background

Figure 4. Coherent and squeezed phonons are shown schematically to

demonstrate their difference. The evolution of a coherent state is

accompanied by a change in the average atomic separation hri; the

evolution of a squeezed state leaves hri unchanged and affects only hu 2i.
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nearly a double frequency. The frequency of the oscillations
(3.67 THz) is somewhat higher than that of the acoustic
overtone (3.24 THz), identifying the oscillations as an
acoustic biphonon [54]; polarization measurements identi-
fied the symmetry of the biphonon excitations as the unit
representation with the full symmetry of the point group.
That is, an ultrashort pulse excites two acoustic modes in
ZnTe, with the same frequency and magnitude but with
vectors jq�i and jqÿi opposite in sign. Just as with the
perovskite paraelectrics KTaO3 and SrTiO3, the high density
of acoustic phonon states (due to the van Hove singularities)
allows energy to be pumped effectively into a ZnTe crystal.
What possibly distinguishes ZnTe from the perovskite
structures is that the residual phonon±phonon interaction is
responsible for the energy shift that places the biphonon
above the acoustic continuum band. The dispersion of the
acoustic biphonon at the center of the Brillouin zone depends
on the wave vector, which corresponds to a negative mass,
whereas at the edges of the Brillouin zone, the dispersion is
linear [78]. For the ultrafast excitation of ZnTe, the biphonon
components defined by the annihilation operators â� and âÿ
satisfy the relation 2

��hâ�âÿi�� > hâ y�â�i � hâ yÿâÿi, and we
therefore have a typical case of two-mode squeezing [54].

A toy model provides a qualitative understanding of the
experimental results in Refs [42, 48, 54]. We can think of
lattice atoms as pendulums, each of which is in its particular
(and totally random) phase of vibration, some in full swing,
some close to equilibrium, etc. The laser pulse has the effect of
a `vertical blow' on all of the pendulums. The pendulums near
the equilibrium and those at the maximum height are
respectively least and most affected. That is, the momentum
a pendulum receives along its path of motion is proportional
to the deviation from equilibrium, with the ultimate result
that the motion of the system of pendulums changes from
chaotic to ordered (or coordinated), and the pendulumsmake
the transition to synchronousmotion, i.e., come to an ordered
state that is implemented by the squeezing of the wings of the
distribution of instant displacements and which `squeezes'
noise from the motion of the system of pendulums. Impor-
tantly, such an action creates a correlation between the
displacement and the momentum for each of the pendulums.
Under the assumption of an elastic impact, each pendulum
has its frequency unchanged, and the only property that does
change is its impedance, an aspect ratio that characterizes the
phase space orbit of the pendulum [79]. This may point to the

nonadiabatic nature of the influence, for which the phonon
mode has one of the quadratures exponentially decreasing,
DX / exp �ÿs�, and the other exponentially increasing,
DY / exp �s�. Motion in this case occurs such that the kinetic
and potential energies fluctuate in an anticorrelated manner,
which is possible only if the kinetic and potential energy
dispersions exceed their mean values [16]. Physically, this
corresponds to the situation where the oscillator is most of the
time near the equilibrium rather than far from it as in classical
motion, where the time needed for an object to pass a given
portion of its path is inversely proportional to its velocity. We
note that the atoms whose motion forms a phonon spend
most of their time on lattice sites.

Although the first observation of CPs [42] received wide
media news coverage at the time, things are not entirely
smooth with this interpretation. Shortly after the publica-
tions by the Michigan group, their conclusions were ques-
tioned by two theoretical physicists, who came upwith critical
comments [17]; the criticism was primarily concerned with the
interpretation of the experiments and did not consider the
setup and the results. Comparing the thermal noise and the
degree of squeezing, the authors of [17] conclude that the
magnitude of modulation does not suggest vacuum squeez-
ing. Importantly, however, the experiments in Ref. [42] used a
differential technique, thus excluding the contribution from
thermal, and indeed from any time-independent, noise.
Essentially, the critics argue that the noise modulated in the
experiments in Ref. [42] was that of the anticommutator, not
of the commutator, because the experimental conditions used
corresponded to the case where


��fDX̂;DŶ g���4
���X̂; Ŷ ����.
Such a situation occurs in the semiclassical limit, in which, as
�h! 0, the commutator contributes nothing to the Schr�odin-
ger±Robertson relations, whereas the contribution from the
anticommutator tends to the correlator of classical quantities
and is nonzero if there is a statistical dependence between
them.

The possibility of such a situation is evidenced
indirectly by a detailed study of the temperature depen-
dence of the ultrafast dynamics of potassium tantalate [51].
By shortening the exciting pulse to 25 fs, the authors of
[51] were able, in the time range, to register oscillations of
the sum (TO1;2 � TA;TO4 � TA) and of the difference
(TO1;2 ÿ TA;TO4 ÿ TA) of phonon modes. Decreasing the
temperature considerably decreased the contribution from
the latter, although at room temperature the oscillation
spectrum was practically the same as that of spontaneous
Raman scattering [80].

A number of discrepancies between the results of sponta-
neous Raman scattering and time-resolved measurements
were also noted in [17]. An example is the difference in spectral
line shapes between an acoustic overtone observed in the
frequency domain and the squeezed phonon state registered
in the temporal domain. This shows up, in particular, in the
narrower line of the squeezed state, indicating that the lifetime
of a lattice excitation is longer for anultrashort laser excitation
than for continuous laser exposure.

We must note, however, that the difference in lifetimes
between the coherent and incoherent excitations is a wide-
spread, although not yet understood phenomenon [8].
According to the generation mechanism due to SP Raman
scattering [17, 42±44], the presence of second-order scattering
in the time-resolved coherent response necessarily indicates
the squeezing of the phonon subsystem, whereas alternative
mechanisms [46] require several pump pulses (i.e., coherent
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Figure 5. (a) Squeezed state evolution in ZnTe as a change in the

normalized differential transmission DT=T0 (dotted line extrapolates to

the zero delay, demonstrating the onset of oscillations). (b) Fourier

transform of the oscillations.
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control) to implement the vacuum squeezing of lattice
excitations.

Attempts have also been made to register the fluctuation
properties of optical CPs to detect the squeezing of the
phonon subsystem. For this, statistical properties of coher-
ent optical modes were investigated in bismuth, antimony,
gallium arsenide, and a number of high-temperature super-
conductors [49, 50, 52]. The study of the fluctuation proper-
ties of phonons produced by ultrashort laser pulses required a
modification of the measurement scheme [8], because the
traditional scheme for the study of CPs provides only the time
dependence of the mean value of the coherent amplitude.
Investigating fluctuations requires determining how the
coherent amplitude changes with time at a fixed phase
determined by the time delay; hence, the measurement
should be conducted so as to lose no information about the
individual implementations of the lattice state. Although a
standard experimental configuration cannot measure a single
realization of the lattice state, it is possible to compare
statistical samples obtained by applying about 105ÿ106
laser pulses at a fixed time delay. For this, a part of the
oscillating response A�t� was measured repeatedly, such that
for each time delay value, along with the first moment
m � hAi, the central second-order moment s 2 � hA 2i ÿ m 2

could be computed.
A typical result for a Bi single crystal is shown in Fig. 6,

from which it is obvious that the average amplitude obtained
with this scheme is identical to that from a traditional
experiment. But there is also additional information con-
tained in the coherent-amplitude dispersion calculated for
each time instant. For all the crystals studied, the dispersion
(or the noise characteristic) of CPs turns out to be time
dependent, with its variation frequency twice the CP
frequency (Fig. 6a). We note that for a system in equili-
brium, noise is time independent, as is illustrated by the
behavior of dispersion at negative time delays. Typical noise
and coherent-amplitude power spectra obtained by the
Fourier transformation are shown in Figs 6a and 6b. It is
clear that these two spectra are different and that the noise
spectrum contains a component with twice the CP frequency.
As the pumping power increases, the noise intensity increases
linearly, whereas the spectrum remains virtually unchanged.

We note, however, that the noise spectrum components
change somewhat in intensity, and the intensity ratio
between the high-frequency and low-frequency components
tends to increase [8].

The results of studying the statistical properties have not
escaped criticism, either [81]; to summarize, it centers on the
following: CPs, by whatever physical mechanism they are
produced, cannot lead to the phenomenon of squeezing,
which is always due to the nonlinear nature of the system
and which is involved in none of the CP generation
mechanisms. Indeed, the critics argued, quite correctly, that
the experiments in Refs [49, 50, 52] say nothing of the zero
fluctuation level, whose knowledge is needed to confirm the
actuality of vacuum squeezing. Furthermore, they applied a
somewhat modified scheme to measure noise [81] in Bi and
GaAs, which led them to the discovery of time-independent
noise.Wemust note, however, that the noisemeasurements in
Ref. [81] used not the isotropic detection scheme but rather an
anisotropic one, which does not involve the subtraction of
noise at negative time delays. Moreover, the measurements
for bismuth were made on a polycrystalline sample (this is the
only possible explanation for the dominance of fully sym-
metric oscillations in the time-resolved response in the
anisotropic detection approach) and, hence, along with the
(identical) xx and yy polarization tensor components; the zz
component, which greatly exceeds the basis components in
magnitude, was also investigated. The presence of the second
harmonic in the noise spectrum of the crystals studied was
attributed in Ref. [81] to the uncontrollable deviation of the
laser pulse repetition frequency, also known as jitter (this
explanation had, in fact, already been proposed in Ref. [8]). It
was shown, moreover, that the intensity of the second
harmonic is proportional to the integration time of the
synchronous detector. To find out definitely whether
squeezed fluctuations exist in the case of the coherent one-
phonon excitation, it is necessary to substantially modify the
measurement scheme so as to gain access to a correlation
function like hA�t�A�t� t�i instead of hA�t�ihA�t� t�i, i.e.,
to measure the coherent amplitude induced by the same laser
pulse at two different time delays.

The experiments described above used the degenerate
scheme, in which the excitation and probing light frequencies
are the same. The nondegenerate scheme, with the carrier
frequency of the probe pulse different from the pump
frequency, provides additional information on lattice
dynamics, especially in the case where the pump carrier
frequency is in the X-ray range. Indeed, the X-ray radiation
wavelength is about the size of the unit cell, which allows the
monitoring and quantitative assessment of how optical pump
pulses affect the interatomic distances.

There has been an obvious boom in experiments on
ultrafast X-ray optics over the past decade [82], in large part
due to the development of bright radiation sources and to the
reduced duration of the X-ray pulse and its time jitter. Time-
resolved X-ray experiments have allowed studying coherent
lattice dynamics (in terms of both acoustic and optical modes)
for a number of crystals with a signal-to-noise ratio close to
the typical value for an optical probe [83]. A feature of the
experiments that revealed the existence of squeezed phonon
modes is the observation of the time evolution of the Debye±
Waller factor for a number of reflexes in a bismuth single
crystal. It is known that increasing the temperature decreases
the peak intensity of Bragg diffraction, with the peak position
and width remaining virtually unchanged. This decrease in
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intensity, known as the Debye±Waller effect, depends
exponentially on the mean square atomic displacements and
determines the effect of phonons on the probability of
processes that transfer momentum to the crystal as a whole
without changing the state of the lattice. In a typical
experiment, this results in a time-averaged reduction in the
integral intensity of Bragg diffraction, which becomes more
pronounced with increasing the temperature and for higher
diffraction orders [84].

The group at the Paul Scherer Institute, Switzerland, used
the Debye±Waller effect to measure the time dependence of
the mean square displacements of bismuth atoms due to an
ultrashort laser pulse [53]. In bismuth, an intensive ultrafast
excitation is well known to generate coherent fully symmetric
�Ag� and doubly degenerate �Eg� optical phonon modes [85,
86] (the higher the pumping intensity is, the lower the phonon
frequency [85]). The laser wavelength used by the Swiss team
to excite bismuth was larger than the lattice constant, and
therefore an optical excitation transferred a small momentum
to the crystal lattice [53]. The registration of the time response
of the �10�1� and �11�2� Bragg reflexes revealed a strongly
damped oscillation with a period of about 750 fs. It was also
found that the oscillation amplitude for �11�2�was about three
times that for �10�1� and that cooling the crystal to 170 K
reduced the amplitude of the �11�2� reflex by half. Because the
reflexes under study correspond to the atomic displacements
orthogonal to the trigonal [111] axis, the contribution from
the fully symmetric phonons to the 750 fs oscillation was
excluded. The idea of identifying the observed oscillations as
doubly degenerate phonons was dismissed based on a
comparison of frequencies: for an Eg phonon, the oscillation
frequency at this excitation level corresponds to 1.6 THz (the
period T � 625 fs).

The authors of Ref. [53] explain the observed response by
assuming that the strongly damped oscillations are due to the
acoustic modes softening instantly and uniformly over the
entire Brillouin zone. Indeed, in the experiment, a laser took
less than the period of the fastest lattice vibrations to promote
a considerable fraction of electrons from the valence to the
conduction band, thus instantly modifying the interatomic
forces and hence changing the potential in which the atoms
are located. As a result, the atoms start moving so as to be on
average either somewhat closer to or farther from the
equilibrium positions (with a broader or a squeezed momen-
tum distribution, respectively), which corresponds to
squeezed acoustic phonons. In the view of the authors of
Ref. [53], the occurrence of squeezing is a consequence of the
uniform acoustic mode softening (over all points of the
Brillouin zone) predicted by the density functional theory
simulations. A point of note here is that experiments on the
ultrafast disordering of an InSb crystal [87] were also
interpreted in the context of squeezed phonons due to a
uniform softening of Debye phonons over the Brillouin
zone; but no evidence for the oscillating Debye±Waller factor
was observed in these experiments. It was reported, however,
that when measuring the fluctuation properties of coherent
optical phonons in an InSb crystal [88], its spectral mode with
twice the SP frequency was found to exhibit noise.

The results of experiments that relied on the
nondegenerate method and which used X-ray probe pulses
to detect squeezed phonons have also been subjected to
criticism [89], centered on the interpretation aspects and on
deficiencies of the model used in the density functional
method. It was noticed first [89] that the computation

model in Ref. [52] used different chemical potentials for
electrons and holes, thereby assuming that although the two
types of carriers thermalize fast, there is no equilibrium
between them. Then, after using the density functional
method with a common chemical potential for the charge
carriers, the authors of Ref. [89] came to the conclusion that
the softening of acoustic modes occurs only in the vicinity of
the X and M points of the Brillouin zone and cannot
therefore be interpreted as evidence of the squeezing of
lattice excitations. It should also be noted that earlier two-
chemical-potential calculations of the coherent dynamics in
bismuth [90] had not revealed the softening of optical
modes, although optical mode softening observed in
intensive pumping experiments was perfectly reproduced.

To summarize, based on the experimental data obtained
and on the criticism presented, it is currently difficult to
conclude which of the opposing sides is right, i.e., whether the
vacuum squeezing of lattice excitations has in fact been, or is
yet to be, implemented. There are many factors that have to
be understood when seeking an interpretation, such as the
generation mechanism of squeezed states, the interaction of
these states among themselves and with the thermal bath, and
the role of the electronic subsystem of the crystal; the
individual contributions of those factors are very difficult to
discern. Only further experiments and a detailed theoretical
understanding of the effects mentioned above will provide
final answers to these questions.

6. Coherent control of biphonons
as a way to reveal nonclassical correlations.
Entangled phonons

Entanglement, a phenomenon with no classical analog, was
first demonstrated for electromagnetic field quanta [91].
Somewhat later, quantum correlations violating Bell's
inequality [92] were found to exist for biphotons created in
the spontaneous parametric scattering of light [93]. For
crystal lattice excitations, the analog of a biphoton is a
biphonon [94], a correlated quantum of the field of elastic
deformations. It has been proved experimentally that a
biphonon state can be produced by an ultrashort laser pulse
in a crystal with a vanHove singularity in the density of lattice
states: ZnTe (110), a typical crystal with this property, was
reported in [95] to exhibit an acoustic biphononwhen exposed
to a 40 fs laser pulse. In Fig. 7, which shows both the coherent
part of the lattice response and its Fourier transform, we see
that the laser pulse creates a biphonon state in ZnTe, which
has a somewhat higher energy than that of the acoustic
overtone and which, for a single pulse excitation, decays
with a typical time of 1.4 ps. Each component of the biphonon
is in the superposition of the vacuum state and all the excited
states of the one-phonon mode. The conservation principles
that control the generation of lattice excitations require that
these phonons interfere destructively, thus leading to two-
phonon coherence. The phase correlation of pairs of phonons
with equal but oppositely directed wave vectors can, by
analogy with superconductivity, be called pairingÐwith the
reservation, however, that unlike in superconductivity, the
physical reason for pairing is here the pump pulse, which
separates phonon pairs with the maximum instability incre-
ment from the phase chaos.

A biphonon state in ZnTe can be regarded as the
superposition of the vacuum state and the first excited state
that results from `phonon localization' [96]. The variable that
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localizes in such a transition is the `distance' between
phonons, and a biphonon can in this case be written as a
two-mode squeezed state of the lattice [54],

ja�; aÿ; z i � D̂��a�� D̂ÿ�aÿ� Ŝ�ÿ�z�j vacuumi :

Squeezing leads to correlations between the orthogonal
quadratures of individual phonon modes, mixing the annihi-
lation operators â� of one mode with the creation operators
â
y
� of the other. Such a squeezed two-mode state is in many

ways analogous to a thermal state, because both have the
same relation between the number of phonons and the
probability of finding n phonons in any of these two modes.

The well-defined phase of lattice excitations produced by
ultrashort laser pulses provides the opportunity to influence
the system in a number of ways to create a definite quantum
state. The way to implement such influences is usually by the
method of coherent control, whose key idea is to create
superpositions of lattice states with certain phases. Varying
these phases leads to either constructive or destructive
interference, thereby enabling the control of the final state of
the lattice. Such control in the case of CPs is implemented by
two-pulse excitation in a modified pump±probe method [4].

Unlike the coherent control of one-phonon excitations,
whose results are easily explained within the paradigm of
classical interference [4, 97], controlling biphonons raises
paradoxes that require a quantum mechanical treatment for
their resolution [54]: because biphonons have two phases, one
for a biphonon as a whole and the other for its components,
the coherent control of biphonons is an acoustic analog of
two-photon interference [98±102].

This was demonstrated in two-pump-pulse experiments
[54] that investigated the superposition of two ensembles of
biphonons produced at various time instants, as shown in
Fig. 7. By varying the pump-to-pump time delay, it is possible
to create a state with both its modes simultaneously excited or
a vacuum state with both its acousticmodes deactivated. Such
a two-phonon vacuum corresponds to the situation where
lattice atoms are in their equilibrium positions (atomic

displacement distribution is very narrow), but their kinetic
energy is maximum, corresponding to a broad velocity
distribution. The situation corresponding to a biphonon
state is, on the contrary, where the atoms are at rest, are
located at classical return points, and have a narrow velocity
distribution (with their displacement distribution washed
out).

A double pulse excitation can, in the first approximation,
be represented as the sum of two interfering biphonon
ensembles created at different time instants, with the control
parameter, the pump-to-pump time delay, determining
whether the interference is constructive or destructive. It can
be seen from Fig. 8a that as this parameter varies, the phonon
amplitude increases and decreases at the frequency of the
biphonon. This amplitude modulation, while easily explained
within the paradigm of classical interference, is accompanied
by modulation of the excitation lifetime, an effect that is
impossible for classical interference.

Experiments show that the biphonon lifetime can vary in
either a correlated or uncorrelated manner with the biphonon
amplitude. Furthermore, the process of decreasing the life-
time (with the decrease factor reaching 1:5� 0:2 � ���

2
p

) is
faster than the increasing process, which is more monotonic
and involves a larger change in the control parameter. This
sharp increase is highly reminiscent of `entanglement sudden
death', an effect that was predicted relatively recently [103]
and soon implemented experimentally [104].

The variation of the biphonon lifetime under coherent
control is in sharp contrast to the control-parameter-
independent behavior of the lifetime of single-phonon
coherent excitations. For fully symmetric phonons in bis-
muth in the linear excitation regime, when the lifetime is
independent of the pumping power [97, 105, 106], varying the
control parameter over a wide range leaves the CP lifetime
unchanged, although the resulting amplitude is modulated
with the frequency of the phonon, as shown in Fig. 8b.

If the individual acoustic phonons that form biphonons in
ZnTe are assumed to have lifetimes independent of the
control parameter, then it is clear that the way the correla-
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tions weaken with time is determined not so much by the
initial degree of correlation (or entanglement) as by the
specific type of the state. The amplitude of the biphonon is
proportional to the real part of the squeezing parameter,
where its lifetime determines how long the components of the
biphonon state remain correlated: the longer the lifetime is,
the stronger the correlation. It is currently unclear whether
these correlations in ZnTe are classical or quantum, i.e.,
whether Bell's inequalities are violated.

The interpretation of the coherent control of the bipho-
non is complicated by the fact that, experimentally, inter-
ference occurs between identical, spatially inseparable lattice
excitations, making it impossible to find whether nonlocal
correlations exist that lead to `action at a distance'. In
principle, an experiment can be suggested to separate
classical from quantum correlations. By modifying a dou-
ble-pulse excitation such that the first pump pulse with a wide
cross section creates a biphonon and the second, narrow one
performs coherent control and focusing the narrow probe
pulse into a crystal region not subject to the second pump
pulse, it is easy to distinguish entanglement from classical
correlations. Here, in the first case, we would see the result of
coherent control (action at a distance) at once, whereas in the
second case, the oscillations would not be perturbed by the
second pump pulse (or the result of coherent control would
manifest itself after some time delay).

We take a more detailed look at the way coherent control
is involved in the experiment in Ref. [54]. The first pump pulse
creates a biphonon state, which evolves freely, until after a
time Dt it is overlapped by a second state, due to the repeated
pump pulse. The phase difference between these two
composite states is determined by the pulse separation Dt.
The internal phase fi of each of the biphonons, which is
defined as the phase difference between its components, has
no classical analog. For Dt � nT, where T is the biphonon
period, the difference of the internal phases is equal to zero,
Df � f1 ÿ f2 � 0, i.e., any pump pulse creates a biphonon
with the same internal phase. This corresponds to the
interference of biphonons with the same orientation of
uncertainty contours. However, for Dt 6� nT, with the
uncertainty ellipses oriented differently, the internal phase
difference Df � Dtÿ nT can be positive or negative, depend-
ing on whether n is even or odd. This internal phase
asymmetry, determined by the sign of the phase difference,
sgnDf, is responsible for the sharp change in the lifetime for
Dt=T � �2nÿ 1�=2. For Dt=T < �2nÿ 1�=2, lattice excita-
tions behave as a set of independent anharmonic oscillators,
for each of which the lifetime anticorrelates with the
biphonon amplitude. For Dt=T > �2nÿ 1�=2, lattice excita-
tions can be reasonably regarded as a set of coupled harmonic
oscillators with lifetimes controlled by the strength of the
coupling (dispersion), which is in turn proportional to the
phonon amplitude. That is, for control parameter values
Dt=T < �2nÿ 1�=2 and Dt=T > �2nÿ 1�=2, the lattice sys-
tem is respectively described by the Einstein and Debye
models. If we were able to measure the statistics of
biphonon components, i.e., the statistics of each of its
halves, then such a measurement would demonstrate a
bunching for Dt=T < �2nÿ 1�=2 and an antibunching for
Dt=T > �2nÿ 1�=2, each of which should change to Poisson's
statistic (for respectively even and odd Dt=T ). Thus, for
Dt=T < �2nÿ 1�=2, when the energy is localized on lattice
atoms, lattice excitations behave as a system of particles
(Einstein's model), whereas for Dt=T > �2nÿ 1�=2, when

energy is delocalized, they demonstrate wave properties
(Debye model). We note that in the cases Dt=T < �2nÿ 1�=2
and Dt=T > �2nÿ 1�=2, the coupling between the biphonon
components is respectively controlled by amplitude and phase
fluctuations. Only at the boundary, where the amplitude and
phase fluctuations act together, does the lifetime show a sharp
change because the fluctuations influence the localized and
distributed coherences differently.

It can be conjectured that a higher amount of phonon
squeezing should lead to a stronger correlation between the
phonons. However, it can be seen from Fig. 8a that the
lifetime has its extrema near the minima of the biphonon
amplitude, where the squeezing is maximum. This feature of
the biphonon lifetime reflects the particle±wave duality and,
together with the regular behavior of the biphonon ampli-
tude, shows that the relation between biphonon squeezing
and entanglementmay be quite complex, because these effects
are of different orders. Squeezing is a second-order effect
determined by amplitude±amplitude correlations (quadratic
in ladder operators) that are controlled by single-phonon
interference; entanglement is a fourth-order effect dependent
on intensity±intensity correlations (biquadratic in ladder
operators).

The difference between the behavior of the biphonon
amplitude and lifetime can be understood by noting that
squeezing influences the diagonal elements of the individual
acoustic phonon mode, hâ y�â�i � ja�j2 � sinh2s and the
nondiagonal intermode elements hâ�âÿi � hâÿâ�i �
a�aÿ ÿ exp �iy� sinh s cosh s [105]. Therefore, at large
degrees of squeezing, the population of each of the biphonon
`halves' can only increase, whereas their entanglement can
increase or decrease. Roughly speaking, two-phonon inter-
ference modulates both the phase (y) and the amplitude (s) of
the squeezing factor, whereas single-phonon interference is
only responsible for the modulation of the amplitude. Thus,
similarly to the case of photons [100±103], one-phonon
interference and two-phonon interference are respectively
controlled by coherence and entanglement. Importantly,
one-phonon interference (i.e., that of the halves) tends to
localize phonons in the phase space, whereas two-phonon
interference (that of biphonons) affects the overlapping of the
wave functions of the `halves'.

Depending on the value of the control parameter,
coherent control demonstrates the possibility of changing
from regime to regime because two-phonon interference
oscillates at twice the frequency of the one-phonon inter-
ference. This time dependence difference is convincingly
supported by the fact [54] that for control parameter values
that are odd multiples of the biphonon period, the oscillation
spectrum, along with the biphonon line, has an acoustic
overtone from a noncoupled pair of acoustic phonons. This
is illustrated in Fig. 9, which shows the wavelet-transformed
time-resolved response and in which we clearly see the
contribution of 3.2 THz oscillations, which corresponds to
the coherent excitation of an uncoupled pair of acoustic
phonons, i.e., to an acoustic overtone. It is clear that for
control parameter values Dt � �n� 1=2�T, two-phonon
interference is destructive (minimum biphonon amplitude),
and one-phonon interference is, on the contrary, construc-
tive. We note that it is totally untenable to argue that the
overtone also exists for other values of the control
parameter and is not seen only because it is masked by the
large value of the biphonon amplitude; even for a small
biphonon amplitude, realized in the case of a weak one-
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pulse excitation, uncoupled pairs of acoustic phonons are
not registered.

As the phase-space distribution broadens under coherent
control, the one-phonon coherence decreases and entangle-
ment, on the contrary, increases. Hence, the one- and two-
phonon interferences respectively decrease and increase in
intensity. Because coherence and entanglement depend in
opposite senses on the state separability, the distribution
width acts oppositely in determining the intensities of one-
and two-phonon interferences. Whereas a broad distribution
corresponds to strongly entangled, weakly coherent phonons,
a narrow distribution corresponds to highly coherent, weakly
entangled phonons.

We note that in their experiments discussed above, the
authors of Ref. [54] failed to measure squeezing and
entanglement quantitatively, and what they did at that stage
was simply to suggest that the squeezing is proportional to the
amplitude and entanglement is proportional to the lifetime of
the biphonon.

Nevertheless, the attempt to describe a (squeezed and
correlated [54]) biphonon excitation state of the ZnTe lattice
as resulting from the excitation of two classical transverse
waves is doomed. The waves turn out to be entangled with
respect to the polarization variable. Thus, every transverse
phonon has two polarization eigenstates, a vertical jVi or a
horizontal jHi one. Because orthogonally polarized phonons
cannot interfere, the absence of oscillations with the
frequency of a TA phonon in the time-resolved response
indicates that the biphonon components have the same
polarization. Hence, the polarization state of the excited
lattice created by an ultrashort laser pulse can be written in
the form jji� � 1=

���
2
p ÿjVVi � jHHi�. It is easy to show that

jji� 6� jji�jjiÿ for anywave functions of the vertically �jVi�
and horizontally �jHi� polarized states, i.e., the biphonon
wave function does not factor. Because phonons are gener-
ated in pairs simultaneously, the population numbers of the
polarization modes are fully correlated (i.e., one of the Stokes
parameters is zero [97]), whereas their phases are antic-
orrelated. The absence of the polarization basis for each of
the acoustic modes suggests that the sound produced by an
ultrashort laser pulse is either `scalar' or has a hidden
polarization. In this context, biphonons are in many respects
analogous to nonclassical states of the electromagnetic field,

for which it is known that two-photon light in maximally
entangled Bell states is nonpolarized from the standpoint of
classical optics [107]. According to the theory in [108], `scalar
polarization light' exists, a nonclassical state with an even
number of photons, which is characterized by two-photon
squeezing with respect to any pair of orthogonal polarization
modes. Indeed, such scalar polarization light has already been
realized experimentally [109].

An international research group led by Ian Walmsley at
Oxford was the first to provide experimental evidence that a
lattice can be in a state violating the Bell inequalities. In the
experiment, phonons excited in the process of spontaneous
Raman scattering in two spatially separated diamonds were
brought to an entangled state [110]. The optical phonons that
exhibited entanglement were of the symmetry G25

0 �F2g� and
had a frequency of 40 THz. To prove entanglement, one of its
quantitative characteristics, concurrence, was used. The
entanglement of G25

0 phonons followed from the positive
sign of concurrence; the value of this characteristic,
�5:2� 2:6� � 10ÿ6, was established with a reliability above
98%. Because phonon counting detectors are currently
nonexistent, the authors of Ref. [111] assumed that phonon
creation/annihilation events are local and inferred the
entanglement of lattice states from the entanglement of
Stokes and anti-Stokes photons, whose interference pattern
visibility was close to that of maximally entangled Bell states.

The crystals used in the Oxford experiment (to which we
refer as `upper' and `lower') were 3 mm in size and 15 cm
apart; the experiment was conducted at room temperature.
The high energy of the phonons studied (about 40 THz, or
1332 cmÿ1) ensured that the lattice of both diamonds was in
the ground (vacuum) state prior to excitation. The pump laser
pulses (the duration 60 fs, the energy 1.5 eV, the repetition
rate 82 MHz) passed through a symmetric beamsplitter and
arrived at the two crystals via different optical paths, and
then, after passing through the crystals, merged into a single
pulse, thereby `erasing' information about the path the
photon took (Fig. 10a). Each of the pump photons could
arrive at either the upper or the lower crystal after leaving the
beamsplitter. According to the laws of quantummechanics, it
is impossible to predict before the measurement which way
the photon takes, the reason being that it is in a superposition
of its two possible states. If photons obeyed classical laws,
then, after leaving the beamsplitter, they would move up or
down, but by no means in both directions simultaneously.
When, upon leaving the beamsplitter, a photon enters the
diamond, part of its energy can be absorbed to produce a
phonon in the crystal lattice. Because phonons also behave as
quasiparticles, it follows that the two diamonds that have
absorbed a photon coming from the beamsplitter share this
single phonon, and are therefore entangled. According to
classical thinking, the phonon is in the upper or the lower
diamond, whereas according to quantum mechanics, it is
`smeared out' over the two. In the process of stimulated
Raman scattering, the absorbed photon is re-emitted at a
lower frequency, and this `reddened' Stokes photon signals
the achievement of an entangled state. However, because the
output response of a single photon detector does not identify
the exact crystal throughwhich the photon passed, the excited
phonons in one of the crystals are quantum-correlated with
those in the second. In other words, once the photon is
absorbed, the atoms of both crystals are set into motion. To
see this, a probe pulse polarized orthogonally to the pump
pulse was used, which again was sent with a delay of 350 fs
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Figure 9. (Color online). Wavelet-transformed results of coherent control
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through a symmetric beamsplitter onto two diamonds at
once. When encountering a phonon, such a probe photon
increases in energy (transforms into a `blue' anti-Stokes
photon) and is directed to two detectors via a system of
beamsplitters (quarter- and half-wavelength plates). The fact
that it is not known in which diamond the phonon is located
allows distinguishing the classical state of the two crystals
from their quantum (entangled) state. Classically, after
sending the probe pulse, the appearance of the blue anti-
Stokes photon at the output of the system should be registered
with the same probability by both detectors; but if an object is
described by the laws of the quantum world, the photon
should be registered by one and only one designated detector,
because the appearance of a blue anti-Stokes photon should
correlate with the appearance of a red Stokes phonon.

It is precisely this nonclassical correlation that the Oxford
physicists observed. When a phonon is annihilated and hence
atomic motion ceases in one of the crystals, the atoms in the
other also suddenly cease moving, although the crystals are
spatially apart and cannot interact. And although such
entanglement creation and registration experiments lasted a
mere 0.35 ps (phonons in diamond are short lived at room
temperature), this suffices, if not to store quantum data, then
at least to perform quantum computations.

Thus, the existence of quantum entanglement is con-
firmed by measuring correlations between the polarization
states of Stokes and anti-Stokes Raman scattering photons.
The fact that spatially separated diamonds were entangled at
room temperature is important because it indicates that such
an entangled state can persist in ordinary environments in
macroscopic solids, which, according to the authors of
Ref. [110], makes these objects the basis for developing
cryogen-free quantum computers. The THz-fast read/write

cycle using a diamond optical phonon [111] amply illustrates
the potential of the field.

It may seem at first glance that a phonon, which is an
indivisible quantum of lattice vibrations, cannot be in an
entangled state, because entanglement presupposes the
existence of at least two quantum mechanical objects. This
follows from the fact that in the secondary quantization
representation, the state jfiA;B � j0iAj1iB � j1iAj0iB, where
j0iA;B is a state without a phonon and j1iA;B is a state with one
phonon in modes A and B, is factorable, jfiA;B �
�â yA � â

y
B� j0; 0i, and hence is not entangled. However, it is

shown theoretically [112] that when the modes A and B are
spatially separated, the state jfiA;B does exhibit entangle-
ment features. Unlike the biphonon state entanglement,
which can be realized between two phonons and the
vacuum, entanglement for the state jfiA;B is realized for two
spatially separated modes, A and B. Such entanglement was
also realized for neodymium ions implanted into two yttrium
orthosilicate crystals [113].

A point of special note is that the phonons studied in
Ref. [110], unlike those in Refs [42, 48, 54], were not in the
Glauber state, because the 20 fs pulses have a spectrum of
insufficient width to create superpositions of states 40 THz
apart in energy. Because of the short vibration period of
diamond carbon atoms (T � 25 fs), much shorter laser pulses
are needed to cause the lattice atoms tomove coherently. This
was previously demonstrated in [114] using 3.2 eV, 10 fs laser
pulses.

7. Conclusion

Two decades of theoretical research have provided evidence
that under certain conditions, it is possible to prepare
ensembles of phonons in essentially nonclassical states. It
has been reliably established by the methods of dynamic
spectroscopy that coherent and, possibly, squeezed and
entangled states of a crystal lattice can be created using
ultrashort laser pulses. Importantly, although in most cases
coherent phonons do not require a quantum mechanical
treatment for their description, crystal lattice states that
have no classical analog nevertheless exist. They are made
possible by the quantum nature of the phonon, which is
simultaneously a particle and a wave. Although there are
currently various quasiparticles for which crystal excitations
have been realized [115±117], it is experiments with lattice
excitations that have developed most.

Questions concerning squeezed or entangled crystal states
are only beginning to be addressed in detail, both experimen-
tally and theoretically. With lattices in such nonclassical
states, crystals may exhibit some special features, both in
their properties and in the way they interact with an
electromagnetic field, which can significantly change the
physics of acoustic and optical phonon modes. Due to their
nonclassical properties, squeezed and entangled lattice states
will undoubtedly become a focus of intense future research,
both fundamentally theoretical (quantum theory as a descrip-
tion of physical reality) and experimental and applied (the
prospect of creating the element base for quantum computers
and of solving information transmission/processing pro-
blems).

We note that the increased interest in nonclassical fields is
in part due to their unique correlation properties and is also
stimulated by attempts to use them for applied purposes (for
example, in applications of quantum information theory).

60 fs

350 fs

a

b

Ds

Da

Figure 10. Schematic experiment to (a) create and (b) register the

entanglement of diamond phonons. Panel (a): on passing through the

beamsplitter, a photon creates a phonon in an entangled state in one of the

diamonds (which is marked by a rectangular box), which is signaled by a

Stokes photon in detector Ds. Then a (350-fs-delayed) orthogonally

polarized pulse [panel (b)] eliminates the photon and the anti-Stokes

photon is registered by detector Ds. The manifestation of an entangled

state is the visibility of the interference pattern of anti-Stokes photons

during the registration of coincidences in detecting Stokes and anti-Stokes

photons, the visibility beingmeasured by rotating the polarization of these

photons.
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From the standpoint of their potential in this particular field,
optical fields are not the best choice, because the available
materials are only slightly nonlinear. It is nonlinearity that
underlies the interaction fundamentally necessary for per-
forming quantum logic operations, and the high nonlinearity
of elastic deformation fields is simply bound to result in a
variety of applications for them.

Future research will undoubtedly show that the small
magnitude of quantum correlations in ourmacroscopic world
is an illusory reason for neglecting them and that, very
importantly, these correlations are so unusual in their proper-
ties that under certain conditions they can `outweigh' even the
strongest classical correlations.

A potentially very important fact is that it may be
possible to control exactly how much a phonon is coherent,
squeezed, or entangled. To do this effectively requires, as a
top priority for joint efforts by experimenters and theoreti-
cians, finding (i) the microscopic mechanism for generating
squeezed and entangled phonons and (ii) how both the
properties of the electronic (and other) subsystem and the
parameters of the ultrashort laser pulse (chirp, duration,
energy, etc.) affect the lattice state created by the pulse.
Particular theoretical attention should be given to establish-
ing a relation between the squeezing, coherence, and
entanglement of phonon modes.
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