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Abstract. An analysis is presented of the scattering of a plane
electromagnetic wave in the case of oblique incidence from a
circular dielectric cylinder. Under certain conditions, this scat-
tering process involves the excitation of cyclic surface Sommer-
feld waves (SWs) capable of propagating over large distances
along the cylinder. It is shown that the interaction of SWs of low
azimuthal order with the cylinder continuous (radiation) modes
gives rise to cyclic Sommerfeld resonances (SRs), analogous to
well-known Wood’s anomalies in a plane wave scattering from
one-dimensional metallic diffraction gratings. Conditions ne-
cessary for the effective excitation of SWs and SRs are estab-
lished and the SW and SR contributions to mode formation in
microstructured optical fibers are discussed.

1. Introduction

This paper was motivated by the recent advent of a number of
promising optical fibers for fiber optics, in which guiding of
light is obtained not through total internal reflection but
through a different mechanism, which is not completely
understood, in our opinion. The case in point is one of the
types of the so-called microstructured optical fibers (MOFs)
with a central core whose optical density is lower than that of
acladding, in particular, MOFs with a hollow core (filled with
atmospheric air).

It is well known that guiding of a light beam with a
complete compensation of its diffraction divergence is
provided by refraction from the layers of a medium surround-
ing the region of light propagation. Guided radiation in fibers
is typically achieved due to reflection of radiation from the
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core—cladding interface, followed by the constructive inter-
ference of scattered waves in the core. In particular, in
standard telecommunication fibers, this mechanism is
caused by the effect of total internal reflection from the
cladding, whereas in waveguides where total internal reflec-
tion plays no role, other effects are involved. These effects are
determined by the cladding structure. For example, for
hollow fibers with a uniform cladding, this is the usual
Fresnel reflection, for fibers with a microstructured clad-
ding, this is the Bragg reflection (when the microstructure is
ordered with the characteristic period of variation of the
permittivity comparable to the wavelength of light) or
reflections of other types (for example, Mie scattering from
small-scale inhomogeneities of the cladding).

As regards optical losses in waveguides, it is well known
that they include material and waveguide losses. We note that
material losses are always present to some extent, whereas
waveguide losses play a key role in fibers based not on total
internal reflection but on other effects. Losses in such fibers
are determined by imperfections of their inhomogeneous
cladding and the transfer of the guided radiation energy out
of the core to the cladding. In other words, the cladding
structure in such fibers determines the level of their optical
losses. The authors of many theoretical and experimental
papers noted that resonance scattering from elements of the
cladding structure plays a role in the formation of modes in
such fibers.

In this paper, we analyze the nature and types of this
resonance scattering and its influence on the level of optical
losses in MOFs.

There exists a rather wide scope of problems whose
solution requires an analysis of light scattering from a
dielectric rod (or a capillary). One of them is an interesting
and urgent physical problem of establishing the proper light
guiding mechanism in a number of MOFs promising for
applications in fiber optics.

We recall that the use of the term MOF has gradually
extended to any fibers whose claddings have optical inhomo-
geneities that extend along the fiber length and are arranged
according to some symmetry in the fiber cross section. The
transverse size of these nonoverlapping inhomogeneities is
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typically comparable with the guided radiation wavelength,
while their permittivity can be either lower or higher than the
permittivity of the ambient matrix. A rather detailed review of
MOFs is presented, for example, in [1].

Microstructured optical fibers discussed here include, in
particular, all-glass optical fibers with the cladding whose
cross section is typically a finite two-dimensional photonic
crystal with the hexagonal symmetry of the arrangement of
cylindrical inclusions with the refractive index higher than
that of the surrounding silica matrix. We call such a
microstructure an all-solid microstructure. The core is
formed by removing one or several most closely spaced
cylinders from the photonic crystal, thereby producing a
defect in the crystal structure. It is assumed that the principal
property of all-solid microstructured fibers is the presence of
the so-called photonic bandgaps (PBGs) in their transmission
spectra, where radiation at a given wavelength is efficiently
reflected from the periodic structure of the photonic crystal
and light in this case can propagate only along crystal defects
(see, e.g., review [2] for the details). It is the presence of PBGs
in photonic crystals and light guiding different from the one
due to the effect of total internal reflection that stimulated
studies of MOFs of this type.

At the same time, it was shown in [3] that radiation in all-
solid microstructured fibers is efficiently localized not only
for an ordered arrangement of rods in the cladding in the form
of a photonic crystal but also for their random arrangement.
In other words, the presence of PBGs, determined by the
periodicity of the spatial distribution of the permittivity of the
medium, is not necessary for light localization in the core of
an all-solid fiber. As a rule, the transverse size d of
inhomogeneities in the cladding exceeds the guided light
wavelength A (d > 1). In this case, the frequencies correspond-
ing to the boundaries of PBGs in photonic bandgap fibers and
the frequencies corresponding to the minimum transmission
of fibers with a disordered arrangement of rods in the
cladding (without PBGs) coincide. These frequencies also
coincide with the cutoff frequencies of the eigenmodes of
dielectric rods in the cladding [3, 4], which can be treated in
corresponding spectral ranges as individual fibers in which
light is guided through total internal reflection. (Cutoff
frequencies in fiber optics are frequencies at which a fiber
mode ceases to be guided and becomes a radiation mode.)

The possibility of light guiding in the absence of PBGs
means that the localization of light in all-solid fibers is
governed by a different mechanism, which, however, forms
transmission spectra similar to the spectra of PBG fibers. But
what is the nature of this mechanism? This question was
discussed, for example, in [3, 5-8]. In particular, in the study
of the transmission spectra of all-solid fibers with different
cladding geometries [3], an invariable parameter of their
structure, along with the refractive index of glasses used in
the fibers, was only the diameter of rods in the cladding.
Therefore, it is natural to conclude, as was done in [3], that the
similarity of the transmission spectra of all types of fibers
studied in [3] is determined to a great extent by the optical
properties of an individual glass cylinder in the cladding
(more exactly, by its interaction with a fiber mode, i.e.,
scattering).

All-solid microstructured fibers attract interest because
they can be efficiently used as dispersion compensators in all-
fiber laser systems and as fibers with a large cross section of
the mode field, which can be used for developing high-power
fiber lasers and amplifiers.

Fibers with a hollow core (containing atmospheric air)
belong to the same type of MOFs. They do not differ
principally from all-solid microstructured fibers; however,
because the nonlinearity of air is at least three orders of
magnitude lower than that of silica, hollow fibers are quite
promising for fiber optics, which we will discuss elsewhere.

The scattering of a plane electromagnetic wave incident at
a grazing angle on an infinitely long circular dielectric
cylinder (it is in this way that the interaction of the mode
with each inhomogeneity in the cladding of an all-solid
microstructured fiber can be treated in good approximation)
was considered by many authors. This problem was first
solved in [9]. Later, this solution was used in [10] to determine
the continuous-spectrum modes (radiation modes) of a
dielectric cylinder. The authors of [11] numerically calculated
the scattering and extinction coefficients for a plane wave
incident at a grazing angle on a cylinder. It was shown that in
the case of grazing incidence, the extinction coefficients have
much higher-Q resonances compared to those in the case of a
normally incident plane wave. We consider the cases of
scattering of a plane wave from a dielectric cylinder when
cyclic Sommerfeld waves (SWs) and cyclic Sommerfeld
resonances (SRs) of different orders can be excited.

Indeed, modes in all-solid fibers are formed due to
interference of fields in the core scattered from all inhomo-
geneities (rods) in the cladding. But according to numerical
calculations performed by a number of authors, many
characteristic features of scattering of a plane wave from a
rod are manifested in the transmission spectra of all-solid
microstructured fibers. It is for this reason that we first
analyze the problem in the presence of only one rod in the
cladding. A more complex problem of formation of modes in
real all-solid microstructured fibers containing many rods in
the cladding will be the subject of our next publications.

It is known [9] that the components of a scattered field
inside a cylinder, as the components of the incident-wave
field, can be expanded into infinite Fourier—Bessel series. All
terms of the expansion have the dependence exp (Limg),
where ¢ is the azimuthal angle in a cylindrical coordinate
system associated with a particular cylinder and m is an
integer. We show in what follows that certain relations
between the expansion amplitudes of the same order for
waves in opposite azimuthal directions lead to the excitation
of SWs on the cylinder surface.

The excitation of SWs and corresponding SRs appearing
upon scattering of a plane wave from a dielectric or a metal
cylinder with a nanometer diameter was first analyzed in [12].
It was found that surface waves can be excited that propagate
over long distances along the rod due to interaction between
continuous-spectrum modes of the rod and its leaky modes of
low azimuthal orders. Sommerfeld resonances occurring in
this interaction have a much higher Q factor compared to that
for known plasmon resonances excited on the surface of metal
nanorods.

In Section 2, we find conditions for the excitation of cyclic
SWs and cyclic SRs in the case of grazing incidence of a plane
wave on a dielectric cylinder and show that these effects are
closely related to a system of resonances formed in plane wave
scattering from a one-dimensional metallic diffraction grat-
ing.

A system of resonances on a diffraction grating was first
observed by Robert Wood in 1902 [13]. He discovered the
existence of narrow bright and dark bands in the emission
spectrum scattered from a metallic diffraction grating
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irradiated by a source with a slowly changing spectral
intensity. These anomalies in spectra were later called after
him. It was also found that the appearance of such bands in
the scattered radiation spectrum strongly depends on the
polarization of the incident radiation and the shape and depth
of grooves of the diffraction grating.

The first theoretical explanation of Wood’s anomalies was
proposed by Rayleigh in 1907 [14, 15]. Using the Huygens
principle, Rayleigh has shown [14] that each element of a
diffraction grating is a source of a scattered spherical wave.
Rayleigh assumed the appearance of diffracted waves grazing
along the diffraction grating surface. This means that a part
of the scattered wave propagates along the grating surface
and arrives at a neighboring groove in phase with the incident
wave and the waves scattered by other grooves. The
interference of these waves gives rise to Wood’s anomalies.
In [15], scattered electromagnetic fields were expanded in
series containing only outgoing waves. In this interpretation,
scattered fields have singularities at the wavelengths for which
one of the above-mentioned diffraction orders appears at
grazing angles. The wavelengths (called Rayleigh wave-
lengths) at which these singularities appear correspond to
Wood’s anomalies.

One of the main disadvantages of the Rayleigh theory is
that it cannot describe the shape (or the spectral dependence)
of Wood’s anomalies. Fano [16] introduced the method of
successive approximations for the description of interference
effects related to Wood’s anomalies and explained these
anomalies in terms of surface waves excited on the surface of
a metallic diffraction grating. These surface waves can be
treated as quasistationary surface waves theoretically
obtained by Sommerfeld in solving the problem of radiation
of a dipole near a conducting plane [17]. It was shown in [16]
that the problem of the propagation of radiation along a one-
dimensional diffraction grating is directly related to the
Sommerfeld problem.

A similar approach to the explanation of the nature of
Wood’s anomalies was proposed in [18]. Unlike the well-
known methods based on the consideration of multiple
scattering [19], the theory of Wood’s anomalies developed in
[18] is based on the effect of excitation of surface waves on a
diffraction grating. The authors of [18] showed that two types
of anomalies exist: Rayleigh anomalies characterized by the
appearance and disappearance of new spectral orders, and
resonance anomalies corresponding to resonances of complex
surface waves on a diffraction grating. It was found that
anomalies of these two types can be observed both separately
and simultaneously. In Sections 2 and 3, based on [18], we
compare resonance phenomena appearing upon the incidence
of a plane wave at a grazing angle on a dielectric cylinder and
a one-dimensional metallic diffraction grating.

Fano resonances appearing upon scattering of a plane
wave incident at a grazing angle on a dielectric cylinder were
first described by the authors of [8], who showed that such
resonances are observed in the spectral dependences of the
imaginary part of the effective refractive index of a mode of an
all-solid fiber. According to [8], such a behavior of the loss
spectrum is possible for small ratios d/A, where d is the
diameter of cylinders in the cladding and A is the distance
between them. In this case, it is assumed that the interaction
between cylinders in the cladding is weak and the loss
spectrum of the fiber is determined by the scattering proper-
ties of an individual cylinder according to the ARROW (anti-
resonant reflective optical waveguides) model [4, 20].

2. Excitation of cyclic Sommerfeld waves
on the surface of a dielectric cylinder.
Analogies with plane wave scattering

from a one-dimensional diffraction grating

Because the solution of the problem of plane wave scattering
from a dielectric cylinder is well known, we discuss its main
aspects only briefly.

We consider a plane electromagnetic wave with the
electric and magnetic vectors

E = Egexp [i(wr + kr)], H=Hgexp [i(wr +kr)] (1)

propagating in a medium with the refractive index n. The
absolute value of the wave vector in (1) is |k| = nko, where
ko = w/c is the wave number in the vacuum, and w and ¢ are
the circular frequency and the speed of light. The wave is
incident on an infinitely long homogeneous cylinder with
radius @ made of a dielectric with the refractive index n;.

We introduce a coaxial cylindrical coordinate system
(p, @,z) and assume for definiteness, following [9], that the
vector k makes a small angle 6 with the negative direction of
the z axis. Then the exponentials in (1) can be written as

exp [i(wr + kr)| = exp [i(wr — Bz)] exp [i(kLpcosp)], (2)

where k, = (k> — ﬁ2)1/2 = kon sin 0 is the transverse compo-
nent of the wave vector and f§ = koncos 6 is its longitudinal
component (propagation constant). For definiteness, we
measure the azimuthal angle ¢ with respect to the (z, k) plane.

For simplicity in what follows, we omit the factor
exp [i(w? — Bz)], which is the same for all components of the
electromagnetic field, and expand the azimuthal dependence
in (2) in a Fourier—Bessel series in cylindrical harmonics. For
this, we use the known relation [21] following from Sommer-
feld integral representations for cylindrical functions,

+00
exp fi(kLpcos@)] = 3 i"Ju(kp) exp (imo)
+00
= > i"Im(kyLp)exp (—img). (3)

Then the longitudinal components of the vectors H and E of
the incident wave take the form

Hi=C ) i"Ju(q)exp (—img),
b0 4)
El = Z 1"Jn(q) exp (—ime),

m=—0o0

where ¢ =k, p=pkonsin0, C,= Hysinfcosd, C,=
EysinfOsind, and 6 is the rotation angle of the field
components H and E with respect to the wave vector k,
measured from the (z,k) plane selected above. The angle 0
characterizes the polarization of incident radiation. For
example, 06 = 0 corresponds to the TE (transverse electric)
polarization, when the vector H lies in the plane of incidence
and C, = 0, while § = nt/2 corresponds to another limit case
of the TM (transverse magnetic) polarization with C; = 0.
We seek the solution of the wave equation for the
longitudinal components of the scattered wave, for the
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assumed time dependence of the field ~ exp (iw?), in a form
similar to (4):

Z bS H? (q) exp (—img)
m=—0o0 (5)
H: = Z a,le,f)(q) exp (—ime) ,

m=—0o0

where H,\; (¢) are Hankel function of the second kind; inside
the cylinder, the solution is sought in the form

= Z b Jm(q1) exp (—img),

m=—c0 (6)
H. = Z am In(q1) exp (—ime) .
m=—0oQ
Here, a;, b;,, an, and b,, are the so far unknown amplitudes of

harmonics and

q1 = kip = p\/ (mko)* — B* = pkoy/n} — n?cos?0.

The azimuthal components of the fields can be found from
the known relations

2
_p> (BOE. . OH.
E, =i (B2 &
’ 142<p6¢ )

B OH. aEZ>
H,=—-1— + ek ,
R (p dp o

following from Maxwell’s equations. All the variables in (7)
are related to a corresponding medium (the rod or its
environment); & = n? is the permittivity. The magnetic
susceptibility for all media is assumed equal to unity.

Taking Eqns (4)—(7) into account, we can write the
azimuthal components of the incident and scattered fields
and of the fields inside the cylinder as
> (i

gko

mM=—00

H‘ =i= ko [ C1Jn(q)— eCalJ) (g ))imexp (—imgo):| ,

E(;, Lioc <1 — CoJu(g)+ CyJ, (q))im exp (—im(p)} ,

pm

s_: P N (2) ) :

H=i-k a’ H ebs H? exp (—im ,

P q 0|:mzoo< ko m-Tm () m-Tm (q) p( (P):|

Bi=ilko| Y (1B 020 i @)exo (imo)|.

’ q m=—00 (jko

Hﬁ/):iﬁko i <iﬁ—mam-]m(‘11) e1but,, (g ))eXp(—imq)) )
@1 |\ qiko

Eo=i 2 ko) 35 (i B2 boratan) + andifan)Jexp (-imo)|
g |\ qiko

®)

Here and hereafter, the prime at cylindrical functions denotes
differentiation with respect to the argument.

As a result, boundary conditions requiring the continuity
of the tangential components (H-, E., H,, E,,) of the fields on
the cylinder surface (p =a) lead to a system of linear

inhomogeneous algebraic equations for the unknown ampli-

tudes a;,, b, a,,, and b,
amf+ bmlh = X,n(Clg + Czlh) s (9)
agh+ bicfi = X, (Cih + Chiegy),
where
2) (2)
Hy' (q) Hyi' (q)
am = -C /Ym 7 7N bm = h,i, -C Xm 7 N
(@ 1) In(q1) ( 2Xon) In(q1)

and ¢ and ¢, are defined by expressions (4) and (6). Below, ¢
and ¢; denote the same quantities, but for the fixed radial
component p = a. For brevity, we introduce the notation

m 1 1
= —1" J(qu) ., h=nmcos 9<—2 — —2> ,
H,; (q) q qi
_Ja@)  Ju(a) _ e 8 Ju(@)
aIn(@)  @tdm(q1)’ aIn(@) & @dm(q1)’
2)/ 2)!
s @) Jia) _HY @) _w Tala)
qH,Ezz)(q) q1Im(q1) qH,E%)(q) e q1dm(qr)
The solution of (9) is

. Cih
bi:? =X |:C2 + <C21f_ —1> Zm:| s

ay, = X [Cr + (Ciify + C2h) Z]

(10)
cm) i (q)
bm = XmZm C - ’
( 2f & Jlﬂ((]l)
(2)(
., q)
am = XnZn(Ciifi + Coh) ————= ,
A
where the notation
7 _ 2
m — 2 9
nq2Jm(q)H,£,)(q)Dm (11)

! !
b (H,Ef) (@ & Jula) )(H,ﬁf) (@) Tnla) )
" qH,,Elz)(q) & QIJm(QI) quE,?)(q) (11.];11((11)

1 1\1?
- {mcos@(—z——zﬂ
q qi

is introduced.

We note that equating expression (11) for D,, to zero, we
obtain the well-known dispersion equation for the propaga-
tion constants of modes in a dielectric cylinder (when the
radiation source is located inside it). Therefore, the presence
of D,, in the denominators of all amplitudes (10) in field
expansions gives rise to singularities of these amplitudes near
the cutoff wavelengths.

From (10), using the properties of cylindrical functions
(see, e.g., [22]), we can easily find relations between the
amplitudes of similar harmonics entering expansions (5), (6),
and (8) with different signs before m:

a®, =(=)"ayA, a_m=(—1)"anA, (12)

b, = (_l)mme b*m = (_])mme7

—m
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where
_ Cl + (Cllfl - CZh)Zm CZ + (C21f+ Clh/g)
C + (Clifl + Cz/’l)Zn C2 + (Czlf Clh/F) m ’
/IiC]ifi—Czh BﬁCQI‘f+C1h/8
_Clifl—i-CQh7 _Czif—cllfl/S.

The substitution of these relations, for example, in expansion
(5) for the longitudinal magnetic component of the scattered
field gives

H: —agH

) + Zam

m=

x [(4 + 1) cos (me) +i(4 — (13)
This shows that other components of the scattered field and
the field inside the cylinder are, like (13), superpositions of
standing azimuthal harmonics. In other words, the surface
harmonics exp (im¢@) and exp (—ime), having equal projec-
tions of the azimuthal ‘momentum’ m with opposite signs,
describe a standing wave (a cyclic Sommerfeld wave).

Solution (10) is noticeably simplified when either a TE-
polarized or a TM-polarized wave is incident on the cylinder.

In the case of the TE polarization (C, = 0), solution (10)
becomes

1) sin (me)] .

h .-
b)jq = 7X'mZn1 E ’ a)?1 = X;77(Z”71f1 + 1) ’
(14)
h H i 1
bm = szm Jm(q(lq)) m = )(mZmlfl Jm(q(]q)) ’
where
X, = —Cji" J(MZ—EC]): —Hysin01™ J’Z;gq) . (]5)
Hm (q Hm (q)

Relations (12) are also simplified (A=A =1,B=B= —1):

aim = (_l)masﬂ ad—m = (_l)manﬂ

bim _ ( )m+lb;7 b7m _ (_1)m+1bm,

and the expression for the longitudinal magnetic component
of the scattered field reduces to the form

') + 2261,;H<2>
m=1

As a whole, all the components of the field turn out to be even
functions of m, representing a superposition of standing
azimuthal harmonics.

In the case of a TM-polarized incident plane wave
(Cy = 0), solution (10) takes the form

b;; = XmC2(Zmi</-+ ]) ) a; = /YmC2th )

(2)

. H,
bm = XmCZZmlf - (q) )
In(q1)

HS = a}H q) cos (mg) .

Hﬁ)(ﬂ)
Jm(ql) ’

where C, = Eysin0 = (Hy/n)sin0 and the known relation
between numerical values of the electric and magnetic field
strengths in a plane wave is taken into account [23]. The rest
of the notation is the same. Relations between the expansion
amplitudes of the field components with different signs of m

am = Xm CZth

for the TM polarization have the form

as (_])m+las

m —m> am = (_l)erla—m s

by = (=1)"b* by = (—1)"b_,.

—m?

In this case, all components of the field are also even functions
of m and represent superpositions of standing azimuthal
harmonics.

An arbitrary polarization must be considered as the
case intermediate between those with TE and TM polariza-
tions, but this requires using the more complex general
solution in (10). For simplicity in what follows, we restrict
ourselves to the analysis of scattering of a TE-polarized wave
from a cylinder.

We now use the obtained results to find quantities
characterizing the efficiency of plane wave scattering from a
cylinder.

The ability of a set of dielectric cylinders located in a fiber
cladding to localize light in the fiber core can be largely
characterized, for example, by the Umov—Poynting vector of
the radiation scattered by a separate cylinder. The efficiency
of scattering of a plane wave from a cylinder is best
demonstrated by the average value (for the field oscillation
period) of the radial component of the Umov-Poynting
vector

sv = Re

= o Re[E*HY,

_ ¢ S pys*
= — Re(EjH:" —

EXHY).
81 z (/))

(17)
Based on physical considerations, we are interested only in
the values of S} in the far-field zone (for p — o). Modes are
formed in the fiber core due to the constructive interference of
waves backscattered by all the cylinders in the cladding.

We calculate (17) using expressions (5) and (8) for the
scattered components of the field and the asymptotic forms of
the Hunkel functions H,? )( ) and their derivatives for large
values of ¢ (see [22]), omitting terms decreasing faster than
~ g (o> 1/2):

2 . m T
HP(q) ~ A/ - exp {—1 <q -5 Z)}
2 imexp |—ifg—T
= X —_ —_
> p =7

=—HJ () +7 ; " H?(q)

Il
a
2w
7N
S
|
o
>
o
| g
~
¢
>
o
|
/N
|
[ 3
|
B
N2
|
L
T
So
—~
S
=

Then the field components in (17) for a TE-polarized incident
wave become

H: =~ \/nzq exp [—i(q ﬂ (“0 —&—2;515 i” cos ( m(p))
E;E—Zi\/zexp[ (q——)}st"”sm me)
™4 (18)
Hy =21~ kos\/7 exp { <q 75>} ib;im
g 41
2

sin (me) ,
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Substituting (18) into (17), we obtain

pkoc 2

n2g?

ao + Z a,i™ cos (me)

m= )
} : (19)

Because ¢ is proportional to the distance p from the rod,
relation (19) means that the scattered radiation power per unit
surface area decreases proportionally to p. But the area itself
of the surface moving away as p increases as 2mp (per rod unit
length along z). As a result, the power P scattered by the rod
unit length turns out to be independent of p and is determined
only by the azimuthal angle ¢:

S (p,p) =

o0

Z byi™ sin (me)

m=1

+é

2

Py(p) = ——= —0 a’i™ cos (m
(0) (nn s1n(9 2 mz: 2
2
"sin (me) } (20)

Using the known definition of the electromagnetic energy
density in a plane wave [23] and multiplying this density by the
phase velocity component directed normally to the cylinder
surface, we find the incident radiation intensity ;. As a result,
the differential scattering cross section defined as a4 = Ps/1;
takes the form

0 2

a_g sjm
> + ,,; a,i" cos (mo)

2
} . (21)

Because all expansion coefficients in (14) are proportional to
the product Hj sin 6, the factor in front of the brackets in (21)
is actually independent of H, and depends on the angle of
incidence of the wave as 1/ sin 0.

In particular, for backscattered radiation (¢ =0), it
follows from (21) that

84

o =
a(e) nH; sin’ 0

o0

> b5 sin (mo)

m=1

+¢

2

84 ay
04(0) = ——"——— 0+ asi”™ 22
a(0) = nnHg sin’ 0 mz: 22)
For a TM-polarized incident wave, we obtain
8. :
g _— byi" cos (m
ale) = nnHg sin’ 0 Z ¢)
+ Za,ii"’ sin (me) ] (23)
m=1
8 by & :
04(0) =———— |2+ ) b5i" 24
a(0) mnHg sin’ 0 | 2 mz:; " @)

We now discuss analogies between scattering of a plane
wave by a one-dimensional metallic diffraction grating and
excitation of a cyclic Sommerfeld wave on a dielectric cylinder
surface. We analyze scattering of a plane wave by a diffraction
grating based on papers [16, 18].

We consider a diffraction grating of infinite sizes along z
and y directions and the modulation period d of the refractive
index along the z axis. According to [18], the periodic

dependence of the refractive index of such a diffraction
grating can be represented by the surface impedance

+00 ] 2
’(z) = Z Z;exp<i%z).

n=—0o0

(25)

It is assumed that a TM-polarized plane wave (whose
magnetic field vector is directed along the y axis) is incident
on the diffraction grating from the vacuum. The angle of
incidence with respect to the normal to the grating is 0, and
the vector H can be written in the form

H“ (x,z) = Hyexp (ipx) exp (—ifiz), (26)
where = kcos0, p = (k?
number in free space.

In this case, the scattered wave field can be written as

ZA

Nn=—00

- ﬁ2)1/2, and k = w/c is the wave

) exp (—ifz)

( . 2nn
) exp (ipnx) exp ( —i =
(27)

where x > 0 and p, = [k — (B + 2nn/d )]/

Using periodic boundary conditions for impedance (25) in
the x = 0 plane, we obtain an infinite system of inhomoge-
neous linear algebraic equations for the amplitudes 4, (f) of
scattered fields [18]. As a result, each of the amplitudes of
the nth-order harmonic is found from the relation

(28)

where A4 is the determinant of the corresponding system of
linear homogeneous equations and 4, is the determinant
obtained by replacing the nth column of A4 with a vector
column containing the right-hand part of the system of linear
inhomogeneous equations, associated with the amplitude of
the incident plane wave.

According to [16, 18], the infinite system of equations
obtained in this way determines two types of resonances
forming the structure of Wood’s anomalies. The first type is
related to the existence of propagating eigenmodes (leaky
modes) of the diffraction grating with propagation constants
that can be found by solving the dispersion equation 4 = 0.
These propagation constants are complex and the corre-
sponding resonances have a Lorentzian spectral profile. The
second type of resonances is related to a rapid change in the
amplitudes of diffraction orders corresponding to the
appearance or disappearance of one of them in a narrow
spectral interval.

For example, we consider the (n — 1)th diffraction order
with the amplitude 4, (f) and assume that the determinant
A,-1 is zero for some wavelength. If the determinant A
determining a leaky mode of the diffraction grating also
vanishes in the immediate vicinity, then expression (28) is
given by a product of two factors one of which has a complex
pole and the other has a first-order zero in a narrow spectral
region. As a result, 4,_;(ff) has a minimum and a maximum
located close to each other. This means that the spectral
dependence of the resonance has an asymmetric shape of the
Fano resonance type. In other words, anomalies of this type
are determined by the coexistence of resonance transmission
and resonance reflection in a narrow spectral range, which
corresponds to the interaction of discrete-spectrum modes
associated with the diffraction grating with the continuum of
propagating radiation modes [24].



August 2013

Excitation of cyclic Sommerfeld waves and Wood’s anomalies 819

In [16], the diffraction of a plane wave from a diffraction
grating was considered as the momentum transfer from the
grating to the incident wave. In this case, a pair of waves with
tangential components of the wave vector (the wave momen-
tum) kp; = ko £ 2nn/ A excited by the incident plane wave on
the grating surface can be treated as induced oscillations. If
the phase-matching condition of the coincidence of the & for
individual diffraction orders and the real part of the
propagation constant of a surface quasistationary wave is
satisfied, these induced oscillations can have the same
intensity as the quasistationary wave itself. Surface quasista-
tionary waves of this type, excited on the diffraction grating
surface, have the same nature as surface waves excited on a
metal surface by an oscillating dipole located above it
(Sommerfeld waves). It is these waves that, in Fano’s
opinion, cause Wood’s anomalies.

We can therefore state that scattering of a plane TE-
polarized wave from a cylinder corresponds to scattering of a
plane TM wave by a one-dimensional diffraction grating if
the cylinder surface is treated as a diffraction quasigrating
with the period 27 in the azimuthal direction. The processes of
scattering by two physically different objects are similar
because the momentum transfer to the incident wave from
the diffraction grating in the wave propagation direction in
one case and the momentum transfer to a polarized wave
incident at a grazing angle on a cylinder due to the curvature
and cyclic periodicity of the cylindrical surface in the other
case give rise to both polarization states in the scattered wave
field. Thus, scattering of a plane wave by a dielectric cylinder
is physically similar to scattering of a plane wave by a
diffraction grating, and therefore resonance phenomena
similar to the known Wood anomalies should also be
observed upon scattering by a cylinder.

We illustrate these assertions with specific examples.

3. Results of calculations

We consider a TE-polarized plane wave incident at the angle
0 = 1° from a medium with the refractive index n = 1.45on a
cylinder that has the cross-sectional radius ¢ = 1.2 pm and is
made of a dielectric with the refractive index n; = 1.48. Sucha
small difference between refractive indices is typical for all-
solid fibers. Spectral dependences of the amplitudes of
cylindrical harmonics (radiation modes) of the first five
orders (up to m =4) of the scattered magnetic field are
presented in Fig. 1. Spectral dependences of the amplitudes
of higher-order harmonics (m > 4) also have a pronounced
resonance character. The dependences presented in Fig. 1 are
similar to those obtained in [18] for light scattering by a
diffraction grating.

To analyze the resonance behavior of the amplitudes of
scattered cylindrical harmonics in detail, we consider the
spectral dependence of the amplitude aj(4) of the zeroth
harmonic. We can see from Fig. 1 that this dependence
contains both Fano resonances and Lorentzian resonances
in the long-wavelength spectral region, which also resembles
the structure of resonances in the scattering of a plane wave by
a diffraction grating [18]. Using expression (14), which for
ay (1) takes the form

o (15 LA (L HY ()
4 = %o (‘I Jo(g) i Jo(ﬂl)) <

1 —i“@Ul
a HP(q) @ Jolq))
(29)

s
m
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| | | | | | | | | | | |
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Figure 1. Spectral dependences of the absolute values of amplitudes a, (1)
of harmonics of the scattered magnetic field normalized to Hy: (a) m =0
(solid curve), m = 1 (dashed curve), and m = 2 (dotted curve); (b) m = 3
(solid curve) and m = 4 (dashed curve).

we can analyze the dependence aj(4) from the standpoint of
the interaction of the discrete spectrum modes of a cylinder
with propagating continuous-spectrum modes in this cylin-
der [25]. For this, we consider the spectral dependences of the
numerator and denominator in (29) separately, which
themselves exhibit the resonance behavior. These depen-
dences, without the factor Xj, are shown in Fig. 2. We can
see that the resonances aj(/) are mainly determined by
resonances in the numerator of (29). To analyze the spectral
dependence g (/) in more detail, it is necessary to study both
terms in the numerator, A{(4) =Jj(q1)/(Jo(q1)q1) and
B§(4) = J3(q)/(Jo(q)q), separately. Their spectral depen-
dences are presented in Fig. 3.

The first of the terms is related to the presence of intrinsic
transverse resonances in the cylinder (its discrete modes
corresponding to m = 0). In the spectral range under study
(4 < 1.2 um), the argument ¢ is large, and we can use the
asymptotic approximation for cylindrical functions. The
dependence Aj(A) calculated in this approximation (see
Fig. 3) is well described by the function

A0 ~ - B =/ (30)

q1
This function is alternating and has discontinuities at points
corresponding to the cutoff wavelengths, which are deter-



820 A D Pryamikov, A S Biriukov

Physics— Uspekhi 56 (8)

IN3/Dgl, NG, |1 Dg

4 I I I I I I I I I I ]
02 03 04 05 06 07 08 09 1.0 1.1 1.2 1.3
A, pm

Figure 2. Spectral dependences of absolute values of the numerator N;j(4)
of expression (29) (dashed curve), its denominator D§(4) (dotted curve)
and the ratio N§j(4)/Dg(2) (solid curve) (logarithmic scale).

mined for m =0 [26] from the characteristic equation
Jo(q1) = 0; in the case under consideration, the cutoff
wavelengths are 0.936, 0.417, 0.270 pm, etc.

The second term, B§(A), in the numerator in (29) is
related to the continuum of propagating modes of the
continuous spectrum, and, as can be seen from Fig. 3, has
the nonresonance character in the relevant spectral range
[the function Jy(g) has no roots] and is a slowly varying
function.

Obviously, the numerator in (29) vanishes at the intersec-
tion points of the dependences A4j(4) and Bgj(/). This occurs
mainly near the cutoff wavelengths [except for the longest
cutoff wavelength 4 = 0.936 um, above which the asymptotic
approximation for A43(Z) is no longer valid and the intersec-
tion with B (/) is absent]. The existence of a zero and a pole of
the numerator located close to each other leads to the
appearance of characteristic asymmetric Fano resonances in
the spectral dependences of its absolute value. However, for
the longest cutoff wavelength, the standard symmetric
Lorentzian resonance appears (see Fig. 2).

A similar analysis can also be performed for the
amplitudes of higher-order harmonics (m > 1). However, it
is more complicated because a simple expression like (29)
cannot be obtained for these harmonics.

The presence of resonances in the spectral dependences
of amplitudes of azimuthal harmonics of the field scattered
by a cylinder causes a similar behavior of the spectral
dependence of the differential backscattering cross section
a4(0) (Fig. 4). It follows that this cross section is mainly
determined by the azimuthal harmonic with m =1 (see
Fig. 1). The spectral dependence of the amplitude of this
harmonic is comparatively weak and has minima at
A=~09, 0.55, 0.3 um, etc. The contribution of other
harmonics (mainly with m = 0 and 2) is noticeable only in
some narrow spectral ranges (for example, at 2 = 0.40 and
0.26 pm). This is explained by the alternating behavior of
terms in the sum in (22). Indeed, we can see from (22) and the
definition of a;, in (14) that each term in this sum contains
the factor (—1)""', which determines the nonmonotonic

0 I S S TR T
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e 203 04 0.570.6 07 08 09 1.0 1.1 12 13 1.4 1.5
- ! / 2, um
q R T
- T !
£ ; Il -="
~
-1 + | | 7
| s
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| /
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Figure 3. Spectral dependences of the absolute value Nj(4) =

B§(1) — A3(2) (solid curve) and the terms Aj(A) (dashed curve) and
Bj (%) (dotted curve) (linear scale).
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Figure 4. The differential backscattering cross section a4(0) [pum] for a
grazing angle of incidence 0 = 1° of a plane wave (logarithmic scale).

behavior of ¢4(0) in these spectral regions. This also leads to
an inhomogeneous spectral dependence of 64(0) in the region
away from the resonances: the cross section in the first
region (4 > 1 pum) is approximately an order of magnitude
higher than in the second region (0.6 < A < 0.9 um); in the
second region, on the contrary, it is an order of magnitude
lower than in the third region (0.40 < A < 0.55 um), and
so on.

Differential scattering cross sections o4(¢) have similar
spectral dependences for other, nonzero scattering angles.

We note that the differential cross section of scattering
strictly backward or at some other angle is small and contains
a comparatively small amount of physical information
because, obviously, a mode in a fiber is formed by the
interference of waves scattered by cylinders in the cladding
not to a specific angle but to some range of predominantly
backscattering angles (|¢| < m/2). Here, this cross section is
presented only to demonstrate that harmonics of different
azimuthal orders are involved in scattering.

Integrating (21) with respect to the azimuthal angle (from
—¢ to +¢) with a solid angle 2¢ < m, we find the integrated
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Figure 5. Integrated cross section og [um] for solid scattering angles
2¢ = n/4 (solid curve), 2¢ = /3 (dashed curve), and 2¢ = n/2 (dotted
curve) (logarithmic scale).
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(31)

The spectral dependences of o for three scattering solid
angles are presented in Fig. 5. We can see that all the
calculated curves are similar and correlate well with the
differential backscattering cross section (see Fig. 4). They
not only have resonance properties but also exhibit inhomo-
geneous behavior in alternating spectral regions separated by
singularities. We also note that the integrated cross section is
high, its value for 2¢ > /3 becoming comparable with the
transverse size of the cylinder (with the radius 1.2 um) and
even exceeding it. This suggests that backscattering (to the
core) is very efficient, which should provide favorable
conditions for the formation of a mode in a fiber with the
cladding containing such cylinders. The results of our
calculations and calculations of other authors confirm this
conclusion.

4. Conclusions

Our analysis has shown that scattering of a plane electro-
magnetic wave by a dielectric rod occurs via excitation of
standing cyclic Sommerfeld waves on the rod surface. At the
cutoff wavelengths of the rod eigenmodes, this process has a
resonance character caused by the interference of the
corresponding leaky quasidiscrete modes and the scattered
radiation continuum.

Obviously, part of the incident wave energy is spent to
excite cyclic SWs, which, along with material losses, deter-

mines total optical losses in all-solid microstructured fibers.
Losses for the cyclic SW excitation are determined by the
density of eigenstates of the rod. These losses can be reduced
by replacing a solid rod by a capillary with the same diameter.

Calculations have shown that the smaller the wall
thickness of the capillary is, the lower the density of its
eigenstates and the lower the energy spent for a cyclic SW
excitation. Indeed, the higher density of the eigenstates of a
solid cylinder corresponds to the higher power flux in it
compared to the power flux in capillary walls. This in turn
produces higher material losses in the rod compared to those
in a capillary of the same size. This is confirmed by many
calculations performed for MOFs with the cladding consist-
ing of a row of cylinders or capillaries.

The replacement of rods in all-solid microstructured
fibers by capillaries was first considered in [27].

However, while scattering from solid rods is accompanied
by the excitation of SWs mainly in low azimuthal orders, in
the case of capillaries, on the contrary, modes with large
azimuthal numbers dominate (resembling whispering-gallery
modes). As mentioned, we will analyze hollow MOFs with a
capillary cladding elsewhere.

We have shown in this paper that the resonances that we
found, of both Fano and Lorentzian type, are analogs of well-
known Wood’s anomalies appearing in the scattering of a
plane wave by a metallic diffraction grating. This analogy is
more descriptive if the rod is treated as a quasigrating with a
period that is determined, unlike that of a planar diffraction
grating, by the curvilinear azimuthal coordinate and is equal
to 2m.

We note that we considered the problem of scattering by a
rod from the standpoint of the applicability of our results to
all-solid MOFs with the cladding containing cylindrical
inhomogeneities with a circular cross section. We have
shown that already for the solid scattering angle 2¢ =~ /3,
the scattering cross section becomes comparable with the
transverse size of the cylinder or even exceeds it, which
provides the efficiency required for the formation of a fiber
mode.

The analysis performed above cannot be applied in the
case of inhomogeneities of other shapes (rectangular, trian-
gular, etc.) because the use of cylindrical coordinates in our
analysis was important. It seems that only in this case (and
possibly also for inhomogeneities with elliptical sections) it is
possible to excite cyclic standing surface waves, which mainly
determine the scattering efficiency.

In our first papers [28, 29] devoted to the study of hollow
MOFs, we assumed that their main advantage over the
existing analogs was the negative curvature of the core—
cladding interface. However, we currently see that although
the negative curvature is a necessary condition, it is not
sufficient for obtaining low losses in these fibers. It is
important to have the possibility to excite standing azi-
muthal Sommerfeld waves for inhomogeneities in the clad-
ding. We note that this condition is not satisfied, for example,
in the case of inhomogeneities in claddings of hollow fibers
studied in [30, 31].
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