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Abstract. Spherical pixelization schemes are reviewed that
allow analyzing extended emission and, in particular, the cos-
mic microwave background. Problems with implementing dif-
ferent schemes are considered. The nonhierarchical Gauss—
Legendre sky pixelization (GLESP) approach is discussed in
detail.

1. Introduction

In the last decade of cosmological research, both ground-
based and ambitious space observations of the cosmic
microwave background (CMB) have been carried out.
Among these experiments, WMAP (Wilkinson Microwave
Anisotropy Probe)! of NASA (National Aeronautic and
Space Administration) [1, 2], which was completed in 2010,
and Planck? of the ESA (European Space Agency) [3], which
was completed in 2013, stand out. The meaning of these
experiments is determined by the fact that they provide
important insight into our understanding of the model of
the Universe and accurately measure the main parameters of
the Universe. The achieved progress is, first of all, due to new

! http://lambda.gsfc.nasa.gov.
2 http://www.rssd.esa.int/Planck/.
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technologies and instruments in centimeter, millimeter, and
submillimeter astronomy. Modern CMB data processing
allows comparing these observations with theoretical descrip-
tions of the physical processes that were underway in the early
Universe.

The pipeline of CMB data processing and measurement of
cosmological parameters includes several steps:

(1) receiving time-ordered data (TOD);

(2) CMP data pixelization and preparation of multi-
frequency sky maps;

(3) component separation and cosmological signal recti-
fication using observational data at different wavelengths
(see, e.g., [4-9));

(4) statistical analysis of CMB maps (see, e.g., [10-21]);

(5) harmonic transformations ‘map-spherical harmo-
nics’;

(6) calculation and analysis of the angular power spectra
C(¥) (see, e.g., [22,23));

(7) estimation of cosmological parameters (see, e.g., [24—
26]).

The problem of representing and analyzing a sky map
appears not only in microwave sky surveys but also in all
other sky surveys from the gamma-ray to the low-frequency
radio band (for example, BATSE (Burst And Transient
Source Experiment) [27] in the gamma-ray band, ROSAT
(ROentgenSATellite) [28] in the X-ray band, SDSS (Sloan
Digital Sky Survey) [29] in the optical band, IRAS (InfraRed
Astronomical Satellite) [30] and 2MASS (Two Micron All
Sky Survey) [31]in the infrared band, NVSS (National Radio
Astronomy Observatory (NRAO) Very Large Array Sky
Survey) [32] in the radio (1.4 GHz) band, radio sky survey at
45 MHz [33]), as well as in neutrino astronomy (IceCube [34,
35]) and cosmic-ray experiments. In addition, sky pixelization
systems turn out to be important in constructing databases
requiring fast searches of sky objects (see Section 1.1).

In this paper, we deal with one point of the technological
pipeline related to the sky pixelization procedure. Sky
pixelization is the representation of a sphere as a collection
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of small areas (pixels?) with a given angular resolution. This
problem has largely been solved.

The choice of a particular pixelization scheme depends on
the features of the problem to be solved. Ordinary pixeliza-
tion, which is used in CCD (charge-coupled device) matrices
with equal-area square pixels, is now a sufficiently simple
task, and in the limit case (only for visualization), it can be
applied for partitioning a sphere as well. In the analysis of
pixels in a rectangular (cylindrical) coordinate system on the
‘unfolded’ celestial sphere, it is necessary to take projective
distortions and changes in the area of a pixel into account as a
function of its distance from the equator.

Before describing pixelization schemes of extended signal
maps, we also note one of the methods of partition of a
sphere, which is used to search for objects in astronomical
databases and allows the indexation of individual objects in
the sky.

1.1 Hierarchical triangular grid

Fast access to a chosen area of the sky is the key problem in
giant (terabyte) astronomical archives. A clear example is the
public database of the Sloan Digital Sky Survey (SDSS),*
containing information on about 200 mln objects (stars,
galaxies, quasars, etc.) in five optical bands, which can be
used both by professional astronomers and for educational
purposes. To provide Internet access to the archive, the
dedicated Sky Server [37] was designed, which uses a special
pixelization scheme, the Hierarchical Triangular Mesh
(HTM)? [38]. HTM pixelization is based on splitting the sky
into elements of a spherical octahedron (Fig. 1), and each
spherical triangle on its surface is recursively divided into
smaller triangles (Fig. 2).

! a j b
Figure 1. Octahedron partition of a sphere: (a) octahedron, (b) spherical
triangles with octahedron vertexes.

L\ L &

Figure 2. Hierarchical division of a triangle with increasing resolution.

3The word ‘pixel’ (from picture element) was introduced by Frederic
Billingsley (NASA Jet Propulsion Laboratory) in 1965 to describe
minimal elements of the Moon and Mars images taken from
spacecraft [36]. The notion of a ‘pixel” includes coordinates or the number
of an image, as well as some values (measurements) corresponding to a
given area: the number of detected photons, temperature, color, etc.

4 http://www.sdss.org.

3 http://www.skyserver.org/htm/.
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Figure 3. Trixel naming after numeration of angles.

The original partitioning into base-resolution pixels starts
from eight equal-size pixels, produced by the intersection of
three big circles on a sphere: the equator and two meridians
with latitudes 0° and 90°. The hierarchical scheme starts at the
next step of increasing the angular resolution: each pixel is
divided into four approximately equal-area spherical trian-
gles called trixels. The trixels are produced by medians of the
previous-level triangle formed by big circle arcs. At a given
hierarchical level, areas of trixels differ within +=70% from the
mean area 21/4%"!, where d is the trixel level depth (the
recursive spitting step). For a given depth, the number of
trixels is Npix = 8 X 49, the minimal side length is ©/2%!, and
the maximal side length is approximately /2 as large.

Trixel partitioning is a powerful tool for indexing fields on
sky maps and significantly increases the speed of searching for
sources in astronomical databases. The indexation system is
based on eight base trixels (or zero-level trixels), which are
denoted NO—N3 and S0—S3 for North (N) and South (S).
Each trixel has three vertices numbered 0, 1, and 2. The
midpoints of the opposite sides are respectively marked as 0,
1, and 2. At the next levels, the numbers of trixels are
composed by adding one of the digits 0, 1, and 2, which
indicate the vertex common with the parent trixel (Fig. 3). The
central trixel is marked as 3. The resulting length of the trixel
name also shows the hierarchy level. In such a decomposition,
the number of a trixel consecutively includes the number of
the zero level (from 0 to 7), followed by the number (from 0 to
3) of next-level trixels. This numbering allows associating the
center of a trixel with a unique 64-bit identifier (called
HtmID) representing the corresponding split hierarchy. In
this representation, the indexing can be used up to the 31st
level. For example, the 25th level yields a resolution of about
60 cm on Earth or 0.02 arc second on the celestial sphere. We
note that not every integer number from a given interval
corresponds to some trixel. Nor is there any unique trixel
corresponding to a given point in the sky, because any point
on a sphere can fall within trixels with different hierarchies.

1.2 Sky mapping in the COBE experiment

In problems related to harmonic expansion of signals, special
schemes for partitioning a sphere are applied. The relevance
of sky pixelization increased significantly after the COBE
(COsmic Background Explorer)® experiment [39]. The COBE
team applied a so-called quadrilaterized (i.e., represented as
six squares) QSC projection (Quadrilaterized Sky Cube
Projection) [40-42]. For example, Fig. 4 shows a quadrilater-
ized projection of a map of Earth.

6 http://lambda.gsfc.nasa.gov/product/cobe.
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Figure 4. Quadrilateral projection of a map of Earth.

Figure 5. Cubic pixelization. (From [43].)

Based on such a projection, the following pixelization
scheme has been proposed (Fig. 5).

(1) A cube is inscribed into a sphere, and the sides of the
sphere corresponding to the cube faces are split into pixels
using a regular square grid. A pixel includes a set of points
that are closer to a given node of the grid than other nodes.

(2) The emission from solid angles subtended by pixels is
integrated.

(3) To make pixels equal in area, their centers are
somewhat shifted along a circle.

In the QSC grid, a pixel has a nearly quadratic shape with
the side y/4n/N, where N is the number of pixels. Points that
are farthest from pixel centers lie in the corners of the squares,
at the corresponding distance dybe = 1/21/N. To minimize
the distance d, it is convenient to use a pixelization based on
platonic solids, but with a different mesh form. This is
discussed in Section 3.1 below.

The application of QSC pixelization to the sky led to the
recognition that the pixelization scheme significantly affects
the data analysis of extended sky emissions. But it should be
noted from the very beginning that the choice of the
pixelization scheme, although important, is not the final step
in the CMB data analysis. The expansion of measured
temperature anisotropy in spherical harmonics and analysis
of the angular power spectrum play important roles in this
problem. However, some pixelization schemes can describe
sky maps very precisely while being poorly suited to harmonic
expansion. This shows that the choice of the optimal scheme

for sky map pixelization depends on the purposes of a
particular study. We return to this question in Section 4.

In this paper, we consider several schemes proposed for
sky map pixelization and relate them to the CMB harmonic
expansion. In Section 2, we start by describing sky mapping
from time series. In Section 3, we briefly describe several
different pixelization schemes. In Section 4, we consider the
GLESP pixelization scheme in more detail, which offers the
most effective harmonic expansion of CMB temperature and
polarization anisotropy maps and a description of space—
frequency CMB properties. Section 5 contains our conclu-
sions. Some technical details are presented in Appendices A
and B.

2. Introduction to sky mapping

Sky pixelization is closely related to map-making, which
allows constructing a two-dimensional map of emission
distribution on a sphere. For completeness, we outline the
map-making algorithm for one-horned experiments [44].

We assume that the time-ordered data (TOD) output d
and a map in pixels m are linearly dependent:

d=Pm+n, (1)

where n is a vector of random noise and P is some known
matrix relating the signals d and m. The rectangular Ng x N,
matrix P is called the pointing matrix; here, Ng4 is the number
of sky observations and N, is the number of sky pixels of the
size¢ ~ FWHM/3, where FWHM is the full width at half
maximum of the antenna beam. That is, applying P to a map
‘unfolds’ the latter on TOD according to a given scanning
strategy. Conversely, applying PT to the TOD ‘collects’ them
into a map. The value of a pixel of this map is the sum of all
the observations of that pixel made at different times
according to a given scanning strategy.

The structure of the matrix P depends on what we assume
for m. If m contains a pixelized but unsmeared image of the
sky, then P must account for beam smearing. That is a very
general assumption, which, for example, allows properly
treating an asymmetric beam profile, such as quasi-Gaussian
beams in the WMAP experiment (Fig. 6) or possible effects of
horn degradation during the experiment [45]. In this case,
applying the matrix P to the vector m implies both convolving
the sky pattern with the detector beam response and
unfolding m into a ‘signal-only’ time stream. If, on the other
hand, the beam is at least approximately symmetric, then it is
possible and certainly more convenient to regard P as a beam-
smeared pixelized sky. The structure of P for a one-horned
experiment would then be very simple. Only one element per
row would differ from zero: the one connecting the observa-
tion of the jth pixel to the ith element of the TOD. Many
methods have been proposed to estimate m in Eqn (1) (see,
e.g., [46] for a review). Because the problem is linear in m, the
generalized least-squares (GLS) method can be used. This
involves minimizing the quantity

2=n"Vn=@@d"—m"PT) V(d - Pm) (2)

for some nonsingular symmetric matrix V. In order to have a
‘low noise’ algorithm of the y? estimation (a so-called
estimator), we have to find a V' that minimizes the variance
of m. This is attained if we take V' to be the noise inverse
covariance matrix, i.e., ¥~ ! = N= (nn"). We can then
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Figure 6. Examples of quasi-Gaussian beams. Shown are beams in the
WMAP mission for channels K (0.88°), Ka (0.66°), Q (0.51°), V (0.35°),
and W (0.22°). (Figure taken from http://lambda.gsfc.nasa.gov.)

construct the estimator m for the map:

m=(PTvP)'PTrd. (3)

The GLS solution of the map-making problem is then

m=2x"'PTN"d, (4)
where
>=PTN"'p.

The map-making uses the chosen sky pixelization, which
also provides the integration accuracy when doing harmonic
expansion of the signal [see Eqn (7) in Section 4.1]. The
problem of integration on a sphere was already discussed in
the 1970s (see, e.g., [47-50]). This problem became relevant in
astrophysics when all-sky surveys appeared, and it became
necessary to expand extended signals in spherical harmonics.
Presently, sky map pixelization algorithms, namely, the
decomposition of the sky into areas in which observational
data are integrated using certain rules, are important
ingredients of the CMB data processing [51].

3. Pixelization grids

In this section, we consider several proposed and/or realized
schemes of sky pixelization for analyzing extended emission.

3.1 Icosahedron pixelization

When thinking of possible sky pixelization schemes, Max
Tegmark [43] was the first to ask the question: which sky map
pixelization should be considered good? Tegmark focused on
two criteria that can be used in choosing the location of N
points (or pixel centers) on a sphere:

(1) it is necessary to minimize the largest distance d to the
nearest pixel (for example, from corner points to the center of
a pixel in a square grid);

(2) the grid must provide precise integration at the nodes.

Figure 7. Icosahedron pixelization scheme. (From [43].)

The minimum-d criterion leads to the choice of a pixel
shape that is preferable to a square. For example, for the
meshed grid in which a pixel is hexagonal, we can easily
calculate the value dicosa = [87/ (3\f3N)}1/ 2, which turns out
to be about 12% smaller than in the square-grid case. To use
this advantage, it is necessary to change a cube on a sphere by
a platonic solid with triangular faces, for example, by a
tetrahedron, an octahedron, or an icosahedron. Thus, the
choice of d determines not only the grid resolution and pixel
locations but also their shape. We note that obtaining equal-
area pixels is one of the main problems in constructing the
grid. This condition becomes important for pixel convolution
and integration because equal weights allow using the same
differentials dQ in the integrands.

For a quasilaterized projection, as in the COBE data
analysis, when pixels are located on a rectangular grid on
faces of a cube (in the tangent plane), the number of ‘stretches’
increases in going to the face edges. Both the tangential and
radial projections somewhat deform the pixel form, such that
the further away from the center of an initial face, the more
pixels on the sphere differ from those for a regular grid. In this
case, it is highly desirable to make faces as small (and hence
flat) as possible. A platonic solid with the smallest faces and
hence the maximum number of such faces is an icosahedron,
consisting of 20 triangles (Fig. 7). Such a partition is
advantageous in having the number of faces three times as
large as in the cube case, which in turn increases the
calculation accuracy due to almost the same pixel areas. In
addition, the triangles cover the sky in a more regular way
(with less area distortion) (Fig. 8) [43].

The icosahedron pixelization scheme is similar to that
used in the COBE experiment:

(1) anicosahedron is inscribed into a sphere, and its faces
are divided into a regular triangular grid;

(2) the points (centers of pixels) are radially projected
onto the sphere;

(3) the points are somewhat shifted to make all pixels
approximately equal in area.

The icosahedron pixelization is advantageous compared
with the quadrilaterized scheme in having a larger number of
rotational symmetries. The corresponding rotational
matrices can be included in the software in advance and can
later be called on whenever necessary in the data analysis.

3.2 Igloo tilings
Crittenden and Turok [52] suggested another pixelization
scheme, called igloo tilings (because of the similarity with
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Figure 8. (a) Regular triangular grid is modified to obtain equal-area
pixels. The pixels have a hexagonal form. (b) The face of a triangular
icosahedron can be symmetrically divided into six equal regular triangles
(one of them is marked with a dark color), and the area is equalized for
symmetry. A close inspection of the figure reveals how the centers of pixels
are displaced [shifted toward the center of the big triangle in Fig. b with
respect to that in Fig. a (cf. also the location of pixels along the x axis)] in
order to obtain equal-area pixels in the radial projection onto a sphere.
(Figure reproduced from [43].)

the Eskimo house). In this scheme, a sphere is divided into
rows with constant-latitude edges and each row is divided into
identical pixels by lines of constant longitude (Fig. 9). The
pixels are roughly trapezoidal, becoming nearly rectangular
away from the poles. The northern and southern hemispheres
are tiled identically. Igloo tilings have many advantages:
(1) they are quite simple; (2) they are naturally azimuthal
and can be easily made of equal areas, with most pixels nearly
square; (3) most of all, the pixel edges are drawn along
constant lines of the spherical polar coordinates 0 and ¢,
allowing fast and exact spherical harmonic transformations
using pixel values. This is essential in constructing exact
simulated skies and in optimally recovering the angular
power spectrum from real data. To evaluate the igloo
scheme, the authors of [52] consider the following three
criteria:

I. Lack of pixel distortion. Pixelization of the data
suppresses modes with wavelengths shorter than the pixel
size in any given direction. To minimize this effect, the largest
pixel diameter is to be taken as small as possible. The ideal
(unachievable) limit would be to have circular pixels with the
largest diameter D = 4/+/Nyot, Where Ny is the total number
of pixels on the sphere. For square pixels, the best achievable
value is D = y/871/Nioi, about 25% larger than for circular

Figure 9. Igloo pixelization. (a) Picture of the polar cap region in the igloo
schemes. This hierarchical prescription is designed in order to minimize
the distortion in the highest-resolution pixels. (b) Picture of a 3:6:3 equal-
area pixelization, which divides the sky into twelve base patches. Here,
each base pixel is broken up into 64 small pixels equal in area. (Figure
taken from [52].)

pixels. The authors of [52] introduce the concept of the
amount of pixel distortion as the maximum diameter normal-
ized by the ideal (circular) case.

II. Equal-area pixels. Desirable in order to obtain the best
resolution for a fixed number of pixels, in the first approx-
imation, having equal statistic weights.

II1. Built-in hierarchy. Allows coarse graining of the data
at different resolutions, which is sometimes required in data
analysis. Igloo pixelization requires that the hierarchy be
nested, i.e., that each higher-resolution pixel fit perfectly into
a single lower-resolution pixel. Ideally, a minimal set of pixels
can be fixed that have minimal distortions and approximately
the same area at each level.

The authors of [52] consider four possible igloo pixeliza-
tions:

e the simplest example is the ECP (Equidistant Cylind-
rical Protection) pixelization: the pixel edges are defined
along lines of the spherical polar coordinates 6 and ¢. In the
ECP scheme, pixels become quite narrow near the poles.

e a twelve-pixel scheme (3:6:3) involving division into
equal-area pixels. The divisions between the layers lie at
0 = +30°;

e a twelve-pixel scheme (3:6:3) involving division into
pixels with equal-latitude spacing;

e an equal-area scheme with 12,116 base equal-area
pixels.

When using the scheme with pixels that are of nearly (or
exactly) equal area, the number of pixels in each row must
decrease in approaching the poles (see Fig. 9). Igloo
pixelizations with either rows equally spaced in latitude, like
the ECP, or pixels of uniform area can be constructed. The
advantage of equal-latitude spacing is that the pixelization
can be created by a simple rebinning of an ECP pixelization, if
the latter is chosen to have an appropriate number of pixels.
In addition, by letting the pixel areas vary, we can make them
less distorted. An equal-area pixelization is not exactly
equally spaced in latitude, but has the advantage that all
pixels have the same statistical weight.

Igloo pixelization can also be made hierarchical. For
this, we first divide the sphere into a base pixelization with
relatively few pixels, optimized to minimize pixel distortion.
Each of these coarse pixels is then divided into four by
bisecting it in longitude and latitude. This division is
chosen either to keep the pixels of the same area or to
maintain a constant-latitude spacing of the rows. This
results in a finer-grained pixelization with four times the
number of pixels. This procedure can be repeated until we
reach the required resolution. Reducing the number of base
pixels tends to increase the level of pixel distortions, and
therefore some compromise must be found. While there are
clear advantages to have fewer base pixels, computing their
weights is a complicated task compared with the case of
uniform pixels.

The hierarchical partition causes some subpixels to
become more distorted than the coarser pixels, especially
near the poles. Away from the poles, there is a limit of how
distorted the pixels become. However, if the polar cap were
simply bisected in 0 and ¢, the pixels would become more and
more distorted, as occurs in the ECP.

In standard igloo tilings, the authors of [52] have chosen
to initially divide each polar cap into three equal wedges.
Higher-resolution pixelizations are found by dividing each
wedge into four pieces, one central wedge and three pieces
surrounding it (see Fig. 9). This process is iterated.
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3.3 HEALPix hierarchical pixelization

HEALPix (Hierarchical Equal Area isoLatitude Pixeliza-
tion)” was in fact the first pixelization scheme supplied with
a well-documented computer code [53, 54].

The authors of [53] formulated a list of desiderata for the
mathematical structure of discrete whole sky maps, arranged
into three points.

(1) Hierarchical structure of the database. This is recog-
nized as essential for very large databases, and was already
postulated in constructing the Quadrilateralized Spherical
Cube. A simple argument in favor of this states that the data
elements that are neighbors in a multi-dimensional config-
uration space (here, on the surface of a sphere) are also
neighbors in the tree structure of the database. This property
facilitates various topological methods of analysis, and allows
easy construction of wavelet transforms on triangular and
quadrilateral grids with a fast choice of neighboring pixels.

(2) Equal areas of discrete elements of the partition. This is
advantageous because white noise at the sampling frequency
of the instrument is integrated exactly into white noise in the
pixel space, and sky signals are sampled without regional
dependence, although care must still be taken to choose a
pixel size sufficiently small compared to the instrumental
resolution to avoid excessive and pixel-shape-dependent
signal smoothing.

(3) Iso-latitude distribution of discrete area elements on the
sphere. This property is essential for computation speed in all
operations involving evaluations of spherical harmonics.
Because the associated Legendre polynomials are evaluated
via slow recursion, any sampling grid deviations from an iso-
latitude distribution result in a prohibitive loss of computa-
tional performance with the growing number of sampling
points.

All requirements formulated above are satisfied by a
construction with the HEALPix of the sphere, which is
shown in Fig. 10.

The HEALPix base-resolution comprises twelve pixels in
three rings around the poles and the equator. The next
hierarchical level is formed from the previous one by dividing
each pixel of the previous-resolution level into four equal
parts. The resolution of the grid is expressed by the parameter
Nsige (see Fig. 10), which defines the number of divisions
along the side of a base-resolution pixel that is needed to reach
the desired high-resolution partition, for example, due to a
horn beam. All iso-latitude rings located between the upper
and lower corners of the equatorial base-resolution pixels
(—=2/3 < cos b, < 2/3) or in the equatorial zone are divided
into the same number of pixels: Nog = 4Nyide. The remaining
rings are located within the polar cap regions (| cos 0, > 2/3)
and contain a varying number of pixels, increasing from ring
to ring by one pixel within each quadrant with increasing the
distance from the poles. Hence, a HELAPix-pixelized map
consists of Npx = 12N2,. pixels with the same area
Qpix = 1/ (3N2y,)-

The authors of [54] use two systems of indexation, which
are applied to process and store maps in the form of FITS-
files (Flexible Image Transport System): with isolatitude, or
ring, index and nested index (Fig. 11). In the first case, we can
simply count the pixels moving from the north to the south
pole along each isolatitude ring. In the second case, we can
replicate the tree structure of pixel numbering by using a

7 http://healpix.jpl.nasa.gov.

Figure 10. Orthographic view of a HEALPix division of a sphere. Overplot
of equator and meridians illustrates the octahedral symmetry of the
HEALPix construction. The lowest resolution corresponds to twelve
base-resolution pixels. The sphere is hierarchically mosaically partitioned
into curvilinear quadrangles. Light-gray shading shows one of eight (four
north and four south) identical polar base-resolution pixels. Dark gray
shading shows one of four identical equatorial base-resolution pixels. The
grid resolution of the mosaic increases upon dividing each pixel into four
new ones. The grid resolution increases in three steps from the base level
(from Fig. a consecutively to Figs b, ¢, and d). The grid resolution is
characterized by the parameter N4, [equal to 1 (a), 2 (b), 4 (c), and 8 (d)],
which determines the total number of pixels Npix = 12N52ide, i.e., the sphere
is partitioned into 12 (a), 48 (b), 192 (c), and 768 (d) pixels. Pixels are equal
in area for each grid resolution. All pixel centers are located on rings of
constant latitude, which is important for harmonic analysis and calcula-
tion of spherical harmonics.

certain algorithm [54]. The nested indexation allows applying
the HEALPix scheme inside a database, as was described
above for the HTM grid. Special procedures of the HEALPix
package allow using alternative indexation schemes for the
analyzed map.

The HEALPix software package, consisting of individual
programs and program libraries, includes procedures for
harmonic expansion on a sphere of the temperature and
polarization anisotropy maps. Among the most frequently
used procedures are synfast, for the construction (and
modeling) of maps; anafast, for multipole expansion and
calculation of the angular power spectrum (with an option
of data masking); and map2gif, for imaging maps on a sphere.

4. Sky pixelization using the Gauss—Legendre
method. The GLESP scheme

The pixelization procedure discussed above was mainly
devoted to the optimal choice of pixel shape or filling a
sphere, and the accuracy of calculating harmonic-analysis
integrals was addressed after the choice of the pixelization
scheme. We recall that the CMB pixelization on the sphere is
only one part of the main problem of determining the
coefficients a;, in the CMB signal expansion in spherical
harmonics.
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Figure 11. Two systems of pixel indexation on a sphere for HEALPix grids
with the grid resolution parameter (a,b) Ngge = 2 and (c,d) Nige = 4.
Shown is numbering along isolatitude rings (a,c) and in the nested tree
case (b, d).

4.1 Pixelization scheme

The coefficients ay, are calculated using the standard
expansion of the measured temperature variations in the
sky, AT(6, ¢), in spherical harmonics:

oo m={
AT(0,¢) =D > aum Yim(0, ¢), (5)
(=2 m=—{
2041 (£ —m)!

Yim(0, ¢) = P"(x) exp (im¢), x=cosb,

(6)

where P}"(x) are the associated Legendre polynomials (see,
e.g., [55] and Appendix A), £ is the number of a spherical
harmonic (multipole), and m is the number of the multipole
mode. For a continuous function AT(x, ¢), the expansion
coefficients ay,, are calculated as

dn (0 + m)!

1 2n
apm = J71 de dd’AT(X: ¢) Yé*m(xa ¢) ) (7)

0

where Y, denotes the complex conjugation of Y, A
somewhat more complicated scheme is used for the analysis
of CMB polarization.

In 2003, the GLESP (Gauss—Legendre Sky Pixelization)
scheme, primarily designed for harmonic analysis, was
worked out [56-59]. In such an analysis, we need to evaluate
integral (7) over the coordinate 6 with very high accuracy.
Bearing this in mind when constructing the grid allows

changing the approach to data processing on a sphere,
which, in particular, determines the pixelization scheme. For
precise numerical evaluation of integral (7), we use Gaussian
quadratures, a method proposed by Gauss already in 1814
and developed later by Christoffel in 1877. The key point of
the method is that the integral over x in Eqn (7) is an integral
of a polynomial, and we can therefore use weight functions
w(x) [60] to achieve the exact equality:

1 N

J | dXAT(X, 4)) Y/.*.m(xv 4)) = Z W/AT(xiv (b) YZm(x./v d)) )
- o

‘ (®)

where N is the maximal rank of the Legendre poly-
nomial. Here, both the weight function w;=w(x;) and
AT(x;,¢) Y[ ,,(x;,¢) are taken at points that are the net roots,

Py(x;) =0. )

It is well known that the equation Py(x;) = 0 has exactly
N zeros in the interval —1 < x < 1. For the Gauss—Legendre
method [Eqn (8)], the weight coefficients are [60]
-2

2
a2 [Ph(x)] 7

wj =

(10)

and they can be calculated together with the set of x; with the
‘gauleg’ code [60]. The use of such a method for calculating
integral (7), based on Gauss quadrature (7), allows calcula-
tions to within the machine epsilon of floating point
arithmetic. This harmonic expansion of temperature and
polarization anisotropy maps is most effective from the
standpoint of computational error minimization in compar-
ison with other methods.

We refer to the pixelization grid in which pixel centers
coincide with nodes in the Gauss—Legendre quadrature and
pixels are quasi-equal in area as GLESP (Gauss—Legendre
Sky Pixelization) [56].® To compare the HEALPIx and
GLESP grids, Fig. 12 shows the location of centers of rings

—— HEALPiIx, (cos 0)-pixels
—— GLESP-pixels

1.0

cosf

X

—0.5

-1.0
—15 —10 =5 0 5 10 15
7zmux Layer Zma\x

Figure 12.Two schemes of sky pixelization: nodes along the cos 6 axis

HEALPix (solid line) and GLESP (dashed line).

8 http://www.glesp.nbi.dk.
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Figure 13. Two types of pixelization of a sphere: pixels (a) in the Mollweide
projection (HEALPix) and (b) in the GLESP scheme.

x = cos 0 on the sphere, which are used in both pixelization
schemes. We note that the calculation of integral (7) can be
done by different means, but the pixelization scheme is
constructed using fixed nodes in which time series averaging
is performed.

In fact, all CMB data have some resolution limit and
hence the upper limit in the summation over ¢ in Eqn (8)
£ < biax, Where £,y 1s the highest multipole adopted for data
processing on a sphere. This means that when constructing
the grid of zeros at points x; and the weights w; (j=1,
2,...,N), we can set N = Np,x, where Ny, is connected
with .

In the GLESP approach, trapezoidal pixels are bordered
by 0 and ¢ coordinate lines with the pixel centers (in the 0
direction) situated at points with x; =cos0;. Thus, the
interval —1 < x <1 is covered by N rings of pixels. The
angular resolution achieved in the measurement of the CMB
data determines the upper summation limit in Eqn (5),
£ < byax. To avoid the Nyquist restrictions, we use the
number of pixel rings N = 2/p.x. In order to make the pixels
in the equatorial ring (along the ¢ coordinate) nearly square,
the number of pixels in this direction should be NJ** ~ 2N.
The number of pixels in other rings, N3, must be determined
from the condition of making the pixel sizes as equal as
possible to the equatorial ring of pixels.

Figure 12 compares some features of the pixelization
schemes used in HEALPix and GLESP. Figure 13 compares
pixel distribution and shapes on a sphere in the mollview
projections of HEALPix and in GLESP. Figure 14 shows the
weight coefficients w; and the position of pixel centers in the
case N = 31.

Following the preceding discussion, we define the new
pixelization scheme GLESP as follows:

ein the polar direction x =cos0, we define x;,
j=1,2,...,Nasthe grid of roots of Eqn (9);

‘\’
AN

0.06 [f Z
o] s

o |

0 | |

-1.0 —0.5 0 0.5 1.0
X

Figure 14. Gauss—Legendre weight coefficients w; as functions of the
zeros of Legendre polynomials (x; = cos 0;) at which rings are centered
in the GLESP scheme (for N = 31). Vertical lines show the location of
the zeros.

e cach root x; determines the position of a ring with ¥, ({5
pixel centers with ¢-coordinates ¢;;

e all pixels have nearly equal area;

e cach pixel has the weight w; [see (10)].

In our numerical code implementing the GLESP pixeliza-
tion scheme, we use the following conditions.

— All pixels are bordered by 0 and ¢ coordinate lines.
Hence, all pixels are nearly trapezoidal.

— The number of pixels along the azimuthal direction ¢
depends on the ring number. Their number in the ring can be
chosen randomly. The number of pixels depends on fp.x
adopted for data processing of an extended source.

—To satisfy the Nyquist theorem requirement, the
number of rings must be N =20« + 1 along the axis
x = cos0.

— In order to make equatorial pixels nearly square, the
number of pixels along the azimuthal direction ¢ is Nj** =
|(2m/d0; +0.5) ], where |...| denotes the integer part of a
number and k = |_(N+ 1)/2J, do, = 0~5(0k+l — Okfl).

—The nominal size of each pixel is determined as
Spixel = d0x d¢, where df; and d¢ = 2n/N;)n“" are pixel sizes
in the equatorial ring. ‘

— The number of pixels N3 in the jth ring at x = x; is
calculated as Nj = [ (2n(1 — x,g(gl/z/spixel +0.5)].

— Polar pixels are triangular.

— Because the number N7 differs from 2%, where k is an
integer number, to make a fast Fourier transform along the
azimuthal direction, we use the FFTW (Fast Fourier Trans-
form in the West) code [61]. This code allows using not only 2”
points but also arbitrary base powers. This is the fastest code
among the currently available ones.

In the proposed scheme, all pixels are the same inside each
ring, and the maximal difference between pixels from different
rings is &= 1.5% near the poles (Fig. 15). Away from the poles,
most pixels have an approximately equal polar-angle size
(Fig. 16). Increasing the resolution decreases the absolute
error in the area difference, because nonequivalence of polar
and equatorial pixels is proportional to N 2.

GLESP is not a hierarchical structure, but problems with
the choice of pixels nearest to a given point can be simply
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Figure 16. Pixel size along the polar angle (£,,x = 250).

solved at the software level. In addition, using GLESP also
allows performing a hierarchical partition similar to that used
in the igloo pixelization [52] by dividing each pixel into four
parts using meridians and parallels. Although such a
procedure distorts the location of polar angles of nodes of
the GLESP grid at the next hierarchical level, it offers the
possibility of storing and searching for objects in nested
structures, similarly to the case of HTM. If a harmonic
analysis must be performed at the upper level, where the
GLESP grid works very well, the nested pixels can be
integrated, but with some loss in resolution. Generally, if
some standard set of given map resolutions is fixed, then it is
possible, as in some other pixelization schemes, to index the
pixels and to use GLESP for searching for sources in the sky
and in databases. In GLESP, the choice of the angular
resolution for the source list allows using methods of
harmonic analysis to search for structures and their correla-
tions on the sphere [62-65].

We note that in spite of the similarity of the GLESP and
igloo schemes in the azimuthal division, there is a significant
difference in pixel spacing along the polar angle 0. Therefore,
we cannot unite these two pixelization schemes. The igloo

scheme, when applied to discrete GLESP latitudes, gives pixel
sizes that are too different. The pixels have neither equal hight
nor equal areas, as the igloo tiling requires.

4.2 Repixelization problem

A nonbhierarchical pixelization structure was realized in the
GLESP package [58] (see also Appendix B), which is
mainly aimed at precisely calculating the harmonic expan-
sion coefficients. The accuracy of calculations in the
package procedures is limited only by the machine epsilon
of data representation. Nevertheless, there are, of course,
natural accuracy limits that restrict the quality of generated
maps:

e the noise level of the system;

e the level of knowledge about local, galactic, and
extragalactic components from which the sought back-
ground signal should be cleaned (see, for example, [9]);

e the instability of methods of separation of the measured
signal components and of the CMB signal extraction;

e introduced systematic errors.

A certain type of introduced error is related to the
repixelization problem. To transform a map with an
extended signal with one pixel grid into another map with
another pixel grid (for example, when changing from
HEALPix to GLESP or turning the sphere to study a
specific projection) without the map-making procedure (see
Section 2), we should use one of two methods:

(1) calculate the corresponding coefficients ay,, and after
that reconstruct a new map;

(2) use the repixelization procedure to measure the
brightness distribution.

Any of the repixelization procedures leads to a loss of
information and introduces new errors and residuals. Never-
theless, the use of this procedure is justified in some cases. The
loss of accuracy due to this operation can be demonstrated by
reproducing the angular power spectrum C(¥):

ct0 -t )

The result of spectral reconstruction by map repixelization is
shown in Fig. 17. The spectra are very similar only for /¢
smaller than £,y /4.

I
lacol> + 2 |am|®

m=1

(11)
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Figure 17. Angular power spectrum calculated for the original HEALPix
map (black curve) with £,.x = 1000, Ngge = 1024, pixel size = 11.8026’
and the total number of pixels Ny = 12,582,912, and the resulting
repixelized GLESP map (gray curve) with the nearest possible pixel size
= 11.8038’, and Ny = 12,581,579. The angular power spectrum devia-
tions at large ¢ show the ratio of window functions in HEALPix and
GLESP.

The GLESP package offers two methods of CMB map
repixelization in the pixel region AT(0, ¢): first, by averaging
input values in a given pixel and second, by spline interpolat-
ing over the pixel grid. In the first method, we consider the
input pixels that fall within the new pixel with values
AT(0;,¢;) and then average them using a weight function.
The weight function implemented in the code performs simple
averaging with equal weight. This method is widespread when
assigning given values to a pixel with the corresponding
number.

In the second repixelization method, we use a spline
interpolation. If there is a map AT(0;, ¢;) written at nodes
different from the Gauss—Legendre ones, we can recalculate it
for our new grid AT(0/, ¢/) by using approximately the same
number of pixels and the standard cubic spline interpolation
scheme. In this approach, calculations are sufficiently fast
because the spline is calculated once for one data vector (for
example, in one ring), and obtaining the value of the
interpolated function for any input argument requires only
one call of an external procedure.

We note that in the GLESP package, it is possible to avoid
repixelization problems when transforming maps from
HEALPix to GLESP and back, as well as when rotating the
maps. In the first case, intermediate calculations of the
coefficients ay,, are used to reconstruct the map, and in the
second case, map rotation can be done inside GLESP by the
implemented turning procedure and using recursive methods
at the level of spherical harmonics [66, 67].

5. Conclusion

We considered several pixelization schemes on a sphere that
were proposed to analyze extended sky emissions. Two of
them, the hierarchical HEALPix and the nonhierarchical
GLESP, are available with the corresponding source codes.
Presently, the use of one pixelization scheme or another is a
matter of taste and preference in choosing the user software
package. The speed of calculations on modern laptops is
approximately the same for both packages (for example, the

multipole expansion of a sky map or its reconstruction from
spherical harmonics take a few seconds for the number of
multipoles up to {nax = 2000). With four calculation itera-
tions, the latest versions of HEALPix (the current version is
N2.15) have approximately the same accuracy as GLESP.
Both schemes can be used for analyzing CMB polarization.
GLESP continues to be developed, and the main advantages
of its pixelization grid are exploited:

e high-precision calculations of the coefficients ay,,;

e the possibility of choosing the optimal resolution for a
given horn beam, i.e., the optimal size and number of pixels.

The most important features of the GLESP pixelization
include its flexibility in filling rings on a sphere and the
possibility of projecting the signal on a cylinder for subse-
quent harmonic analysis. Notably, GLESP includes codes for
phase and statistical analysis of multiple events generated in
nuclear collisions in the Large Hadron Collider, as well as for
identification and studies of phenomena like jets and
asymmetric outflows or their combinations [68].

To conclude, we note that if the coefficients ay,, of the
spherical harmonic decomposition are known, they can be
used to construct a map with arbitrary pixelization for given
pixel centers: GESP, HEALPix, igloo, icosahedrons, etc.

Acknowledgements

The authors thank their colleagues P R Christensen,
P D Naselsky, I D Novikov, and V I Turchaninov for the
helpful discussions during the development of the GLESP
scheme. We thank the referee for valuable notes that
improved the text. The HEAPix package [54] was used for
analyzing data and some results. The GLESP package [56, 59]
was used for analyzing extended emission on a sphere. The
work is supported by the RFBR grants 11-02-00244 and 13-
02-00027. OVV also acknowledges the Dmitry Zimin
Dynasty Foundation for support.

6. Appendices

A. Normalized joint Legendre polynomials
For harmonic transformations in the GLESP code, we use the
normalized associated Legendre polynomials

1) =\ 2 g P,

where x = cos f and 6 is the polar angle. These polynomials
f{"(x) can be calculated using well-known recurrence rela-
tions. The first of them gives f}"(x) for a given m and all

0> m:

(12)

402 — 1

.f[m(x) =X mf;il

o Jurr—1-m?
2w-3 2-m> ¥

(13)

This relation starts with

-1)" [@m+ 1)
2\ em—1n

mo / m
Jm+1 =X 2n1+3-m .

(x) = (1 %"

b
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The second recurrence relation gives f”(x) for a given £
and all m < ¢:

2x(m+1)

V= m =)0+ m+2) £ (x) + —

f[m+1 (X)

+VUl=m)(l+m+1) f"(x)=0. (14)

This relation starts with the same f (x) and f’ (x), which must
be found with formula (13).

As discussed in [69], the first recurrence relation (13) is
formally unstable if the number of iterations goes to infinity.
Unfortunately, there are no theoretical recommendations on
the maximum iteration number that can be used in the quasi-
stability area. But this relation can be used because we are
interested in the so-called dominant solution [69], which is
approximately stable. The second recurrence relation (12) is
stable for all £ and m.

B. Description of the GLESP code

The GLESP code, based on the GLESP pixelization, is a free
Unix-based software compiled with the GNU C compiler.
For operation with GLESP, the Fast Fourier Transform
FFTW library [61] is required. GLESP has four types of
procedures to work with maps on a sphere and the harmonics
(the corresponding utilities of GLESP are given in parenth-
eses):

e Operations related to maps.

(1) Spherical harmonic decomposition of a map into
coefficients ay,, (c2lmap).

(2) Synthesizing CMB temperature maps from a power
spectrum C(¢) (c2lmap).

(3) Spherical decomposition of the temperature aniso-
tropy and (Q,U)-polarization maps into ag, and e, by,
coefficients (polamp).

(4) Smoothing a map with a Gaussian beam (c2lmap).

(5) Adding/subtracting/averaging maps (difimap).

(6) Scalar multiplication/division (difmap).

(7) Map rotation (difmap).

(8) Repixelization with conversion between Galactic/
ecliptic/equatorial coordinates (difmap).

(9) Truncating a map to a given temperature range
(mapcut).

(10) Cutting zones in a map (mapcut).

(11) Constructing map cross sections (mapcut).

(12) Preparing map patterns using standard samples and
analytic formulas (mappat).

(13) Converting/creating FITS binary from ASCII
(mappart).

(14) Setting point-like and elliptical sources on a map
(mappat).

(15) Converting FITS binary to ASCII (mapcut).

(16) Calculating the simplest statistics of a map: mean,
variance, extrema (difinap).

(17) Displaying the cross-correlation and mosaic coeffi-
cients of two maps (difmap).

(18) Masking the map and screen pixels on the map
(difmap, mapcut, f2fig).

(19) Choosing the required map resolution and giving
information on the pixel number and size (nzot).

(20) Plotting the map and putting markers on a figure
(2fig).

e Operations with coefficients agy,.

(1) Synthesizing CMB temperature maps from coeffi-
cients ag,y, (c2lmap).

(2) Synthesizing T,Q,U maps from harmonic coeffi-
cients ay,, and e, by, (polmap).

(3) Calculating sums and differences of two sets of ay,
(difalm).

(4) Dot product/division of ay, (difalm).

(5) Cross product/division of ay,, (difalm).

(6) Adding a given phase to all harmonics (difalm).

(7) Map rotation in the harmonic representation
(difalm).

(8) Mode selection from harmonics (difalm).

(9) Calculation of the angular power spectrum C;,
(alm2dl).

(10) Calculation of harmonic phases (alm2di).

(11) Harmonic selection by given phases (a/m2dl).

(12) Calculation of derivatives of maps from harmonics
(dalm).

e Operations with angular power spectrum Cy.

(1) Calculation of the angular power spectrum Cy
(alm2dl).

(2) Map modeling from the given angular power spectrum
Cy (c2map).

(3) Modeling the coefficients ay, from a given angular
power spectrum Cy (createalm).

(4) Adding/subtracting/averaging the angular power
spectrum (difcl).

e Operations with phases ¢, determined from the complex
representation of coefficients ap, = |agm| exp (1¢y,) and sphe-
rical harmonic amplitudes |agy|.

(1) Calculating phases ¢, (alm2dl).

(2) Calculating amplitudes |ag,| (alm2dl).

(3) Modeling ay,, from given phases (createalm).

(4) Selecting harmonics with given phases (a/m2dl).

(5) Adding phase to all harmonics (difalm).

(6) Plotting two-dimensional color phase and amplitude
diagrams (f2fig).

The GLESP map, written as a FITS Binary Table [70],
contains a self-documented ASCII header describing data
and three binary tables that list Legendre polynomial zeros
along the axis cos 6, the number of pixels in rings on a sphere,
and the value of the signal in pixels in consecutive rings from
north to south according to nodes of cos 6.
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