
Abstract. We propose a modified form of the well-known non-
linear dynamic equations with quadratic relations used to model
a cubic nonlinearity. We show that such quadratically cubic
equations sometimes allow exact solutions and sometimes
make the original problem easier to analyze qualitatively. Oc-
casionally, exact solutions provide a useful tool for studying
new phenomena. Examples considered include nonlinear ordin-
ary differential equations and Hopf, Burgers, Korteweg±de
Vries, and nonlinear SchroÈ dinger partial differential equa-
tions. Some problems are solved exactly in the space±time and
spectral representations. Unsolved problems potentially solva-
ble by the proposed approach are listed.

1. Introduction

The processes considered in this article can be called strongly
nonlinear. The differences between the effects of strong
nonlinearity and strongly pronounced manifestations of
weak nonlinearity are discussed at length in review [1],
which also offers examples of strongly nonlinear systems
and proposes their classification.

An important example of a strongly nonlinear system of
the first kind (see Ref. [1]) is one with a quadratically cubic
(QC) nonlinearity. The attribute of quadratically cubic is
sometimes applied to systems that simultaneously contain
quadratic and cubic nonlinearities. Here, the term `quad-
ratically cubic system' is used in a rather different sense. We
consider a model of cubically nonlinear systems built on the
basis of quadratic relations. Such systems do actually exist.
No less important is the fact that the relevant nonlinear
equations can sometimes be solved with much less effort
than the equations for truly cubic systems. The possibility of
obtaining an exact analytic description of nonlinear processes
in a model problem framework frequently allows a better
understanding of their real physical features.

In the simplest case of an oscillatory system with one
degree of freedom x�t�, the QC nonlinearity is given by the
function xjxj. The corresponding anharmonic oscillator is
described by the equation

d2x

dt 2
� 3

2
xjxj � 0 : �1�

In contrast to a `well' described by the quadratic parabola
U � x 2=2 (the potential function of a harmonic oscillator),
the well U � x 2jxj=2 is here formed by two branches of the
cubic parabola U � x 3=2 continuously sewn at the point
x � 0. As in the well-known case [2, 3] where, instead of
xjxj, Eqn (1) contains a standard cubic term x 3, there is no
asymptotic transition to a linear system as x! 0. The energy
of oscillations

W � 1

2

�
dx

dt

�2

� 1

2
x 2jxj � 1

2
A3 ; �2�

is defined by the cube of their amplitude �A > 0�. The period
of oscillations

T � 4����
A
p

� 1

0

dy��������������
1ÿ y 3

p ;
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which decreases with an increase in the amplitude as 1=
����
A
p

, is
given by

T
����
A
p
� 4

31=4
F

�
arccos

���
3
p ÿ 1���
3
p � 1

;
1

2

���������������
2�

���
3
pq �

� 4
���
p
p
3

G�1=3�
G�5=6� � 5:61 : �3�

Here, F�c; k� is the elliptic integral of the first kind andG�z� is
the gamma function. The shape of oscillations is described by
the elliptic Jacobi functions [4] and contains only odd
harmonics.

We note that oscillations of the oscillator with a similar
nonlinear decay � _xj _xj are well studied (see, e.g., Ref. [5]).

In recent years, themodel of a damped `bistable' oscillator

_x� x 3 ÿ x � F�t� �4�

has become popular in studies of the so-called stochastic
resonance [6]. For example, Eqn (4) describes the motion of a
Brownian particle in a strongly viscous medium in the field of
the double-well anharmonic potentialU � x 4=4ÿ x 2=2. The
particle is subject to an external force F�t� given by the sum of
noise

�������
2D
p

x�t� of intensity D and the signal A cos �Ot�,
periodic in time. Equation (4) is analyzed numerically or
analytically under some approximations, for example, with
the help of the Fokker±Planck equation. At the same time,
Eqn (4) can be brought into correspondence with the QC
nonlinear model:

_x� xjxj ÿ x � F�t� : �5�

The advantage of model (5) is that it is amenable to
linearization. Setting jxj � _u=u, we obtain

�uÿ _u � �F�t� u ;

where the plus sign corresponds to x > 0 and the minus sign
corresponds to x < 0.

If we consider the action of a sequence of short (delta-
function) pulses on QC system (5),

F�t� �
XN
n�1

And�tÿ tn� ; �6�

with the `amplitudes' An applied at time instants tn, Eqn (5)
can also be linearized. Setting x � 1=u, for the intervals
between pulses (6), we obtain

_u� u � �1 ; un�t� � �1�
�
un�tn� � 1

�
exp

ÿÿ�tÿ tn�
�
; �7�

where tnÿ1 < t < tn. The upper signs correspond to positive
values of un and the lower ones to negative values. It follows
from solution (7) that there are two `attracting' points: as
t!1, the positive initial values of the function tend to 1,
and the negative ones tend to ÿ1. Returning to the original
variable, we obtain

xn�t� � xn�tnÿ1�
exp

ÿÿ�tÿ tnÿ1�
�� �1ÿ exp

ÿÿ�tÿ tnÿ1�
����xn�tnÿ1��� :

�8�

Formula (8) describes the evolution of xn�t� in the time
interval tnÿ1 < t < tn. At the instant tn, xn�t� `jumps' to the

new value

xn�1�tn� � xn�tn� � An : �9�

Formula (9) is obtained by integrating Eqn (5) with right-
hand side (6) in a small vicinity of tn. If, for a random
sequence of pulses, we know the distribution of the
`amplitudes' and appearance times, then we can use Eqns (8)
and (9) to compute the statistical characteristics of the
response shown in Fig. 1.

We note that the change of the variable x � 1=u also
allows linearizing a more general QC model,

_x� f1�t� xjxj ÿ f2�t� x � 0 : �10�

In particular, if the functions f1; 2�t� are periodic, they can
describe the oscillations of wells of a bistable potential, which
are used for explaining the phenomenon of stochastic
resonance [6]. The solution of dynamical equation (10), for
example, for f1�t� � 1 and f2�t� � _f�t� on the interval
tnÿ1 < t < tn, takes the form

xn�t� � xn�tnÿ1�
�
exp

ÿÿ� f �t� ÿ f �tnÿ1�
�

� ��xn�tnÿ1��� � t

tnÿ1
exp

ÿÿ� f �t� ÿ f �t 0��dt 0�ÿ1 : �11�
The jump of xn�t� at the instant tn is, as previously, defined by
formula (9).

2. Example of a system
with a quadratically cubic nonlinearity

Cubic nonlinearity, discussed here in the context of its
modeling with piecewise continuous quadratic relations, is,
as is well known, used rather widely in nonlinear dynamics.

For example, cubic nonlinearity is dominant for shear
waves in homogeneous isotropic solids. Quadratic effects are
prohibited here by symmetry considerations. Shear waves are
an efficient tool in diagnosing soft biological tissues, because
the shear moduli in normal and pathologically modified
tissues differ by several orders of magnitude [7]. At the same
time, the speed of sound and density vary only by a few
percent. Studying the nonlinearities of shear moduli provides
new information on the mechanical parameters of solids,
which is important for medical and industrial analyses.

x

x1

t1 t

x3

t3

t4

x4

ÿ1

�1

x2

t2

Figure 1. Response of QC system (5) to the sequence of short iulses

described by formula (6).
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Examples of mechanical systems with a strong cubic
nonlinearity are given in Fig. 2. Figure 2a depicts a chain of
masses whose motion is constrained by parallel guiding rods
lying in a plane and separated by a distance a. The spring
elongation satisfies the linear Hooke law F � ÿkDl. If all
masses except one with a number n are fixed, its small
oscillations, jxnj5 a, for small static elongation Dl0 5 a are
governed by the nonlinear equation

m
d2xn
dt 2
� k

Dl0
a

xn � k

2a 2
x 3
n � 0 : �12�

Interestingly, for Dl0 � 0, i.e., when the spring is not
stretched initially, the linear motion regime does not occur.
The nonlinearity fully governs the system motion for
oscillations of an arbitrarily small amplitude:

d2X

dt 2
� X 3 � 0 ; X � xn

a
���
2
p ; t � t

�����
k

m

r
: �13�

This nonlinearity can be called `geometrical' because it stems
from the presence of constraints (restricting the motion), and
not from the `physical' nonlinearity of the spring deforma-
tion.

In the continuum limit, waves in the discrete chain obey
the partial differential equation

q2z
qt 2
ÿ c 2

q2z
qz 2
� b

3

q2z 3

qz 2
; z � qx

qz
: �14�

Here, z is the deformation and z � na is the coordinate along
which the oscillations propagate. The nonlinear coefficient
and the speed of sound are given by b � �3k=2m�a 2 and
c 2 � �k=m�Dl0a.

Equation (14) can be referred to as a nonlinear wave
equation if its right-hand side is small compared to any term
in the left-hand side. However, in the absence of spring

stretching, or if it is too weak, when c! 0, the nonlinear
evolution of the wave profile `dominates' the process of its
propagation. Thus, speaking about the distortion of a
traveling wave profile does not seem plausible in this case.

Equation (14) is related to a first-order equation, which is
a model of a simple distributed QC nonlinear system:

qz
qt
� �

���
b

p
jzj qz

qz
: �15�

Indeed, differentiating Eqn (15) over t and replacing the
derivative over t by the derivative over z in the right-hand
side of the resulting relation, we arrive at second-order
equation (14). The properties of strongly nonlinear systems
like (14) are explored in Ref. [2]. In particular, it is shown that
such systems maintain periodic localized oscillations, but
traveling wave solutions may be absent in them.

We note that for experimental modeling of strongly
nonlinear dynamics [2], a chain of disks is more convenient
(Fig. 2b). The disks perform torsional oscillations, for which
friction in the axes is much lower than that for masses sliding
along guiding rods (Fig. 2a). The mathematical models of
both chains coincide.

3. Riemann waves

If dispersion and dissipation are absent, plane waves in a QC
system are described by the equation for simple (Riemann)
waves:

qu
qz
� e

c 2
juj qu

qt
: �16�

Mathematicians sometimes refer to equations like Eqn (16),
but with a quadratic nonlinearity, as the Hopf equation, and
physicists call it the Riemann equation. Here, we use the
same notation as for ordinary media with quadratic
nonlinearity [8]. Namely, u is the oscillatory velocity, e is
the nonlinear parameter, and t � tÿ z=c is the time in the
reference frame moving along the z axis at the speed of
sound c. For small Mach numbers juj=c, Eqn (16) can
describe weakly nonlinear waves; in this case, z is a `slow'
coordinate. A similar equation (15), as shown in Section 2, is
also valid for strongly nonlinear shear and torsional
oscillations in distributed systems [2]. In this case, Eqn (15)
cannot be considered an evolutionary one.

The solution of Eqn (16) corresponding to a wave with the
time dependence u � F�t� at the medium boundary z � 0 is
provided by the implicit function

u � F
�
t� e

c 2
jujz
�
: �17�

If the original wave is harmonic, u � u0 sin �ot�, then it is of
interest to follow themodification of its spectral composition.
We use the standard technique for expansion of implicit
functions in Fourier series, described in book [8],

u � u0
X1
n�1

Cn�Z� sin
ÿ
not� jn�Z�

�
:

Here, Z is the distance normalized with the characteristic
nonlinear length zSH of discontinuity formation in the wave
profile,

Z � z

zSH
� e

c 2
ou0z :

Â
x � 0

axn�1

xnÿ1

xn
a

x

jnÿ1

jn

jn�1

b

Figure 2. (a) A chain of masses connected by linear springs and moving

along rods. (b) A chain of linearly connected disks performing torsional

oscillations.
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After simple but cumbersome manipulations, we find

Cn �
�
1ÿ �ÿ1�n� 2

nZ

��
2

pn
ÿ En�nZ�

�2

� J 2
n �nZ�

�1=2
;

tanjn �
�2=pn� ÿ En�nZ�

Jn�nZ� ;
�18�

where En is the Weber function and Jn is the Bessel function.
Result (18) represents an analog of the Bessel±Fubini solution
known for media with quadratic nonlinearity [8]. The
derivation of an analogous expansion for a truly cubic
system is discussed in Ref. [9].

It can be seen that only amplitudes of odd harmonics
differ from zero in solution (18). The amplitude of a wave at
the frequency of its first harmonic decays with the distance
traveled by the wave (the energy is pumped into higher
harmonics). The amplitudes of higher harmonics increase,
and the third harmonic increases atZ5 1 in accordance with
the linear law C3 � 4Z=�5p�.

Exact formulas (18) are valid for the distance 0 < Z < 1.
At Z � 1, a shock front is formed, and its behavior requires a
separate analysis.

4. Weak shock waves
of compression and rarefaction

We use the well-known approach and analyze the Riemann
waves graphically [8]. For this, we write solution (17) as an
explicit function of time:

t � Fÿ1�u� ÿ e
c 2
jujz : �19�

Formula (19) implies that in order to construct the wave
profile at a certain distance z, the original function Fÿ1�u�
has to be augmented by the function ÿejujz=c 2 propor-
tional to juj. Such a construction is drawn in Fig. 3 for a
compression shock wave in the form of a symmetric jump
between the values u � ÿu0 and u � �u0. In agreement with
Eqn (19), point A at the front is displaced to the position A0,
and point B is displaced to the position B 0. The new positions
of all other points form a broken line (shown as the dashed
line) connecting points A0 and B 0 with the origin.

The front displacement tSH�z� is governed by the
momentum conservation law [8] and corresponds to the
equality of the areas of the two triangles hatched in Fig. 3,

tSH�z� � ÿ�
���
2
p
ÿ 1� e

c 2
u0z : �20�

It follows from the construction that the symmetric jump, in
contrast to that in a quadratically nonlinear medium, is
unstable in general. A sloping region evolves there. A
`forerunner' precedes the front. The height of the jump
decreases from the initial value 2u0 to the `stable' value���
2
p

u0, which does not depend on the distance z. In a medium
characterized by `rigidity' increasing with pressure �e > 0�,
the jump moves according to Eqn (20) with the supersonic
speed

vSH � c0

�
1� ÿ ���

2
p
ÿ 1
�
e
u0
c

�
:

The process of compression front transformation is
shown in Fig. 4a. It can be seen that the profile becomes
broken at small distances; then a sloping region forms, and
it expands with time, becoming increasingly gently sloped.
Within the sloping region, the velocity of oscillations
increases linearly with time from ÿu0 to ÿu1 �
ÿ� ���2p ÿ 1�u0. At the front, the velocity jumps fromÿu1 to u0.

Hence, a stable compression shock in the medium under
consideration should be characterized by the ratio of
perturbations (immediately before and after the shock front)
ju1j=u0 �

���
2
p ÿ 1.

A construction analogous to the one shown in Fig. 3 for a
symmetric rarefaction jump leads to the picture in Fig. 4b. It
is well known that in a quadratically nonlinear medium, any
rarefaction jump is unstable. Here, the jump between the
oscillation velocity valuesÿu0 and u2 � �

���
2
p ÿ 1�u0 turns out

to be stable. Interestingly, the propagation speed for this
jump also proves to be supersonic; moreover, it coincides with
the propagation speed of the compression shock shown in
Fig. 4a. As a consequence, alternating stable compression and
rarefaction shock waves can be connected by smooth profile
intervals. They are separated by equal-time intervals that do
not vary with the distance traveled. This picture corresponds
to a periodic traveling signal.

To conclude, we write the general formula for the position
of the shock wave front

tSH�z� � ÿ ez
2c 2

u2ju2j ÿ u1ju1j
u2 ÿ u1

: �21�

Here, the values u1 and u2 can have any sign. The compression
front is stable in general �u1 < 0, u2 > 0� if the perturbation u1
lies simultaneously on the discontinuity and on the part of the
simple wave adjacent to it. This implies that tSH 4t1, where,
according to Eqn (19),

t1 � ÿ ez
c 2
ju1j : �22�

A 0

B 0

A

B

u

ÿu0
tSH

t

�u0

Figure 3. Transformation of a symmetric compression shock front.

�u0

ÿu0

u2

t

b

ÿu0

ÿu1 t

a

Figure 4. Formation and propagation of (a) stable compression and

(b) rarefaction shock fronts.

686 O V Rudenko Physics ±Uspekhi 56 (7)



Formulas (21) and (22) lead to the stability condition for the
compression front:

ju1j4 uCR �
ÿ ���

2
p
ÿ 1
�
u2 : �23�

For a compression jump propagating in an unperturbed
medium �u1 � 0� and also for a jump both of whose
perturbation values are positive �u1 > 0, u2 > u1�, the
specifics of QC nonlinearity are not manifested. In this case,
formula (21) leads to the well-known result from the theory of
quadratically nonlinear Riemann waves [8, 10±12].

Similarly, using formula (21) allows showing that the
rarefaction jump �u1 > 0, u2 < 0� is generally stable if
u1 4 uCR � �

���
2
p ÿ 1�ju2j. A rarefaction jump propagating in

an unperturbed medium �u1 � 0� or a rarefaction jump with
negative perturbations before and after the front �u1 < 0,
u2 < u1� is also stable. In these cases, manifestations of the
cubic nonlinearity also disappear. We note that there is no
contradiction with the known conjecture on the instability of
a rarefaction wave in a medium with quadratic nonlinearity:
the medium `rigidity' for such a rarefaction front does not
increase with pressure, but decreases.

5. Periodic trapezoidal saw-tooth wave

It is known that quadratically nonlinear media can support
quasistable periodic structures in the form of saw-toothwaves
composed of a periodic sequence of linearly sloping parts
connected via shock compression fronts. The shape of these
waves is preserved as they propagate. What varies is the
amplitude of the jump in each period. The stable character of
these structures allows considering processes of their interac-
tion and self-interaction [11, 13] in the same way as this is
done for quasiharmonic signals in nonlinear dispersivemedia.

We find a quasistable wave profile in a QC medium. We
seek a solution of Eqn (16) that preserves its form F�t� as it
propagates:

u � A�z�Fÿtÿ tSH�z�
�
:

The solution of the resulting ordinary differential equations
with the boundary conditions A�0� � u0 and tSH�0� � 0 is

A�z� � u0
1� z=z0

; o
ÿ
tÿ tSH�z�

�� C � ln jFj � Z0jFj ;

otSH�z� � ÿ ln

�
1� z

z0

�
; Z0 � z0

zSH
� e

c 2
ou0z0 ;

�24�

where z0, o, and C are some constants. The function F in
solution (24) is multi-valued and unbounded; therefore, at
first glance, it lacks physical meaning. However, the arbitrary
constant C allows translating the branches of the function
F�tÿ C� along the time axis t, forming their periodic
sequence (Fig. 5). By joining these branches with jumps, it
becomes possible to construct a saw-tooth profile that is
periodic in time. In contrast to the case of a quadratically
nonlinear medium, each half-period of the wave is not
triangular but trapezoidal. The period contains both
compression and rarefaction shock waves, which are the
respective jumps between the values ÿu1 � ÿ�

���
2
p ÿ 1�A�z�

and u2 � A�z� and between u1� ��
���
2
p ÿ 1�A�z� and

ÿu2� ÿA�z�. Both jumps are stable shock waves traveling
at the same speed as the smooth parts F of the profile.

The `trapezoidal saw-tooth' plotted in Fig. 5 represents
the asymptotic form (at distances z4 zSH) of a wave that was
harmonic when it entered the medium �z � 0�. We note that
the procedure of constructing this wave is analogous to that
described in Refs [10, 13] for a usual cubically nonlinear
medium.

6. Quadratically cubic Burgers equation

To account for linear damping, Eqn (16) has to be generalized
by the addition of a dissipative term with the second
derivative:

qu
qz
� e

c 2
juj qu

qt
� b

2c 3r0

q2u
qt 2

: �25�

Here, b is the dissipative coefficient expressible in terms of
shear and bulk viscosities and the thermal conductivity of the
medium [8]. For brevity, we write Eqn (25) in dimensionless
variables:

qV
qZ
� 1

2

q
qy

ÿjV jV �� G
q2V

qy 2
; �26�

where

Z � z

zSH
; y � ot ; V � u

u0
; G � zSH

zDISS
� bo

2ecr0u0
:

The quantityG, equal to the ratio of nonlinear and dissipative
lengths, is referred to as the inverse acoustic Reynolds
number (or the Goldberg number). For G4 1, dissipative
effects prevail over nonlinear ones. For G5 1, by contrast,
the effect of nonlinearity is more pronounced.

Equation (26) can be linearized using the following
generalization to the Hopf±Cole±Florin transformation [8]:

jV j � 2G
q
qy

lnU : �27�

But in contrast to the linearization of the standard Burgers
equation in a quadratically nonlinear medium, the formal
linearization in this case is less productive. The break in the
derivative arising in the vicinity of the point V � 0 leads to a
front displacement in the comoving reference frame (see
Fig. 3), which calls for nontrivial generalizations of known
results.

We find one of the stationary solutions of Eqn (26)
describing a dissipative structure of the shock front. For

o�tÿ tSH�z��p

F

ÿp

u1

u2

u1

u2

Figure 5. Trapezoidal saw-tooth wave in a quadratically cubic medium

without dispersion.
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definiteness, we consider a stable shock wave with a
compression corresponding to the transition from one
constant value V1 � ÿ�

���
2
p ÿ 1� to another one, V2 � 1. In

accordance with formula (20), we seek the solution in the
form

V�Z; y� � V
�
y� � yÿ ySH�Z�

�
; ySH�Z� � ÿ

ÿ ���
2
p
ÿ 1
�
Z :

�28�

Upon integration, substitution of Eqn (28) in Eqn (26) leads
to the ordinary differential equation

G
dV

dy�
� 1

2
jV jVÿ aV � 1

2
a 2 ; a �

���
2
p
ÿ 1 : �29�

The integration constant [the right-hand side of Eqn (29)] is
fixed by the condition V�y� ! 1� ! 1. From Eqn (29), for
negative values of V, it follows that

G
dV

dy�
� 1

2
�V� a�2 : �30�

Hence, the second boundary conditionV�y� ! ÿ1� ! ÿa is
satisfied automatically. The solution of Eqn (30) that satisfies
the condition V�y� � y0� � 0 has the form

V � a 2

�
y� ÿ y0
2G

��
1ÿ a

�
y� ÿ y0
2G

��ÿ1
; ÿ1 < y� < y0 ;

�31�

where y0 is the integration constant to be determined. The
`negative' part of the front described by solution (31) should
continuously match the `positive' branch, which is found
from Eqn (29):

G
dV

dy�
� 1

2
�Vÿ a�2 � a 2 : �32�

The solution of Eqn (32) that satisfies the condition at infinity
V�y� ! 1� ! 1 is

V � a
�
1�

���
2
p

tanh

�
a
���
2
p y�

2G

��
; y0 < y� <1 : �33�

Requiring that the solution be continuous and matching
formulas (31) and (32) at V � 0 or y� � y0, we find

y0
2G
� ÿ 1

a
���
2
p artanh

���
2
p

2
� ÿ1:52 : �34�

Interestingly, dissipation smooths the jump in the derivative
at V � 0. At the point y� � y0, not only the function but also
its derivative is continuous. This is directly seen from a
comparison of Eqns (30) and (32). The structure of the
compression shock front is given by formulas (31) and (33)
and is depicted in Fig. 6. The characteristic front length
Dy � G decreases as the nonlinearity increases, but increases
with dissipation. The perturbationVmonotonically increases
across the front.

The structure of the rarefaction front is recovered
analogously or can be found from solutions (31) and (33)
with the help of obvious symmetry transformations.

Knowing the solution for the smooth-profile parts of a
QCnonlinear wave (see Fig. 5) and the solution describing the
structure of the fronts (see Fig. 6), we can derive `boundary-

layer asymptotic forms' by resorting to the method of
matching asymptotic expansions, and thus fully describe the
wave profile, proceeding further to the analysis of spectral
composition, nonlinear losses, and other important charac-
teristics.

To conclude this section, wemention that the replacement
of a cubic nonlinearity by the QCmodel was used in a number
of analyses known to us. For instance, with its assistance, the
problem [14]

G
dV

dy
� V 3 � 3

�
1

2p

� 2p

0

V 2�y� dyÿ d
�
V � sin y ; hV i � 0 ;

�35�
was solved exactly and the frequency characteristics of an
acoustic resonator with shock waves `running' inside it were
computed. In Eqn (35), d is the dimensionless shift between
the frequencies of wall oscillations and of resonator eigen-
modes.

7. Quadratically cubic
nonlinear SchroÈ dinger equation

The replacement of a cubic nonlinearity by the QC non-
linearity has been used above for equations associated with
mechanical systems. It is of interest to consider a wider set of
problems by analyzing QC generalizations of the Korteweg±
de Vries, nonlinear SchroÈ dinger, and other `reference'
equations of nonlinear wave theory.

We consider the QC SchroÈ dinger equation

2ik
qA
qz
� D?A� gk 2jAjA : �36�

When model (36) is used to describe self-action effects in light
beams, the variable A is a complex-valued wave amplitude
and D? is the Laplace operator in the beam cross section [15].
Like the cubic SchroÈ dinger equation, Eqn (36) has certain
conservation laws. In this case, the conservation laws are
expressed as

I1 �
��
jAj2 d2r? � const ;

�37�
I2 �

���
jH?Aj2 ÿ 2

3
gk 2jAj3

�
d2r? � const :

2ÿ2 y
2

y0
2G

0.5

1.0
V

ÿ4

ÿ0.414

1

2

Figure 6. The shape of the compression shock front in a QC medium for

G � 1:0 (curve 1) and G � 0:2 (curve 2). The locations of matching are

marked with filled circles.
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The first conserved quantity has the meaning of total energy
and the second takes nonlinear and diffractional effects into
account.

We pass fromEqn (36) to the equations for the real-valued
amplitude B and phase C by setting B � A exp �ÿikC�.
Separating the real and imaginary parts, we obtain the
coupled eikonal and transfer equations [15]:

2
qC
qz
� �H?C�2 � gB ;

�38�
2
qB
qz
� 2H?BH?C� BD?C � 0 :

Dropping the termD?B in the eikonal equation of system (38)
corresponds to passing to the nonlinear geometric optics
approximation. For plane (collimated) beams, system (38)
takes the form

qa
qz
� a

qa
qy
ÿ g
2

qB
qy
� 0 ;

�39�
qB
qz
� a

qB
qy
� 1

2
B
qa
qy
� 0 ; a � qC

qy
:

Equations (39), whose form is known in fluid dynamics, are
linearized via a hodograph transformation. They describe the
isoentropic flow of a barotropic fluid. These equations can be
solved exactly [15, 16], which corresponds to the aberration
self-action in wave beams in nonlinear optics. However, while
the intensity is an independent variable for the cubic
nonlinearity, Eqns (39) contain the real-valued wave ampli-
tude B in the QC model considered here.

Another interesting case corresponds to imaginary values
of the coefficient g in QC SchroÈ dinger equation (36).
Substituting g! ig=k in Eqn (36) and separating real-valued
amplitude and phase, we arrive at the system

qa
qz
� a

qa
qy
� 0 ;

�40�
qB
qz
� a

qB
qy
� 1

2
B
qa
qy
� g

2
B 2 :

The right-hand side of the transfer equation (the second
equation in system (40)), as can be readily seen, is responsible
for quadratic (two-photon) wave beam absorption [17, 18].
By the variable change B � 1=U, the transfer equation is
reduced to the linear form

qU
qz
� a

qU
qy
ÿ 1

2

qa
qy

U � ÿ g
2
; �41�

while the eikonal equation [the first one in Eqns (40)] is
independent of it and is readily solvable. Consequently, the
entire system (40) can be solved exactly.

8. Quadratically cubic
Korteweg±de Vries equation

We write the Korteweg±de Vries (KdV) equation in the same
notation as Eqn (16):

qV
qZ
� a

2

q
qy

ÿjV jV �� G
q3V

qy 3
: �42�

The first three conservation laws for Eqn (42) are
I1; 2; 3 � const with

I1 �
�1
ÿ1

V�z; y� dy ; I2 �
�1
ÿ1

V 2�z; y� dy ;
�43�

I3 �
�1
ÿ1

"
aV 2jV j ÿ 3G

�
qV
qy

�2
#
dy :

The first two expressions (the conservation ofmomentum and
energy) coincide with those for the cubic KdV, and the third
one is somewhat different.

The equation for stationary waves V� V�T � yÿ bZ� is

G
�
dV

dT

�2

� EÿW�V � ; W � a
3
jV jV 2 � bV 2 : �44�

The phase plane for Eqn (44) does not differ qualitatively
from that for the cubic KdV [19]. Depending on the signs of
the coefficients a and G at the nonlinear and dispersive terms,
and also on the stationary wave propagation speed, which
depends on the parameter b, the potentialW�V � can have one
or two wells. As a result, periodic solutions exist, as do
solutions in the form of solitary wavesÐ solitons and kinks.

The qualitative considerations presented above stress the
importance of formulating a rigorous theory of the QC KdV
equation. First of all, it is of interest to find whether it can be
solved with the inverse scattering method.

9. Conclusions

The list of QC models mentioned in this work can be
augmented by QC analogs of other mathematical models,
which include the Klein±Gordon nonlinear equation

Duÿ 1

c 2
q2u
qt 2
� auÿ bujuj ;

the Newell±Whitehead nonlinear equation [21]

qu
qt
ÿ k

q2u
qx 2
� auÿ bujuj ;

the Ginzburg±Landau nonlinear equation [22]

qu
qt
� u� �1� ib�Duÿ �1� ic� ujuj ;

a QC modification of the Khokhlov±Zabolotskaya equation
[23]:

q
qt

�
qu
qz
ÿ q
qt

ÿ
ujuj�� � ND?u ;

and general nonlinear integro-differential equations [24]

q
qt

�
qu
qz
ÿ q
qt

ÿ
ujuj�ÿ q2

qt 2

�1
0

K�s� u�tÿ s� ds
�
� ND?u

with a nondegenerate kernel K�s�. This list certainly includes
many other known mathematical models. It is possible that
some of them can be solved more easily for this (QG) type of
nonlinearity. It is also possible that their analysis will help in
studying new features of some physical phenomena. Exam-
ples of such already realized possibilities are described in this
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note. Even if the analysis does not bring new knowledge,
attempts at doing it may serve as a good practical exercise for
the interested reader.
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